WO2018117201A1 - 蓄電装置 - Google Patents

蓄電装置 Download PDF

Info

Publication number
WO2018117201A1
WO2018117201A1 PCT/JP2017/045844 JP2017045844W WO2018117201A1 WO 2018117201 A1 WO2018117201 A1 WO 2018117201A1 JP 2017045844 W JP2017045844 W JP 2017045844W WO 2018117201 A1 WO2018117201 A1 WO 2018117201A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
edge
coating
tab
Prior art date
Application number
PCT/JP2017/045844
Other languages
English (en)
French (fr)
Inventor
厚志 南形
雅人 小笠原
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2018117201A1 publication Critical patent/WO2018117201A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power storage device including an electrode assembly.
  • lithium ion secondary batteries nickel metal hydride secondary batteries, and the like are known as secondary batteries that are a type of power storage device.
  • a lithium ion secondary battery includes an electrode assembly in which a sheet-like positive electrode and a negative electrode are stacked (for example, Patent Document 1).
  • the positive electrode includes a rectangular sheet-like positive metal foil and positive electrode coating portions present on both surfaces of the positive metal foil. Moreover, a positive electrode is equipped with the uncoated part which the metal foil exposed in the location where a positive electrode coating part does not exist among positive electrode metal foils.
  • the negative electrode includes a rectangular sheet-like negative electrode metal foil and negative electrode coating portions present on both sides of the negative electrode metal foil. Moreover, a negative electrode is equipped with the uncoated part which the metal foil exposed in the location where a negative electrode coating part does not exist among negative electrode metal foils.
  • the positive electrode and the negative electrode are alternately stacked via separators to form an electrode assembly.
  • a laminated electrode assembly in general, by forming a positive electrode smaller than the negative electrode, the entire surface of the positive electrode coating portion is opposed to the negative electrode coating portion, so that the size of the coating portion is not large. Reduces battery capacity reduction due to equilibrium.
  • each electrode is formed by applying a paste-like active material mixture in which active material particles, a conductive agent, and a binder are mixed to the surface of the metal foil. For this reason, in each electrode, it is difficult to always form the coated portion within a certain range, and it is normal that a processing error occurs in the dimension of the coated portion in the height direction. Further, when the electrode assembly is manufactured by laminating the negative electrode and the positive electrode, the positions of the positive electrode and the negative electrode may be shifted in the height direction. Even if such a deviation occurs, design tolerances are set for the dimensions in the height direction of the coating part so that the entire surface of the positive electrode coating part can be maintained facing the negative electrode coating part. Has been.
  • the edge of the positive electrode coating portion is positioned lower than the edge of the negative electrode coating portion on one end side in the height direction. is there.
  • the entire surface of the positive electrode coating portion is opposed to the negative electrode coating portion. In order to establish the relationship, the dimension of the positive electrode coating portion in the height direction is reduced, which is not preferable because the battery capacity of the secondary battery is reduced.
  • the objective of this invention is providing the electrical storage apparatus which can suppress that a positive electrode and a negative electrode contact in an uncoated part, suppressing the fall of battery capacity.
  • a power storage device for solving the above problems is a power storage device having an electrode assembly in which a plurality of positive electrodes and a plurality of negative electrodes are alternately stacked in a state of being insulated from each other,
  • a positive electrode current collector the positive electrode current collector includes a rectangular positive electrode main body part, and a positive electrode tab protruding from a part of the first positive electrode edge of the positive electrode main body part; and the positive electrode A positive electrode coating portion having a second positive electrode edge portion opposite to the first positive electrode edge portion of the main body portion and formed by applying a positive electrode active material mixture to the surface of the positive electrode main body portion;
  • a direction in which a straight line connecting the first positive electrode edge and the second positive electrode edge with the shortest distance is defined as a height direction, located at one end in the height direction of the positive electrode coating portion, and the first When the edge on the positive electrode edge side is a positive electrode coating edge, the positive electrode coating edge is designed,
  • the negative electrode is provided with a negative electrode current collector that is coinciden
  • the negative electrode coating edge is designed to be the negative electrode
  • the gist is that it is on the tab and on one end side in the height direction from the positive electrode coating edge.
  • the electrode assembly has the negative electrode coating portion opposed to the entire surface of the positive electrode coating portion, the first positive electrode edge is positioned lower than the first negative electrode edge on one end side in the height direction.
  • the difference in height between the first positive electrode edge and the first negative electrode edge is a design tolerance of the negative electrode coating portion.
  • the dimension in the height direction of the manufactured negative electrode coating portion is shifted by a tolerance to the other end side in the height direction (second negative electrode edge side), on the first negative electrode edge in design.
  • the negative electrode coating edge is located at one end in the height direction, the first positive electrode edge is lower than the negative electrode coating edge, and the negative electrode coating part is opposed to the entire surface of the positive electrode coating part. I can. Therefore, the dimension to the height direction of a positive electrode coating part can be enlarged. As a result, the electric capacity of the power storage device can be increased by increasing the area of the positive electrode coating portion.
  • the said positive electrode coating edge part may correspond with the said 1st positive electrode edge part on design.
  • the positive electrode coating edge is on the positive electrode tab by design, and the dimension from the positive electrode coating edge to the first positive electrode edge in the height direction is the positive electrode. It may be larger than the tolerance of the coating part.
  • the positive electrode coating edge portion is designed to be positive. Can be located on a tab. For this reason, the uncoated part which the positive electrode main-body part exposed is not formed in a positive electrode. Therefore, when the electrode assembly is restrained by applying a load in the stacking direction, it is possible to avoid a reduction in restraining force due to the presence of an uncoated portion.
  • the positive electrode when the positive electrode is manufactured, when the electrode material is cut into the outer shape of the positive electrode, the portion along the first positive electrode edge is cut into three layers of the positive electrode current collector and the positive electrode coating portions on both sides thereof. Become disconnected. Therefore, for example, the produced positive electrode varies, and the load applied to the cutting device is more varied than when a positive electrode with an uncoated part or a positive electrode without an uncoated part is cut. Can be suppressed.
  • a dimension from the negative electrode coating edge to the first negative electrode edge in the height direction may be greater than a design tolerance of the negative electrode coating part. According to this, even if the dimension in the height direction of the negative electrode coating portion is shifted by the tolerance to the other end in the height direction (second negative electrode edge side), the negative electrode coating edge is designed to be negative. Can be located on a tab. For this reason, the uncoated part which the negative electrode main-body part exposed is not formed in a negative electrode.
  • the portion along the first negative electrode edge is cut to form the negative electrode current collector and the negative electrode coating portions on both sides thereof. This is a three-layer cutting including the portion to be cut. Therefore, for example, the produced negative electrode varies, and the load applied to the cutting device is more varied than when a negative electrode with an uncoated part or a negative electrode without an uncoated part is cut. Can be suppressed.
  • the range made larger than the said tolerance of the said positive electrode coating part is 1.0 mm or less. Is preferred.
  • the dimension in the height direction of the positive electrode coating portion is the tolerance to the other end side in the height direction (second positive electrode edge side). Even if the difference is maximum, the portion set larger than the tolerance exists on the positive electrode tab, and the positive electrode coating edge can be positioned on the positive electrode tab. For this reason, the uncoated portion where the positive electrode main body portion is exposed is not formed on the positive electrode, and the positive electrode coated portion is positioned on the first positive electrode edge portion.
  • the cutting along the first positive electrode edge is the cutting of the positive electrode main body and the positive electrode coating portion.
  • the variation in the positive electrode to be manufactured causes a variation in the load applied to the equipment for punching compared to the case where the positive electrode with an uncoated part or the positive electrode without the uncoated part is cut. Can be suppressed.
  • the range from the negative electrode coating edge in the height direction to the first negative electrode edge is larger than the tolerance of the negative electrode coating part is 1.0 mm or less. Is preferred.
  • the dimension in the height direction of the negative electrode coating portion is the tolerance to the other end in the height direction (second negative electrode edge side). Even if the difference is maximum, the portion set larger than the tolerance exists on the negative electrode tab, and the negative electrode coating edge can be positioned on the negative electrode tab. For this reason, a negative electrode coating part will be located on a 1st negative electrode edge part.
  • the produced negative electrode varies, and compared to the case where the negative electrode with an uncoated part or the negative electrode without the uncoated part is cut, the variation in load applied to the equipment for punching is reduced. Can be suppressed.
  • the positive electrode coating edge is on the positive electrode tab, and the dimension from the positive electrode coating edge to the first positive electrode edge in the height direction is 0.5-2. 0.0 mm. According to this, since the positive electrode active material mixture is applied so that the positive electrode coating portion is positioned on the positive electrode tab, the positive electrode coating portion is positioned on the first positive electrode edge.
  • the cutting along the first positive electrode edge is the cutting of the positive electrode main body and the positive electrode coating portion.
  • the variation in the positive electrode to be manufactured causes a variation in the load applied to the equipment for punching compared to the case where the positive electrode with an uncoated part or the positive electrode without the uncoated part is cut. Can be suppressed.
  • the dimension from the positive electrode coating edge to the first positive electrode edge in the height direction is 0.8 to 1.2 mm.
  • the dimension from the positive electrode coating edge to the first positive electrode edge in the height direction is made close to a tolerance of 1 mm.
  • the dimension from the negative electrode coating edge to the first negative electrode edge in the height direction is 0.5 to 2.0 mm. According to this, since the negative electrode active material mixture is applied so that the negative electrode coating portion is positioned on the negative electrode tab, the negative electrode coating portion is positioned on the first negative electrode edge.
  • cutting of the portion along the first negative electrode edge results in cutting of the negative electrode main body and the negative electrode coating portion. For example, the produced negative electrode varies, and compared to the case where the negative electrode with an uncoated part or the negative electrode without the uncoated part is cut, the variation in load applied to the equipment for punching is reduced. Can be suppressed.
  • the dimension from the negative electrode coating edge to the first negative electrode edge in the height direction is 0.8 to 1.2 mm. If the dimensions are set in this way, even if the dimension in the height direction of the negative electrode coated portion is shifted by 1.0 mm toward the other end in the height direction, it is difficult to form the negative electrode uncoated portion. Therefore, the dimension from the negative electrode coating edge to the first negative electrode edge in the height direction is made close to a tolerance of 1 mm.
  • the positive electrode tab is bent from the base end side near the first positive electrode edge, and the direction from the bent portion toward the tip is the stacking direction of the positive electrode and the negative electrode.
  • the positive electrode coating part is unlikely to overlap the bent part of the positive electrode tab.
  • the positive electrode coating portion does not become an obstacle to the bending of the positive electrode tab, and the positive electrode active material can be prevented from falling off due to the bending.
