WO2018116881A1 - 接着性絶縁被膜付き電磁鋼板の製造方法および積層電磁鋼板の製造方法 - Google Patents

接着性絶縁被膜付き電磁鋼板の製造方法および積層電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2018116881A1
WO2018116881A1 PCT/JP2017/044322 JP2017044322W WO2018116881A1 WO 2018116881 A1 WO2018116881 A1 WO 2018116881A1 JP 2017044322 W JP2017044322 W JP 2017044322W WO 2018116881 A1 WO2018116881 A1 WO 2018116881A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
electrical steel
insulating coating
electromagnetic steel
temperature
Prior art date
Application number
PCT/JP2017/044322
Other languages
English (en)
French (fr)
Inventor
暢子 中川
村松 直樹
千代子 多田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2018506360A priority Critical patent/JP6344537B1/ja
Priority to EP17882396.9A priority patent/EP3561153B1/en
Priority to US16/471,774 priority patent/US11186076B2/en
Priority to CN201780078009.6A priority patent/CN110088358B/zh
Priority to BR112019012440-3A priority patent/BR112019012440B1/pt
Priority to KR1020197017450A priority patent/KR102365884B1/ko
Publication of WO2018116881A1 publication Critical patent/WO2018116881A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/148Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using epoxy-polyolefin systems in mono- or multilayers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2503/00Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating

Definitions

  • the present invention relates to a method for producing an electromagnetic steel sheet with an adhesive insulating coating suitable as a material for a laminated iron core for motors for automobiles.
  • the present invention also relates to a method of manufacturing a laminated electrical steel sheet using the electrical steel sheet with an adhesive insulating coating.
  • laminated electrical steel sheets used for iron cores of electrical equipment have been manufactured by stacking a plurality of electrical steel sheets having insulating coatings and then integrating them by a method such as caulking or welding.
  • a method such as caulking or welding.
  • the thickness of steel sheets used for laminated electromagnetic steel sheets tends to be reduced in order to reduce eddy current loss.
  • the steel plate is thin, not only caulking and welding are difficult, but the laminated end face is easily opened and it is difficult to maintain the shape as an iron core.
  • Patent Document 1 in an electromagnetic steel sheet for an adhesive laminated iron core having an adhesive insulating coating on the surface of an electromagnetic steel sheet, a technique for improving the adhesive strength at the time of stacking by forming a specific uneven pattern on the surface of the steel sheet. Has been proposed.
  • Patent Document 2 proposes a technique for improving punchability of laminated electromagnetic steel sheets by setting the average crystal grain size d of the steel sheet surface to d ⁇ 20 n (n is the number of laminated layers). By increasing the average crystal grain size d, it is possible to reduce the crystal grain boundary that causes the punchability of the laminated electrical steel sheet to be reduced, and to improve the punchability.
  • Patent Document 3 proposes a laminated electrical steel sheet having a shear bond strength at room temperature of 50 kgf / cm 2 or more. This is intended to prevent misalignment or peeling between steel plates, which is a concern at the time of punching, by increasing the shear bond strength in laminated electromagnetic steel plates.
  • Patent Document 4 proposes a technique for forming an adhesive film on the surface of a magnetic steel sheet using a coating agent containing an epoxy resin, reactive nanoparticles based on a silicon-oxygen network, and a curing agent. .
  • JP-A-6-330231 Japanese Unexamined Patent Publication No. 7-201551 JP 2000-173815 A Japanese Patent No. 5129573
  • the electrical steel sheet provided with an adhesive insulating coating as described in Patent Documents 1 to 4 can be made into a laminated electrical steel sheet by laminating and heating and pressing.
  • the laminated electrical steel sheet as an iron core for an automobile motor whose demand is increasing rapidly in recent years, further improvement in performance is required as described below.
  • the iron core for an automobile motor as described above is not only used in a high temperature environment but also used in high temperature oil. Therefore, in the electrical steel sheet with an adhesive insulating coating, in the state of a laminated electrical steel sheet obtained by laminating the electrical steel sheet with an adhesive insulating coating, a property that can be used stably for a long time even in high temperature oil (hereinafter, It is required to have “high temperature oil resistance”).
  • the electromagnetic steel sheet with an adhesive insulating coating is integrated by laminating and heating and pressing, and therefore, it was considered that there is no need to perform strain relief annealing unlike when integrating by caulking or welding. .
  • the strain relief annealing is performed at a high temperature such as 750 ° C.
  • components such as a resin constituting the adhesive insulating film may be decomposed. If the components of the adhesive insulating coating are decomposed, the insulation between the laminated magnetic steel sheets will be reduced, increasing the eddy current loss and deteriorating the magnetic properties (iron loss) of the iron core. To do.
  • the adhesive insulating film in order to improve adhesiveness and insulation, but increasing the adhesive insulating film decreases the "space factor", which is the ratio of the electromagnetic steel sheet to the laminated electrical steel sheet. As a result, the magnetic flux density of the laminated electrical steel sheet decreases.
  • the adhesive insulating coating is made thin in order to improve the space factor, sufficient adhesive strength cannot be obtained, and insulation of the laminated electrical steel sheet, particularly after strain relief annealing, cannot be ensured. Therefore, it has not been possible to achieve both a low iron loss and a high space factor in laminated electromagnetic steel sheets after strain relief annealing.
  • the present invention has been made in view of the above circumstances, and is excellent in high-temperature adhesiveness and high-temperature oil resistance, and has excellent iron loss and space factor even after being laminated and subjected to strain relief annealing. It aims at providing the manufacturing method of an electrical steel sheet with an insulation film. Another object of the present invention is to provide a method for producing a laminated electrical steel sheet using the electrical steel sheet with an adhesive insulating coating.
  • the gist configuration of the present invention is as follows. 1. (A) an aqueous epoxy resin, (B) A high-temperature curable crosslinking agent having a solid content of 30 parts by mass or less with respect to 100 parts by mass of the aqueous epoxy resin, (C) metal oxide particles, and (d) a coating containing a solvent is applied to at least one surface of the electrical steel sheet, Maximum steel sheet temperature: Bake under conditions of 150 ° C or higher and lower than 230 ° C, Manufacturing method of electrical steel sheet with adhesive insulating coating.
  • a method for producing a laminated electrical steel sheet comprising laminating a plurality of electrical steel sheets with an adhesive insulation coating obtained by the method for producing an electrical steel sheet with an adhesive insulation coating according to any one of 1 to 3 above, followed by heating and pressing. .
  • the electrical steel sheet with an adhesive insulating coating that has excellent high-temperature adhesion and high-temperature oil resistance, and has excellent iron loss and space factor even after being laminated and subjected to strain relief annealing, and the above-mentioned adhesion
  • a laminated electrical steel sheet obtained by laminating electrical steel sheets with conductive insulating coatings can be obtained.
  • an adhesive insulating coating (hereinafter simply referred to as “insulating coating”) may be obtained by applying a coating containing the above components to at least one surface of a magnetic steel sheet and baking it. ). First, the coating agent used for forming the insulating coating will be described.
  • [Coating agent] In one embodiment of the invention, (A) an aqueous epoxy resin, (B) a high-temperature curable crosslinking agent, A coating agent containing (c) metal oxide particles and (d) a solvent as an essential component is used.
  • Aqueous epoxy resin is not particularly limited, and any aqueous epoxy resin (prepolymer) can be used.
  • aqueous epoxy resin for example, one or more selected from the group consisting of bisphenol A type, bisphenol F type, aliphatic type, and glycidylamine type can be used. Since an epoxy resin is excellent in heat resistance, high temperature adhesiveness and high temperature oil resistance can be improved by using an epoxy resin. Further, since an aqueous epoxy resin is used, an aqueous solvent can be used as a solvent to be described later, and it is not necessary to use a large amount of an organic solvent.
  • the content of the water-based epoxy resin in the coating agent is not particularly limited and can be any value. However, if the amount of the water-based epoxy resin is too small, the adhesiveness is lowered, and sufficient high-temperature adhesiveness and high-temperature oil resistance may not be obtained. Therefore, the content of the water-based epoxy resin in the coating agent is preferably 50% by mass or more, more preferably 60% by mass or more, and more preferably 70% by mass or more in terms of the ratio to the total solids. Is more preferable.
  • crosslinking agent (hereinafter, sometimes simply referred to as “crosslinking agent”. Also referred to as “curing agent”) is a high-temperature curable type capable of crosslinking the aqueous epoxy resin. If it is a hardening
  • the curing temperature of the mixture of the (a) aqueous epoxy resin and (b) the high-temperature curable crosslinking agent is preferably 150 ° C. or higher.
  • the upper limit of the curing temperature is not particularly limited. However, when the curing temperature is higher than 200 ° C., the curing at the time of coating baking becomes insufficient, so that coil winding becomes impossible and production may be hindered. Therefore, the curing temperature is preferably 200 ° C. or lower.
  • the above-mentioned “curing temperature” is a temperature at which the viscoelasticity measured with a rigid pendulum type physical property tester decreases with curing.
  • the curing temperature can be determined based on the change in the swing period of the pendulum.
  • the high-temperature curable crosslinking agent examples include aromatic amines, dicyandiamide, and blocked isocyanate.
  • the content of the cross-linking agent in the coating agent is a solid content and is 30 parts by mass or less with respect to 100 parts by mass of the aqueous epoxy resin.
  • the lower limit of the content of the crosslinking agent is not particularly limited, but from the viewpoint of sufficiently obtaining the addition effect of the crosslinking agent, the solid content is preferably 1 part by mass or more with respect to 100 parts by mass of the aqueous epoxy resin, More preferably, it is 2 parts by mass or more.
  • (C) Metal oxide particles As described above, since the stress relief annealing for the laminated electrical steel sheet is performed at a high temperature of 750 ° C., at least a part of the resin that is an organic component is decomposed and the laminated electrical steel sheets Insulation property at lower. Therefore, by adding metal oxide particles, which are inorganic components, to the coating agent, the metal oxide particles remain without being decomposed even after strain relief annealing, and a decrease in insulation can be prevented.
  • the metal oxide particles are not particularly limited, and any metal oxide particles can be used as long as they are metal oxide particles.
  • the said metal oxide particle may be used individually by 1 type, and can also use 2 or more types together. Examples of metal oxides that can be suitably used include silica, alumina, titania, and zirconia.
  • the content of the metal oxide particles in the coating agent is not particularly limited and can be any value. However, if the metal oxide particles are excessive, the proportion of the epoxy resin in the insulating coating to be formed is relatively lowered, and as a result, the high temperature adhesiveness and the high temperature oil resistance may be lowered. Therefore, the content of the metal oxide particles in the coating agent is preferably a solid content and less than 0.10 parts by mass with respect to 100 parts by mass of the aqueous epoxy resin, and 0.08 parts by mass or less. Is more preferable.
  • the content of the metal oxide particles in the coating agent is a solid content of 0.001 part by mass with respect to 100 parts by mass of the aqueous epoxy resin. It is preferable to set it as the above, and it is more preferable to set it as 0.01 mass part or more.
  • solvent Any solvent can be used as long as it can dissolve or disperse each component contained in the coating agent. Usually, water, or water and an organic solvent, The mixed solvent may be used, and water is preferably used.
