WO2018117523A1 - 고온연신 특성이 우수한 고강도 강판, 온간프레스 성형부재 및 이들의 제조방법 - Google Patents

고온연신 특성이 우수한 고강도 강판, 온간프레스 성형부재 및 이들의 제조방법 Download PDF

Info

Publication number
WO2018117523A1
WO2018117523A1 PCT/KR2017/014582 KR2017014582W WO2018117523A1 WO 2018117523 A1 WO2018117523 A1 WO 2018117523A1 KR 2017014582 W KR2017014582 W KR 2017014582W WO 2018117523 A1 WO2018117523 A1 WO 2018117523A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
temperature
excluding
cementite
Prior art date
Application number
PCT/KR2017/014582
Other languages
English (en)
French (fr)
Inventor
이제웅
한상호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2019532934A priority Critical patent/JP6907320B2/ja
Priority to ES17885129T priority patent/ES2902233T3/es
Priority to US16/470,401 priority patent/US11680305B2/en
Priority to MX2019007381A priority patent/MX2019007381A/es
Priority to CN201780078444.9A priority patent/CN110088336B/zh
Priority to EP17885129.1A priority patent/EP3561118B1/en
Publication of WO2018117523A1 publication Critical patent/WO2018117523A1/ko
Priority to US18/144,394 priority patent/US20230287545A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2204/00End product comprising different layers, coatings or parts of cermet