  • the negative electrode tab is bent from the base end side near the first negative electrode edge, and the direction from the bent portion toward the tip is the stacking direction of the positive electrode and the negative electrode.
  • the negative electrode coating part hardly overlaps the bent part of the negative electrode tab. As a result, even if the negative electrode tab is bent, the negative electrode coating portion does not become an obstacle to the bending of the negative electrode tab, and the falling off of the negative electrode active material accompanying the bending can be suppressed.
  • the power storage device is a secondary battery.
  • the present invention it is possible to suppress contact between the positive electrode and the negative electrode at the uncoated portion while suppressing a decrease in battery capacity.
  • the disassembled perspective view which shows the secondary battery of embodiment.
  • the disassembled perspective view which shows the component of an electrode assembly.
  • the top view which shows the positive electrode and negative electrode of 1st Embodiment.
  • (A) is a fragmentary sectional side view which shows an electrode assembly
  • (b) is a fragmentary sectional side view which shows the case where a positive electrode is provided with an uncoated part.
  • the top view which shows the positive electrode and negative electrode of 2nd Embodiment.
  • the secondary battery 10 includes a metal case 11 constituting an outer shell.
  • the case 11 includes a bottomed rectangular parallelepiped case main body 12 having an opening 12a on one surface, and a lid 13 that closes the opening 12a.
  • the case 11 contains an electrode assembly 14 and an electrolytic solution (not shown) as an electrolyte.
  • the secondary battery 10 is a lithium ion battery.
  • the electrode assembly 14 has a plurality of positive electrodes 21 and a plurality of negative electrodes 24 that are alternately stacked with a resin separator 27 interposed therebetween. It is a laminated type configuration.
  • the positive electrode 21 includes a sheet-like positive metal foil (in this embodiment, an aluminum foil) 22 as a positive electrode current collector.
  • the positive electrode metal foil 22 includes a rectangular positive electrode main body portion 22a and a positive electrode tab 31 having a shape protruding from a part of the first positive electrode edge portion 22b along the long side of the positive electrode main body portion 22a.
  • the positive electrode 21 has the positive electrode coating part 23 provided in the both surfaces whole surface of the positive electrode main-body part 22a.
  • the positive electrode tab 31 has a constant width along a protruding direction from the first positive electrode edge 22b of the positive electrode main body 22a.
  • the positive electrode main body 22a has a second positive electrode edge 22c along a long side opposite to the first positive electrode edge 22b, and a pair of short sides connecting the first positive electrode edge 22b and the second positive electrode edge 22c. And a third positive electrode edge 22d.
  • the direction in which the straight line L1 that connects the first positive electrode edge 22b and the second positive electrode edge 22c at the shortest distance extends is the height direction.
  • the extending direction of the first positive electrode edge portion 22b and the second positive electrode edge portion 22c is defined as the width direction.
  • the positive electrode coating portion 23 includes the first positive electrode edge portion 22b, the second positive electrode edge portion 22c, and the pair of third positive electrode edge portions 22d, so that the positive electrode coating portion 23 includes the positive electrode main body portion 22a.
  • the positive electrode active material mixture is applied to the entire surface.
  • the positive electrode coating part 23 has the 1st positive electrode coating edge part 23a in the edge part nearest to the positive electrode tab 31 in a height direction.
  • the first positive electrode coating edge portion 23a is located at one end in the height direction of the positive electrode coating portion 23 and is located on the first positive electrode edge portion 22b side. Therefore, in the present embodiment, the first positive electrode coating edge portion 23 a corresponds to the positive electrode coating edge portion of the positive electrode coating portion 23.
  • the first positive electrode coating edge 23a extends along the first positive electrode edge 22b of the positive electrode main body 22a, and the first positive electrode coating edge 23a and the first positive electrode edge 22b are flush with each other. For this reason, with respect to the positive electrode 21, there is no uncoated portion where the positive electrode main body portion 22a is exposed along the first positive electrode edge portion 22b.
  • the dimension from the first positive electrode coating edge 23 a to the second positive electrode coating edge 23 b along the height direction is defined as a height H 1 of the positive electrode coating part 23.
  • the positive electrode coating part 23 has the 2nd positive electrode coating edge part 23b on the opposite side of the 1st positive electrode coating edge part 23a, and the 2nd positive electrode coating edge part 23b is the 2nd positive electrode edge of the positive electrode main-body part 22a.
  • the second positive electrode coating edge portion 23b and the second positive electrode edge portion 22c are flush with each other.
  • the positive electrode coating portion 23 has a third positive electrode coating edge portion 23c at a pair of end edges connecting the first positive electrode coating edge portion 23a and the second positive electrode coating edge portion 23b.
  • the third positive electrode coating edge 23c extends along the third positive electrode edge 22d of the positive electrode body 22a, and the third positive electrode coating edge 23c and the third positive electrode edge 22d are flush with each other.
  • the positive electrode 21 there is no uncoated portion where the positive electrode main body portion 22a is exposed along the second positive electrode edge portion 22c and the third positive electrode edge portion 22d, and all four sides of the positive electrode main body portion 22a are uncoated. There is no engineering department.
  • the negative electrode 24 includes a sheet-like negative metal foil (copper foil in this embodiment) 25 as a negative electrode current collector.
  • the negative electrode metal foil 25 includes a negative electrode main body 25a having a rectangular shape and a negative electrode tab 32 having a shape protruding from a part of the first negative electrode edge 25b along the long side of the negative electrode main body 25a.
  • the negative electrode 24 has a negative electrode coating portion 26 provided on both surfaces of the negative electrode main body portion 25a and a part of the negative electrode tab 32 near the first negative electrode edge portion 25b.
  • the negative electrode coating portions 26 on both surfaces of the negative electrode main body 25a and the negative electrode tab 32 have the same planar shape and the same thickness.
  • the negative electrode main body 25a has a second negative electrode edge 25c along a long side that is the opposite side of the first negative electrode edge 25b, and a pair of short sides that connect the first negative electrode edge 25b and the second negative electrode edge 25c.
  • a third negative electrode edge 25d is provided.
  • the negative electrode coating part 26 includes a tab side coating part 29 at a portion existing at the root of the negative electrode tab 32.
  • the negative electrode coating part 26 has a negative electrode tab coating edge part 26t.
  • the negative electrode tab coating edge portion 26 t is an end edge extending in the width direction of the negative electrode tab 32, and is an end edge closer to the tip end of the negative electrode tab 32.
  • the negative electrode tab coating edge part 26t is located in the height direction one end of the negative electrode coating part 26, and is located in the 1st negative electrode edge part 25b side. Therefore, in this embodiment, the negative electrode tab coating edge portion 26t corresponds to the negative electrode coating edge portion.
  • the tab side coating part 29 is a part which exists in the area
  • the negative electrode coating portion 26 includes a first negative electrode coating edge portion 26a along the first negative electrode edge portion 25b of the negative electrode main body portion 25a.
  • the first negative electrode coated edge portion 26a includes a first negative electrode edge portion 25b, and the negative electrode 24 has no uncoated portion where the negative electrode main body portion 25a is exposed.
  • the direction in which the straight line L2 that connects the first negative electrode edge 25b and the second negative electrode edge 25c at the shortest distance extends is the height direction.
  • the dimension of the tab side coating part 29 in the height direction is “d”.
  • the dimension d of the tab side coating portion 29 is a distance between the negative electrode tab coating edge portion 26t and the first negative electrode coating edge portion 26a in the height direction.
  • the dimension d of the tab side coating part 29 is preferably set to be larger than 0 and 5 mm or less, and more preferably set to 2 to 4 mm. In the present embodiment, the dimension d is 3 mm.
  • the negative electrode coating portion 26 has a second negative electrode coating edge portion 26b on the opposite side of the first negative electrode coating edge portion 26a, and the second negative electrode coating edge portion 26b is a second negative electrode edge of the negative electrode body portion 25a. It is provided along the part 25c. Similarly, the negative electrode coating portion 26 has a third negative electrode coating edge portion 26c at a pair of end edges connecting the first negative electrode coating edge portion 26a and the second negative electrode coating edge portion 26b. The work edge portion 26c is provided along the third negative electrode edge portion 25d of the negative electrode main body portion 25a.
  • the negative electrode 24 there is no uncoated portion where the negative electrode main body 25a is exposed along the second negative electrode edge 25c and the third negative electrode edge 25d, and all the four sides of the negative electrode main body 25a are uncoated. There is no engineering department.
  • the distance between the negative electrode tab coating edge portion 26t and the second negative electrode coating edge portion 26b in the height direction is defined as the height Ht of the negative electrode coating portion 26.
  • a distance between the first negative electrode coating edge portion 26a and the second negative electrode coating edge portion 26b along the height direction is defined as a coating portion height H2.
  • the height Ht of the negative electrode coating part 26 in the tab side coating part 29 is longer than the coating part height H2 of the negative electrode coating part 26 in a part other than the tab side coating part 29.
  • the dimension in the width direction of the positive electrode coating part 23 is shorter than the dimension in the width direction of the negative electrode coating part 26.
  • the positive electrode 21 is manufactured by punching a long strip electrode material 33 with a punching die 36 as a cutting device.
  • the cutting device may be another cutting device such as a laser processing device.
  • the electrode material 33 is provided on both surfaces of the long metal foil 34 that forms the positive metal foil 22 of the positive electrode 21 and the positive metal active material mixture that forms the positive electrode coating portion 23. Part 35.
  • the positive electrode active material mixture is a paste in which a positive electrode active material, a conductive agent, and a binder are mixed.
  • the positive electrode active material mixture is not applied to both ends of the long metal foil 34 in the short direction.
  • the dimension of the electrode material 33 in the short direction is twice the dimension of the positive electrode 21 from the tip of the positive electrode tab 31 to the second positive electrode edge 22c.
  • Two positive electrodes 21 can be punched from the electrode material 33 in a state where the height direction of the positive electrode 21 is along the short direction of the electrode material 33.
  • the electrode material 33 may be formed with a portion where the positive electrode active material mixture is not applied only on one end side in the short direction so that one positive electrode 21 is formed from the electrode material 33. Then, the positive electrode coating portion 23 is formed from the coating portion 35, and the positive electrode tab 31 is formed from the portion of the long metal foil 34 where the coating portion 35 does not exist.
  • the negative electrode 24 of the present embodiment is manufactured by punching a long strip electrode material 33 with a punching die 36.
  • the negative electrode active material mixture used for manufacturing the negative electrode 24 is a paste in which a negative electrode active material, a conductive agent, and a binder are mixed.
  • the electrode assembly 14 is formed by laminating the positive electrode 21 and the negative electrode 24 in the front-rear direction (thickness direction) with the separator 27 sandwiched between the positive electrode 21 and the negative electrode 24. Is formed.