  • a coating comprising the above (a) to (d) can be used, but any other (e) addition may be used as long as the effects of the present invention are not impaired.
  • An agent can be contained.
  • the additive examples include an antifoaming agent, a surfactant, a neutralizing agent, a rust inhibitor, a lubricant, an antioxidant, and an organometallic compound that are added to further improve the performance and uniformity of the coating. 1 type, or 2 or more types can be used for hardening accelerators, such as these. In addition, it is preferable that content of the sum total of the said additive in a coating material shall be 5 mass% or less with respect to the total solid of a coating material from a viewpoint of maintaining sufficient film performance.
  • the coating agent is not particularly limited and can be prepared by any method. For example, (a) aqueous epoxy resin and (b) a cross-linking agent are stirred with a stirrer, and (c) metal oxide particles, (d) a solvent, and optionally (e) an additive are prepared. Can do.
  • Electromagnetic steel sheet The kind of electrical steel sheet used in the present invention is not particularly limited. So-called soft iron plate (electric iron plate) with high magnetic flux density, general cold-rolled steel plate such as SPCC as defined in JIS G 3141 (2009), non-oriented electrical steel plate containing Si or Al to improve specific resistance, etc. Any of these can be used.
  • the thickness (plate thickness) of the electrical steel sheet used is not particularly limited. When the electromagnetic steel sheet is made thinner, the iron loss is reduced. However, when the electromagnetic steel sheet is too thin, the shape stability is lowered and the manufacturing cost of the electromagnetic steel sheet is increased. Therefore, it is preferable that the thickness of the magnetic steel sheet used is 50 ⁇ m or more. On the other hand, when the plate thickness increases, the iron loss increases accordingly. Moreover, if the plate thickness is large, the steel plates can be integrated by caulking or welding without applying an adhesive coating. Therefore, the plate thickness is preferably 1 mm or less, more preferably 0.5 mm or less, and further preferably 0.3 mm or less.
  • the pretreatment of the electrical steel sheet that is the material is not particularly limited. Although an untreated steel plate can be used, it is preferable to perform a degreasing treatment such as alkaline degreasing or a pickling treatment using an acid such as hydrochloric acid, sulfuric acid or phosphoric acid before application of the coating agent.
  • a degreasing treatment such as alkaline degreasing or a pickling treatment using an acid such as hydrochloric acid, sulfuric acid or phosphoric acid before application of the coating agent.
  • a coating agent having the above composition is applied to the surface of the electromagnetic steel sheet.
  • the method for applying the coating agent is not particularly limited, and any method can be used.
  • a coating method using equipment such as a roll coater, a flow coater, a spray coater, a knife coater, a bar coater and the like generally used in industry can be used.
  • the coating agent may be applied to at least one surface of the electrical steel sheet. Whether the insulating coating is formed on one side or both sides of the electrical steel sheet may be appropriately selected according to various properties and applications required for the electrical steel sheet. In addition, the insulating coating by the above-mentioned coating material may be formed on one surface of the surface of the electromagnetic steel sheet, and the insulating coating by another coating material may be formed on the other surface.
  • the baking method is not particularly limited, and any method such as baking by a hot air method, an infrared heating method, an induction heating method, or the like, which is usually performed, can be applied.
  • Maximum reached steel plate temperature 150 ° C. or higher and lower than 230 ° C. If the maximum reached steel plate temperature in the baking step is lower than 150 ° C., the crosslinking reaction between the epoxy resin and the crosslinking agent does not proceed sufficiently, and as a result, sufficient high temperature adhesion Cannot be obtained. Therefore, the maximum attained steel sheet temperature is set to 150 ° C. or higher.
  • the maximum steel sheet temperature is preferably 160 ° C. or higher, more preferably 170 ° C. or higher, and still more preferably 180 ° C. or higher. On the other hand, if the maximum attainable steel sheet temperature is 230 ° C. or higher, the resin is excessively cured in the baking process.
  • the maximum attained steel sheet temperature is set to less than 230 ° C.
  • the maximum steel sheet temperature is preferably 225 ° C. or lower, more preferably 220 ° C. or lower.
  • the baking time in the baking process that is, the time from the start of heating until the maximum steel plate temperature is reached is not particularly limited, but is preferably 10 to 60 seconds. Although it does not specifically limit after reaching the maximum steel plate temperature, it is preferable to cool to room temperature.
  • the thickness of the coating agent to be applied is not particularly limited, it may be determined so that sufficient adhesive strength, particularly high-temperature adhesiveness can be obtained in the finally obtained laminated electrical steel sheet.
  • the shear adhesive strength at 180 ° C. can be measured by the method described in the examples.
  • the film thickness after baking of the adhesive insulating coating is preferably 1.0 ⁇ m or more, and more preferably 2.0 ⁇ m or more.
  • the film thickness after baking of the insulating film is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and further preferably 5 ⁇ m or less. Therefore, in the application step, it is preferable to apply the composition so that the film thickness after baking is within the above range.
  • a laminated electrical steel sheet is obtained by laminating a plurality of electrical steel sheets with an adhesive insulating coating obtained as described above, and then heating and pressing.
  • the number of steel plates to be laminated is not limited and can be any number.
  • the number of stacked layers is preferably 40 or more, and more preferably 50 or more.
  • the number of stacked layers is preferably 300 or less, more preferably 200 or less.
  • heating and pressurization are performed on the laminated electromagnetic steel sheets with an adhesive insulating coating to integrate the steel sheets. Thereby, it is possible to cure the uncured resin component in the insulating coating, to achieve a completely cured state in which unreacted bonding groups do not remain in the coating, and to secure the adhesive strength of the laminated electrical steel sheet.
  • the heating temperature in the heat and pressure treatment is preferably 100 ° C. or higher.
  • the heating temperature is preferably 250 ° C. or lower.
  • the time for performing the heat and pressure treatment is preferably 5 minutes or more. The time is preferably 48 hours or less.
  • the total thickness of the laminated electrical steel sheet after the heat and pressure treatment is preferably 2 mm or more.
  • the total thickness is preferably less than 300 mm. If total thickness is 2 mm or more, the effect of the low iron loss and high magnetic flux density which are the characteristics of an electromagnetic steel plate can fully be expressed. Moreover, if the said total thickness is less than 300 mm, since the laminated material manufacture in a heating-pressing jig
  • the coating material was applied to the sample surface (both sides) subjected to the above pretreatment with a roll coater, and then baked in a hot air baking furnace.
  • As said coating agent what consists of the component shown in Table 1, and water as a solvent was used.
  • the maximum reached steel sheet temperature and the baking time (the time from the start of heating until the maximum reached steel sheet temperature was reached) in the baking were as shown in Table 1. After reaching the maximum steel sheet temperature, the steel sheet was taken out from the furnace and allowed to cool at room temperature to obtain an electromagnetic steel sheet with an adhesive insulating coating.
  • the film thickness of the adhesive insulating coating after baking was as shown in Table 1.
  • each component contained in a coating agent is as follows.
  • Crosslinking agent b1 Barnock D-500 (block isocyanate type) manufactured by DIC b2: ADEKA EH-3636AS (dicyandiamide type) b3: Japan Chemtech Epicure 8290-Y-60 (aliphatic polyamine)
  • Curing temperature of the mixture of a1 and b1 150 ° C. Curing temperature of the mixture of a2 and b1: 150 ° C. Curing temperature of the mixture of a1 and b2: 170 ° C Curing temperature of the mixture of a2 and b2: 170 ° C Curing temperature of the mixture of a1 and b3: 30 ° C Curing temperature of the mixture of a2 and b3: 30 ° C
  • the curing temperature was evaluated by measuring viscoelasticity using a rigid pendulum type physical property tester (RPT-3000W manufactured by A & D Co., Ltd.). The change in viscoelasticity accompanying the curing of the coating film composed of the cross-linking agent and the aqueous epoxy resin was measured, and the temperature at which the swing period of the pendulum (edge type) rapidly decreased was defined as the curing temperature.
  • a shear tensile test piece was prepared according to JIS K6850: 1999, and a tensile test was performed.
  • the shear tensile test pieces were shifted so that the insulating coatings were bonded to each other at the portion from the tip to 10 mm from two electromagnetic steel plates with adhesive insulating coatings (width 25 mm ⁇ length 100 mm) obtained in the baking step.
  • the tensile test environment was set to 180 ° C., and the test piece was held at the temperature for 10 minutes, and then the test was carried out while maintaining the temperature.
  • the test speed was 3 mm / min.
  • the measured tensile strength was determined based on the following criteria. (Criteria) ⁇ : 2.94 MPa or more ⁇ : 1.96 MPa or more, less than 2.94 MPa ⁇ —: 0.98 MPa or more, less than 1.96 MPa ⁇ : 0.49 MPa or more, less than 0.98 MPa ⁇ : less than 0.49 MPa
  • High temperature oil resistance was evaluated for each of the obtained laminated electrical steel sheets.
  • the evaluation method is as follows.
  • the laminated electrical steel sheet was immersed in oil kept at 180 ° C. for 500 hours, taken out, allowed to cool, and then observed whether separation or peeling occurred in the laminated electrical steel sheet.
  • oil Daphne Super Hydro 46HF manufactured by Idemitsu Kosan Co., Ltd. was used. Judgment criteria are as follows. (Criteria) ⁇ : No separation, no separation ⁇ : No separation, local separation ⁇ : Separation into two or more
  • strain relief annealing In order to evaluate the characteristics after strain relief annealing, each of the laminated electrical steel sheets prepared by the above procedure was subjected to strain relief annealing.
  • the conditions for strain relief annealing were set to 800 ° C. ⁇ 2 hours in 100% nitrogen. Then, the iron loss and the space factor were evaluated in the following procedures for the laminated electrical steel sheet after strain relief annealing.
  • Space factor (%) 100 ⁇ weight of laminated electromagnetic steel sheet (g) / (volume of laminated electromagnetic steel sheet (cm 3 ) ⁇ specific gravity of steel sheet (g / cm 3 ) Judgment criteria are as follows. (Criteria) ⁇ : 97% ⁇ space factor ⁇ : 95% ⁇ space factor ⁇ 97% ⁇ : Space factor ⁇ 95%
  • the electrical steel sheet with an adhesive insulating coating that satisfies the conditions of the present invention has excellent high-temperature adhesiveness.
  • the laminated electrical steel sheet manufactured using the electrical insulation steel sheet with an adhesive insulating coating is excellent in high-temperature oil resistance, and further has excellent iron loss and space factor even after stress relief annealing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