Definitions

  • the present invention relates to a high-strength steel sheet, a warm press forming member and a manufacturing method thereof having excellent high temperature stretching characteristics.
  • a typical steel material that satisfies the above requirements is austenitic high manganese steel.
  • Patent Document 1 a large amount of austenite stabilizing elements such as carbon (C) and manganese (Mn) is added to secure a steel microstructure as an austenite single phase at room temperature, and high strength and excellent molding using twins generated during deformation. A method of securing sex at the same time is disclosed.
  • austenite stabilizing elements such as carbon (C) and manganese (Mn)
  • Patent Document 1 not only the manufacturing cost of the steel sheet is increased due to the addition of a large amount of alloying elements, but also due to the high grain energy of the austenitic microstructure, the weld cracks due to the liquid metal embrittlement during spot welding of the galvanized steel sheet. Problems occur.
  • the Zn-plated steel sheet is heated to 880 ° C. or higher, and then hot forming and quenching of the Zn plated steel sheet not only secure an ultra high strength member having a tensile strength of 1500 MPa or more, but also secure excellent moldability at high temperatures. have.
  • Patent Literature 2 not only can the spot weldability be lowered by the Zn oxide formed on the surface of the Zn plating layer at a temperature of 880 ° C. or more at the time of hot forming, but also cracking resistance can be problematic.
  • Patent Document 1 Korean Unexamined Patent Publication No. 2007-0023831
  • Patent Document 2 Korean Unexamined Patent Publication No. 2014-0035033
  • One aspect of the present invention is to provide a high-strength steel sheet, a warm press forming member and a manufacturing method thereof having excellent high temperature stretching characteristics.
  • One aspect of the invention is by weight, C: 0.4-0.9%, Cr: 0.01-1.5%, P: 0.03% or less (excluding 0%), S: 0.01% or less (excluding 0%), N: 0.01 % Or less (excluding 0%), sol.Al: 0.1% or less (excluding 0%), remaining Fe and inevitable impurities, Mn: 2.1% or less (excluding 0%) and Si: 1.6% or less (excluding 0%) ) At least one of
  • the microstructure includes 80% or more of pearlite and 20% or less of ferrite in an area fraction, and the pearlite relates to a high strength steel sheet having excellent high-temperature stretching properties including cementite having a major axis length of 200 nm or less.
  • another aspect of the present invention is by weight, C: 0.4 ⁇ 0.9%, Cr: 0.01 ⁇ 1.5%, P: 0.03% or less (excluding 0%), S: 0.01% or less (excluding 0%), N: 0.01% or less (excluding 0%), sol.Al: 0.1% or less (excluding 0%), remaining Fe and inevitable impurities, Mn: 2.1% or less (excluding 0%) and Si: 1.6% or less ( Heating the slab including at least one of 0%) to 1100-1300 ° C .;
  • the cold rolled hot rolled steel sheet at a reduction ratio of 40 to 80% to obtain a cold rolled steel sheet.
  • another aspect of the present invention relates to a warm press forming member manufactured using the steel sheet of the present invention and a method of manufacturing the same.
  • a steel sheet capable of simultaneously securing a tensile strength of at least 1000 MPa at room temperature and an elongation of at least 60% in a temperature range of 500 ° C to Ac1 + 30 ° C.
  • FIG. 2 is a photograph taken by a transmission electron microscope (TEM) of the microstructure after cold rolling of Specimen No. 2-1.
  • TEM transmission electron microscope
  • FIG. 3 is a schematic view showing a molding member.
  • Figure 4 is a photograph of the microcrack length after warm molding of specimen No. 2-1.
  • the present inventors have problems such as increased manufacturing cost of the conventional austenitic high manganese steel, cracks in the weld due to embrittlement of liquid metal during spot welding, and inferior crack propagation resistance and spot weldability due to the high forming temperature of the conventional hot forming. In order to solve the problem, we studied in depth.
  • the strength and elongation at high temperature (500 °C ⁇ Ac1 + 30 °C) is excellent, It was confirmed that it can provide a steel sheet that can be molded in the temperature range of 500 °C ⁇ Ac1 + 30 °C lower than the hot pressing temperature, and came to complete the present invention.
  • High-strength steel sheet having excellent high-temperature stretching characteristics is a weight%, C: 0.4 ⁇ 0.9%, Cr: 0.01 ⁇ 1.5%, P: 0.03% or less (excluding 0%), S: 0.01% or less (Excluding 0%), N: 0.01% or less (excluding 0%), sol.Al: 0.1% or less (excluding 0%), remaining Fe and inevitable impurities, Mn: 2.1% or less (excluding 0%) and Si: contains at least one of 1.6% or less (excluding 0%), and the microstructure includes 80% or more of pearlite and 20% or less of ferrite in area fraction, and the pearlite contains cementite having a long axis length of 200 nm or less. Include.
  • the alloy composition according to the present invention will be described in detail.
  • the unit of each element content is weight% unless there is particular notice.
  • Carbon (C) is an important component for producing a steel sheet having a pearlite microstructure composed of ferrite and cementite after hot rolling in the present invention, and in general, as the C content increases, the pearlite structure fraction can be secured and the strength of the steel is secured. It is an essential element added in order to.
  • the C content is less than 0.4%, there is a problem that it is difficult to secure enough pearlite.
  • the C content is more than 0.9%, carbides in the pearlite are excessively formed, thereby lowering phase coherence with the precipitates, which may reduce hot rolling property and room temperature ductility, as well as sharply increase the strength in the mouth to reduce ductility. Can be.
  • the C content is preferably 0.4 to 0.9%, more preferably 0.5 to 0.65%.
  • Cr like Mn, serves to lower the carbon content necessary for vacancy composition.
  • it has the property of promoting the formation of cementite and reducing the lamellar spacing of pearlite, thereby promoting cementite spheroidization.
  • it has a characteristic of further improving the corrosion resistance of the steel sheet even by the addition of a small amount
  • the Cr content is less than 0.01%, the C content for the formation of vacancy pearlite in hot rolled state becomes high, and the spot weldability by C is greatly inferior, and the Cr content is 0.01% because it does not affect the corrosion resistance basically required in the steel sheet. It is preferable to add more than this, More preferably, it is desirable that it is 0.05% or more.
  • sol.Al 0.1% or less (except 0%)
  • Acid soluble aluminum (sol.Al) is an element added to refine the particle size and deoxidation of steel. If the content exceeds 0.1%, the surface of hot-dip galvanized steel sheet may be caused by excessive formation of inclusions during steelmaking operation. In addition to being high, there is a problem that causes an increase in manufacturing costs.
  • Phosphorus (P) in steel is an element that is beneficial for securing strength, but excessive addition greatly increases the possibility of brittle fracture, which increases the possibility of problems such as slab breakage during hot rolling, and acts as an element that inhibits plating surface properties. There is a problem.
  • the present invention it is important to control the upper limit of P as an impurity, and it is preferable to limit it to 0.03% or less. However, 0% is excluded in consideration of the level inevitably added during the manufacturing process.
  • S Sulfur
  • S in steel since S in steel has a problem of increasing the possibility of generating red brittleness, it is preferable to control the content to 0.01% or less. However, 0% is excluded in consideration of the level inevitably added during the manufacturing process.
  • Nitrogen (N) is an element inevitably added as an impurity element in steel, and it is preferable to control it to 0.01% or less which is a range in which operating conditions are possible. However, 0% is excluded in consideration of the level inevitably added during the manufacturing process.
  • Mn like Cr, serves to lower the carbon content required for vacancy composition. Moreover, it is an element which plays a role which suppresses formation of a cornerstone ferrite.
  • Mn content is more than 2.1%, there is a problem that can cause low-temperature tissue during cooling.
  • Si plays a role of stabilizing the layered structure in the pearlite structure with a solid solution strengthening effect, thereby suppressing the decrease in strength.
  • the Si content is more than 1.6%, the elongation may be lowered, and the surface and plating quality of the steel may be lowered.
  • the remaining component of the present invention is iron (Fe).
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
  • the C, Cr, Mn and Si content may satisfy the following Equation 1.
  • Relationship 1 0.7 ⁇ C + Cr / 2 + Mn / 3 + Si / 4 ⁇ 3.0
  • each element symbol is a value representing each element content in weight% and is calculated as 0 when not included.
  • the relationship 1 is designed in consideration of the degree of influence of each element for producing a steel having a vacancy composition and the corresponding composition system required in the present invention.
  • relation 1 When relation 1 is less than 0.7, it is difficult to secure more than 80 area% of pearlite after hot rolling. On the other hand, when the value is greater than 3.0, the elongation may be reduced due to the addition of a large amount of alloying elements, and the crack propagation resistance may be inferior during hot forming.
  • the microstructure of the steel sheet according to the present invention includes an area fraction of at least 80% pearlite and 20% or less ferrite, and the pearlite includes cementite having a length of 200 nm or less.
  • the pearlite is less than 80%, it is difficult to secure high strength, and elongation may decrease during high temperature molding.
  • the upper limit thereof is not particularly limited, and the pearlite single phase is more preferable.
  • the segmented cementite may be easily spheroidized in a warm forming or annealing process to obtain excellent high temperature elongation and final ductility.
  • the cementite of the pearlite may have an N value of 60% or more according to the following Equation 2.
  • Nx is the number of cementite having a major axis length of 200 nm or less, and Ny means the number of cementite having a major axis length greater than 200 nm.
  • Equation 2 since the larger the number of segmented cementite having Nx, that is, the length of the major axis is 200 nm or less, the segmented cementite is easily spheroidized in a warm forming or annealing process, thereby ensuring excellent high temperature elongation and final ductility. to be.
  • the N value is preferably 60% or more, and more preferably 75% or more.
  • the steel sheet of the present invention may have a tensile strength of 1000 MPa or more and an elongation of 60% or more at a high temperature (500 ° C to Ac1 + 30 ° C).
  • the Ac1 temperature may be defined by the following equation (3).
  • each element symbol is a value indicating the content of each element in weight%, and if not included, it is calculated as 0.
  • one of an aluminum plated layer, a zinc plated layer, and an alloyed zinc plated layer may be further formed on the surface thereof.