  • Each positive electrode 21 is laminated such that the respective positive electrode tabs 31 are arranged in a row along the lamination direction.
  • Each of the stacked positive electrode tabs 31 is bent from the base end side near the first positive electrode edge 22b, and the direction from the bent portion toward the tip is the stacking direction.
  • each negative electrode 24 is laminated so that the respective negative electrode tabs 32 are arranged in a row along the lamination direction so as not to overlap the positive electrode tab 31.
  • the negative electrode tabs 32 in the stacked state are bent from the base end side near the first negative electrode edge portion 25b, and the direction from the bent portion toward the tip is the stacking direction.
  • the positive electrode tab 31 and the negative electrode tab 32 protrude from the same end surface of the electrode assembly 14 in the same direction.
  • the positive electrode tab 31 of each positive electrode 21 is electrically connected with the positive electrode terminal 15, as shown in FIG.
  • the negative electrode tab 32 of each negative electrode 24 is electrically connected to the negative electrode terminal 16 as shown in FIG.
  • the electrode assembly 14 needs to be laminated so that the negative electrode coating portion 26 faces the entire surface of the positive electrode coating portion 23 with the separator 27 interposed therebetween. For this reason, the coating part height H ⁇ b> 2 in the negative electrode coating part 26 is set longer than the height H ⁇ b> 1 of the positive electrode coating part 23.
  • the positive electrode 21 and the negative electrode 24 are stacked such that the first positive electrode coating edge 23 a is positioned below the first negative electrode coating edge 26 a in the height direction. That is, the first negative electrode coating edge portion 26a is located on one end side (upper side) in the height direction than the first positive electrode coating edge portion 23a.
  • the positive electrode 21 and the negative electrode 24 are laminated so that the first positive electrode edge 22b is positioned below the first negative electrode edge 25b.
  • the positive electrode 21 and the negative electrode 24 are arranged such that the second positive electrode coating edge 23 b is positioned above the second negative electrode coating edge 26 b in the height direction. Laminated.
  • the positive electrode 21 and the negative electrode 24 are stacked such that the second positive electrode edge 22c is positioned above the second negative electrode edge 25c.
  • the positive electrode coating part 23 and the negative electrode coating part 26 are manufactured with the aim of the heights H1 and Ht set at the time of design (hereinafter referred to as median values).
  • the actual size of the heights H1 and Ht may deviate from the median value due to various factors.
  • Causes include deviations during application of the active material mixture ( ⁇ 0.5 mm), tolerances of the punching die 36, deviations in punching due to deviations in the punching location ( ⁇ 0.5 mm), active material combination There is a deviation ( ⁇ 0.5 mm) due to the agent being separately applied to the long metal foil 34 on each side.
  • a plurality of positive electrodes 21, separators 27, and negative electrodes 24 are stacked, they may be displaced in the height direction.
  • Such deviation is caused by the deviation at the time of punching due to the deviation of the punching place and the like, and the active material mixture being separately applied to the long metal foil 34 on each side.
  • the two deviations are likely to occur, and as a result of the occurrence of these deviations, a deviation of 1.0 mm from the median is likely to occur.
  • the maximum tolerance is set to 1.0 mm.
  • the heights H1 and Ht of the positive electrode coating part 23 and the negative electrode coating part 26 are designed so that the negative electrode coating part 26 faces the entire surface of the positive electrode coating part 23.
  • There is an upper tolerance (up to 1.0 mm).
  • the tolerance for the height H1 of the positive electrode coating portion 23 is “a”
  • the tolerance for the height Ht of the negative electrode coating portion 26 is “b”.
  • the tolerance b is the same as the dimension d of the tab-side coating portion 29 described above.
  • the deviation amount from the first negative electrode coating edge portion 26a to the first positive electrode coating edge portion 23a described above is set to the tolerance a.
  • the positive electrode coating part 23 is manufactured with a median value
  • the first positive electrode coating edge part 23a coincides with the first positive electrode edge part 22b by design.
  • the negative electrode coating portion 26 is manufactured at a median value
  • the negative electrode tab coating edge portion 26t is positioned on the negative electrode tab 32 by design, and the first negative electrode coating edge portion 26a is the first negative electrode edge portion 25b. Matches.
  • the negative electrode coating edge in that case The part is represented by 26w.
  • the negative electrode coating edge portion 26w When the position of the negative electrode coating edge portion 26w is shifted toward the second negative electrode coating edge portion 26b by the tolerance b, the negative electrode coating edge portion 26w is positioned at a position indicated by a two-dot chain line T1.
  • the positive electrode coating portion 23 considers the tolerance a and sets a design median value.
  • the two-dot chain line T2 is set. As a result, the area of the positive electrode coating portion 23 becomes smaller than that in the present embodiment.
  • the negative electrode tab coating edge portion 26t is positioned on the negative electrode tab 32 by design. For this reason, due to manufacturing errors, the position of the negative electrode tab coating edge portion 26t is shifted to the first negative electrode coating edge portion 26a side which is the other end in the height direction (the second negative electrode edge portion 25c side) by a tolerance b. In addition, the negative electrode tab coating edge portion 26t is located at the same position as the first negative electrode coating edge portion 26a, and the negative electrode tab coating edge portion 26t is positioned on the negative electrode tab 32 when the shift amount is small.
  • the entire surface of the positive electrode coating portion 23 is opposed to the negative electrode coating portion 26 even if the positive electrode 21 is located at a position lower than the first negative electrode coating edge portion 26 a by the tolerance a. Can be made. Therefore, with respect to the positive electrode 21, the positive electrode coating portion 23 is not reduced, and conversely, the positive electrode coating portion 23 can be enlarged in the direction approaching the first negative electrode coating edge portion 26a, and the area of the positive electrode coating portion 23 is increased. Thus, the battery capacity of the secondary battery 10 can be increased.
  • the positive electrode coating portion 23 is manufactured with a median value for the positive electrode 21, the first positive electrode coating edge portion 23a coincides with the first positive electrode edge portion 22b by design. For this reason, by design, it becomes difficult for the positive electrode 21 to form an uncoated portion where the positive electrode main body portion 22a is exposed. For this reason, in the electrode assembly 14, the contact of the uncoated part of the positive electrode 21 and the negative electrode coated part 26 is suppressed, and it becomes difficult to generate a short circuit.
  • the required battery capacity of the secondary battery 10 is determined, and the area of the positive electrode coating portion 23 is determined according to the battery capacity. For this reason, in the positive electrode 21, it is desirable not to make a useless area where no active material exists, and to make the entire surface of the positive electrode main body 22a as the positive electrode coating part 23. Therefore, when the positive electrode coated part 23 is manufactured with a median value, the first positive electrode coated edge part 23a can be positioned on the first positive electrode edge part 22b in design, so that an uncoated part is not formed.
  • the negative electrode tab coating edge portion 26t can be positioned on the negative electrode tab 32 by design. Then, the base of the negative electrode tab 32 can be covered by the tab side coating part 29 of the negative electrode coating part 26. Therefore, the base of the negative electrode tab 32 can be reinforced with the negative electrode coating portion 26 having high rigidity, and cracks and the like can be prevented from entering at the intersection of the negative electrode tab 32 and the negative electrode main body portion 25a.
  • the required battery capacity of the secondary battery 10 is determined, and the required area of the positive electrode coating part 23 is determined by the required use of the secondary battery 10, and all of the positive electrode main body 22a is connected to the positive electrode. It is least wasteful to use the coating portion 23.
  • the area of the negative electrode coating part 26 must be larger than the area of the positive electrode coating part 23. However, if the area of the negative electrode coating part 26 is increased more than necessary, a portion that does not contribute to power generation occurs. 11 is a wasteful space, and therefore, it is desirable to minimize the amount of the negative electrode coating portion 26 to be enlarged.
  • the negative electrode tab coating edge portion 26 t of the negative electrode coating portion 26 was positioned on the negative electrode tab 32 for the negative electrode 24. For this reason, even if the position of the negative electrode tab coating edge portion 26t is shifted to the first negative electrode coating edge portion 26a side which is the other end in the height direction (the second negative electrode edge portion 25c side) by the tolerance b, the negative electrode coating portion. 26 can be formed in the negative electrode main body portion 25a to prevent an uncoated portion from being formed. As a result, the negative electrode coating part 26 is made to face a part of the first positive electrode coating edge part 23a of the positive electrode coating part 23, so that short circuit and lithium deposition can be suppressed. Moreover, it can suppress that the uncoated part of the negative electrode 24 contacts the positive electrode coating part 23. FIG.
  • the median value of the positive electrode coating portion 23 was matched with the first positive electrode edge 22 b. For this reason, by design, it becomes difficult for the positive electrode 21 to form an uncoated portion where the positive electrode main body portion 22a is exposed. For this reason, in the electrode assembly 14, the contact of the uncoated part of the positive electrode 21 and the negative electrode coated part 26 can be suppressed, and a short circuit is unlikely to occur.
  • the positive electrode coating portion 23 when the positive electrode coating portion 23 is manufactured with a median value, the tab side coating portion 28 is formed at the root of the positive electrode tab 31 by design. Therefore, the positive electrode coating portion 23 has the positive electrode tab coating edge portion 28 t on the positive electrode tab 31.
  • the positive electrode tab coating edge portion 28 t is an end edge extending in the width direction of the positive electrode tab 31, and is an end edge closest to the tip end of the positive electrode tab 31.
  • the positive electrode tab coating edge part 28t is located in the height direction end of the positive electrode coating part 23, and is located in the 1st positive electrode edge part 22b side. Therefore, in the second embodiment, the positive electrode tab coating edge portion 28t corresponds to the positive electrode coating edge portion.
  • the tab side coating part 28 is a part which exists in the area
  • the dimension f from the positive electrode tab coating edge portion 28t to the first positive electrode coating edge portion 23a in the height direction is a value obtained by adding the tolerance a to the median value and is larger than the tolerance a (dimension f> tolerance a ) Is set.
  • the dimension f is preferably set to be larger than 0 and 3 mm or less.
  • the dimension f is set by adding a value larger than the tolerance a within a range of 1.0 mm or less to the median value. This 1.0 mm is the maximum value set as a tolerance.
  • the dimension f is preferably set to 0.5 to 2.0 mm, more preferably 0.8 to 1.2 mm. With this configuration, the dimension f can be brought close to a tolerance of 1.0 mm. In this embodiment, the dimension f is 1 mm.
  • the dimension d in the height direction from the negative electrode tab coating edge portion 26t to the first negative electrode coating edge portion 26a in the tab side coating portion 29 is the tolerance b ( The dimension d ⁇ tolerance b) or more.
  • the positive electrode tab coating edge 28 t can be positioned on the positive electrode tab 31.