高温接着性および高温耐油性に優れるとともに、積層して歪取焼鈍を行った後においても優れた磁気特性(鉄損、磁束密度)兼ね備える接着性絶縁被膜付き電磁鋼板の製造方法を提供する。(a)水性エポキシ樹脂、(b)固形分で、前記水性エポキシ樹脂100質量部に対し30質量部以下の高温硬化型架橋剤、(c)金属酸化物粒子、および(d)溶媒を含有する被覆剤を、電磁鋼板の少なくとも一方の表面に塗布し、最高到達鋼板温度:150℃以上230℃未満の条件で焼付ける、接着性絶縁被膜付き電磁鋼板の製造方法。

Description

接着性絶縁被膜付き電磁鋼板の製造方法および積層電磁鋼板の製造方法
 本発明は、自動車向けモーター用積層鉄心(stacked iron core for an automotive motor)などの素材として好適な接着性絶縁被膜付き電磁鋼板の製造方法に関する。また、本発明は、前記接着性絶縁被膜付き電磁鋼板を用いた積層電磁鋼板(stacked electrical steel sheet)の製造方法に関する。
 電気機器の鉄心などに使用される積層電磁鋼板は、従来、絶縁被膜を備える電磁鋼板を複数枚積み重ねた後、カシメ(caulking)や溶接などの方法により一体化することで製造されていた。近年、省エネルギーのため電気機器に対する高効率化の要求が増しており、それに伴って、渦電流損を低減するために積層電磁鋼板に使用される鋼板の板厚が薄くなる傾向にある。しかしながら、鋼板が薄い場合、カシメや溶接が難しいばかりか、積層端面が開きやすくなり、鉄心としての形状を保ち難い。
 この問題を解決するため、カシメや溶接で鋼板を一体化することに代えて、表面に接着性絶縁被膜を形成した電磁鋼板を熱圧着して積層電磁鋼板を形成する技術が提案されている。
 例えば、特許文献1では、電磁鋼板の表面に接着性絶縁被膜を備える接着型積層鉄心用電磁鋼板において、鋼板の表面に特定の凹凸パターンを形成することによって、積層時の接着強度を向上させる技術が提案されている。
 特許文献2では、積層電磁鋼板において、鋼板面の平均結晶粒径dを、d≧20n(nは積層数)とすることによって打抜性を向上させる技術が提案されている。前記平均結晶粒径dを大きくすることにより、積層電磁鋼板の打抜性を低下させる原因となる結晶粒界を減少させ、打抜性を向上させることができる。
 特許文献3では、常温におけるせん断接着強度が50kgf/cm以上である積層電磁鋼板が提案されている。これは、積層電磁鋼板においてせん断接着強度を高めることにより、打ち抜き時に懸念される鋼板同士のずれや剥離を防止しようとするものである。
 特許文献4では、エポキシ樹脂、シリコン-酸素ネットワークをベースとする反応性ナノ粒子、および硬化剤を含有する被覆剤を用いて、電磁鋼板の表面に接着性被膜を形成する技術が提案されている。
特開平6-330231号公報 特開平7-201551号公報 特開2000-173815号公報 特許第5129573号公報
 特許文献1~4に記載されているような接着性の絶縁被膜を備えた電磁鋼板は、積層して加熱加圧することによって積層電磁鋼板とすることができる。しかし、積層電磁鋼板を、近年、需要が急激に増加しつつある自動車用モーター用の鉄心として使用するには、以下に述べるように、さらなる性能の向上が求められる。
 自動車用モーターは、例えば、180℃といった高温環境中で使用されるため、その鉄心に使用される積層電磁鋼板にも、高温下で優れた接着性を有することが求められる。したがって、積層電磁鋼板の製造に用いられる接着性絶縁被膜付き電磁鋼板には、高温環境下での接着性(以下、「高温接着性」という)に優れることが求められる。しかし、特許文献1~3に記載されているような従来の技術においては高温接着性が十分考慮されていなかった。例えば、特許文献3においては積層電磁鋼板の常温(20℃)におけるせん断接着強度を評価しているのみである。
 さらに、上記したような自動車用モーター用の鉄心は、単に高温環境下で使用されると言うだけはなく、高温の油中で用いられる。そのため、接着性絶縁被膜付き電磁鋼板には、該接着性絶縁被膜付き電磁鋼板を積層して得られる積層電磁鋼板の状態で、高温の油中においても長期間安定して使用できる性質(以下、「高温耐油性」という)を有していることが求められる。
 また、従来、接着性絶縁被膜付き電磁鋼板は、積層し、加熱加圧することによって一体化されるため、カシメや溶接で一体化する場合と異なり歪取焼鈍を行う必要がないと考えられていた。しかし、実際には、より確実に積層電磁鋼板を一体化するために、接着性絶縁被膜付き電磁鋼板を用いる場合においても、積層し、加熱加圧した後、さらにカシメや溶接を施すことが提案されている。そして、その場合、カシメや溶接を行った後には、磁気特性低下の原因となる応力を除去するために歪取焼鈍を行う必要がある。
 しかし、歪取焼鈍は、例えば750℃といった高温で行われるため、接着性絶縁被膜を構成する樹脂等の成分が分解してしまう場合がある。接着性絶縁被膜の構成成分が分解してしまうと、積層されている電磁鋼板同士の間での絶縁性が低下するため、渦電流損が増加し、鉄心としての磁気特性(鉄損)が悪化する。
 また、接着性や絶縁性を向上させるために接着性絶縁被膜を厚くすることも考えられるが、接着性絶縁被膜を厚くすると積層電磁鋼板に占める電磁鋼板の比率である「占積率」が低下し、その結果、積層電磁鋼板の磁束密度が低下してしまう。一方、占積率を向上させるために接着性絶縁被膜を薄くすると、十分な接着強度が得られなくなるとともに、積層電磁鋼板の、特に歪取焼鈍後における絶縁性が確保できない。したがって、歪取焼鈍後の積層電磁鋼板において、鉄損の低さと占積率の高さを両立させることはこれまで実現できていなかった。
 本発明は、上記事情に鑑みてなされたものであり、高温接着性および高温耐油性に優れるとともに、積層して歪取焼鈍を行った後においても優れた鉄損と占積率を兼ね備える接着性絶縁被膜付き電磁鋼板の製造方法を提供することを目的とする。また、本発明は、前記接着性絶縁被膜付き電磁鋼板を用いた積層電磁鋼板の製造方法を提供することを目的とする。
 すなわち、本発明の要旨構成は次のとおりである。
1.(a)水性エポキシ樹脂、
 (b)固形分で、前記水性エポキシ樹脂100質量部に対し30質量部以下の高温硬化型架橋剤、
 (c)金属酸化物粒子、および
 (d)溶媒
を含有する被覆剤を、電磁鋼板の少なくとも一方の表面に塗布し、
 最高到達鋼板温度:150℃以上230℃未満の条件で焼付ける、
 接着性絶縁被膜付き電磁鋼板の製造方法。
2.前記(a)水性エポキシ樹脂と(b)高温硬化型架橋剤との混合物の硬化温度が150℃以上である、上記1に記載の接着性絶縁被膜付き電磁鋼板の製造方法。
3.前記被覆剤における前記(c)金属酸化物粒子の含有量が、固形分の質量で、前記水性エポキシ樹脂の100質量部に対し0.1質量部未満である、上記1または2に記載の接着性絶縁被膜付き電磁鋼板の製造方法。
4.上記1~3のいずれか一項に記載の接着性絶縁被膜付き電磁鋼板の製造方法で得た接着性絶縁被膜付き電磁鋼板を、複数枚積層し、次いで加熱加圧する、積層電磁鋼板の製造方法。
 本発明によれば、高温接着性および高温耐油性に優れるとともに、積層して歪取焼鈍を行った後においても優れた鉄損と占積率を兼ね備える接着性絶縁被膜付き電磁鋼板、および前記接着性絶縁被膜付き電磁鋼板を積層した積層電磁鋼板を得ることができる。
(接着性絶縁被膜付き電磁鋼板の製造)
 本発明の一実施形態においては、上記成分を含有する被覆剤を、電磁鋼板の少なくとも一方の表面に塗布し、焼付けることによって接着性絶縁被膜(以下、単に「絶縁被膜」と言う場合がある)を形成する。まず、前記絶縁被膜の形成に用いる被覆剤について説明する。
[被覆剤]
 本発明の一実施形態においては、
(a)水性エポキシ樹脂、
(b)高温硬化型架橋剤、
(c)金属酸化物粒子、および
(d)溶媒
を必須成分として含有する被覆剤が用いられる。
(a)水性エポキシ樹脂
 上記水性エポキシ樹脂としては、特に限定されることなく、任意の水性エポキシ樹脂(プレポリマー)を用いることができる。前記水性エポキシ樹脂としては、例えば、ビスフェノールA型、ビスフェノールF型、脂肪族型、およびグリシジルアミン型からなる群より選択される1種または2種以上を用いることができる。エポキシ樹脂は耐熱性に優れているため、エポキシ樹脂を用いることにより高温接着性および高温耐油性を向上させることができる。また、水性エポキシ樹脂を用いているため、後述する溶媒として水系溶媒を用いることができ、多量の有機溶媒を用いる必要がない。