  • Another aspect of the present invention is a method of manufacturing a high strength steel sheet having excellent high-temperature stretching characteristics, the method comprising: heating the slab having the above-described alloy composition to 1100 ⁇ 1300 °C; Finishing hot rolling the heated slab in a temperature range of Ar3 + 10 ° C to Ar3 + 90 ° C to obtain a hot rolled steel sheet; Winding the hot rolled steel sheet at 550 to 700 ° C; And cold rolling the wound hot rolled steel sheet at a reduction ratio of 40 to 80% to obtain a cold rolled steel sheet.
  • the slab having the alloy composition described above In order to hot roll the slab having the alloy composition described above, it is heated to 1100 ⁇ 1300 °C.
  • the heating temperature is less than 1100 ° C., it is difficult to homogenize the structure and components of the slab. If the heating temperature is higher than 1300 ° C., problems of surface oxidation and equipment deterioration may occur.
  • the heated slab is finished hot rolled at a temperature range of Ar3 + 10 ° C to Ar3 + 90 ° C to obtain a hot rolled steel sheet.
  • finish hot rolling temperature is below Ar3 + 10 ° C., there is a possibility of abnormal reverse rolling of ferrite and austenite, which may cause difficulty in controlling the mixed structure and plate shape in the steel surface layer, and may also cause material unevenness.
  • finish hot rolling temperature is higher than Ar3 + 90 ° C, grain coarsening of the hot rolled material is likely to occur.
  • finish hot rolling it is preferable to use it in the austenitic single phase area
  • the Ar3 temperature may be defined by the following equation 4.
  • each element symbol is a value indicating the content of each element in weight%, and if not included, it is calculated as 0.
  • the hot rolled steel sheet is wound at 550 ⁇ 700 °C.
  • the coiling temperature is less than 550 °C low temperature transformation structure, that is, bainite or martensite is generated to cause excessive strength increase of the hot rolled steel sheet may cause problems such as shape defects due to excessive load during cold rolling, It is difficult to obtain pearlite microstructure.
  • if necessary to further reduce the rolling load before cold rolling may further comprise the step of performing annealing (batch annealing) at 200 ⁇ 700 °C after the winding step.
  • the annealing temperature is less than 200 ° C.
  • the hot-rolled structure is not softened sufficiently and does not significantly affect the reduction of rolling load.
  • the annealing temperature is higher than 700 ° C.
  • the pearlite decomposition characteristics due to high temperature annealing occur, resulting in the required pearlite spheroidization characteristics of the present invention. It may not be enough.
  • the wound hot rolled steel sheet is cold rolled at a reduction ratio of 40 to 80% to obtain a cold rolled steel sheet.
  • the reduction ratio is less than 40%, it may be difficult to secure a target thickness, and it may be difficult to sufficiently secure cementite having a long axis length of 200 nm or less.
  • sufficient pearlite transformation time is not given according to the winding process conditions after hot rolling, the segmented form of cementite may appear in the hot rolled steel sheet as shown in FIG. 1, but the segmented pearlite may not be sufficiently secured. Therefore, in the present invention, by cold rolling with a reduction ratio of 40% or more, sufficiently long cementite having a length of 200 nm or less is secured. After cold rolling, the lamellar cementite is stretched or segmented in the rolling direction, and the layered distance between the cementite becomes close.
  • the reduction ratio is more than 80%, the cracks are likely to occur at the edge of the cold rolled steel sheet, and the load of the cold rolling may increase.
  • the characteristics required in the present invention can be secured.
  • the cold rolled steel sheet may further include a step of performing continuous annealing or phase annealing in the temperature range of Ac1-70 ° C to Ac1 + 70 ° C.
  • the lamellar form cementite formed during hot rolling may be spherical in shape.
  • There are two methods for spheroidizing heat treatment of cementite a subcritical annealing method performed directly under the Ac1 temperature and an intercritical annealing method performed between the Ac1 and Ac3 temperatures.
  • subcritical annealing visualization begins with concentration gradients due to the radius of curvature in cementite defects in lamellar tissue.
  • intercritical annealing a fraction of ferrite begins to transform into austenite, and the cementite particles in the pearlite remain unemployed, that is, composed of austenite and undissolved cementite tissue. Visualization proceeds to the nucleus.
  • the annealing temperature is less than Ac1-70 °C, the spheroidization of cementite is difficult to achieve as desired, if the Ac1 + 70 °C it may be uneven form of cementite due to undissolved cementite. Therefore, it is preferable to perform continuous annealing or normal annealing in the temperature range of Ac1-70 ° C to Ac1 + 70 ° C.
  • the method may further include plating the cold rolled steel sheet.
  • the plating method and plating type are not particularly limited because the material properties are not significantly affected by the normal operating conditions.
  • plating may be performed with aluminum, zinc, aluminum alloy, zinc alloy, or the like, and plating may be performed using a hot dip plating method, an electroplating method, or the like.
  • the plated cold-rolled steel sheet may further comprise the step of alloying.
  • the material properties are not particularly affected by normal operating conditions.
  • alloying process can be performed in the temperature range of 400-600 degreeC.
  • the warm press forming member is manufactured by warm forming the high-strength steel sheet of the present invention described above, the alloy composition and the microstructure are the same without change. Therefore, it is possible to secure a high strength of more than 1000MPa tensile strength.
  • the N value is 70% or more because the N value according to the following relational formula 2 increases by the warm forming than the steel sheet.
  • Nx is the number of cementite having a major axis length of 200 nm or less, and Ny means the number of cementite having a major axis length greater than 200 nm.
  • the molding member may be further formed with an aluminum plating layer on the surface, a zinc plating layer or an alloying zinc plating layer may be further formed.
  • the length of the microcracks in the member may be 10 ⁇ m or less.
  • a method of manufacturing a warm press forming member may be performed by heating a steel sheet manufactured by the method of manufacturing a high strength steel sheet having excellent high-temperature stretching characteristics, and then pressing in a temperature range of 500 ° C to Ac1 + 30 ° C. Molding to a furnace.
  • the cementite When the warm forming temperature is less than 500 ° C., the cementite may not be sufficiently spheroidized, and thus high temperature stretching characteristics may be insufficient.
  • the warm forming temperature is higher than Ac1 + 30 ° C., an oxide is formed on the surface of the steel sheet, so that a shot blast process may be additionally required after the warm forming, and the galvanized layer or the alloyed zinc plated layer is formed. In this case, Zn tends to be liquefied, so it is highly probable that fine cracks will eventually occur due to diffusion movement into the ferrous grain boundary.
  • the molten Zn in the plated layer on the surface of the steel sheet due to the high temperature annealing of Ac3 or more is easily diffused through the grain boundary of the steel sheet, and thus the hot cracking is very likely to occur at the time of hot forming. have.
  • the steel sheet according to the present invention has an excellent elongation at high temperature (500 °C ⁇ Ac1 + 30 °C), even when molding in the range of 500 °C ⁇ Ac1 + 30 °C lower than the conventional hot forming temperature during molding Since no breakage occurs, the warm press molding member may be manufactured.
  • the microcracks generated during the molding may be manufactured through warm forming in the range of 500 ° C to Ac1 + 30 ° C lower than the conventional hot forming temperature. The length of the micro cracks can be reduced.
  • the liquid Zn is generated from the peritectic temperature (about 780 ° C).
  • the heat treatment temperature of the conventional heating furnace is higher than Ac3
  • the liquid Zn is formed on the zinc plated layer or the alloyed zinc plated layer on the surface of the steel plate because it is higher than the peritectic temperature, and the diffusion of the austenite grain boundary of the Zn is facilitated, so that the fine crack is formed on the side of the molded part during the subsequent hot forming. It occurs easily on the site (microcracks observation surface of Figure 2), the length has also been a problem that is difficult to take less than 10 ⁇ m.
  • the warm forming temperature range in the present invention is 500 °C ⁇ Ac1 + 30 °C lower than the Fe-Zn peritectic temperature to minimize the grain boundary diffusion of liquid and solid phase Zn amount and length of the microcracks generated after hot forming Can be reduced.
  • the molding may be carried out at a strain rate of 0.001 / s or more.
  • the strain rate is less than 0.001 / s, it may be more advantageous in terms of high temperature elongation, but it is preferable to perform at a strain rate of 0.001 / s or more because workability in the field is very poor and productivity may be reduced.
  • the slab having the composition shown in Table 1 was heat-treated for 1 hour in a 1180 °C heating furnace, and then cold-rolled steel sheet was prepared under the conditions shown in Table 2.
  • the annealing temperature means the annealing temperature after cold rolling
  • '-' means that the annealing is not performed after cold rolling.
  • the microstructure, N value, tensile strength and high temperature elongation of the prepared cold rolled steel sheet were measured, and are shown in Table 2 below.
  • the microstructure was observed after the application of the nital etching method using a scanning electron microscope (SEM), in Tables 2 and 3, P means pearlite, F means ferrite, B means bainite, and M means martensite.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the microstructure includes 80% or more of pearlite and 20% or less of ferrite as the area fraction, and the N value is 60% or more in tensile strength and high temperature tensile It can be confirmed that the elongation is excellent.
  • Example 2 The cold-rolled steel sheet prepared in Example 1 (same specimen number) was subjected to electro-galvanizing so that one side plating amount was 60 g / m 2 , and then charged into a heating furnace, heated, and molded by pressing at a molding temperature shown in Table 3 below. Cooling was performed to prepare a HAT shaped member as shown in FIG. 3.
  • SEM scanning electron microscope
  • microcracks length in the member was measured the average crack depth of the ten microcracks through the optical image analysis as shown in Figure 4 the depth of the microcracks penetrating the member from the interface between the member and the plating layer.
  • the molding member of specimen No. 5-3 having a high molding temperature was observed to have a fine crack length of more than 10 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명의 일 측면은 중량%로, C: 0.4~0.9%, Cr: 0.01~1.5%, P: 0.03% 이하(0%는 제외), S: 0.01% 이하(0% 제외), N: 0.01% 이하(0% 제외), sol.Al: 0.1% 이하(0%제외), 나머지 Fe 및 불가피한 불순물을 포함하며, Mn: 2.1% 이하(0% 제외) 및 Si: 1.6% 이하(0% 제외) 중 1종 이상을 포함하고, 미세조직은 면적분율로 80% 이상의 펄라이트 및 20% 이하의 페라이트를 포함하며, 상기 펄라이트는 장축의 길이가 200nm 이하인 세멘타이트를 포함하는 고온연신 특성이 우수한 고강도 강판에 관한 것이다.

Description

고온연신 특성이 우수한 고강도 강판, 온간프레스 성형부재 및 이들의 제조방법
본 발명은 고온연신 특성이 우수한 고강도 강판, 온간프레스 성형부재 및 이들의 제조방법에 관한 것이다.
최근 자동차 경량화와 연비 향상 및 승객 안전 등의 목적으로 고강도와 고성형성을 동시에 만족하는 철강 개발이 요구되고 있으며, 이에 관한 다양한 연구 등이 실시되고 있다.
상기 요구를 만족시키는 대표적인 철강재료가 오스테나이트계 고망간강이다. 오스테나이트 단상 조직을 확보하기 위해서는 0.5중량 % 이상의 탄소와 15중량 % 이상의 Mn을 첨가하는 것이 일반적이다.
일 예로, 특허문헌 1에서는 탄소(C)와 망간(Mn)등의 오스테나이트 안정화 원소를 다량 첨가하여 상온에서 강 미세조직을 오스테나이트 단상으로 확보하고 변형 중 발생하는 쌍정을 이용하여 고강도와 우수한 성형성을 동시에 확보하는 방법이 개시되어 있다.
그러나 특허문헌 1의 경우, 다량의 합금원소 첨가로 인한 강판의 제조 비용이 증가할 뿐만 아니라, 오스테나이트계 미세조직의 결정립 에너지가 높은 데서 기인하여 아연도금강판의 점용접시 액체금속취화로 인한 용접부 크랙 등의 문제점이 발생한다.
또한, 특허문헌 2에서는 Zn도금 강판을 880℃ 이상으로 가열 후 프레스에 의한 열간성형 및 급냉에 의해 인장강도가 1500MPa 이상인 초고강도 부재를 확보할 수 있을 뿐만 아니라, 고온에서 우수한 성형성을 확보할 수 있다.
그러나 특허문헌 2의 경우, 열간성형시 온도가 880℃ 이상으로 Zn 도금층 표면에 형성되는 Zn 산화물에 의해 점용접성이 하락할 수 있을 뿐만 아니라, 균열전파 저항성이 열위한 문제점이 발생할 수 있다.
따라서, 상기 오스테나이트계 고망간강 및 열간 성형이 갖는 문제점을 해결할 수 있는 강판에 대한 개발이 요구되고 있는 실정이다.
(선행기술문헌)
(특허문헌 1) 한국 공개특허공보 제2007-0023831호
(특허문헌 2) 한국 공개특허공보 제2014-0035033호
본 발명의 일 측면은 고온연신 특성이 우수한 고강도 강판, 온간프레스 성형부재 및 이들의 제조방법을 제공하기 위함이다.
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면은 중량%로, C: 0.4~0.9%, Cr: 0.01~1.5%, P: 0.03% 이하(0%는 제외), S: 0.01% 이하(0% 제외), N: 0.01% 이하(0% 제외), sol.Al: 0.1% 이하(0%제외), 나머지 Fe 및 불가피한 불순물을 포함하며, Mn: 2.1% 이하(0% 제외) 및 Si: 1.6% 이하(0% 제외) 중 1종 이상을 포함하고,
미세조직은 면적분율로 80% 이상의 펄라이트 및 20% 이하의 페라이트를 포함하며, 상기 펄라이트는 장축의 길이가 200nm 이하인 세멘타이트를 포함하는 고온연신 특성이 우수한 고강도 강판에 관한 것이다.
또한, 본 발명의 다른 일 측면은 중량%로, C: 0.4~0.9%, Cr: 0.01~1.5%, P: 0.03% 이하(0%는 제외), S: 0.01% 이하(0% 제외), N: 0.01% 이하(0% 제외), sol.Al: 0.1% 이하(0%제외), 나머지 Fe 및 불가피한 불순물을 포함하며, Mn: 2.1% 이하(0% 제외) 및 Si: 1.6% 이하(0% 제외) 중 1종 이상을 포함하는 슬라브를 1100~1300℃로 가열하는 단계;
상기 가열된 슬라브를 Ar3+10℃ ~ Ar3+90℃의 온도범위에서 마무리 열간압연하여 열연강판을 얻는 단계;
상기 열연강판을 550~700℃에서 권취하는 단계; 및
상기 권취된 열연강판을 압하율 40~80%로 냉간압연하여 냉연강판을 얻는 단계;를 포함하는 고온연신 특성이 우수한 고강도 강판의 제조방법에 관한 것이다.
또한, 본 발명의 또 다른 일 측면은 본 발명의 강판을 이용하여 제조된 온간프레스 성형부재 및 그 제조방법에 관한 것이다.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있다.
본 발명에 의하면, 상온에서 1000MPa 이상의 인장강도 및 500℃ ~ Ac1+30℃의 온도범위에서 60% 이상의 연신율을 동시에 확보할 수 있는 강판을 제공할 수 있다.
또한, 기존의 열간성형(HOT PRESS FORMING) 온도보다 낮은 500℃ ~ Ac1+30℃의 온도범위에서 성형이 가능하여 아연도금강판 또는 합금화 아연도금강판을 성형하는 경우에도 미소 크랙을 억제할 수 있는 효과가 있다.
이에 따라 고강도와 고성형성이 동시에 요구되는 자동차 내판용 내지 충돌부재 등에 바람직하게 적용될 수 있다.
도 1은 시편번호 1-1의 열간압연 후 미세조직을 주사전자현미경(SEM)으로 촬영한 사진이다.
도 2는 시편번호 2-1의 냉간압연 후 미세조직을 투과전자현미경(TEM)으로 촬영한 사진이다.
도 3은 성형부재를 나타낸 모식도이다.
도 4는 시편번호 2-1의 온간성형 후 미세균열길이를 촬영한 사진이다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 발명자들은 종래의 오스테나이트계 고망간강이 갖는 제조비용 증가, 점용접시 액체금속취화로 인한 용접부 크랙 발생 등의 문제점 및 종래의 열간 성형의 높은 성형 온도로 인해 균열전파 저항성 및 점용접성이 열위해지는 문제점을 해결하기 위하여 깊이 연구하였다.
그 결과, 합금조성 및 제조방법을 적절하게 제어함으로써 분절된 세멘타이트(cementite)를 갖는 펄라이트(pearlite)를 확보하여 강도 및 고온(500℃ ~ Ac1+30℃)에서의 연신율이 우수하고, 기존의 열간성형(HOT PRESS FORMING) 온도보다 낮은 500℃ ~ Ac1+30℃의 온도범위에서 성형이 가능한 강판을 제공할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
고온연신 특성이 우수한 고강도 강판
이하, 본 발명의 일 측면에 따른 고온연신 특성이 우수한 고강도 강판에 대하여 상세히 설명한다.
본 발명의 일 측면에 따른 고온연신 특성이 우수한 고강도 강판은 중량%로, C: 0.4~0.9%, Cr: 0.01~1.5%, P: 0.03% 이하(0%는 제외), S: 0.01% 이하(0% 제외), N: 0.01% 이하(0% 제외), sol.Al: 0.1% 이하(0%제외), 나머지 Fe 및 불가피한 불순물을 포함하며, Mn: 2.1% 이하(0% 제외) 및 Si: 1.6% 이하(0% 제외) 중 1종 이상을 포함하고, 미세조직은 면적분율로 80% 이상의 펄라이트 및 20% 이하의 페라이트를 포함하며, 상기 펄라이트는 장축의 길이가 200nm 이하인 세멘타이트를 포함한다.
먼저, 본 발명에 따른 합금조성에 대하여 상세히 설명한다. 이하, 각 원소 함량의 단위는 특별한 언급이 없는 한 중량%이다.
C: 0.4~0.9%
탄소(C)는 본 발명에서 열간압연 후 페라이트와 세멘타이트로 이루어진 펄라이트 미세조직을 갖는 강판을 제조하는데 중요한 성분으로서, 일반적으로 C 함량이 증가할수록 펄라이트 조직 분율을 높게 확보할 수 있으며 강의 강도를 확보하기 위해 첨가되는 필수적인 원소이다.
C 함량이 0.4% 미만인 경우에는 펄라이트를 충분히 확보하기 어려운 문제점이 있다. 반면에 C함량이 0.9% 초과인 경우에는 펄라이트 내 탄화물이 과다 형성되어 석출물과의 상간 정합성을 저하시켜 열간 압연성 및 상온 연성이 저하될 수 있을 뿐만 아니라, 입내 강도를 급격히 증가시켜 연성을 감소시킬 수 있다.
따라서 C 함량은 0.4~0.9%인 것이 바람직하며, 보다 바람직하게는 0.5~0.65%일 수 있다.
Cr: 0.01~1.5%
Cr은 Mn과 마찬가지로, 공석 조성에 필요한 탄소함량을 낮추는 역할을 한다. 또한, 세멘타이트의 형성을 조장하고 펄라이트의 라멜라 간격을 작게 하는 특성이 있어 세멘타이트 구상화를 촉진시킨다. 또한 미량의 첨가에 의해서도 강판의 내식성을 좀 더 개선하는 특성을 가지고 있다
Cr 함량이 1.5% 초과인 경우에는 기계적 특성에 나쁜 영향을 미칠 수 있고, 산세시 표면 스케일 산세성을 열위하게 할 수 있는 문제점이 있다.
Cr함량이 0.01% 미만인 경우에는 열연 상태에서 공석 펄라이트 형성을 위한 C함량이 높아져 C에 의한 점용접성이 크게 열위될 뿐만 아니라 강판에서 기본적으로 요구되는 내식성에도 전혀 영향을 미치지 못하므로 Cr 함량은 0.01% 이상 첨가하는 것이 바람직하며 보다 바람직하게는 0.05% 이상인 것이 바람직하다.
sol.Al: 0.1% 이하(0%는 제외)
산가용 알루미늄(sol.Al)은 강의 입도 미세화와 탈산을 위해 첨가되는 원소로서, 그 함량이 0.1%를 초과하게 되면, 제강 연주 조업시 개재물의 과다 형성으로 용융아연도금강판 표면 불량이 발생할 가능성이 높아질 뿐만 아니라, 제조원가의 상승을 초래하는 문제가 있다.
그 하한을 특별히 한정할 필요는 없으나, 제조과정 중에 불가피하게 첨가되는 수준을 고려하여 0%는 제외한다.
P: 0.03% 이하(0%는 제외)
강 중 인(P)은 강도 확보에 이로운 원소이지만, 과잉 첨가할 경우 취성 파괴 발생 가능성이 크게 증가하여 열간압연 도중 슬라브 파단 등의 문제점이 발생할 가능성이 증가되며, 도금표면 특성을 저해하는 원소로 작용하는 문제가 있다.
따라서, 본 발명에서 P는 불순물로서 그 상한을 제어하는 것이 중요하며 0.03% 이하로 제한하는 것이 바람직하다. 다만, 제조과정 중에 불가피하게 첨가되는 수준을 고려하여 0%는 제외한다.
S: 0.01% 이하(0%는 제외)
황(S)은 강 중 불순물 원소로서 불가피하게 첨가되는 원소로서, 강 중 S은 적열 취성을 발생시킬 가능성을 높이는 문제가 있으므로, 그 함량을 0.01% 이하로 제어하는 것이 바람직하다. 다만, 제조과정 중에 불가피하게 첨가되는 수준을 고려하여 0%는 제외한다.
N: 0.01% 이하(0%는 제외)
질소(N)는 강 중 불순물 원소로서 불가피하게 첨가되는 원소이며, 조업조건이 가능한 범위인 0.01% 이하로 제어하는 것이 바람직하다. 다만, 제조과정 중에 불가피하게 첨가되는 수준을 고려하여 0%는 제외한다.
상술한 성분 외에 Mn: 2.1% 이하(0%는 제외) 및 Si: 1.6% 이하(0%는 제외) 중 1종 이상을 포함한다.
Mn: 2.1% 이하(0%는 제외)
Mn은 Cr과 마찬가지로, 공석 조성에 필요한 탄소함량을 낮추는 역할을 한다. 또한, 초석 페라이트의 생성을 억제하는 역할을 하는 원소이다.
Mn 함량이 2.1% 초과인 경우에는 냉각 중 저온 조직을 유발할 수 있는 문제점이 있다.
Si: 1.6% 이하(0%는 제외)
Si은 고용강화 효과와 함께, 펄라이트 조직 내 층상 구조를 안정화시켜 강도 저하를 억제하는 역할을 한다.
Si 함량이 1.6% 초과인 경우에는 연신율을 저하시킬 수 있으며, 강의 표면 및 도금 품질을 저하시킬 수 있다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
이때, 상술한 각 원소 함량을 만족할 뿐만 아니라, C, Cr, Mn 및 Si 함량이 하기 관계식 1을 만족할 수 있다.
관계식 1: 0.7 ≤ C + Cr/2 + Mn/3 + Si/4 ≤ 3.0
(상기 관계식 1에서 각 원소기호는 각 원소함량을 중량%로 나타낸 값이며, 포함되지 않는 경우 0으로 계산한다.)
상기 관계식 1은 본 발명에서 요구되는 공석 조성 및 그에 상응하는 조성계를 갖는 강을 제조하기 위한 각 원소의 영향도를 고려하여 설계한 것이다.
관계식 1이 0.7 미만인 경우에는 열간압연 후 80면적% 이상의 펄라이트를 확보하기 어렵다. 반면에, 그 값이 3.0 초과인 경우에는 다량의 합금원소 첨가로 인해 연신율이 저하될 수 있고, 열간성형 시 균열전파 저항성이 열위해질 수 있다.
본 발명에 따른 강판의 미세조직은 면적분율로 80% 이상의 펄라이트 및 20% 이하의 페라이트를 포함하며, 상기 펄라이트는 장축의 길이가 200nm 이하인 세멘타이트를 포함한다.
펄라이트가 80% 미만인 경우에는 고강도를 확보하기 어렵고, 고온 성형시 연신율이 하락할 수 있기 때문이다.
펄라이트 분율이 높을수록 고강도 및 고온 연신율 확보에 유리하므로 그 상한은 특별히 한정하지 않으며, 펄라이트 단상인 것이 보다 바람직하다.
펄라이트는 장축의 길이가 200nm 이하인 세멘타이트를 포함함으로써, 온간성형 또는 소둔 공정에서 상기 분절된 세멘타이트들이 쉽게 구상화되어 고온 연신율 및 최종 연성을 우수하게 확보할 수 있다.
이때, 상기 펄라이트의 세멘타이트는 하기 관계식 2에 의한 N값이 60% 이상일 수 있다.
관계식 2: N(%)=Nx/(Nx+Ny)*100
(상기 관계식 2에서, Nx는 장축의 길이가 200nm 이하인 세멘타이트의 개수이며, Ny는 장축의 길이가 200nm 초과인 세멘타이트의 개수를 의미한다.)
상기 관계식 2에서 Nx, 즉 장축의 길이가 200nm 이하로 분절된 세멘타이트의 개수가 많을수록 온간성형 또는 소둔 공정에서 상기 분절된 세멘타이트들이 쉽게 구상화되어 고온 연신율 및 최종 연성을 우수하게 확보할 수 있기 때문이다.
따라서 상기 N값은 60% 이상인 것이 바람직하며, 보다 바람직하게는 75% 이상일 수 있다.
한편, 본 발명의 강판은 인장강도가 1000MPa 이상이고, 고온(500℃ ~ Ac1+30℃)에서 연신율이 60% 이상일 수 있다.
이러한 물성을 확보함으로써 종래 열간성형 온도보다 낮은 500℃ ~ Ac1+30℃의 범위에서 성형을 하더라도 성형 중 파단이 발생하지 않는 고강도 온간프레스 성형부재를 제조할 수 있다.
이때, 상기 Ac1 온도는 하기 관계식 3에 의해 정의될 수 있다.
관계식 3: Ac1(℃) = 723 - 10.7*Mn - 16.9*Ni + 29.1*Si + 16.9*Cr + 290*As + 6.38*W
(상기 관계식 3에서 각 원소 기호는 각 원소 함량을 중량%로 나타낸 값이며, 포함되지 않는 경우 0으로 계산한다.)
또한, 본 발명의 강판은 표면에 알루미늄도금층, 아연도금층 및 합금화 아연도금층 중 하나가 추가로 형성되어 있을 수 있다.
고온연신 특성이 우수한 고강도 강판의 제조방법
이하, 본 발명의 다른 일 측면인 고온연신 특성이 우수한 고강도 강판의 제조방법에 대하여 상세히 설명한다.
본 발명의 다른 일 측면인 고온연신 특성이 우수한 고강도 강판의 제조방법은 상술한 합금조성을 갖는 슬라브를 1100~1300℃로 가열하는 단계; 상기 가열된 슬라브를 Ar3+10℃ ~ Ar3+90℃의 온도범위에서 마무리 열간압연하여 열연강판을 얻는 단계; 상기 열연강판을 550~700℃에서 권취하는 단계; 및 상기 권취된 열연강판을 압하율 40~80%로 냉간압연하여 냉연강판을 얻는 단계;를 포함한다.
슬라브 가열 단계
상술한 합금조성을 갖는 슬라브를 열간압연 하기 위해 1100~1300℃로 가열한다.
가열 온도가 1100℃ 미만인 경우에는 슬라브의 조직 및 성분을 균일화 처리하기 어렵고, 1300℃ 초과인 경우에는 표면 산화 및 설비 열화의 문제점이 발생할 수 있다.
열간압연 단계
상기 가열된 슬라브를 Ar3+10℃ ~ Ar3+90℃의 온도범위에서 마무리 열간압연하여 열연강판을 얻는다.
마무리 열간압연 온도가 Ar3+10℃ 미만인 경우에는 페라이트와 오스테나이트의 이상역 압연 가능성이 있어 강 표층에 혼립 조직 및 판 형상 제어에 어려움을 야기할 수 있으며, 또한 재질 불균일성을 초래할 수 있다.
반면에 마무리 열간압연 온도가 Ar3+90℃ 초과인 경우에는 열연재의 결정립 조대화 현상이 발생하기 쉽다.
따라서, 마무리 열간압연의 경우 Ar3+10℃~Ar3+90℃ 온도 범위인 오스테나이트계 단상역에서 하는 것이 바람직하다. 상기 온도 범위에서 마무리 열간압연을 함으로써 단상 오스테나이트 결정립으로 구성되는 미세조직에서 보다 균일한 변형을 가하여 조직내 균일성을 증가시킬 수 있기 때문이다.
이때, 상기 Ar3 온도는 하기 관계식 4에 의해 정의될 수 있다.
관계식 4: Ar3(℃) = 910-95*(C^0.5)-15.2*Ni+44.7*Si+104*V+31.5*Mo-(15*Mn+11*Cr+20*Cu-700*P-400*Al-400*Ti)
(상기 관계식 4에서 각 원소 기호는 각 원소 함량을 중량%로 나타낸 값이며, 포함되지 않는 경우 0으로 계산한다.)
권취 단계
상기 열연강판을 550~700℃에서 권취한다.
권취온도가 550℃ 미만이면 저온변태조직 즉, 베이나이트 또는 마르텐사이트가 생성되어 열연강판의 과다한 강도 상승을 초래함으로써 냉간압연시 과다한 부하로 인한 형상불량 등의 문제가 발생할 수 있으며, 본 발명의 목적인 펄라이트 미세조직을 얻기 힘들다.
반면에 권취온도가 700℃를 초과하게 되면 과도한 열연재 입계 산화가 발생하기 쉬우며, 이에 따라 산세성이 열위해지는 문제점이 발생할 수 있다.
이때, 필요에 따라 냉간 압연 전 압연 부하를 줄이기 위해서 상기 권취하는 단계 후에 200~700℃에서 상소둔(batch annealing)을 행하는 단계를 추가로 포함할 수 있다.
상소둔 온도가 200℃ 미만인 경우에는 열연 조직이 충분히 연화되지 못하여 압연 부하 감소에 큰 영향을 미치지 못하고, 700℃를 초과하게 되면 고온 소둔에 의한 펄라이트 분해가 발생되어 본 발명의 요구되는 펄라이트 구상화 특성이 충분히 발휘되지 못할 수 있다.
한편, 상소둔 열처리 시간은 크게 영향을 주지 않기 때문에 본 발명에서 특별히 한정할 필요는 없다.
냉간압연 단계
상기 권취된 열연강판을 압하율 40~80%로 냉간압연하여 냉연강판을 얻는다.
상기 압하율이 40% 미만이면 목표로 하는 두께를 확보하기 어렵고, 장축의 길이가 200nm 이하인 세멘타이트를 충분히 확보하기 어려울 수 있다. 열연강판의 경우 펄라이트 변태시 성장 시간이 충분하다면 길쭉한 형태의 라멜라 세멘타이트를 갖는 것이 일반적이다. 다만, 열간압연 후 권취 공정 조건에 따라 충분한 펄라이트 변태 시간이 주어지지 못한다면 열연강판에서도 도 1에서처럼 일부분 분절된 형태의 세멘타이트가 나타날 수 있으나, 분절된 펄라이트를 충분히 확보할 수는 없다. 따라서 본 발명에서는 압하율 40% 이상의 냉간압연을 행함으로써 장축의 길이가 200nm 이하인 세멘타이트를 충분히 확보한다. 냉간압연 후 라멜라 형태의 세멘타이트들은 압연방향으로 연신 혹은 분절되어 나타나게 되며, 세멘타이트들 간의 층상 거리는 가까워지게 된다.
반면에 압하율이 80% 초과인 경우에는 냉연강판 에지(edge)부에서 크랙이 발생할 가능성이 높고, 냉간압연의 부하가 높아질 수 있다.
이때, 냉간압연은 상온에서 행할 수 있다.
본 발명에서는 냉간압연 후에 특별한 소둔을 실시하지 않고 바로 온간성형을 행하는 경우에도 본 발명에서 요구되는 특성을 확보할 수 있다.
다만, 보다 안정된 재질 특성을 확보하기 위하여 냉연강판을 Ac1-70℃ ~ Ac1+70℃의 온도범위에서 연속소둔 또는 상소둔을 행하는 단계를 추가로 포함할 수 있다.
상기 온도범위에서 연속소둔 또는 상소둔을 행함으로써 열간압연시 형성된 라멜라(lamellar) 형태의 세멘타이트들이 구형의 형태로 구상화될 수 있다. 세멘타이트의 구상화 열처리 방법은 크게 Ac1 온도 직하에서 수행하는 Subcritical annealing 방법과 Ac1~Ac3 온도 사이에서 행하는 Intercritical annealing 방법 두 가지가 있다. Subcritical annealing 시, 라멜라 조직내 세멘타이트 결함부 등에서 곡률 반경차에 의한 농도구배로 구상화가 시작된다. 반면, Intercritical annealing 시, 일정 분율의 페라이트가 오스테나이트로 변태가 개시되고, 펄라이트 내 세멘타이트 입자는 미고용 상태를 유지 즉, 오스테나이트와 미용해 세멘타이트 조직으로 구성되며, 이러한 미용해 세멘타이트를 핵으로 구상화가 진행된다.
소둔 온도가 Ac1-70℃ 미만인 경우에는 세멘타이트의 구상화가 원하는 만큼 이루어지기 힘들며, Ac1+70℃ 초과인 경우에는 미용해 세멘타이트 등으로 인해 세멘타이트의 형태가 불균일해질 수 있다. 따라서 Ac1-70℃ ~ Ac1+70℃의 온도범위에서 연속소둔 또는 상소둔하는 것이 바람직하다.
한편, 상기 냉연강판을 도금하는 단계를 추가로 포함할 수 있다. 도금방법 및 도금종류는 통상의 조업조건에 의해서도 재질 특성에는 큰 영향이 없으므로 특별히 한정하지 않는다.
예를 들어, 알루미늄, 아연, 알루미늄합금, 아연합금 등으로 도금을 행할 수 있으며, 용융도금법, 전기도금법 등을 이용하여 도금을 행할 수 있다.
이때, 상기 도금된 냉연강판을 합금화 처리하는 단계를 추가로 포함할 수 있다. 상기 도금하는 단계와 마찬가지로 통상의 조업조건에 의해서도 재질 특성에는 큰 영향이 없으므로 특별히 한정하지 않는다.
예를 들어, 400~600℃의 온도범위에서 합금화 처리를 행할 수 있다.
온간프레스 성형부재
이하, 본 발명의 또 다른 일 측면인 상술한 본 발명의 강판을 이용하여 제조된 온간프레스 성형부재에 대하여 상세히 설명한다.
본 발명의 또 다른 일 측면인 온간프레스 성형부재는 상술한 본 발명의 고강도 강판을 온간성형하여 제조되므로, 그 합금조성 및 미세조직은 변하지 않고 동일하다. 따라서 인장강도 1000MPa 이상의 고강도 확보가 가능하다. 다만, 온간성형에 의하여 하기 관계식 2에 의한 N값이 강판보다 상승하기 때문에 N값이 70% 이상이다.
관계식 2: N(%)=Nx/(Nx+Ny)*100
(상기 관계식 2에서, Nx는 장축의 길이가 200nm 이하인 세멘타이트의 개수이며, Ny는 장축의 길이가 200nm 초과인 세멘타이트의 개수를 의미한다.)
한편, 상기 성형부재는 표면에 알루미늄도금층이 추가로 형성되어 있을 수 있으며, 아연도금층 또는 합금화 아연도금층이 추가로 형성되어 있을 수 있다.
또한, 아연도금층 또는 합금화 아연도금층이 추가로 형성되어 있는 경우에도 부재 내 미세균열 길이가 10㎛ 이하일 수 있다.
종래 열간성형 온도보다 낮은 500℃ ~ Ac1+30℃의 범위에서 온간성형을 통하여 제조되기 때문에 성형시 발생하는 미세균열(micro crack)의 길이를 저감할 수 있기 때문이다.
온간프레스 성형부재의 제조방법
이하, 본 발명의 또 다른 일 측면인 온간프레스 성형부재의 제조방법에 대하여 상세히 설명한다.
본 발명의 또 다른 일 측면인 온간프레스 성형부재의 제조방법은 상술한 고온연신 특성이 우수한 고강도 강판의 제조방법에 의해 제조된 강판을 가열한 후, 500℃ ~ Ac1+30℃의 온도범위에서 프레스로 성형하는 단계를 포함한다.
상기 온간성형 온도가 500℃ 미만인 경우에는 세멘타이트들이 충분히 구상화되지 못하여 고온 연신 특성이 불충분할 수 있다. 반면에 온간성형 온도가 Ac1+30℃ 초과인 경우에는 강판 표면에 산화물이 생성되어 온간성형 후 추가로 샷 블라스트(Shot blast) 공정이 필요할 수 있으며, 아연도금층 또는 합금화 아연도금층이 형성된 강판을 성형하는 경우 Zn가 액상화되는 경향이 높아 소지철 입계로 확산 이동하여 최종적으로 미세 균열이 발생할 가능성이 높다.
종래의 HPF(HOT PRESS FORMING) 혹은 PHS(Press Hardening Steel) 제품이라 알려진 열간성형 부재의 경우, 최종 미세조직을 마르텐사이트로 얻기 위해 가열로 소둔온도가 Ac3 이상의 오스테나이트 단상역 열처리가 필수이며, 임계 냉각 속도 이상의 냉각 조건 하에서 최종 냉각 조직이 마르텐사이트로 이루어짐을 특징으로 하지만, 이에 따라 내충격특성이 열위될 수 있다.
또한, Ac3 이상의 고온 소둔에 따른 강판 표면의 도금층내 용융 Zn가 소지철 입계로 쉽게 확산을 통한 이동으로 열간성형시 최종적으로 미세 균열 발생 가능성이 매우 높고 그 길이가 10㎛ 이하로 만들기 힘든 단점을 갖고 있다.
상술한 바와 같이, 본 발명에 따른 강판은 고온(500℃ ~ Ac1+30℃)에서 연신율이 우수한 특성을 가지므로 종래 열간성형 온도보다 낮은 500℃ ~ Ac1+30℃의 범위에서 성형을 하더라도 성형 중 파단이 발생하지 않아 온간프레스 성형부재를 제조할 수 있다.
또한, 오스테나이트 단상역까지 가열할 필요가 없어 성형 후에도 마르텐사이트가 아닌 펄라이트를 주상으로 확보할 수 있어 내충격특성이 우수하다.
나아가, 성형 전 강판 표면에 아연도금층 또는 합금화 아연도금층이 추가로 형성되어 있는 경우에도 종래 열간성형 온도보다 낮은 500℃ ~ Ac1+30℃의 범위에서 온간성형을 통하여 제조되기 때문에 성형시 발생하는 미세균열(micro crack)의 길이를 저감할 수 있다.
아연도금층 또는 합금화 아연도금층의 Zn에 의한 미세균열 발생 기구를 상세히 설명하면, 일반적으로 Fe-Zn 상태도에서 액상 Zn는 peritectic 온도(약 780℃)부터 생성된다. 기존 가열로 열처리 온도가 Ac3 이상인 경우 상기 peritectic 온도보다 높아 강판 표면의 아연도금층 또는 합금화 아연도금층에 액상 Zn이 형성되고 상기 Zn의 오스테나이트 입계 확산이 용이해져 후속 열간성형시 미세균열이 성형부품의 측면 부위(도 2의 미세균열 관찰면)에 쉽게 발생하며, 그 길이 또한 10㎛ 이하로 가져가기 힘든 문제점이 제기되어 왔다.
반면, 본 발명에서의 온간성형 온도범위는 500℃ ~ Ac1+30℃로 상기 Fe-Zn peritectic 온도보다 낮아서 액상 및 고상의 Zn의 입계 확산을 최소화 할 수 있어 열간성형 후 발생하는 미세균열의 양과 길이를 저감할 수 있는 것이다.
이때, 상기 성형은 0.001/s 이상의 변형속도로 행할 수 있다.
변형속도가 0.001/s 미만인 경우에는 고온 연신율 측면에서는 보다 유리할 수 있으나, 현장에서의 작업성이 매우 떨어져 생산성이 저할될 수 있으므로 0.001/s 이상의 변형속도로 행하는 것이 바람직하다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실시예 1)
하기 표 1에 나타낸 성분조성을 갖는 슬라브를 1180℃ 가열로에서 1시간 동안 열처리 한 후, 하기 표 2에 기재된 조건으로 냉연강판을 제조하였다. 하기 표 2에서 소둔온도는 냉간 압연 후 소둔온도를 의미하며 '-'로 표시된 것은 냉간 압연 후 소둔을 행하지 않은 것을 의미한다.
상기 제조된 냉연강판의 미세조직, N값, 인장강도 및 고온 연신율을 측정하여 하기 표 2에 기재하였다.
미세조직은 주사전자현미경(SEM)을 이용해 나이탈 에칭법 적용 후 관찰하였으며, 하기 표 2 및 표 3에서 P는 펄라이트, F는 페라이트, B는 베이나이트, M은 마르텐사이트를 의미한다. 냉연강판에서의 미세조직 내 장축의 길이에 따른 세멘타이트의 개수는 하기 도 1과 같이 각각 주사전자현미경(SEM)과 투과전자현미경(TEM) 미세조직 관찰 사진을 이용하여 측정하였다.
고온 연신율은 고온인장시험용 시편을 가공한 뒤, 고온인장시험기를 통해 하기 표 2에 기재된 각기 달리 설정한 실험 온도에서 0.001/s의 변형속도 조건 하에서 각각 세 번씩 측정한 총 연신율의 평균값을 기재하였다.
하기 표 1에서 각 원소 함량의 단위는 중량%이다.
Figure PCTKR2017014582-appb-T000001
Figure PCTKR2017014582-appb-T000002
본 발명에서 제시한 합금조성 및 제조조건을 모두 만족하는 발명예의 경우, 미세조직은 면적분율로 80% 이상의 펄라이트 및 20% 이하의 페라이트를 포함하며, N값은 60% 이상으로 인장강도 및 고온인장 연신율이 우수한 것을 확인할 수 있다.
반면에 본 발명에서 제시한 합금조성 또는 제조조건을 만족하지 못하는 경우 펄라이트를 충분히 확보하지 못하거나 N값이 60% 미만으로 인장강도 또는 고온인장 연신율이 열위하였다.
(실시예 2)
실시예 1에서 제조된 냉연강판(시편번호 동일)을 편면 도금량이 60g/m2이 되도록 전기아연도금을 실시한 후, 가열로에 장입하여 가열하고, 하기 표 3에 기재된 성형온도에서 프레스로 성형 및 냉각을 실시하여 도 3와 같은 HAT 모양의 성형 부재를 제조하였다.
상기 성형 부재의 인장강도, 미세조직, N값, 부재 내 미세균열 길이 및 성형 중 파단 여부를 하기 표 3에 기재하였다. 단, 파단이 발생한 경우 인장강도 및 미세균열 길이를 측정하지 않았고, N값은 발명예인 경우에만 측정하였다.
인장시험은 JIS 5호 시편 규격을 사용하여 분당 10mm의 시험속도로 실시 하였다.
미세조직은 주사전자현미경(SEM)을 이용해 나이탈 에칭법 적용 후 관찰하였으며, 성형 전과 성형 후의 미세조직이 동일한 경우에는 '='로 표시하였다.
또한, 부재 내 미세균열 길이는 부재와 도금층 계면으로부터 부재를 관통한 미세균열의 깊이를 하기 도 4와 같이 광학 이미지 분석을 통해 10개 미세균열들의 평균 균열 깊이를 측정하였다.
Figure PCTKR2017014582-appb-T000003
본 발명에서 제시한 합금조성 및 제조조건을 모두 만족하는 냉연강판을 500℃ ~ Ac1+30℃의 온도범위에서 성형한 경우에는 성형 중 파단이 발생하지 않았으며, 미세균열 길이가 10㎛ 이하로 관찰된 것을 확인할 수 있다.
다만, 본 발명에서 제시한 합금조성 및 제조조건을 모두 만족하는 냉연강판을 이용하더라도 성형온도가 낮은 시편번호 2-5 및 4-3의 성형부재는 파단이 발생하였다.
또한, 본 발명에서 제시한 합금조성 및 제조조건을 모두 만족하는 냉연강판을 이용하더라도 성형온도가 높은 시편번호 5-3의 성형부재는 미세균열 길이가 10㎛ 초과로 관찰되었다.
본 발명에서 제시한 합금조성 또는 제조조건을 만족하지 못하는 냉연강판을 이용한 경우에는 본 발명에서 제시한 성형온도 만족 여부에 상관없이 성형 중 파단이 발생하거나, 미세균열 길이가 10㎛를 초과하였다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (18)

  1. 중량%로, C: 0.4~0.9%, Cr: 0.01~1.5%, P: 0.03% 이하(0%는 제외), S: 0.01% 이하(0% 제외), N: 0.01% 이하(0% 제외), sol.Al: 0.1% 이하(0%제외), 나머지 Fe 및 불가피한 불순물을 포함하며, Mn: 2.1% 이하(0% 제외) 및 Si: 1.6% 이하(0% 제외) 중 1종 이상을 포함하고,
    미세조직은 면적분율로 80% 이상의 펄라이트 및 20% 이하의 페라이트를 포함하며, 상기 펄라이트는 장축의 길이가 200nm 이하인 세멘타이트를 포함하는 고온연신 특성이 우수한 고강도 강판.
  2. 제1항에 있어서,
    상기 강판은 하기 관계식 1을 만족하는 고온연신 특성이 우수한 고강도 강판.
    관계식 1: 0.7≤C+Cr/2+Mn/3+Si/4≤3.0
    (상기 관계식 1에서 각 원소기호는 각 원소함량을 중량%로 나타낸 값이며, 포함되지 않는 경우 0으로 계산한다.)
  3. 제1항에 있어서,
    상기 펄라이트의 세멘타이트는 하기 관계식 2에 의한 N값이 60% 이상인 고온연신 특성이 우수한 고강도 강판.
    관계식 2: N(%)=Nx/(Nx+Ny)*100
    (상기 관계식 2에서, Nx는 장축의 길이가 200nm 이하인 세멘타이트의 개수이며, Ny는 장축의 길이가 200nm 초과인 세멘타이트의 개수를 의미한다.)
  4. 제1항에 있어서,
    상기 강판은 인장강도가 1000MPa 이상이고, 500℃ ~ Ac1+30℃의 온도범위에서 연신율이 60% 이상인 고온연신 특성이 우수한 고강도 강판.
  5. 제1항에 있어서,
    상기 강판은 표면에 알루미늄도금층, 아연도금층 및 합금화 아연도금층 중 하나가 추가로 형성되어 있는 고온연신 특성이 우수한 고강도 강판.
  6. 중량%로, C: 0.4~0.9%, Cr: 0.01~1.5%, P: 0.03% 이하(0%는 제외), S: 0.01% 이하(0% 제외), N: 0.01% 이하(0% 제외), sol.Al: 0.1% 이하(0%제외), 나머지 Fe 및 불가피한 불순물을 포함하며, Mn: 2.1% 이하(0% 제외) 및 Si: 1.6% 이하(0% 제외) 중 1종 이상을 포함하는 슬라브를 1100~1300℃로 가열하는 단계;
    상기 가열된 슬라브를 Ar3+10℃ ~ Ar3+90℃의 온도범위에서 마무리 열간압연하여 열연강판을 얻는 단계;
    상기 열연강판을 550~700℃에서 권취하는 단계; 및
    상기 권취된 열연강판을 압하율 40~80%로 냉간압연하여 냉연강판을 얻는 단계;를 포함하는 고온연신 특성이 우수한 고강도 강판의 제조방법.
  7. 제6항에 있어서,
    상기 슬라브는 하기 관계식 1을 만족하는 고온연신 특성이 우수한 고강도 강판의 제조방법.
    관계식 1: 0.7≤C+Cr/2+Mn/3+Si/4≤3.0
    (상기 관계식 1에서 각 원소기호는 각 원소함량을 중량%로 나타낸 값이며, 포함되지 않는 경우 0으로 계산한다.)
  8. 제6항에 있어서,
    상기 권취하는 단계 후에 200~700℃에서 상소둔을 행하는 단계를 추가로 포함하는 고온연신 특성이 우수한 고강도 강판의 제조방법.
  9. 제6항에 있어서,
    상기 냉연강판을 Ac1-70℃ ~ Ac1+70℃의 온도범위에서 연속소둔 또는 상소둔을 행하는 단계를 추가로 포함하는 고온연신 특성이 우수한 고강도 강판의 제조방법.
  10. 제6항에 있어서,
    상기 냉연강판을 도금하는 단계를 추가로 포함하는 고온연신 특성이 우수한 고강도 강판의 제조방법.
  11. 제10항에 있어서,
    상기 도금된 냉연강판을 합금화 처리하는 단계를 추가로 포함하는 고온연신 특성이 우수한 고강도 강판의 제조방법.
  12. 제6항에 있어서,
    상기 냉간압연은 상온에서 행해지는 고온연신 특성이 우수한 고강도 강판의 제조방법.
  13. 중량%로, C: 0.4~0.9%, Cr: 0.01~1.5%, P: 0.03% 이하(0%는 제외), S: 0.01% 이하(0% 제외), N: 0.01% 이하(0% 제외), sol.Al: 0.1% 이하(0%제외), 나머지 Fe 및 불가피한 불순물을 포함하며, Mn: 2.1% 이하(0% 제외) 및 Si: 1.6% 이하(0% 제외) 중 1종 이상을 포함하고,
    미세조직은 면적분율로 80% 이상의 펄라이트 및 20% 이하의 페라이트를 포함하며, 상기 펄라이트의 세멘타이트는 하기 관계식 2에 의한 N값이 70% 이상인 온간프레스 성형부재.
    관계식 2: N(%)=Nx/(Nx+Ny)*100
    (상기 관계식 2에서, Nx는 장축의 길이가 200nm 이하인 세멘타이트의 개수이며, Ny는 장축의 길이가 200nm 초과인 세멘타이트의 개수를 의미한다.)
  14. 제13항에 있어서,
    상기 성형부재는 하기 관계식 1을 만족하는 온간프레스 성형부재.
    관계식 1: 0.7≤C+Cr/2+Mn/3+Si/4≤3.0
    (상기 관계식 1에서 각 원소기호는 각 원소함량을 중량%로 나타낸 값이며, 포함되지 않는 경우 0으로 계산한다.)
  15. 제13항에 있어서,
    상기 부재는 표면에 알루미늄도금층이 추가로 형성되어 있는 온간프레스 성형부재.
  16. 제13항에 있어서,
    상기 부재는 표면에 아연도금층 또는 합금화 아연도금층이 추가로 형성되어 있으며, 부재 내 미세균열 길이가 10㎛ 이하인 온간프레스 성형부재.
  17. 제6항 내지 제12항 중 어느 한 항의 제조방법에 의해 제조된 강판을 가열한 후, 500℃ ~ Ac1+30℃의 온도범위에서 프레스로 성형하는 단계를 포함하는 온간프레스 성형부재의 제조방법.
  18. 제17항에 있어서,
    상기 성형은 0.001/s 이상의 변형속도로 행하는 온간프레스 성형부재의 제조방법.
PCT/KR2017/014582 2016-12-20 2017-12-12 고온연신 특성이 우수한 고강도 강판, 온간프레스 성형부재 및 이들의 제조방법 WO2018117523A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019532934A JP6907320B2 (ja) 2016-12-20 2017-12-12 高温伸び特性に優れた高強度鋼板、温間プレス成形部材、及びそれらの製造方法
ES17885129T ES2902233T3 (es) 2016-12-20 2017-12-12 Miembro prensado en caliente obtenido a partir de una lámina de acero de alta resistencia que tiene una excelente característica de alargamiento a alta temperatura, y su procedimiento de fabricación
US16/470,401 US11680305B2 (en) 2016-12-20 2017-12-12 High strength steel sheet having excellent high-temperature elongation characteristic, warm-pressed member, and manufacturing methods for the same
MX2019007381A MX2019007381A (es) 2016-12-20 2017-12-12 Lamina de acero de alta resistencia que tiene excelente caracteristica de elongacion a alta temperatura, miembro presionado en caliente y metodos de manufactura para los mismos.
CN201780078444.9A CN110088336B (zh) 2016-12-20 2017-12-12 高温延伸特性优异的高强度钢板、温压成型部件以及它们的制造方法
EP17885129.1A EP3561118B1 (en) 2016-12-20 2017-12-12 Warm-pressed member obtained from a high strength steel sheet having excellent high-temperature elongation characteristic, and manufacturing method thereof
US18/144,394 US20230287545A1 (en) 2016-12-20 2023-05-08 High strength steel sheet having excellent high-temperature elongation characteristic, warm-pressed member, and manufacturing methods for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160174960A KR101917447B1 (ko) 2016-12-20 2016-12-20 고온연신 특성이 우수한 고강도 강판, 온간프레스 성형부재 및 이들의 제조방법
KR10-2016-0174960 2016-12-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/470,401 A-371-Of-International US11680305B2 (en) 2016-12-20 2017-12-12 High strength steel sheet having excellent high-temperature elongation characteristic, warm-pressed member, and manufacturing methods for the same
US18/144,394 Division US20230287545A1 (en) 2016-12-20 2023-05-08 High strength steel sheet having excellent high-temperature elongation characteristic, warm-pressed member, and manufacturing methods for the same

Publications (1)

Publication Number Publication Date
WO2018117523A1 true WO2018117523A1 (ko) 2018-06-28

Family

ID=62627492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014582 WO2018117523A1 (ko) 2016-12-20 2017-12-12 고온연신 특성이 우수한 고강도 강판, 온간프레스 성형부재 및 이들의 제조방법

Country Status (8)

Country Link
US (2) US11680305B2 (ko)
EP (1) EP3561118B1 (ko)
JP (1) JP6907320B2 (ko)
KR (1) KR101917447B1 (ko)
CN (1) CN110088336B (ko)
ES (1) ES2902233T3 (ko)
MX (1) MX2019007381A (ko)
WO (1) WO2018117523A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356066B2 (ja) * 2020-03-02 2023-10-04 日本製鉄株式会社 熱間圧延鋼板
WO2023026582A1 (ja) * 2021-08-24 2023-03-02 日本製鉄株式会社 熱間圧延鋼板
WO2023149466A1 (ja) * 2022-02-04 2023-08-10 日本製鉄株式会社 鋼板
KR102639250B1 (ko) 2023-08-04 2024-02-21 (주)그리드텍 공사 현장에 관한 안전 관리 모니터링 서비스를 제공하는서버, 방법 및 시스템
KR102625113B1 (ko) 2023-09-01 2024-01-15 ㈜에스아이네트 공사 현장에 대한 안전 관리 모니터링 서비스 제공 장치, 방법, 및 프로그램

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161272A (ja) * 1997-08-26 1999-03-05 Sumitomo Metal Ind Ltd 成形性に優れた高炭素冷延鋼板の製造方法
JP2000328172A (ja) * 1999-05-13 2000-11-28 Sumitomo Metal Ind Ltd 深絞り面内異方性の小さい高炭素冷延鋼帯とその製造方法
JP2003286542A (ja) * 2002-03-29 2003-10-10 Nisshin Steel Co Ltd 亀裂伝播抵抗に優れたスチールベルト用鋼板およびその製造法
JP2004308002A (ja) * 2003-03-26 2004-11-04 Kobe Steel Ltd 伸び及び耐水素脆化特性に優れた超高強度鋼板、その製造方法、並びに該超高強度鋼板を用いた超高強度プレス成形部品の製造方法
KR20070023831A (ko) 2005-08-23 2007-03-02 주식회사 포스코 가공성이 우수한 고망간형 고강도 열연강판 및 그 제조방법
JP2011184758A (ja) * 2010-03-09 2011-09-22 Jfe Steel Corp 高強度プレス部材およびその製造方法
KR20140035033A (ko) 2012-09-13 2014-03-21 주식회사 포스코 열간 프레스 성형품 제조방법 및 이를 이용한 열간 프레스 성형품

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3909949B2 (ja) * 1998-03-25 2007-04-25 日新製鋼株式会社 伸びフランジ性に優れた中・高炭素鋼板の製造法
JP3783666B2 (ja) 2002-08-05 2006-06-07 Jfeスチール株式会社 球状化焼鈍後の冷間鍛造性に優れた機械構造用鋼及びその製造方法
JP4884803B2 (ja) * 2005-03-16 2012-02-29 本田技研工業株式会社 鋼材の熱処理方法
JP4600196B2 (ja) * 2005-07-26 2010-12-15 Jfeスチール株式会社 加工性に優れた高炭素冷延鋼板およびその製造方法
KR20090070504A (ko) 2007-12-27 2009-07-01 주식회사 포스코 도금성이 우수한 고망간강 및 고망간 도금강판의 제조방법
JP5035159B2 (ja) 2008-07-22 2012-09-26 住友金属工業株式会社 高強度鋼製粗形品およびその製造方法
KR101128942B1 (ko) * 2008-12-24 2012-03-27 주식회사 포스코 열처리 특성이 우수한 미세구상화 강판 및 그 제조방법
KR101253852B1 (ko) 2009-08-04 2013-04-12 주식회사 포스코 고인성 비조질 압연재, 신선재 및 그 제조방법
KR101277835B1 (ko) 2009-08-06 2013-06-21 주식회사 포스코 고강도 고인성 선재 및 그 제조방법
JP5630004B2 (ja) 2009-11-04 2014-11-26 Jfeスチール株式会社 引張強さが1500MPa以上の高強度鋼板およびその製造方法
EP2617840B1 (en) 2010-09-16 2021-08-11 Posco High-carbon hot-rolled steel sheet, cold-rolled steel sheet and a production method therefor
WO2013035848A1 (ja) 2011-09-09 2013-03-14 新日鐵住金株式会社 中炭素鋼板、焼き入れ部材およびそれらの製造方法
KR101382981B1 (ko) * 2011-11-07 2014-04-09 주식회사 포스코 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
KR101417260B1 (ko) 2012-04-10 2014-07-08 주식회사 포스코 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
CN102703803B (zh) 2012-04-27 2014-03-19 宝山钢铁股份有限公司 一种球状珠光体型热轧卷板及其生产方法
US20160131222A1 (en) 2013-06-05 2016-05-12 Nisshin Steel Co., Ltd. Steel sheet for steel belt and process for manufacturing same, and steel belt
KR20140073473A (ko) 2014-05-23 2014-06-16 주식회사 포스코 비자성 고강도 고망간 강판 및 그 제조방법
JP6217586B2 (ja) 2014-10-20 2017-10-25 Jfeスチール株式会社 曲げ加工性及び耐衝撃摩耗性に優れた耐摩耗鋼板およびその製造方法
KR101657795B1 (ko) 2014-12-12 2016-09-20 주식회사 포스코 냉간변형능이 우수한 선재의 제조방법 및 이에 의해 제조된 선재
CN105018835B (zh) 2015-08-24 2017-01-11 武汉钢铁(集团)公司 精冲性优良的中高碳热轧带钢及生产方法
CN108950160A (zh) 2018-08-25 2018-12-07 马鞍山钢铁股份有限公司 一种基于csp流程的锌基镀层热成形钢及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161272A (ja) * 1997-08-26 1999-03-05 Sumitomo Metal Ind Ltd 成形性に優れた高炭素冷延鋼板の製造方法
JP2000328172A (ja) * 1999-05-13 2000-11-28 Sumitomo Metal Ind Ltd 深絞り面内異方性の小さい高炭素冷延鋼帯とその製造方法
JP2003286542A (ja) * 2002-03-29 2003-10-10 Nisshin Steel Co Ltd 亀裂伝播抵抗に優れたスチールベルト用鋼板およびその製造法
JP2004308002A (ja) * 2003-03-26 2004-11-04 Kobe Steel Ltd 伸び及び耐水素脆化特性に優れた超高強度鋼板、その製造方法、並びに該超高強度鋼板を用いた超高強度プレス成形部品の製造方法
KR20070023831A (ko) 2005-08-23 2007-03-02 주식회사 포스코 가공성이 우수한 고망간형 고강도 열연강판 및 그 제조방법
JP2011184758A (ja) * 2010-03-09 2011-09-22 Jfe Steel Corp 高強度プレス部材およびその製造方法
KR20140035033A (ko) 2012-09-13 2014-03-21 주식회사 포스코 열간 프레스 성형품 제조방법 및 이를 이용한 열간 프레스 성형품

Also Published As

Publication number Publication date
JP2020509190A (ja) 2020-03-26
US20230287545A1 (en) 2023-09-14
US20190316235A1 (en) 2019-10-17
MX2019007381A (es) 2020-02-05
EP3561118A1 (en) 2019-10-30
JP6907320B2 (ja) 2021-07-21
EP3561118A4 (en) 2019-10-30
CN110088336A (zh) 2019-08-02
KR101917447B1 (ko) 2018-11-09
CN110088336B (zh) 2021-10-15
KR20180071865A (ko) 2018-06-28
US11680305B2 (en) 2023-06-20
ES2902233T3 (es) 2022-03-25
EP3561118B1 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2017111525A1 (ko) 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재
WO2018117543A1 (ko) 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 그들의 제조방법
WO2018117523A1 (ko) 고온연신 특성이 우수한 고강도 강판, 온간프레스 성형부재 및 이들의 제조방법
WO2019124693A1 (ko) 가공성이 우수한 고강도 강판 및 이의 제조방법
WO2017078278A1 (ko) 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법
WO2017222189A1 (ko) 항복강도가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2017222342A1 (ko) 강도 및 성형성이 우수한 클래드 강판 및 그 제조방법
WO2015099221A1 (ko) 고강도 저비중 강판 및 그 제조방법
WO2019124688A1 (ko) 충돌특성 및 성형성이 우수한 고강도 강판 및 이의 제조방법
WO2015099382A1 (ko) 우수한 굽힘성 및 초고강도를 갖는 열간 프레스 성형품용 강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법
WO2016104881A1 (ko) 굽힘 특성이 우수한 hpf 성형부재 및 그 제조방법
WO2016098963A1 (ko) 구멍확장능이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
WO2017105025A1 (ko) 화성처리성 및 굽힘가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2017171366A1 (ko) 항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법
WO2019231023A1 (ko) Twb 용접 특성이 우수한 열간성형용 al-fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법
WO2017105026A1 (ko) 화성처리성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법
WO2020130675A1 (ko) 굽힘 가공성이 우수한 고강도 냉연강판 및 그 제조방법
WO2019124781A1 (ko) 상온내시효성 및 소부경화성이 우수한 아연계 도금강판 및 그 제조방법
WO2019124807A1 (ko) 소부경화성 및 내식성이 우수한 강판 및 그 제조방법
WO2020226301A1 (ko) 전단가공성이 우수한 초고강도 강판 및 그 제조방법
WO2022139400A1 (ko) 점용접성 및 성형성이 우수한 초고장력 냉연강판, 초고장력 도금강판 및 그 제조방법
WO2018117500A1 (ko) 굽힘성 및 신장플랜지성이 우수한 고장력강 및 이의 제조방법
WO2019093650A1 (ko) 냉간 성형성이 우수한 초고강도 고연성 강판 및 그 제조방법
WO2021020787A1 (ko) 고강도 강판 및 이의 제조방법
WO2018117575A1 (ko) 재질편차가 적고 표면품질이 우수한 고강도 열연강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017885129

Country of ref document: EP

Effective date: 20190722