  • the tolerance a is set to a maximum of 1 mm
  • the dimension in the height direction of the positive electrode coating portion 23 is shifted by the tolerance a toward the second positive electrode coating edge portion 23b.
  • the portion set to be larger than the tolerance a exists on the positive electrode tab 31, and the positive electrode tab coating edge portion 28 t can be positioned on the positive electrode tab 31.
  • the exposed uncoated portion of the positive electrode main body portion 22a is not formed on the positive electrode 21.
  • the positive electrode having an uncoated portion 21a in the electrode assembly 14 in which the positive electrode 21 having an uncoated portion and the positive electrode 21 having no uncoated portion are mixed, the positive electrode having an uncoated portion 21a. It is difficult to apply a load in the stacking direction at 21A, and the binding force in the stacking direction is reduced. However, as shown to Fig.5 (a), since there is no uncoated part in all the positive electrodes 21, an appropriate load is added to a lamination direction and the fall of a restraining force is suppressed.
  • the dimension f of the tab side coating portion 28 is set by adding a value that is larger than the tolerance a within a range of 1 mm or less to a median value, and more specifically, the dimension f is 0.5 to 2.0 mm. Set to In this way, as shown in FIG. 7, when the electrode material 33 is cut into the outer shape of the positive electrode 21 during the production of the positive electrode 21, the portion along the first positive electrode edge 22 b is cut off at the positive electrode main body portion. It is cut into three layers including the long metal foil 34 to be 22a and the coating part 35 to be the positive electrode coating part 23 on both sides thereof. For example, variation in the produced positive electrode 21 causes variation in load applied to the punching die 36 as compared with a case where a positive electrode with an uncoated portion or a positive electrode without an uncoated portion is cut. Can be suppressed.
  • the negative electrode tab coating edge portion 26t is positioned on the negative electrode tab 32 even if the negative electrode tab coating edge portion 26t is positioned on the first negative electrode coating edge portion 26a side by a tolerance b due to a manufacturing error or the like. As a result, no uncoated portion is formed in the negative electrode coated portion 26.
  • the portion along the first negative electrode edge 25b is cut into a long metal foil 34 serving as the negative electrode main body 25a,
  • This is a three-layer cutting including the coating part 35 to be the negative electrode coating part 26 on both sides.
  • the produced negative electrode 24 varies, and the load applied to the punching die 36 varies as compared with the case where the negative electrode with an uncoated part or the negative electrode without the uncoated part is cut. Can be suppressed.
  • the dimension f of the tab side coating portion 28 of the positive electrode is set to 0.8 to 1.2 mm. With this configuration, the dimension f can be close to a tolerance of 1.0 mm. Further, the dimension d of the tab side coating portion 29 of the negative electrode is set to 0.8 to 1.2 mm. With this configuration, the dimension d can be brought close to a tolerance of 1.0 mm.
  • the positive electrode tab 31 is bent from the base end side near the first positive electrode edge 22b, and the direction from the bent portion toward the tip is the stacking direction of the positive electrode 21 and the negative electrode 24. And the dimension to the height direction of the tab side coating part 28 is restrained so that it may become larger than the tolerance a about the dimension f, and it does not become large too much. For this reason, the dimension in the height direction of the positive electrode tab 31 becomes longer. As the positive electrode tab 31 is longer, the stress generated in the bent portion is suppressed, and the positive electrode tab 31 is more easily prevented from being cracked.
  • the cutting of the electrode material 33 for manufacturing the negative electrode 24 may be performed by punching instead of the laser.
  • the positive electrode 21 may include an uncoated portion where the positive electrode metal foil 22 is exposed without forming the positive electrode coating portion 23 on the second positive electrode edge portion 22c side of the positive electrode main body portion 22a.
  • the negative electrode 24 may include an uncoated portion where the negative electrode metal foil 25 is exposed without forming the negative electrode coated portion 26 on the second negative electrode edge portion 25c side of the negative electrode main body portion 25a.
  • the value of the dimension d of the tab side coating part 29 included in the negative electrode coating part 26 may be larger than the tolerance b of the negative electrode coating part 26.
  • the dimension d is a value obtained by adding the tolerance b to the median value of the tab side coating portion 29, and is set by adding a value larger than the tolerance b within a range of 1 mm or less. This 1.0 mm is the maximum value set as a tolerance.
  • the dimension d is more preferably set in the range of 0.5 to 2.0 mm, particularly preferably 0.8 to 1.2 mm. With this configuration, the dimension d can be brought close to a tolerance of 1.0 mm.
  • the dimension d is set by adding a value that is larger than the tolerance b within a range of 1 mm or less to the median value, and more specifically, the dimension d is set to 0.5 to 2.0 mm.