 前記被覆剤における前記水性エポキシ樹脂の含有量は特に限定されず、任意の値とすることができる。しかし、水性エポキシ樹脂の量が過度に少ないと接着性が低下し、十分な高温接着性および高温耐油性が得られない場合がある。そのため、前記被覆剤における前記水性エポキシ樹脂の含有量は、全固形物に対する割合で、50質量%以上とすることが好ましく、60質量%以上とすることがより好ましく、70質量%以上とすることがさらに好ましい。
(b)高温硬化型架橋剤
 上記高温硬化型架橋剤(以下、単に「架橋剤」という場合がある。「硬化剤」ともいう)としては、上記水性エポキシ樹脂を架橋することができる高温硬化型硬化剤であれば、任意のものを1種または2種以上用いることができる。
 前記(a)水性エポキシ樹脂と(b)高温硬化型架橋剤との混合物の硬化温度は、150℃以上であることが好ましい。一方、前記硬化温度の上限は特に限定されない。しかし、前記硬化温度が200℃より高い場合、塗装焼付けの際の硬化が不十分となるためコイル巻き取りが不可能となり、製造に支障を生ずる場合がある。そのため、前記硬化温度は200℃以下とすることが好ましい。
 ここで、上記「硬化温度」は、剛体振り子型物性試験機で測定される粘弾性が、硬化に伴って低下する温度とする。硬化反応の進行に伴い架橋構造が発現すると、振り子の運動が制限され、振り子の振れ周期が急激に低下する。したがって、振り子の振れ周期の変化に基づいて硬化温度を決定することができる。
 前記高温硬化型架橋剤の例としては、芳香族アミン類、ジシアンジアミド、ブロックイソシアネートが挙げられる。高温硬化型の架橋剤を適用することで、焼付け工程における樹脂の過度の硬化を抑制することができる。これにより、得られた接着性絶縁被膜付き電磁鋼板を積層して加熱加圧することによって積層電磁鋼板を製造する際に、硬化反応をさらに進行させることができるため、高温接着性および高温耐油性を高位に確保することが可能となる。
 前記架橋剤が過剰であると接着性が低下する。そのため、前記被覆剤における前記架橋剤の含有量は、固形分で、前記水性エポキシ樹脂100質量部に対し30質量部以下とする。一方、架橋剤含有量の下限は特に限定されないが、架橋剤の添加効果を十分に得るという観点からは、固形分で、水性エポキシ樹脂100質量部に対し1質量部以上とすることが好ましく、2質量部以上とすることがより好ましい。 
(c)金属酸化物粒子
 上述したように、積層電磁鋼板に対する歪取焼鈍は750℃といった高温で行われるため、有機成分である樹脂の少なくとも一部が分解され、積層されている電磁鋼板の間での絶縁性が低下する。そこで、被覆剤に無機成分である金属酸化物粒子を添加することにより、該金属酸化物粒子が歪取焼鈍後も分解されず残存し、絶縁性の低下を防止することができる。
 前記金属酸化物粒子としては、特に限定されず、金属の酸化物粒子であれば任意のものを用いることができる。前記金属酸化物粒子は、1種を単独で用いてもよく、2種以上を併用することもできる。好適に用いることができる金属酸化物としては、例えば、シリカ、アルミナ、チタニア、およびジルコニアが挙げられる。
 前記被覆剤における前記金属酸化物粒子の含有量は特に限定されず、任意の値とすることができる。しかし、金属酸化物粒子が過剰であると、形成される絶縁被膜に占めるエポキシ樹脂の割合が相対的に低下し、その結果、高温接着性および高温耐油性が低下する場合がある。そのため、前記被覆剤における前記金属酸化物粒子の含有量は、固形分で、前記水性エポキシ樹脂100質量部に対し0.10質量部未満とすることが好ましく、0.08質量部以下とすることがより好ましい。一方、金属酸化物粒子の添加効果を十分に得るという観点からは、前記被覆剤における前記金属酸化物粒子の含有量は、固形分で、前記水性エポキシ樹脂100質量部に対し0.001質量部以上とすることが好ましく、0.01質量部以上とすることがより好ましい。
(d)溶媒
 上記溶媒としては、被覆剤に含有される各成分を溶解または分散させることができるものであれば任意のものを用いることができるが、通常は、水、または水と有機溶媒との混合溶媒を用いればよく、水を用いることが好ましい。
(e)添加剤
 本発明の一実施形態においては、上記(a)~(d)からなる被覆剤を用いることができるが、本発明の効果を損なわない限り、任意にその他の(e)添加剤を含有することができる。
 前記添加剤としては、例えば、被膜の性能や均一性を一層向上させるために添加される、消泡剤、界面活性剤、中和剤、防錆剤、潤滑剤、酸化防止剤、有機金属化合物などの硬化促進剤を、1種または2種以上用いることができる。なお、被覆剤における前記添加剤の合計の含有量は、十分な被膜性能を維持する観点から、被覆剤の全固形分に対し5質量%以下とすることが好ましい。
 上記被覆剤は、特に限定されることなく、任意の方法で調製することができる。例えば、(a)水性エポキシ樹脂および(b)架橋剤を攪拌機にて撹拌しながら、(c)金属酸化物粒子、(d)溶媒、および任意に(e)添加剤を添加して調製することができる。
[電磁鋼板]
 本発明において使用される電磁鋼板の種類は特に制限されない。磁束密度の高いいわゆる軟鉄板(電気鉄板)、JIS G 3141(2009)に規定されるSPCC等の一般冷延鋼板、比抵抗を向上させるためにSiやAlを含有させた無方向性電磁鋼板などの、いずれも用いることできる。
 使用される電磁鋼板の厚さ(板厚)も特に制限されない。電磁鋼板を薄くすると鉄損が減少するが、薄すぎると形状安定性が低下することに加え、電磁鋼板の製造コストが増加する。そのため、使用される電磁鋼板の厚さは50μm以上とすることが好ましい。一方、板厚が増加すると、それに伴い鉄損が増大する。また、板厚が厚ければ、接着被膜を適用せずともカシメや溶接によって鋼板を一体化することが可能である。そのため、板厚は1mm以下とすることが好ましく、0.5mm以下とすることがより好ましく、0.3mm以下とすることがさらに好ましい。
 素材である電磁鋼板の前処理は特に限定されない。未処理の鋼板を使用することもできるが、被覆剤の塗布に先立って、アルカリ脱脂などの脱脂処理や、塩酸、硫酸、リン酸などの酸を用いた酸洗処理を施すことが好ましい。
[塗布]
 上記電磁鋼板の表面に、上記組成を有する被覆剤が塗布される。被覆剤を塗布する方法は特に限定されず、任意の方法を用いることができる。例えば、工業的に一般に利用されているロールコーター、フローコーター、スプレーコーター、ナイフコーター、バーコーター等の設備を用いて塗布する方法を用いることができる。
 前記被覆剤は電磁鋼板の少なくとも一方の面に塗布すればよい。絶縁被膜を電磁鋼板の片面に形成するか両面に形成するかについては、電磁鋼板に要求される諸特性や用途に応じて適宜選択すればよい。なお、上記した被覆剤による絶縁被膜を電磁鋼板表面の一方の面に形成し、他の被覆剤による絶縁被膜を他方の面に形成してもよい。
[焼付け]
 電磁鋼板の表面に上記被覆剤を塗布した後、焼付けて接着性絶縁被膜が形成される。前記焼付けの方法についても特に限定されず、通常実施されるような熱風式、赤外線加熱式、誘導加熱式等による焼付けなど、任意の方法が適用可能である。
最高到達鋼板温度:150℃以上230℃未満
 前記焼付け工程における最高到達鋼板温度が150℃未満であるとエポキシ樹脂と架橋剤との架橋反応が十分に進行せず、その結果、十分な高温接着性が得られない。そのため、前記最高到達鋼板温度を150℃以上とする。最高到達鋼板温度は160℃以上とすることが好ましく、170℃以上とすることがより好ましく、180℃以上とすることがさらに好ましい。一方、最高到達鋼板温度が230℃以上であると、焼付け工程において樹脂の硬化が過度に進んでしまう。その結果、その後、接着性絶縁被膜付き電磁鋼板を積層して加熱加圧する際の硬化反応の進行が乏しく、高温接着性および高温耐油性が低下する。そのため、前記最高到達鋼板温度を230℃未満とする。最高到達鋼板温度は225℃以下とすることが好ましく、220℃以下とすることがより好ましい。
 なお、焼付け工程における焼付け時間、すなわち、加熱を開始してから上記最高到達鋼板温度に達するまでの時間は、特に限定されないが、10~60秒とすることが好ましい。最高到達鋼板温度に到達した後は、特に限定されないが、室温まで冷却することが好ましい。
[厚さ]