  • the tolerance b is set to be 1 mm at the maximum, even if the position of the negative electrode tab coating edge portion 26t is located on the first negative electrode coating edge portion 26a side by the tolerance b, The negative electrode tab coating edge portion 26t is positioned on the negative electrode tab 32 as an amount set to be larger than the tolerance b, and an uncoated portion is not formed in the negative electrode coating portion 26.
  • the portion along the first negative electrode edge 25b is cut into a long metal foil 34 serving as the negative electrode main body 25a,
  • This is a three-layer cutting including the coating part 35 to be the negative electrode coating part 26 on both sides.
  • the produced negative electrode 24 varies, and the load applied to the punching die 36 varies as compared with the case where the negative electrode with an uncoated part or the negative electrode without the uncoated part is cut. Can be suppressed.
  • the negative electrode tab 32 is bent from the proximal end side near the first negative electrode edge 25b, and the direction from the bent portion toward the tip is the stacking direction of the positive electrode 21 and the negative electrode 24. And the dimension to the height direction of the tab side coating part 29 is suppressed so that it may become larger than the tolerance b about the dimension d, and it may not become large too much. For this reason, the dimension in the height direction of the negative electrode tab 32 becomes longer, and as the negative electrode tab 32 is longer, the stress generated in the bent portion is suppressed, and the negative electrode tab 32 is more easily prevented from being cracked.
  • the secondary battery 10 is a lithium ion secondary battery, but is not limited thereto, and may be another secondary battery. In short, any material may be used as long as ions move between the positive electrode active material and the negative electrode active material and transfer charge.
  • the positive electrode current collector is embodied as the positive electrode metal foil 22 and the negative electrode current collector is embodied as the negative electrode metal foil 25.
  • the current collector may be a sheet body other than the metal foil as long as the coating portion can be held.
  • . -It may be embodied in a power storage device such as an electric double layer capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

蓄電装置は複数の正極電極と複数の負極電極とが互いに絶縁された状態で交互に積層された電極組立体を有する。正極電極は、正極本体部の表面に正極活物質合剤を塗布して形成された正極塗工部を備える。正極塗工部の第1正極塗工縁部は、設計上、正極本体部の第1正極縁部と一致している。負極電極は、負極本体部の表面に負極活物質合剤を塗布して形成された負極塗工部を備えるとともに、負極タブを備える。負極塗工部の負極タブ塗工縁部は、設計上、負極タブ上にある。

Description

蓄電装置
 本発明は、電極組立体を備える蓄電装置に関する。
 従来から、蓄電装置の一種である二次電池としては、リチウムイオン二次電池や、ニッケル水素二次電池などが知られている。例えば、リチウムイオン二次電池では、シート状の正極電極及び負極電極を積層した電極組立体を備える(例えば、特許文献1)。
 特許文献1のように、正極電極は、矩形シート状の正極金属箔と、正極金属箔の両面に存在する正極塗工部とを備える。また、正極電極は、正極金属箔のうち正極塗工部の存在しない箇所に、金属箔の露出した未塗工部を備える。同様に、負極電極は、矩形シート状の負極金属箔と、負極金属箔の両面に存在する負極塗工部とを備える。また、負極電極は、負極金属箔のうち負極塗工部の存在しない箇所に、金属箔の露出した未塗工部を備える。
 そして、正極電極と負極電極とは、セパレータを介して交互に積層され、電極組立体が形成されている。このような積層型の電極組立体においては、一般に、負極電極よりも正極電極を小さく形成することにより、正極塗工部の全面を負極塗工部に対向させ、塗工部の大きさの不均衡に伴う電池容量の低下を抑制している。
 各極の塗工部は、活物質粒子、導電剤、及びバインダを混合したペースト状の活物質合剤を金属箔の表面に塗布して形成される。このため、各電極において、塗工部を常に一定の範囲で形成することが困難であり、塗工部の高さ方向への寸法に加工誤差が生じるのが通常である。また、負極電極と正極電極を積層して電極組立体を製造していく際に、正極電極と負極電極の位置が高さ方向にずれることもある。このようなずれが生じても、正極塗工部の全面を負極塗工部に対向させた位置関係を維持可能とするため、塗工部の高さ方向の寸法について、設計上の公差が設定されている。
特開2013-30376号公報
 ところで、電極組立体は、正極塗工部の全面に負極塗工部を対向させるため、高さ方向一端側では、正極塗工部の縁部は負極塗工部の縁部よりも低い位置にある。しかし、負極電極において、負極塗工部の高さ方向一端側の縁部が公差分、高さ方向他端側へずれた場合には、正極塗工部の全面を負極塗工部に対向させる関係を成立させるために、正極塗工部の高さ方向への寸法が小さくなり、二次電池の電池容量が低下して好ましくない。
 また、特許文献1のように、正極電極及び負極電極が未塗工部を備えると、未塗工部同士が接触して好ましくない。
 本発明の目的は、電池容量の低下を抑制しつつ、正極電極と負極電極とが未塗工部で接触することを抑制できる蓄電装置を提供することにある。
 上記問題点を解決するための蓄電装置は、複数の正極電極と複数の負極電極とが互いに絶縁された状態で交互に積層された電極組立体を有する蓄電装置であって、前記正極電極は、正極集電体を備えるとともに、該正極集電体は矩形状の正極本体部と、該正極本体部の第1正極縁部の一部から突出した形状の正極タブと、を備え、かつ前記正極本体部の前記第1正極縁部の対辺となる第2正極縁部を有し、前記正極本体部の表面に正極活物質合剤を塗布して形成された正極塗工部を備え、前記正極電極について、前記第1正極縁部と前記第2正極縁部とを最短距離で結ぶ直線の延びる方向を高さ方向とし、前記正極塗工部の高さ方向一端に位置し、かつ前記第1正極縁部側の縁部を正極塗工縁部とした場合、前記正極塗工縁部は、設計上、前記第1正極縁部と一致又は正極タブ上にあり、前記負極電極は、負極集電体を備えるとともに、該負極集電体は矩形状の負極本体部と、該負極本体部の第1負極縁部の一部から突出した形状の負極タブと、を備え、かつ前記負極本体部の前記第1負極縁部の対辺となる第2負極縁部を有し、前記負極本体部の表面に負極活物質合剤を塗布して形成された負極塗工部を備え、前記負極電極について、前記第1負極縁部と前記第2負極縁部とを最短距離で結ぶ直線の延びる方向を高さ方向とし、前記負極塗工部の高さ方向一端に位置し、かつ前記第1負極縁部側の縁部を負極塗工縁部とした場合、前記負極塗工縁部は、設計上、前記負極タブ上にあり、かつ前記正極塗工縁部よりも前記高さ方向一端側にあることを要旨とする。
 これによれば、正極電極について、正極本体部の第1正極縁部側では、設計上、正極本体部の露出した未塗工部が形成されにくくなる。このため、電極組立体において正極電極の未塗工部と負極塗工部とが接触することを抑制できる。
 また、電極組立体は、正極塗工部の全面に負極塗工部を対向させるため、高さ方向一端側では、第1正極縁部は第1負極縁部よりも低い位置にある。第1正極縁部と第1負極縁部の高さのずれは、負極塗工部の設計上の公差分である。
 ここで、製造された負極塗工部の高さ方向の寸法が、高さ方向他端側(第2負極縁部側)へ公差分ずれたとしても、設計上は、第1負極縁部上に負極塗工縁部が位置し、高さ方向一端側では、第1正極縁部は負極塗工縁部よりも低い位置にあり、正極塗工部の全面に負極塗工部を対向させることはできる。したがって、正極塗工部の高さ方向への寸法を大きくすることができる。その結果、正極塗工部の面積を増やして蓄電装置の電気的な容量を増大させることができる。
 また、蓄電装置について、前記正極塗工縁部は、設計上、前記第1正極縁部と一致していてもよい。
 また、蓄電装置について、前記正極塗工縁部は、設計上、前記正極タブ上にあり、前記高さ方向への前記正極塗工縁部から前記第1正極縁部までの寸法は、前記正極塗工部の公差よりも大きくてもよい。
 これによれば、正極塗工部の高さ方向の寸法が、高さ方向他端側(第2正極縁部側)へ公差分ずれたとしても、設計上は、正極塗工縁部を正極タブ上に位置させることができる。このため、正極電極には正極本体部の露出した未塗工部が形成されない。よって、電極組立体に積層方向への荷重を加えて拘束した際、未塗工部があることを原因とした拘束力の低下を回避できる。また、正極電極の製造に際し、電極材料を正極電極の外形形状に切断するとき、第1正極縁部に沿う部分の切断は、正極集電体と、その両面の正極塗工部の3層の切断になる。よって、例えば、製造される正極電極にばらつきが生じ、未塗工部のある正極電極や、未塗工部のない正極電極の切断が行われる場合と比べると、切断装置に加わる負荷のばらつきを抑えることができる。
 また、蓄電装置について、前記高さ方向への前記負極塗工縁部から前記第1負極縁部までの寸法は、前記負極塗工部の設計上の公差以上でもよい。
 これによれば、負極塗工部の高さ方向の寸法が、高さ方向他端側(第2負極縁部側)へ公差分ずれたとしても、設計上は、負極塗工縁部を負極タブ上に位置させることができる。このため、負極電極には負極本体部の露出した未塗工部が形成されない。負極電極の製造に際し、電極材料を負極電極の外形形状に切断するとき、第1負極縁部に沿う部分の切断は、負極集電体を形成する部分と、その両面の負極塗工部を形成する部分とを含む3層の切断になる。よって、例えば、製造される負極電極にばらつきが生じ、未塗工部のある負極電極や、未塗工部のない負極電極の切断が行われる場合と比べると、切断装置に加わる負荷のばらつきを抑えることができる。
 また、蓄電装置について、前記高さ方向への前記正極塗工縁部から前記第1正極縁部までの寸法について、前記正極塗工部の前記公差よりも大きくする範囲は1.0mm以下であるのが好ましい。