 塗布される被覆剤の厚さは特に限定されないが、最終的に得られる積層電磁鋼板において十分な接着強度、特に高温接着性が得られるように決定すればよい。具体的には、自動車用モーターの鉄心として使用することを考慮すると、180℃でのせん断接着強度を1.96MPa(=20kgf/cm)以上とすることが好ましい。なお、前記180℃でのせん断接着強度は、実施例に記載した方法で測定することができる。
 以上の観点からは、前記接着性絶縁被膜の焼付け後の膜厚を1.0μm以上とすることが好ましく、2.0μm以上とすることがより好ましい。一方、ある程度以上の膜厚になると、膜厚の増加によるせん断接着強度の上昇効果は飽和することに加え、膜厚が増加すれば被膜原料コストが増大する。また、絶縁被膜の膜厚が増加すると積層電磁鋼板における占積率が低下し、その結果、積層電磁鋼板の磁束密度が低下する。そのため、絶縁被膜の焼付け後の膜厚を20μm以下とすることが好ましく、10μm以下とすることがより好ましく、5μm以下とすることがさらに好ましい。したがって、塗布工程においては、焼付け後の膜厚が上記範囲内となるように組成物を塗布することが好ましい。
(積層電磁鋼板の製造)
 上記のようにして得られた接着性絶縁被膜付き電磁鋼板を複数枚積層し、次いで加熱加圧することによって積層電磁鋼板が得られる。
[積層]
 積層される鋼板の枚数は限定されず任意の数とすることができる。積層枚数は40枚以上とすることが好ましく、50枚以上とすることがより好ましい。また、積層枚数は300枚以下とすることが好ましく、200枚以下とすることがより好ましい。
[加熱加圧]
 次いで、積層された接着性絶縁被膜付き電磁鋼板に対し、加熱と加圧を行って鋼板を一体化する。これにより、絶縁被膜中の未硬化の樹脂成分を硬化させ、未反応の結合基が被膜中に残存しない完全硬化状態とすることが可能となり、積層電磁鋼板の接着強度を確保することができる。前記加熱加圧処理における加熱温度は100℃以上とすることが好ましい。また、前記加熱温度は250℃以下とすることが好ましい。また、前記加熱加圧処理における圧力は0.49MPa(=5kgf/cm)以上とすることが好ましい。前記圧力は、4.90MPa(=50kgf/cm)以下とすることが好ましい。加熱加圧処理を施す時間は5分以上とすることが好ましい。前記時間は48時間以下とすることが好ましい。
 上記加熱加圧処理後の積層電磁鋼板の合計厚みについては、2mm以上とすることが好ましい。また、前記合計厚みは300mm未満とすることが好ましい。合計厚みが2mm以上であれば、電磁鋼板の特徴である低鉄損および高磁束密度の効果を十分に発現することができる。また、前記合計厚みが300mm未満であれば、加熱加圧治具内での積層材製造が容易であるため、積層電磁鋼板の製造効率が向上する。
 以下、本発明の効果を実施例に基づいて具体的に説明するが、本発明はこれら実施例に限定されるものではない。
<接着性絶縁被膜付き電磁鋼板の製造>
 表1に示す板厚の無方向性電磁鋼板から幅150mm、長さ300mmの大きさに切り出した鋼板を供試材として用いた。前記供試材である電磁鋼板を常温のオルトケイ酸ナトリウム水溶液(濃度0.8質量%)に30秒間浸漬後、水洗し、次いで乾燥した。
 上記前処理を施した供試材表面(両面)に、被覆剤をロールコーターで塗布し、次いで、熱風焼付け炉で焼付けた。前記被覆剤としては、表1に示した成分と、溶媒としての水からなるものを用いた。また、前記焼付けにおける最高到達鋼板温度と焼付け時間(加熱を開始してから上記最高到達鋼板温度に達するまでの時間)は、表1に示した通りとした。最高到達鋼板温度に達した後は、炉から取り出して室温で放冷し、接着性絶縁被膜付き電磁鋼板を得た。焼付け後の接着性絶縁被膜の膜厚は表1に示したとおりであった。なお、被覆剤に含まれる各成分は、以下のとおりである。
(a)水性エポキシ樹脂
a1:三菱化学製 jER 825(ビスフェノールA型)
a2:DIC製 EPICLON 835(ビスフェノールF型)
(b)架橋剤
b1:DIC製 バーノック D-500(ブロックイソシアネート型)
b2:ADEKA製 EH-3636AS(ジシアンジアミド型)
b3:ジャパンケムテック製 エピキュア 8290-Y-60(脂肪族ポリアミン系)
a1とb1との混合物の硬化温度:150℃
a2とb1との混合物の硬化温度:150℃
a1とb2との混合物の硬化温度:170℃
a2とb2との混合物の硬化温度:170℃
a1とb3との混合物の硬化温度:30℃
a2とb3との混合物の硬化温度:30℃
 なお、上記硬化温度は剛体振り子型物性試験機(株式会社エー・アンド・デイ製RPT-3000W)を用いた粘弾性測定により評価した。前記架橋剤と水性エポキシ樹脂とからなる塗膜の硬化に伴う粘弾性の変化を測定し、振り子(エッジタイプ)の振れ周期が急激に低下した温度を硬化温度とした。
(c)金属酸化物粒子
c1:第一稀元素化学製 EP(酸化ジルコニウム)
c2:石原産業製 TTO-55(D)(酸化チタン微粒子)
(e)添加剤 
e1:日信化学製 サーフィノール400(消泡剤)
e2:信越シリコーン製 KM-7750(消泡剤)
e3:日信化学製 ダイノール604(界面活性剤)
<高温接着性>
 次に、上記のようにして得た接着性絶縁被膜付き電磁鋼板の高温接着性を評価するために、180℃せん断接着強度の測定を行った。評価方法と評価基準を以下に示す。
 JIS K6850:1999に準じてせん断引張試験片を作製し、引張試験を行なった。前記せん断引張試験片は、上記焼付け工程で得られた接着性絶縁被膜付き電磁鋼板(幅25mm×長さ100mm)2枚を、先端から10mmまでの部分で絶縁被膜同士が接着するように、ずらして積層した後(ラップ部分:幅25mm×10mm)、加熱加圧処理を温度200℃、圧力1.96MPa(=20kgf/cm)、処理時間1時間の条件で施して作製した。引張試験環境は180℃とし、前記試験片を当該温度に10分間保持した後、前記温度に保った状態で試験を実施した。試験速度は3mm/minとした。測定された引張強度を以下の基準に基づいて判定した。
(判定基準)
◎:2.94MPa以上
○:1.96MPa以上、2.94MPa未満
○-:0.98MPa以上、1.96MPa未満
△:0.49MPa以上、0.98MPa未満
×:0.49MPa未満
<積層電磁鋼板の製造>
 次に、上記接着性絶縁被膜付き電磁鋼板を5枚積層し、加熱と加圧を同時に行う加熱加圧処理を施すことにより積層電磁鋼板を作製した。前記加熱加圧処理の条件は、加熱温度:200℃、圧力:1.96MPa(=20kgf/cm)、処理時間:1時間とした。
<高温耐油性>
 得られた積層電磁鋼板のそれぞれについて高温耐油性を評価した。評価方法は次のとおりである。
 180℃に保持した油中に積層電磁鋼板を500時間浸漬し、取り出して放冷した後にその積層電磁鋼板に分離や剥離が生じるかを観察した。前記油としては出光興産社製ダフニー・スーパーハイドロ46HFを使用した。判定基準は次の通りである。
(判定基準)
◎:分離なし、剥離なし
○:分離なし、局所的な剥離あり
×:2つ以上に分離
<歪取り焼鈍>
 次いで、歪取焼鈍後の特性を評価するために、上記の手順で作成した積層電磁鋼板のそれぞれに、歪取焼鈍を施した。歪取り焼鈍の条件は、100%窒素中、800℃×2時間とした。その後、歪取焼鈍後の積層電磁鋼板について、以下の手順で鉄損および占積率を評価した。
<鉄損>
 30×280mmの短冊状とした歪取焼鈍後の積層電磁鋼板を井桁状にセットし、JIS C 2550に規定されているエプスタイン法で鉄損W15/50(W/kg)を評価した。判定基準は次の通りである。
(判定基準)
◎:W15/50≦6.01W/kg
○:6.01W/kg<W15/50≦6.1W/kg
×:6.1W/kg<W15/50
<占積率>
 歪取焼鈍後の積層電磁鋼板のそれぞれについて、重量および体積を計測し、以下に示す式で占積率を算出した。
 占積率(%)=100×積層電磁鋼板の重量(g)/(積層電磁鋼板の体積(cm)×鋼板の比重(g/cm
判定基準は次の通りである。
(判定基準)
◎:97%≦占積率
○:95%≦占積率<97%
×:占積率<95%
 評価結果を表2に示す。この結果から分かるように、本発明の条件を満たす接着性絶縁被膜付き電磁鋼板は優れた高温接着性を有する。また、前記接着性絶縁被膜付き電磁鋼板を用いて製造された積層電磁鋼板は、高温耐油性に優れ、さらに歪取焼鈍後においても優れた鉄損と占積率を兼ね備えている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (4)

  1.  (a)水性エポキシ樹脂、
     (b)固形分で、前記水性エポキシ樹脂100質量部に対し30質量部以下の高温硬化型架橋剤、
     (c)金属酸化物粒子、および
     (d)溶媒
    を含有する被覆剤を、電磁鋼板の少なくとも一方の表面に塗布し、
     最高到達鋼板温度:150℃以上230℃未満の条件で焼付ける、
     接着性絶縁被膜付き電磁鋼板の製造方法。
  2.  前記(a)水性エポキシ樹脂と(b)高温硬化型架橋剤との混合物の硬化温度が150℃以上である、請求項1に記載の接着性絶縁被膜付き電磁鋼板の製造方法。
  3.  前記被覆剤における前記(c)金属酸化物粒子の含有量が、固形分の質量で、前記水性エポキシ樹脂の100質量部に対し0.1質量部未満である、請求項1または2に記載の接着性絶縁被膜付き電磁鋼板の製造方法。
  4.  請求項1~3のいずれか一項に記載の接着性絶縁被膜付き電磁鋼板の製造方法で得た接着性絶縁被膜付き電磁鋼板を、複数枚積層し、次いで加熱加圧する、積層電磁鋼板の製造方法。
PCT/JP2017/044322 2016-12-22 2017-12-11 接着性絶縁被膜付き電磁鋼板の製造方法および積層電磁鋼板の製造方法 WO2018116881A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018506360A JP6344537B1 (ja) 2016-12-22 2017-12-11 接着性絶縁被膜付き電磁鋼板の製造方法および積層電磁鋼板の製造方法
EP17882396.9A EP3561153B1 (en) 2016-12-22 2017-12-11 Method for producing electromagnetic steel sheet with adhesive insulating coating film and method for producing stacked electromagnetic steel sheet
US16/471,774 US11186076B2 (en) 2016-12-22 2017-12-11 Method of manufacturing electrical steel sheet with adhesive insulating coating and method of manufacturing stacked electrical steel sheet
CN201780078009.6A CN110088358B (zh) 2016-12-22 2017-12-11 带粘接性绝缘覆膜的电磁钢板的制造方法和层积电磁钢板的制造方法
BR112019012440-3A BR112019012440B1 (pt) 2016-12-22 2017-12-11 Método para fabricar chapa de aço elétrica com revestimento isolante adesivo e método para fabricar chapa de aço elétrica empilhada
KR1020197017450A KR102365884B1 (ko) 2016-12-22 2017-12-11 접착성 절연 피막 부착 전자 강판의 제조 방법 및 적층 전자 강판의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016249600 2016-12-22
JP2016-249600 2016-12-22
JP2017192787 2017-10-02
JP2017-192787 2017-10-02

Publications (1)

Publication Number Publication Date
WO2018116881A1 true WO2018116881A1 (ja) 2018-06-28

Family

ID=62626453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044322 WO2018116881A1 (ja) 2016-12-22 2017-12-11 接着性絶縁被膜付き電磁鋼板の製造方法および積層電磁鋼板の製造方法

Country Status (7)

Country Link
US (1) US11186076B2 (ja)
EP (1) EP3561153B1 (ja)
JP (1) JP6344537B1 (ja)
KR (1) KR102365884B1 (ja)
CN (1) CN110088358B (ja)
TW (1) TWI647714B (ja)
WO (1) WO2018116881A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021019376A (ja) * 2019-07-17 2021-02-15 日本製鉄株式会社 積層コアおよび回転電機
WO2021256534A1 (ja) * 2020-06-17 2021-12-23 日本製鉄株式会社 電磁鋼板、積層コア、及び積層コア製造方法
WO2022220262A1 (ja) * 2021-04-14 2022-10-20 日本製鉄株式会社 電磁鋼板及び接着積層コア製造方法
JP7467634B2 (ja) 2020-07-07 2024-04-15 日本製鉄株式会社 接着積層コア製造方法及び接着積層コア製造装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115156008A (zh) * 2022-08-17 2022-10-11 山西太钢不锈钢股份有限公司 超薄规格电工钢自粘结涂层的生产方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129573B2 (ja) 1973-03-01 1976-08-26
JPH06330231A (ja) 1993-05-26 1994-11-29 Kawasaki Steel Corp 接着型積層鉄心用電磁鋼板
JPH07201551A (ja) 1993-12-29 1995-08-04 Nkk Corp 積層型電磁鋼板
JPH07336969A (ja) * 1994-06-09 1995-12-22 Nkk Corp 接着鉄心用電磁鋼板およびその製造方法
JP2000173815A (ja) 1998-12-09 2000-06-23 Sumitomo Metal Ind Ltd 積層鉄心用接着鋼板
WO2015029828A1 (ja) * 2013-08-28 2015-03-05 Jfeスチール株式会社 絶縁被膜付き電磁鋼板およびその製造方法、ならびに絶縁被膜形成用被覆剤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2937734B2 (ja) * 1994-03-23 1999-08-23 川崎製鉄株式会社 加熱接着用表面被覆電磁鋼板の製造方法
JP3369941B2 (ja) 1997-11-27 2003-01-20 日本鋼管株式会社 接着強度、耐食性及び耐ブロッキング性に優れた接着鉄芯用電磁鋼板の製造方法
JP4345480B2 (ja) * 2001-08-17 2009-10-14 Jfeスチール株式会社 積層鉄心の製造装置および製造方法
JP5129573B2 (ja) 2004-10-27 2013-01-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 粘着性コーティング組成物
BRPI0810306A2 (pt) 2007-06-12 2019-02-12 Du Pont "composição de revestimento, processo para o revestimento de chapas de aço elétrico, para a preparação de um núcleo da chapa de aço elétrica, chapa de aço elétrico e núcleo de chapa de aço elétrico"
JP5640352B2 (ja) * 2009-11-05 2014-12-17 Jfeスチール株式会社 半有機絶縁被膜付き電磁鋼板
KR101313441B1 (ko) * 2011-10-25 2013-10-01 주식회사 포스코 용접성, 내스크래치성 및 내식성이 우수한 표면처리 강판
JP6010392B2 (ja) * 2012-02-29 2016-10-19 Jfeスチール株式会社 絶縁被膜付き電磁鋼板およびその製造方法、ならびに絶縁被膜形成用被覆剤
JP6127408B2 (ja) * 2012-08-17 2017-05-17 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
KR101677317B1 (ko) * 2013-07-03 2016-11-17 주식회사 포스코 철손저감 및 강도향상을 위한 전기강판 적층코어의 제조방법 및 이에 의해 제조된 적층코어

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129573B2 (ja) 1973-03-01 1976-08-26
JPH06330231A (ja) 1993-05-26 1994-11-29 Kawasaki Steel Corp 接着型積層鉄心用電磁鋼板
JPH07201551A (ja) 1993-12-29 1995-08-04 Nkk Corp 積層型電磁鋼板
JPH07336969A (ja) * 1994-06-09 1995-12-22 Nkk Corp 接着鉄心用電磁鋼板およびその製造方法
JP2000173815A (ja) 1998-12-09 2000-06-23 Sumitomo Metal Ind Ltd 積層鉄心用接着鋼板
WO2015029828A1 (ja) * 2013-08-28 2015-03-05 Jfeスチール株式会社 絶縁被膜付き電磁鋼板およびその製造方法、ならびに絶縁被膜形成用被覆剤

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021019376A (ja) * 2019-07-17 2021-02-15 日本製鉄株式会社 積層コアおよび回転電機
JP7222328B2 (ja) 2019-07-17 2023-02-15 日本製鉄株式会社 積層コアおよび回転電機
WO2021256534A1 (ja) * 2020-06-17 2021-12-23 日本製鉄株式会社 電磁鋼板、積層コア、及び積層コア製造方法
JPWO2021256534A1 (ja) * 2020-06-17 2021-12-23
JP7156579B2 (ja) 2020-06-17 2022-10-19 日本製鉄株式会社 電磁鋼板、積層コア、及び積層コア製造方法
US11749431B2 (en) 2020-06-17 2023-09-05 Nippon Steel Corporation Electrical steel sheet, laminated core, and laminated core manufacturing method
JP7467634B2 (ja) 2020-07-07 2024-04-15 日本製鉄株式会社 接着積層コア製造方法及び接着積層コア製造装置
WO2022220262A1 (ja) * 2021-04-14 2022-10-20 日本製鉄株式会社 電磁鋼板及び接着積層コア製造方法

Also Published As

Publication number Publication date
EP3561153A1 (en) 2019-10-30
JP6344537B1 (ja) 2018-06-20
EP3561153B1 (en) 2021-01-20
KR102365884B1 (ko) 2022-02-21
TW201828310A (zh) 2018-08-01
KR20190085072A (ko) 2019-07-17
EP3561153A4 (en) 2019-11-20
BR112019012440A2 (pt) 2020-04-14
TWI647714B (zh) 2019-01-11
US11186076B2 (en) 2021-11-30
CN110088358A (zh) 2019-08-02
US20200086619A1 (en) 2020-03-19
JPWO2018116881A1 (ja) 2018-12-20
CN110088358B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
JP6344537B1 (ja) 接着性絶縁被膜付き電磁鋼板の製造方法および積層電磁鋼板の製造方法
EP3176285B1 (en) Electrical steel sheet for stacking, stacked electrical steel sheet, method of manufacturing stacked electrical steel sheet, and iron core for automotive motor
CN108473819B (zh) 电工钢板粘接涂料组合物、形成有粘接涂层的电工钢板、电工钢板产品及其制造方法
JP4860480B2 (ja) 耐熱接着性被膜を被覆した耐熱接着性被膜付き電磁鋼板ならびに当該電磁鋼板を用いた鉄心およびその製造方法
KR102163467B1 (ko) 절연 피막 부착 전자 강판 및 그의 제조 방법, 그리고 절연 피막 형성용 피복제
EP3858601A1 (en) Method for manufacturing electrical steel sheet product
EP2597177B1 (en) Electromagnetic steel sheet and process for production thereof
JP7354249B2 (ja) 電磁鋼板、その製造方法、及び電磁鋼板積層体
KR102490495B1 (ko) 실리콘 스틸용 수성 친환경 자기-접착 절연 코팅재
EP2479315B1 (en) Electrical steel sheet and method for manufacturing same
JP6404977B2 (ja) 耐熱接着性絶縁被膜用組成物および絶縁被膜付き電磁鋼板
KR101540373B1 (ko) 무방향성 전기강판 접착 코팅 조성물, 무방향성 전기강판 제품, 및 이의 제조 방법
JP6030668B2 (ja) 絶縁被膜付き電磁鋼板およびその製造方法、ならびに絶縁被膜形成用被覆剤
JP6368733B2 (ja) 耐熱接着性絶縁被膜用組成物および絶縁被膜付き電磁鋼板
JP7129945B2 (ja) 絶縁被膜形成用被覆剤
JP2024509030A (ja) 電磁鋼板およびその積層体
JP5750275B2 (ja) 絶縁被膜付き電磁鋼板および積層鉄心
JP7510506B2 (ja) 電磁鋼板接着コーティング組成物、電磁鋼板積層体およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018506360

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197017450

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019012440

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017882396

Country of ref document: EP

Effective date: 20190722

ENP Entry into the national phase

Ref document number: 112019012440

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190617