 これによれば、公差が最大1mmとなるように設定された場合であっても、正極塗工部の高さ方向の寸法が、高さ方向他端側(第2正極縁部側)へ公差分だけ最大ずれたとしても、公差より大きく設定された分が正極タブ上に存在し、正極塗工縁部を正極タブ上に位置させることができる。このため、正極電極には正極本体部の露出した未塗工部が形成されず、第1正極縁部上には正極塗工部が位置することとなる。
 そして、正極電極の製造の際、第1正極縁部に沿う部分の切断は、正極本体部と正極塗工部の切断になる。例えば、製造される正極電極にばらつきが生じ、未塗工部のある正極電極や、未塗工部のない正極電極の切断が行われる場合と比べると、打ち抜きを行う設備に加わる負荷のばらつきを抑えることができる。
 また、蓄電装置について、前記高さ方向への前記負極塗工縁部から前記第1負極縁部までの寸法について、前記負極塗工部の前記公差より大きくする範囲は1.0mm以下であるのが好ましい。
 これによれば、公差が最大1mmとなるように設定された場合であっても、負極塗工部の高さ方向の寸法が、高さ方向他端側(第2負極縁部側)へ公差分だけ最大ずれたとしても、公差より大きく設定された分が負極タブ上に存在し、負極塗工縁部を負極タブ上に位置させることができる。このため、第1負極縁部上には負極塗工部が位置することとなる。
 負極電極の製造の際、第1負極縁部に沿う部分の切断は、負極本体部と負極塗工部の切断になる。例えば、製造される負極電極にばらつきが生じ、未塗工部のある負極電極や、未塗工部のない負極電極の切断が行われる場合と比べると、打ち抜きを行う設備に加わる負荷のばらつきを抑えることができる。
 また、蓄電装置について、前記正極塗工縁部は、前記正極タブ上にあり、前記高さ方向への前記正極塗工縁部から前記第1正極縁部までの寸法は、0.5~2.0mmである。
 これによれば、正極タブに正極塗工部が位置するように正極活物質合剤を塗布するため、第1正極縁部上に正極塗工部が位置することとなる。正極電極の製造の際、第1正極縁部に沿う部分の切断は、正極本体部と正極塗工部の切断になる。例えば、製造される正極電極にばらつきが生じ、未塗工部のある正極電極や、未塗工部のない正極電極の切断が行われる場合と比べると、打ち抜きを行う設備に加わる負荷のばらつきを抑えることができる。
 また、蓄電装置について、前記高さ方向への前記正極塗工縁部から前記第1正極縁部までの寸法は、0.8~1.2mmである。
 このように寸法を設定すれば、高さ方向への正極塗工縁部から第1正極縁部までの寸法を公差1mmに近付けて製造することになる。
 また、蓄電装置について、前記高さ方向への前記負極塗工縁部から前記第1負極縁部までの寸法は、0.5~2.0mmである。
 これによれば、負極タブに負極塗工部が位置するように負極活物質合剤を塗布するため、第1負極縁部上に負極塗工部が位置することとなる。負極電極の製造の際、第1負極縁部に沿う部分の切断は、負極本体部と負極塗工部の切断になる。例えば、製造される負極電極にばらつきが生じ、未塗工部のある負極電極や、未塗工部のない負極電極の切断が行われる場合と比べると、打ち抜きを行う設備に加わる負荷のばらつきを抑えることができる。
 また、蓄電装置について、前記高さ方向への前記負極塗工縁部から前記第1負極縁部までの寸法は、0.8~1.2mmである。
 このように寸法を設定すれば、負極塗工部の高さ方向の寸法が、高さ方向他端側に1.0mmずれたとしても、負極未塗工部が形成されにくくなる。よって、高さ方向への負極塗工縁部から第1負極縁部までの寸法を公差1mmに近付けて製造することになる。
 また、蓄電装置について、前記正極タブは、前記第1正極縁部寄りの基端側から折り曲げられるとともに、折り曲げ部から先端に向かう方向が前記正極電極と前記負極電極の積層方向である。
 これによれば、正極塗工縁部から第1正極縁部までの寸法を抑える方向に規定することで、正極タブの折り曲げ部に正極塗工部が重なりにくくなる。その結果、正極タブが折り曲げられても、正極塗工部が正極タブの折り曲げの障害にならず、しかも折り曲げに伴う正極活物質の脱落を抑制できる。
 また、蓄電装置について、前記負極タブは、前記第1負極縁部寄りの基端側から折り曲げられるとともに、折り曲げ部から先端に向かう方向が前記正極電極と前記負極電極の積層方向である。
 これによれば、負極塗工縁部から第1負極縁部までの寸法を抑える方向に規定することで、負極タブの折り曲げ部に負極塗工部が重なりにくくなる。その結果、負極タブが折り曲げられても、負極塗工部が負極タブの折り曲げの障害にならず、しかも折り曲げに伴う負極活物質の脱落を抑制できる。
 前記蓄電装置は二次電池である。
 本発明によれば、電池容量の低下を抑制しつつ、正極電極と負極電極とが未塗工部で接触することを抑制できる。
実施形態の二次電池を示す分解斜視図。 電極組立体の構成要素を示す分解斜視図。 第1の実施形態の正極電極と負極電極を示す平面図。 第1の実施形態における正極電極の製造を示す図。 (a)は電極組立体を示す部分断面側面図、(b)は正極電極が未塗工部を備える場合を示す部分断面側面図。 第2の実施形態の正極電極と負極電極を示す平面図。 第2の実施形態における正極電極の製造を示す図。
 (第1の実施形態)
 以下、蓄電装置を二次電池に具体化した第1の実施形態を図1~図5にしたがって説明する。
 図1に示すように、二次電池10は、外郭を構成する金属製のケース11を備えている。ケース11は、一面に開口部12aを備える有底直方体状のケース本体12と、開口部12aを塞ぐ蓋体13とを備えている。ケース11には、電極組立体14及び電解質としての電解液(図示略)が収容されている。二次電池10はリチウムイオン電池である。
 図1又は図2に示すように、電極組立体14は、複数の正極電極21と、複数の負極電極24とが、両者の間に樹脂製のセパレータ27が介在する状態で交互に積層された積層型の構成である。正極電極21は、正極集電体としてのシート状の正極金属箔(本実施形態ではアルミニウム箔)22を備える。正極金属箔22は矩形状の正極本体部22aと、正極本体部22aの長辺に沿う第1正極縁部22bの一部から突出した形状の正極タブ31と、を備える。正極電極21は、正極本体部22aの両面全面に設けられた正極塗工部23を有する。
 正極電極21において、正極タブ31は、正極本体部22aの第1正極縁部22bからの突出方向に沿って一定幅である。正極本体部22aは、第1正極縁部22bの対辺となる長辺に沿って第2正極縁部22cを有し、第1正極縁部22bと第2正極縁部22cを繋ぐ一対の短辺に沿って第3正極縁部22dを有する。
 図3に示すように、正極電極21において、第1正極縁部22bと第2正極縁部22cとを最短距離で繋ぐ直線L1の延びる方向を高さ方向とする。また、第1正極縁部22b及び第2正極縁部22cの延びる方向を幅方向とする。
 正極塗工部23は、正極本体部22aの第1正極縁部22b、第2正極縁部22c、及び一対の第3正極縁部22dを含むように、正極塗工部23は正極本体部22aの全面に正極活物質合剤を塗布して形成されている。
 正極塗工部23は、高さ方向において最も正極タブ31に近い縁部に第1正極塗工縁部23aを有する。第1正極塗工縁部23aは、正極塗工部23の高さ方向一端に位置し、第1正極縁部22b側に位置する。よって、本実施形態では、第1正極塗工縁部23aが正極塗工部23の正極塗工縁部に相当する。
 第1正極塗工縁部23aは、正極本体部22aの第1正極縁部22bに沿い、第1正極塗工縁部23aと第1正極縁部22bは面一である。このため、正極電極21について、第1正極縁部22bに沿って正極本体部22aが露出した未塗工部は存在しない。なお、正極電極21において、高さ方向に沿う第1正極塗工縁部23aから第2正極塗工縁部23bまでの寸法を正極塗工部23の高さH1とする。
 また、正極塗工部23は、第1正極塗工縁部23aの対辺に第2正極塗工縁部23bを有し、第2正極塗工縁部23bは正極本体部22aの第2正極縁部22cに沿い、第2正極塗工縁部23bと第2正極縁部22cは面一である。正極塗工部23は、第1正極塗工縁部23aと第2正極塗工縁部23bを繋ぐ一対の端縁に第3正極塗工縁部23cを有する。第3正極塗工縁部23cは正極本体部22aの第3正極縁部22dに沿い、第3正極塗工縁部23cと第3正極縁部22dは面一である。したがって、正極電極21について、第2正極縁部22c、及び第3正極縁部22dに沿って正極本体部22aが露出した未塗工部は存在せず、正極本体部22aの四辺全てに未塗工部は存在しない。
 次に、負極電極24について説明する。
 図2に示すように、負極電極24は、負極集電体としてのシート状の負極金属箔(本実施形態では銅箔)25を備える。負極金属箔25は矩形状の負極本体部25aと、負極本体部25aの長辺に沿う第1負極縁部25bの一部から突出した形状の負極タブ32と、を備える。
 また、負極電極24は、負極本体部25aの両面及び負極タブ32における第1負極縁部25b寄りの一部に設けられた負極塗工部26を有する。負極本体部25a及び負極タブ32の両面の負極塗工部26は、同じ平面形状及び同じ厚みである。
 負極本体部25aは、第1負極縁部25bの対辺となる長辺に沿う第2負極縁部25cを有し、第1負極縁部25bと第2負極縁部25cを繋ぐ一対の短辺に沿う第3負極縁部25dを有する。
 負極塗工部26は、負極タブ32の根本に存在する部分にタブ側塗工部29を備える。負極塗工部26は、負極タブ塗工縁部26tを有する。負極タブ塗工縁部26tは、負極タブ32の幅方向に延びる端縁であり、負極タブ32の先端寄りの端縁である。そして、負極タブ塗工縁部26tは、負極塗工部26の高さ方向一端に位置し、第1負極縁部25b側に位置する。よって、本実施形態では、負極タブ塗工縁部26tが負極塗工縁部に相当する。なお、タブ側塗工部29は、負極塗工部26の平面視において、負極タブ塗工縁部26tと第1負極縁部25bに挟まれた領域に存在する部分である。
 負極塗工部26は、負極本体部25aの第1負極縁部25bに沿う第1負極塗工縁部26aを備える。負極電極24について、第1負極塗工縁部26aは、第1負極縁部25bを含み、負極電極24には、負極本体部25aが露出した未塗工部は存在しない。
 図3に示すように、負極電極24において、第1負極縁部25bと第2負極縁部25cとを最短距離で繋ぐ直線L2の延びる方向を高さ方向とする。高さ方向へのタブ側塗工部29の寸法は「d」である。タブ側塗工部29の寸法dは、高さ方向への負極タブ塗工縁部26tと第1負極塗工縁部26aとの間の距離である。本実施形態では、タブ側塗工部29の寸法dは、0より大きく、かつ5mm以下に設定されるのが好ましく、2~4mmに設定されるのがより好ましい。本実施形態では、寸法dは3mmである。
 また、負極塗工部26は、第1負極塗工縁部26aの対辺に第2負極塗工縁部26bを有し、第2負極塗工縁部26bは負極本体部25aの第2負極縁部25cに沿って設けられている。同様に、負極塗工部26は、第1負極塗工縁部26aと第2負極塗工縁部26bを繋ぐ一対の端縁に第3負極塗工縁部26cを有し、第3負極塗工縁部26cは負極本体部25aの第3負極縁部25dに沿って設けられている。したがって、負極電極24について、第2負極縁部25c、及び第3負極縁部25dに沿って負極本体部25aが露出した未塗工部は存在せず、負極本体部25aの四辺全てに未塗工部は存在しない。
 また、高さ方向において負極タブ塗工縁部26tと第2負極塗工縁部26bとの間の距離を、負極塗工部26の高さHtとする。また、高さ方向に沿う第1負極塗工縁部26aと第2負極塗工縁部26bの間の距離を塗工部高さH2とする。タブ側塗工部29での負極塗工部26の高さHtは、タブ側塗工部29以外の部分での負極塗工部26の塗工部高さH2より長い。なお、正極塗工部23の幅方向への寸法は、負極塗工部26の幅方向への寸法より短い。
 図4に示すように、正極電極21は、長尺帯状の電極材料33を切断装置としての打ち抜き型36により打ち抜いて製造される。なお、切断装置としては、レーザ加工装置等、別の切断装置であってもよい。電極材料33は、正極電極21の正極金属箔22を形成する長尺金属箔34と、長尺金属箔34の両面に設けられ、正極塗工部23を形成する正極活物質合剤の塗工部35とを備える。正極活物質合剤は、正極活物質、導電剤、及びバインダを混合したペースト状である。
 正極活物質合剤は、長尺金属箔34の短手方向両端には塗布されない。電極材料33の短手方向への寸法は、正極タブ31の先端から第2正極縁部22cまでの正極電極21の寸法の2倍である。電極材料33の短手方向に正極電極21の高さ方向が沿う状態で、2つの正極電極21が電極材料33から打ち抜き可能である。なお、電極材料33から1つの正極電極21を形成するように、電極材料33は、短手方向の一端側のみに正極活物質合剤の塗布されていない部分が形成されていてもよい。そして、塗工部35から正極塗工部23が形成され、塗工部35の存在しない長尺金属箔34の部分から正極タブ31が形成される。同様に、本実施形態の負極電極24は、長尺帯状の電極材料33を打ち抜き型36により打ち抜いて製造される。なお、負極電極24の製造に用いられる負極活物質合剤は、負極活物質、導電剤、及びバインダを混合したペースト状である。
 そして、図2に示すように、電極組立体14は、正極電極21及び負極電極24の間にセパレータ27を挟んだ状態で、正極電極21及び負極電極24を前後方向(厚さ方向)に積層して形成されている。
 各正極電極21は、それぞれの正極タブ31が積層方向に沿って列状に配置されるように積層される。積層された状態の各正極タブ31は、第1正極縁部22b寄りの基端側から折り曲げられるとともに、折り曲げ部から先端に向かう方向が積層方向である。
 同様に、各負極電極24は、それぞれの負極タブ32が、正極タブ31と重ならないように積層方向に沿って列状に配置されるように積層される。積層された状態の各負極タブ32は、第1負極縁部25b寄りの基端側から折り曲げられるとともに、折り曲げ部から先端に向かう方向が積層方向である。正極電極21と負極電極24は、正極タブ31と負極タブ32とが電極組立体14の同じ端面から同じ方向に突出している。そして、各正極電極21の正極タブ31は、図1に示すように、正極端子15と電気的に接続される。また、各負極電極24の負極タブ32も同様に、図1に示すように、負極端子16と電気的に接続される。
 次に、正極電極21及び負極電極24について詳細に説明する。
 図5(a)に示すように、電極組立体14は、正極塗工部23の全面に対し、セパレータ27を介して負極塗工部26が対向するように積層される必要がある。このため、負極塗工部26における塗工部高さH2は、正極塗工部23の高さH1より長く設定されている。また、電極組立体14について、正極電極21及び負極電極24は、第1正極塗工縁部23aが第1負極塗工縁部26aよりも高さ方向下側に位置するように積層される。すなわち、第1負極塗工縁部26aは、第1正極塗工縁部23aよりも高さ方向一端側(上側)に位置している。言い換えると、正極電極21及び負極電極24は、第1正極縁部22bが第1負極縁部25bの下側に位置するように積層される。図示しないが、電極組立体14の底側では、正極電極21及び負極電極24は、第2正極塗工縁部23bが第2負極塗工縁部26bよりも高さ方向上側に位置するように積層される。言い換えると、正極電極21及び負極電極24は、第2正極縁部22cが第2負極縁部25cの上側に位置するように積層される。
 ところで、正極塗工部23及び負極塗工部26は、高さH1,Htについて設計時に設定された値(以下、中央値とする)を狙って製造される。しかし、様々な要因により、高さH1,Htの実寸が中央値からずれる場合がある。要因としては、活物質合剤の塗工時のずれ(±0.5mm)、打ち抜き型36の公差、打ち抜き場所のずれ等を原因とした打ち抜き時のずれ(±0.5mm)、活物質合剤が長尺金属箔34に対し片面ずつ別々に塗布されることを原因としたずれ(±0.5mm)がある。また、正極電極21、セパレータ27及び負極電極24を複数枚積層していく際、それらが高さ方向にずれることがある。このようなずれは、上記のずれの中でも、打ち抜き場所のずれ等を原因とした打ち抜き時のずれと、活物質合剤が長尺金属箔34に対し片面ずつ別々に塗布されることを原因としたずれの2つのずれが発生しやすく、それらのずれが生じた結果として、中央値に対し1.0mmのずれが生じやすい。このため、本実施形態では、公差として最大1.0mm設定されている。
 これらのずれが生じたとしても、正極塗工部23の全面に対し負極塗工部26が対向するように、正極塗工部23及び負極塗工部26の高さH1,Htには、設計上の公差(最大1.0mm)が存在する。図3に示すように、正極塗工部23の高さH1についての公差を「a」とし、負極塗工部26の高さHtについての公差を「b」とする。本実施形態では、この公差bは、上述のタブ側塗工部29の寸法dと同じである。また、電極組立体14について、上述した、第1負極塗工縁部26aから第1正極塗工縁部23aまでのずれ量は、公差aに設定されている。
 そして、正極塗工部23が中央値で製造されると、設計上、第1正極塗工縁部23aは第1正極縁部22bに一致する。また、負極塗工部26が中央値で製造されると、設計上、負極タブ塗工縁部26tは負極タブ32上に位置し、第1負極塗工縁部26aは第1負極縁部25bに一致する。
 次に、二次電池10の作用効果を記載する。
 (1)例えば、図3の2点鎖線に示すように、負極塗工部26の中央値が、設計上、第1負極縁部25b上にあると仮定した場合、その場合の負極塗工縁部を26wで表す。公差bだけ負極塗工縁部26wの位置が第2負極塗工縁部26b側にずれると、負極塗工縁部26wは2点鎖線T1に示す場所に位置する。この場合、正極塗工部23の第1正極塗工縁部23aを負極塗工部26に対向させるためには、正極塗工部23は、公差aを考慮して、設計上の中央値を2点鎖線T2に設定することとなる。その結果、正極塗工部23の面積が本実施形態と比べて小さくなってしまう。
 しかし、本実施形態では、負極タブ塗工縁部26tを、設計上、負極タブ32上に位置させた。このため、製造誤差等により、公差bだけ負極タブ塗工縁部26tの位置が高さ方向他端側(第2負極縁部25c側)である第1負極塗工縁部26a側にずれても、負極タブ塗工縁部26tは、第1負極塗工縁部26aと同じ位置になり、ずれ量が小さい場合には、負極タブ塗工縁部26tは負極タブ32上に位置する。
 このような負極電極24であれば、公差aだけ第1負極塗工縁部26aから下がった位置にある正極電極21であっても、正極塗工部23の全面を負極塗工部26に対向させることができる。したがって、正極電極21について、正極塗工部23が小さくならず、逆に、第1負極塗工縁部26aに近付ける方向へ正極塗工部23を大きくでき、正極塗工部23の面積を増やして二次電池10の電池容量を増大させることができる。
 また、正極電極21について、正極塗工部23が中央値で製造されると、設計上、第1正極塗工縁部23aは第1正極縁部22bに一致する。このため、設計上、正極電極21には正極本体部22aの露出した未塗工部が形成されにくくなる。このため、電極組立体14において正極電極21の未塗工部と負極塗工部26の接触が抑制され、短絡が発生しにくくなる。
 (2)二次電池10には、必要な電池容量が決まっており、電池容量に応じて正極塗工部23の面積は決まる。このため、正極電極21においては、活物質の存在しない無駄な領域は作らず、正極本体部22aの全面を正極塗工部23とすることが望ましい。よって、正極塗工部23が中央値で製造されると、設計上は第1正極塗工縁部23aを第1正極縁部22b上に位置させ、未塗工部が形成されないようにできる。
 (3)負極電極24について、負極塗工部26が中央値で製造されると、設計上は負極タブ塗工縁部26tを負極タブ32上に位置させることができる。すると、負極塗工部26のタブ側塗工部29により負極タブ32の根本を覆うことができる。よって、負極タブ32の根本を剛性の高い負極塗工部26で補強することができ、負極タブ32と負極本体部25aとの交差点に亀裂等が入ることを抑制できる。
 (4)二次電池10には、必要な電池容量が決まっており、正極塗工部23の必要な面積は二次電池10の要求使用によって決まるものであり、正極本体部22aの全てを正極塗工部23とすることが最も無駄が少ない。一方、負極塗工部26の面積は、正極塗工部23の面積より必ず大きくしなければならないが、必要以上に負極塗工部26の面積を大きくすると、発電に寄与しない部分が生じ、ケース11内に無駄なスペースが生じることとなるため、負極塗工部26を大きくする量は必要最低限とするのが望ましい。
 このような状況において、負極塗工部26の中央値を第1負極縁部25bに一致させた場合、公差によって負極塗工縁部がずれて、負極本体部25aが露出した未塗工部が形成されてしまう可能性がある。そして、負極電極24の未塗工部が大きくなると、負極塗工部26が小さくなり、正極塗工部23の第1正極塗工縁部23aの一部に負極塗工部26と対向しない部分が生じてしまうことになる。このような場合は、短絡や、リチウム析出の虞がある。
 そこで、負極電極24について、負極塗工部26の負極タブ塗工縁部26tが負極タブ32上に位置するようにした。このため、公差bだけ負極タブ塗工縁部26tの位置が高さ方向他端側(第2負極縁部25c側)となる第1負極塗工縁部26a側にずれても負極塗工部26を負極本体部25aに形成して未塗工部が形成されることを抑制できる。その結果、正極塗工部23の第1正極塗工縁部23aの一部に負極塗工部26を対向させ、短絡や、リチウム析出を抑制できる。また、負極電極24の未塗工部が正極塗工部23に接触することを抑制できる。
 (5)正極電極21について、正極塗工部23の中央値を第1正極縁部22bに一致させた。このため、設計上、正極電極21には正極本体部22aの露出した未塗工部が形成されにくくなる。このため、電極組立体14において正極電極21の未塗工部と負極塗工部26の接触を抑制でき、短絡が発生しにくくなる。
 (第2の実施形態)
 次に、蓄電装置を二次電池に具体化した第2の実施形態を図6及び図7にしたがって説明する。なお、第2の実施形態は、第1の実施形態と同様な部分についてはその詳細な説明を省略する。
 図6に示すように、第2の実施形態では、正極塗工部23が中央値で製造されると、設計上、正極タブ31の根本にタブ側塗工部28が形成される。よって、正極塗工部23は、正極タブ31上に正極タブ塗工縁部28tを有する。正極タブ塗工縁部28tは、正極タブ31の幅方向に延びる端縁であり、正極タブ31の先端に最も近い端縁である。そして、正極タブ塗工縁部28tは、正極塗工部23の高さ方向一端に位置し、第1正極縁部22b側に位置する。よって、第2の実施形態では、正極タブ塗工縁部28tが正極塗工縁部に相当する。なお、タブ側塗工部28は、正極塗工部23の平面視において、正極タブ塗工縁部28tと第1正極塗工縁部23aに挟まれた領域に存在する部分である。
 高さ方向への正極タブ塗工縁部28tから第1正極塗工縁部23aまでの寸法fは、中央値に公差aを加味した値であり、公差aよりも大きく(寸法f>公差a)設定されている。本実施形態では、寸法fは、0より大きく、かつ3mm以下に設定されるのが好ましい。寸法fは、中央値に、公差aよりも1.0mm以下の範囲で大きくした値を加えて設定されている。この1.0mmは公差として設定される最大値である。
 より具体的には、寸法fは0.5~2.0mmに設定されるのが好ましく、0.8~1.2mmに設定されるのがより好ましい。このように構成すると寸法fを公差1.0mmに近付けることができ、本実施形態では、寸法fは1mmである。
 また、負極電極24について、タブ側塗工部29における負極タブ塗工縁部26tから第1負極塗工縁部26aまでの高さ方向への寸法dは、負極塗工部26の公差b(寸法d≧公差b)以上である。
 次に、二次電池10の作用効果を記載する。
 (6)第2の実施形態によれば、正極塗工部23の高さ方向の寸法が、第2正極塗工縁部23b側へ公差a分ずれたとしても、寸法f>公差aから、設計上は、正極タブ塗工縁部28tを正極タブ31上に位置させることができる。特に、公差aが最大1mmとなるように設定された場合であっても、正極塗工部23の高さ方向の寸法が、第2正極塗工縁部23b側へ公差a分だけ最大ずれたとしても、公差aより大きく設定された分が正極タブ31上に存在し、正極タブ塗工縁部28tを正極タブ31上に位置させることができる。
 このため、正極電極21には正極本体部22aの露出した未塗工部が形成されない。例えば、図5(b)に示すように、未塗工部のある正極電極21と未塗工部の無い正極電極21が混在する電極組立体14においては、未塗工部21aのある正極電極21Aの部分で積層方向への荷重が加わりにくく、積層方向への拘束力が低下してしまう。しかし、図5(a)に示すように、全ての正極電極21に未塗工部が無いため、積層方向に適正な荷重が加わり、拘束力の低下が抑制される。
 (7)タブ側塗工部28の寸法fは、中央値に、公差aよりも1mm以下の範囲で大きくした値を加えて設定され、より具体的に寸法fは0.5~2.0mmに設定される。このようにすると、図7に示すように、正極電極21の製造に際し、電極材料33を正極電極21の外形形状に切断するとき、第1正極縁部22bに沿う部分の切断は、正極本体部22aとなる長尺金属箔34と、その両面の正極塗工部23となる塗工部35とを含めた3層の切断になる。例えば、製造される正極電極21にばらつきが生じ、未塗工部のある正極電極や、未塗工部のない正極電極の切断が行われる場合と比べると、打ち抜き型36に加わる負荷のばらつきを抑えることができる。
 (8)負極電極24について、負極タブ32上にタブ側塗工部29があり、タブ側塗工部29について寸法d≧公差bである。このため、製造誤差等により、公差bだけ負極タブ塗工縁部26tの位置が第1負極塗工縁部26a側に位置しても、負極タブ32上に負極タブ塗工縁部26tが位置することとなり、負極塗工部26に未塗工部は形成されない。
 よって、負極電極24の製造に際し、電極材料33を負極電極24の外形形状に切断するとき、第1負極縁部25bに沿う部分の切断は、負極本体部25aとなる長尺金属箔34と、その両面の負極塗工部26となる塗工部35とを含む3層の切断になる。例えば、製造される負極電極24にばらつきが生じ、未塗工部のある負極電極や、未塗工部のない負極電極の切断が行われる場合と比べると、打ち抜き型36に加わる負荷のばらつきを抑えることができる。
 (9)正極のタブ側塗工部28の寸法fは、0.8~1.2mmに設定される。このように構成すると寸法fを公差1.0mmに近付けることができる。また、負極のタブ側塗工部29の寸法dは、0.8~1.2mmに設定される。このように構成すると寸法dを公差1.0mmに近付けることができる。
 (10)正極タブ31は、第1正極縁部22b寄りの基端側から折り曲げられるとともに、折り曲げ部から先端に向かう方向が正極電極21と負極電極24の積層方向である。そして、寸法fについて、公差aより大きくしつつ、大きくなりすぎないように、タブ側塗工部28の高さ方向への寸法を抑えている。このため、正極タブ31の高さ方向への寸法が長くなり、正極タブ31が長いほど、折り曲げ部に発生する応力を抑え、正極タブ31に亀裂等が入ることを抑制しやすくなる。
 なお、本実施形態は以下のように変更してもよい。
 ○ 上記構成を有する正極電極21と負極電極24であれば、正極タブ31の突出する向きと、負極タブ32が突出する向きが異なるように積層されていても、実施形態と同様の作用効果を奏する。
 ○ 負極電極24の製造のために行う電極材料33の切断は、レーザでなく、打ち抜きでもよい。
 ○ 正極電極21は、正極本体部22aの第2正極縁部22c側に、正極塗工部23が形成されず、正極金属箔22の露出した未塗工部を備えていてもよい。また、負極電極24は、負極本体部25aの第2負極縁部25c側に、負極塗工部26が形成されず、負極金属箔25の露出した未塗工部を備えていてもよい。
 ○ 負極塗工部26が備えるタブ側塗工部29の寸法dの値を、負極塗工部26の公差bより大きい値としてもよい。この場合、寸法dは、タブ側塗工部29の中央値に公差bを加味した値であり、公差bよりも1mm以下の範囲で大きくした値を加えて設定されている。この1.0mmは公差として設定される最大値である。
 より具体的には、寸法dは、0.5~2.0mmの範囲に設定されるのがより好ましく、0.8~1.2mmに設定されるのが特に好ましい。このように構成すると寸法dを公差1.0mmに近付けることができる。
 このように構成した場合、負極電極24について、負極タブ32上にタブ側塗工部29があり、タブ側塗工部29について寸法d>公差bである。そして、寸法dは、中央値に、公差bよりも1mm以下の範囲で大きくした値を加えて設定され、より具体的に寸法dは0.5~2.0mmに設定される。このため、公差bが最大1mmとなるように設定された場合、製造誤差等により、公差bだけ負極タブ塗工縁部26tの位置が第1負極塗工縁部26a側に位置しても、公差bより大きく設定された分として、負極タブ32上に負極タブ塗工縁部26tが位置することとなり、負極塗工部26に未塗工部は形成されない。
 よって、負極電極24の製造に際し、電極材料33を負極電極24の外形形状に切断するとき、第1負極縁部25bに沿う部分の切断は、負極本体部25aとなる長尺金属箔34と、その両面の負極塗工部26となる塗工部35とを含む3層の切断になる。例えば、製造される負極電極24にばらつきが生じ、未塗工部のある負極電極や、未塗工部のない負極電極の切断が行われる場合と比べると、打ち抜き型36に加わる負荷のばらつきを抑えることができる。
 また、負極タブ32は、第1負極縁部25b寄りの基端側から折り曲げられるとともに、折り曲げ部から先端に向かう方向が正極電極21と負極電極24の積層方向である。そして、寸法dについて、公差bより大きくしつつ、大きくなりすぎないように、タブ側塗工部29の高さ方向への寸法を抑えている。このため、負極タブ32の高さ方向への寸法が長くなり、負極タブ32が長いほど、折り曲げ部に発生する応力を抑え、負極タブ32に亀裂等が入ることを抑制しやすくなる。
 ○ 二次電池10は、リチウムイオン二次電池であったが、これに限らず、他の二次電池であってもよい。要するに、正極活物質と負極活物質との間をイオンが移動するとともに電荷の授受を行うものであればよい。
 ○ 正極集電体として正極金属箔22に具体化し、負極集電体として負極金属箔25に具体化したが、塗工部を保持できれば集電体は金属箔以外のシート体であってもよい。
 ○ 電気二重層キャパシタ等の蓄電装置に具体化してもよい。
 10…蓄電装置としての二次電池、14…電極組立体、21…正極電極、22…正極集電体としての正極金属箔、22a…正極本体部、22b…第1正極縁部、22c…第2正極縁部、23…正極塗工部、23a…第1正極塗工縁部、24…負極電極、25…負極集電体としての負極金属箔、25a…負極本体部、25b…第1負極縁部、25c…第2負極縁部、26…負極塗工部、26t…負極塗工縁部としての負極タブ塗工縁部、31…正極タブ、32…負極タブ。

Claims (12)

  1.  複数の正極電極と複数の負極電極とが互いに絶縁された状態で交互に積層された電極組立体を有する蓄電装置であって、
     前記正極電極は、正極集電体を備えるとともに、該正極集電体は矩形状の正極本体部と、該正極本体部の第1正極縁部の一部から突出した形状の正極タブと、を備え、かつ前記正極本体部の前記第1正極縁部の対辺となる第2正極縁部を有し、前記正極本体部の表面に正極活物質合剤を塗布して形成された正極塗工部を備え、
     前記正極電極について、前記第1正極縁部と前記第2正極縁部とを最短距離で結ぶ直線の延びる方向を高さ方向とし、前記正極塗工部の高さ方向一端に位置し、かつ前記第1正極縁部側の縁部を正極塗工縁部とした場合、
     前記正極塗工縁部は、設計上、前記第1正極縁部と一致又は正極タブ上にあり、
     前記負極電極は、負極集電体を備えるとともに、該負極集電体は矩形状の負極本体部と、該負極本体部の第1負極縁部の一部から突出した形状の負極タブと、を備え、かつ前記負極本体部の前記第1負極縁部の対辺となる第2負極縁部を有し、前記負極本体部の表面に負極活物質合剤を塗布して形成された負極塗工部を備え、
     前記負極電極について、前記第1負極縁部と前記第2負極縁部とを最短距離で結ぶ直線の延びる方向を高さ方向とし、前記負極塗工部の高さ方向一端に位置し、かつ前記第1負極縁部側の縁部を負極塗工縁部とした場合、
     前記負極塗工縁部は、設計上、前記負極タブ上にあり、かつ前記正極塗工縁部よりも前記高さ方向一端側にあることを特徴とする蓄電装置。
  2.  前記正極塗工縁部は、設計上、前記第1正極縁部と一致している請求項1に記載の蓄電装置。
  3.  前記正極塗工縁部は、設計上、前記正極タブ上にあり、前記高さ方向への前記正極塗工縁部から前記第1正極縁部までの寸法は、前記正極塗工部の公差よりも大きい請求項1に記載の蓄電装置。
  4.  前記高さ方向への前記負極塗工縁部から前記第1負極縁部までの寸法は、前記負極塗工部の設計上の公差以上である請求項1~請求項3のうちいずれか一項に記載の蓄電装置。
  5.  前記高さ方向への前記正極塗工縁部から前記第1正極縁部までの寸法について、前記正極塗工部の前記公差よりも大きくする範囲は1.0mm以下である請求項3に記載の蓄電装置。
  6.  前記高さ方向への前記負極塗工縁部から前記第1負極縁部までの寸法について、前記負極塗工部の前記公差よりも大きくする範囲は1.0mm以下である請求項4に記載の蓄電装置。
  7.  前記正極塗工縁部は、前記正極タブ上にあり、前記高さ方向への前記正極塗工縁部から前記第1正極縁部までの寸法は、0.5~2.0mmである請求項1に記載の蓄電装置。
  8.  前記高さ方向への前記正極塗工縁部から前記第1正極縁部までの寸法は、0.8~1.2mmである請求項7に記載の蓄電装置。
  9.  前記高さ方向への前記負極塗工縁部から前記第1負極縁部までの寸法は、0.5~2.0mmである請求項1~請求項3のうちいずれか一項に記載の蓄電装置。
  10.  前記負極塗工縁部は、前記負極タブ上にあり、前記高さ方向への前記負極塗工縁部から前記第1負極縁部までの寸法は、0.8~1.2mmである請求項9に記載の蓄電装置。
  11.  前記正極タブは、前記第1正極縁部寄りの基端側から折り曲げられるとともに、折り曲げ部から先端に向かう方向が前記正極電極と前記負極電極の積層方向である請求項5、請求項7、及び請求項8のうちのいずれか一項に記載の蓄電装置。
  12.  前記負極タブは、前記第1負極縁部寄りの基端側から折り曲げられるとともに、折り曲げ部から先端に向かう方向が前記正極電極と前記負極電極の積層方向である請求項6、請求項9、及び請求項10のうちのいずれか一項に記載の蓄電装置。
PCT/JP2017/045844 2016-12-21 2017-12-21 蓄電装置 WO2018117201A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-248060 2016-12-21
JP2016248060 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018117201A1 true WO2018117201A1 (ja) 2018-06-28

Family

ID=62626485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045844 WO2018117201A1 (ja) 2016-12-21 2017-12-21 蓄電装置

Country Status (1)

Country Link
WO (1) WO2018117201A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139919A (ja) * 2004-11-10 2006-06-01 Ngk Spark Plug Co Ltd リチウムイオン二次電池およびその製造方法
JP2010080392A (ja) * 2008-09-29 2010-04-08 Toshiba Corp 電池用電極及びその製造方法
WO2013031891A1 (ja) * 2011-08-31 2013-03-07 Necエナジーデバイス株式会社 非水電解液二次電池
JP2013175407A (ja) * 2012-02-27 2013-09-05 Toyota Industries Corp 蓄電装置、車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139919A (ja) * 2004-11-10 2006-06-01 Ngk Spark Plug Co Ltd リチウムイオン二次電池およびその製造方法
JP2010080392A (ja) * 2008-09-29 2010-04-08 Toshiba Corp 電池用電極及びその製造方法
WO2013031891A1 (ja) * 2011-08-31 2013-03-07 Necエナジーデバイス株式会社 非水電解液二次電池
JP2013175407A (ja) * 2012-02-27 2013-09-05 Toyota Industries Corp 蓄電装置、車両

Similar Documents

Publication Publication Date Title
US9225034B2 (en) Stepwise electrode assembly having variously-shaped corner and secondary battery, battery pack and device comprising the same
JP6957837B2 (ja) 蓄電素子
JP6769137B2 (ja) 蓄電装置
KR20130132231A (ko) 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
JP6756266B2 (ja) 蓄電装置及び蓄電装置の製造方法
JP5796594B2 (ja) 電極体
JP6107539B2 (ja) 蓄電装置
JP2012190697A (ja) 電池
JP6274011B2 (ja) 蓄電装置
JP2016139586A (ja) 蓄電装置
WO2018117201A1 (ja) 蓄電装置
JP6314658B2 (ja) 蓄電装置
JP6476726B2 (ja) 蓄電装置
US20210280840A1 (en) Electrode group and battery
JP2018060699A (ja) 積層型二次電池の製造方法
JP2014049303A (ja) 蓄電装置
WO2019123588A1 (ja) 蓄電装置
WO2018159078A1 (ja) 蓄電装置
JP6221856B2 (ja) 蓄電装置及び蓄電装置の製造方法
WO2018042942A1 (ja) 積層型電池用電極及び積層型電池
JP6953897B2 (ja) 積層型電池
JP2021026897A (ja) 電極組立体
WO2017208511A1 (ja) 蓄電デバイス
JP6354454B2 (ja) 蓄電装置
JP2015082455A (ja) 積層型電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP