WO2018116833A1 - Liquid ejection head and liquid ejection device - Google Patents

Liquid ejection head and liquid ejection device Download PDF

Info

Publication number
WO2018116833A1
WO2018116833A1 PCT/JP2017/043810 JP2017043810W WO2018116833A1 WO 2018116833 A1 WO2018116833 A1 WO 2018116833A1 JP 2017043810 W JP2017043810 W JP 2017043810W WO 2018116833 A1 WO2018116833 A1 WO 2018116833A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulation
nozzle
passage
jet head
circulating fluid
Prior art date
Application number
PCT/JP2017/043810
Other languages
French (fr)
Japanese (ja)
Inventor
克智 塚原
祐馬 福澤
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017077593A external-priority patent/JP6969139B2/en
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to US16/472,781 priority Critical patent/US10987928B2/en
Priority to CN201780078690.4A priority patent/CN110114222B/en
Publication of WO2018116833A1 publication Critical patent/WO2018116833A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/18Ink recirculation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • B41J2002/14241Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm having a cover around the piezoelectric thin film element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14362Assembling elements of heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14411Groove in the nozzle plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14419Manifold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14459Matrix arrangement of the pressure chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14491Electrical connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/11Embodiments of or processes related to ink-jet heads characterised by specific geometrical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/12Embodiments of or processes related to ink-jet heads with ink circulating through the whole print head

Definitions

  • the present invention relates to a technique for ejecting a liquid such as ink.
  • Patent Document 1 discloses a liquid jet head having a laminated structure in which a flow path forming substrate is installed on the surface on one side of a communication plate and a nozzle plate is installed on the surface on the other side.
  • a pressure generating chamber filled with the liquid supplied from the common liquid chamber (reservoir) is formed, and a nozzle is formed in the nozzle plate.
  • the pressure generating chamber and the nozzle communicate with each other through the communication passage formed in the communication plate.
  • a circulation flow passage communicating with the common liquid chamber and a groove-like circulation communication passage communicating the communication passage with the circulation flow passage are formed. According to the above configuration, it is possible to circulate the liquid inside the communication passage to the common liquid chamber through the circulation communication passage and the circulation passage.
  • a circulation communication passage is formed on the surface of the communication plate to which the nozzle plate is joined.
  • it is practically difficult to efficiently circulate the liquid located in the vicinity of the nozzle with respect to the circulation channel.
  • a preferred embodiment of the present invention has an object to efficiently circulate the liquid in the vicinity of the nozzle.
  • a liquid jet head includes a nozzle plate provided with a first nozzle and a second nozzle, and a first pressure chamber to which liquid is supplied. And a second communication passage connecting the first nozzle and the first pressure chamber, a second communication passage connecting the second nozzle and the second pressure chamber, and A flow passage forming portion provided with a circulating fluid chamber positioned between a communication passage and the second communication passage, and a pressure generation unit generating pressure change in each of the first pressure chamber and the second pressure chamber A first circulation passage connecting the first communication passage and the circulating fluid chamber, and a second circulation passage connecting the second communication passage and the circulating fluid chamber.
  • the first nozzle has a first section and a second section having a larger diameter than the first section and located on the flow path forming portion side with respect to the first section. And.
  • the first nozzle since the first nozzle includes the first section and the second section having different inner diameters, there is an advantage that the flow path resistance of the first nozzle can be easily set to a desired characteristic.
  • the said 1st circuit is the same depth as the said 2nd area.
  • the first circulation path and the second section of the first nozzle have the same depth, the first circulation is compared with a configuration in which the depths of the first circulation path and the second section are different. There is an advantage that it is easy to form the road and the second section.
  • the first circulation path is deeper than the second section.
  • the flow resistance of the first circulation passage is smaller compared to the configuration in which the first circulation passage is shallower than the second section.
  • the said 1st circuit is shallower than the said 2nd area.
  • the flow resistance of the first circulation passage is larger compared to the configuration in which the first circulation passage is deeper than the second section. Therefore, it is possible to increase the injection amount as compared with the configuration in which the first circulation path is deeper than the second section.
  • the second section is continuous with the first circulation path.
  • the second section of the first nozzle and the first circulation path are continuous. Therefore, the above-mentioned effect that the liquid in the vicinity of the nozzle can be efficiently circulated to the circulating liquid chamber is particularly remarkable.
  • the first nozzle and the first circulation path are mutually separated in the plane of the nozzle plate. In the above aspect, the first nozzle and the first circulation path are separated from each other. Therefore, there is an advantage that it is easy to achieve both of securing the circulation amount and securing the injection amount.
  • ⁇ Aspect 8> In the preferable example (aspect 8) of the aspect 7, the flow path length La of the portion of the first circulation path overlapping the circulating fluid chamber and the flow path of the portion overlapping the first communication path of the first circulation path The length Lb satisfies La> Lb. According to the above aspect, there is an advantage that the liquid in the first communication passage is easily supplied to the circulating fluid chamber via the first circulation passage.
  • the flow path length Lc of the portion of the first circulation path overlapping the partition portion between the first communication passage and the circulating fluid chamber in the flow passage forming portion is the channel length Lc , La>Lb> Lc is satisfied.
  • the liquid in the first communication passage is easily supplied to the circulating fluid chamber via the first circulation passage.
  • the flow path length La of a portion overlapping the circulating fluid chamber in the first circulation path, and the flow path forming portion in the flow path formation portion of the first circulation path The flow path length Lc of the portion overlapping the partition wall portion between the first communication path and the circulating fluid chamber satisfies La> Lc.
  • the liquid in the first communication passage is easily supplied to the circulating fluid chamber via the first circulation passage.
  • the flow passage width of the first circulation passage is smaller than the maximum diameter of the first nozzle.
  • the flow passage width of the first circulation passage is larger than the maximum diameter of the first nozzle.
  • the channel width of the first circulation channel is smaller than the channel width of the first pressure chamber.
  • the flow passage width of the first circulation passage is smaller than the flow passage width of the first pressure chamber, the flow passage width of the first circulation passage is compared with the configuration larger than the flow passage width of the first pressure chamber The flow resistance of the first circulation path is large. Therefore, it is possible to increase the injection amount.
  • the channel width of the portion on the circulating fluid chamber side of the first circulation channel is greater than the channel width of the portion on the first nozzle side wide.
  • the flow passage width of the portion on the circulating fluid chamber side of the first circulation passage is wider than the flow passage width of the portion on the first nozzle side, the liquid in the first communication passage runs the first circulation passage. It is easy to be supplied to the circulating fluid chamber via Therefore, there is an advantage that it is easy to secure the amount of circulation.
  • the flow path width of the middle portion of the first circulation path is the flow path width of the portion on the circulating fluid chamber side as viewed from the middle portion It is narrower than the channel width of the portion on the first nozzle side.
  • the flow passage width of the first circulation passage is constant because the flow passage width of the middle portion of the first circulation passage is narrower than the circulation liquid chamber side and the first nozzle side. In comparison, the flow path resistance of the first circulation path is large. Therefore, it is possible to increase the injection amount.
  • the channel width of the middle portion of the first circulation channel is the channel width of the portion on the circulating fluid chamber side as viewed from the middle portion and the channel width It is wider than the flow passage width of the portion on the first nozzle side.
  • the flow passage width of the first circulation passage is constant because the flow passage width of the middle part of the first circulation passage is wider than the circulation liquid chamber side and the first nozzle side. In comparison, the flow resistance of the first circulation path is small. Therefore, it is possible to increase the amount of circulation.
  • the central axis of the first nozzle is located on the opposite side of the circulating fluid chamber with respect to the central axis of the first communication passage.
  • the central axis of the first nozzle is located on the opposite side to the circulating fluid chamber when viewed from the central axis of the first communication passage, the central axis of the first nozzle is circulated when viewed from the central axis of the first communication passage. Compared with the configuration located on the liquid chamber side, it is possible to reduce the circulation amount and to increase the injection amount.
  • the central axis of the first nozzle is at the same position as the central axis of the first communication passage.
  • the central axis of the first nozzle is located on the circulating fluid chamber side as viewed from the central axis of the first communication passage, the central axis of the first nozzle is the circulating fluid chamber as viewed from the central axis of the first communication passage. It is possible to increase the amount of circulation and to reduce the amount of injection compared to the configuration on the opposite side.
  • an intermediate portion of the first circulation path is closer to the circulating fluid chamber side and the portion on the first nozzle side as viewed from the intermediate portion. deep.
  • the first circulation path since the middle portion of the first circulation path is deeper than the portion on the circulating fluid chamber side and the portion on the first nozzle side, the first circulation path has a constant depth over the entire length as compared to the configuration 1 The flow path resistance of the circulation path is small. Therefore, it is possible to increase the amount of circulation.
  • ⁇ Aspect 20> In a preferred embodiment (aspect 20) according to any one of the aspects 1 to 19, when a pressure change is generated in the first pressure chamber, the amount of liquid supplied to the circulating fluid chamber through the first circulation path. Is larger than the amount of liquid ejected from the first nozzle. In the above aspect, the circulation amount is larger than the injection amount.
  • ⁇ Aspect 23> In the preferable example (Aspect 23) according to any one of Aspects 1 to 20, the end face of the first pressure chamber on the side of the first communication passage is an inclined surface inclined with respect to the upper surface of the first pressure chamber The first circuit and the upper surface of the first pressure chamber do not overlap with each other.
  • the first pressure chamber and the circulating fluid chamber communicate with each other through the first communication passage and the first circulation passage. In the above aspect, the first pressure chamber and the circulating fluid chamber are in articulated communication via the first communication passage and the first circulation passage.
  • each of the nozzle plate and the flow path forming portion includes a substrate formed of silicon.
  • each of the nozzle plate and the flow path forming portion includes the silicon substrate, the flow path can be formed with high accuracy for the nozzle plate and the flow path forming portion by using, for example, a semiconductor manufacturing technology It has the advantage of ⁇ Aspect 26>
  • the nozzle plate is provided with a common circuit that is continuous with the first circuit and the second circuit.
  • the common circulation path continuous to the first circulation path and the second circulation path is formed in the nozzle plate, the flow path area of the liquid is increased as compared with the configuration in which the common circulation path is not formed. Is possible.
  • a liquid ejecting apparatus includes the liquid ejecting head according to each aspect exemplified above.
  • a good example of the liquid ejecting apparatus is a printing apparatus that ejects ink, but the application of the liquid ejecting apparatus according to the present invention is not limited to printing.
  • FIG. 2 is a cross-sectional view of a liquid jet head.
  • FIG. 2 is a partial exploded perspective view of a liquid jet head. It is sectional drawing of a piezoelectric element.
  • FIG. 6 is an explanatory view of circulation of ink in the liquid jet head.
  • FIG. 7A is a plan view and a cross-sectional view of the vicinity of the circulating fluid chamber in the liquid jet head.
  • FIG. 7 is a partial exploded perspective view of a liquid jet head according to a second embodiment. It is the top view and sectional drawing of the vicinity of the circulating fluid chamber in 2nd Embodiment.
  • FIG. 13 is a cross-sectional view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example.
  • FIG. 13 is a cross-sectional view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example.
  • FIG. 13 is a cross-sectional view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example.
  • FIG. 14 is a plan view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example.
  • FIG. 14 is a plan view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example.
  • FIG. 14 is a plan view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example.
  • FIG. 14 is a plan view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example.
  • FIG. 14 is a plan view and a cross-sectional view of the vicinity of the circulating fluid chamber in the liquid jet head of the modified example.
  • FIG. 14 is a plan view and a cross-sectional view of the vicinity of the circulating fluid chamber in the liquid jet head of the modified example.
  • FIG. 13 is a cross-sectional view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example.
  • FIG. 13 is a cross-sectional view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example.
  • FIG. 13 is a plan view and a cross-sectional view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example.
  • FIG. 1 is a configuration diagram illustrating a liquid ejecting apparatus 100 according to a first embodiment of the present invention.
  • the liquid ejecting apparatus 100 according to the first embodiment is an ink jet printing apparatus that ejects an ink, which is an example of a liquid, to the medium 12.
  • the medium 12 is typically a printing paper, but a print target of any material such as a resin film or fabric may be used as the medium 12.
  • the liquid ejecting apparatus 100 is provided with a liquid container 14 storing ink.
  • a cartridge removable from the liquid ejecting apparatus 100, a bag-like ink pack formed of a flexible film, or an ink tank capable of refilling ink is used as the liquid container 14.
  • a plurality of types of ink having different colors are stored in the liquid container 14.
  • the liquid ejecting apparatus 100 includes a control unit 20, a transport mechanism 22, a moving mechanism 24, and a liquid ejecting head 26.
  • the control unit 20 includes, for example, a processing circuit such as a central processing unit (CPU) or a field programmable gate array (FPGA) and a storage circuit such as a semiconductor memory, and centrally controls each element of the liquid ejecting apparatus 100.
  • the transport mechanism 22 transports the medium 12 in the Y direction under the control of the control unit 20.
  • the moving mechanism 24 reciprocates the liquid jet head 26 in the X direction under the control of the control unit 20.
  • the X direction is a direction intersecting (typically orthogonal) to the Y direction in which the medium 12 is transported.
  • the moving mechanism 24 according to the first embodiment includes a substantially box-shaped transport body 242 (carriage) accommodating the liquid jet head 26 and a transport belt 244 to which the transport body 242 is fixed.
  • a configuration in which the plurality of liquid jet heads 26 are mounted on the transport body 242 or a configuration in which the liquid container 14 is mounted on the transport body 242 together with the liquid jet heads 26 may be adopted.
  • the liquid jet head 26 jets the ink supplied from the liquid container 14 from the plurality of nozzles N (jet holes) to the medium 12 under the control of the control unit 20.
  • a desired image is formed on the surface of the medium 12 by the ink jetted onto the medium 12 by each liquid jet head 26 in parallel with the conveyance of the medium 12 by the conveyance mechanism 22 and the repetitive reciprocation of the conveyance body 242.
  • the direction perpendicular to the XY plane (for example, a plane parallel to the surface of the medium 12) is hereinafter referred to as the Z direction.
  • the jetting direction (typically, the vertical direction) of the ink by each liquid jet head 26 corresponds to the Z direction.
  • the plurality of nozzles N of the liquid jet head 26 are arranged in the Y direction.
  • the plurality of nozzles N in the first embodiment are divided into a first row L1 and a second row L2 arranged in parallel at intervals in the X direction.
  • Each of the first row L1 and the second row L2 is a set of a plurality of nozzles N linearly arranged in the Y direction.
  • a plane (YZ plane) O which passes through a central axis parallel to the Y direction and is parallel to the Z direction will be referred to as a "central plane" in the following description.
  • FIG. 2 is a cross-sectional view of the liquid jet head 26 in a cross section perpendicular to the Y direction
  • FIG. 3 is a partial exploded perspective view of the liquid jet head 26.
  • the liquid jet head 26 according to the first embodiment includes an element associated with each nozzle N of the first row L1 (exemplary first nozzle) and each nozzle N of the second row L2.
  • An element related to is a structure in which the elements are arranged in plane symmetry with respect to the central plane O.
  • first portion P1 a portion (hereinafter referred to as a “first portion”) P1 on the positive side in the X direction across the central plane O of the liquid jet head 26 and a portion P2 on the negative side (hereinafter referred to as “second portion”) in the X direction.
  • the structure is substantially common.
  • the plurality of nozzles N in the first row L1 are formed in the first portion P1
  • the plurality of nozzles N in the second row L2 are formed in the second portion P2.
  • the center plane O corresponds to the interface between the first portion P1 and the second portion P2.
  • the liquid jet head 26 includes a flow path forming unit 30.
  • the flow path forming unit 30 is a structure forming a flow path for supplying the ink to the plurality of nozzles N.
  • the flow path forming unit 30 according to the first embodiment is configured by stacking the first flow path substrate 32 (communication plate) and the second flow path substrate 34 (pressure chamber formation plate).
  • Each of the first flow path substrate 32 and the second flow path substrate 34 is a plate-like member elongated in the Y direction.
  • the second flow path substrate 34 is installed on the surface Fa on the negative side in the Z direction of the first flow path substrate 32 using, for example, an adhesive.
  • the vibration portion 42 As illustrated in FIG. 2, on the surface Fa of the first flow path substrate 32, in addition to the second flow path substrate 34, the vibration portion 42, the plurality of piezoelectric elements 44, the protective member 46, and the housing portion 48 are included. And (not shown in FIG. 3).
  • the nozzle plate 52 and the vibration absorber 54 are disposed on the surface Fb of the first flow path substrate 32 on the positive side in the Z direction (ie, the side opposite to the surface Fa).
  • the respective elements of the liquid jet head 26 are generally plate-like members elongated in the Y direction similarly to the first flow path substrate 32 and the second flow path substrate 34, and for example, mutually using an adhesive agent It is joined.
  • the nozzle plate 52 is a plate-like member in which a plurality of nozzles N are formed, and is installed on the surface Fb of the first flow path substrate 32 using, for example, an adhesive.
  • Each of the plurality of nozzles N is a circular through hole through which the ink passes.
  • a plurality of nozzles N constituting a first row L1 and a plurality of nozzles N constituting a second row L2 are formed.
  • a plurality of nozzles N in the first row L1 are formed along the Y direction in the region on the positive side in the X direction with respect to the central plane O of the nozzle plate 52, and in the region on the negative side in the X direction.
  • the plurality of nozzles N in the second row L2 are formed along the Y direction.
  • the nozzle plate 52 of the first embodiment is a single plate-like member that is continuous over a portion in which the plurality of nozzles N in the first row L1 is formed and a portion in which the plurality of nozzles N in the second row L2 is formed.
  • the nozzle plate 52 of the first embodiment is manufactured by processing a silicon (Si) single crystal substrate using semiconductor manufacturing technology (for example, processing technology such as dry etching or wet etching). However, known materials and manufacturing methods can be arbitrarily adopted for manufacturing the nozzle plate 52.
  • the space Ra is an opening formed in a long shape along the Y direction in plan view (that is, viewed from the Z direction), and the supply passage 61 and the communication passage 63 are through holes formed for each nozzle N.
  • the plurality of communication paths 63 are arranged in the Y direction in plan view, and the plurality of supply paths 61 are arranged in the Y direction between the arrangement of the plurality of communication paths 63 and the space Ra.
  • the plurality of supply paths 61 commonly communicate with the space Ra.
  • any one communication passage 63 overlaps the nozzle N corresponding to the communication passage 63 in a plan view. Specifically, any one communication passage 63 of the first portion P1 communicates with one nozzle N corresponding to the communication passage 63 in the first row L1. Similarly, any one communication passage 63 of the second portion P2 communicates with one nozzle N corresponding to the communication passage 63 in the second row L2.
  • the second flow path substrate 34 is a plate-like member in which a plurality of pressure chambers C are formed for each of the first portion P1 and the second portion P2.
  • the plurality of pressure chambers C are arranged in the Y direction.
  • Each pressure chamber C (cavity) is a long space formed for each nozzle N and extending in the X direction in plan view.
  • the first flow path substrate 32 and the second flow path substrate 34 are manufactured by processing a single crystal silicon substrate using, for example, a semiconductor manufacturing technology, as in the case of the nozzle plate 52 described above. However, known materials and manufacturing methods may be arbitrarily adopted for manufacturing the first flow path substrate 32 and the second flow path substrate 34.
  • the flow path forming portion 30 (the first flow path substrate 32 and the second flow path substrate 34) and the nozzle plate 52 in the first embodiment include a substrate formed of silicon. Therefore, there is an advantage that fine flow paths can be formed in the flow path forming portion 30 and the nozzle plate 52 with high accuracy by utilizing the semiconductor manufacturing technology as exemplified in the above-mentioned example, for example.
  • a vibrating portion 42 is provided on the surface of the second flow path substrate 34 opposite to the first flow path substrate 32.
  • the vibrating portion 42 of the first embodiment is a plate-like member (diaphragm) that can elastically vibrate.
  • the second flow path substrate 34 and the vibrating portion 42 are integrally formed by selectively removing a part in the thickness direction of a region corresponding to the pressure chamber C in the plate-like member having a predetermined thickness. It is also possible.
  • the pressure chamber C is a space located between the surface Fa of the first flow path substrate 32 and the vibrating portion 42, and generates pressure change in the ink filled in the space.
  • Each pressure chamber C is a space whose longitudinal direction is, for example, the X direction, and is formed individually for each nozzle N.
  • a plurality of pressure chambers C are arranged in the Y direction for each of the first row L1 and the second row L2. As illustrated in FIG. 2 and FIG.
  • the end on the central plane O side of any one pressure chamber C overlaps the communication passage 63 in plan view, and the end on the opposite side to the central plane O is a flat It overlaps with the supply path 61 visually. Therefore, in each of the first portion P1 and the second portion P2, the pressure chamber C communicates with the nozzle N through the communication passage 63, and communicates with the space Ra through the supply passage 61. In addition, it is also possible to add predetermined
  • a plurality of piezoelectric elements corresponding to different nozzles N for each of the first portion P1 and the second portion P2 on the surface of the vibrating portion 42 opposite to the pressure chamber C. 44 are installed.
  • the piezoelectric element 44 is a passive element that is deformed by the supply of a drive signal.
  • the plurality of piezoelectric elements 44 are arranged in the Y direction so as to correspond to the pressure chambers C.
  • the optional one piezoelectric element 44 is a laminate in which a piezoelectric layer 443 is interposed between the first electrode 441 and the second electrode 442 facing each other, as illustrated in FIG. 4.
  • one of the first electrode 441 and the second electrode 442 may be an electrode continuous across the plurality of piezoelectric elements 44 (that is, a common electrode).
  • a portion where the first electrode 441, the second electrode 442, and the piezoelectric layer 443 overlap in a plan view functions as the piezoelectric element 44.
  • the liquid jet head 26 according to the first embodiment includes the first piezoelectric element and the second piezoelectric element.
  • the first piezoelectric element is the piezoelectric element 44 on one side (for example, the right side in FIG.
  • the second piezoelectric element is the other side of the central axis O in the X direction (for example, It is the piezoelectric element 44 of the left side in FIG.
  • the protective member 46 in FIG. 2 is a plate-like member for protecting the plurality of piezoelectric elements 44, and is disposed on the surface of the vibrating portion 42 (or the surface of the second flow path substrate 34).
  • the protection member is obtained by processing the single crystal substrate of silicon (Si), for example, by the semiconductor manufacturing technology, like the first flow path substrate 32 and the second flow path substrate 34. 46 may be formed.
  • the plurality of piezoelectric elements 44 are accommodated in the recess formed on the surface of the protective member 46 on the side of the vibrating portion 42.
  • the end of the wiring board 28 is bonded to the surface of the vibrating portion 42 opposite to the flow path forming portion 30 (or the surface of the flow path forming portion 30).
  • the wiring substrate 28 is a flexible mounting component on which a plurality of wires (not shown) for electrically connecting the control unit 20 and the liquid jet head 26 are formed.
  • An end portion of the wiring substrate 28 which passes through the opening formed in the protective member 46 and the opening formed in the housing 48 and is extended to the outside is connected to the control unit 20.
  • a flexible wiring substrate 28 such as a flexible printed circuit (FPC) or a flexible flat cable (FFC) is preferably employed.
  • the housing portion 48 is a case for storing the ink supplied to the plurality of pressure chambers C (and further, the plurality of nozzles N).
  • the surface of the housing portion 48 on the positive side in the Z direction is bonded to the surface Fa of the first flow path substrate 32 with, for example, an adhesive.
  • a well-known technique and manufacturing method can be arbitrarily employ
  • the housing 48 can be formed by injection molding of a resin material.
  • a space Rb is formed for each of the first portion P1 and the second portion P2.
  • the section Rb of the housing portion 48 and the space Ra of the first flow path substrate 32 communicate with each other.
  • a space configured by the space Ra and the space Rb functions as a liquid storage chamber (reservoir) R that stores the ink supplied to the plurality of pressure chambers C.
  • the liquid storage chamber R is a common liquid chamber shared by the plurality of nozzles N.
  • a liquid storage chamber R is formed in each of the first portion P1 and the second portion P2.
  • the liquid storage chamber R of the first portion P1 is located on the positive side in the X direction with respect to the center plane O, and the liquid storage chamber R for the second portion P2 is located on the negative side with respect to the X direction as viewed from the central surface O.
  • An inlet port 482 for introducing the ink supplied from the liquid container 14 into the liquid storage chamber R is formed on the surface of the housing 48 opposite to the first flow path substrate 32.
  • vibration absorbers 54 are provided on the surface Fb of the first flow path substrate 32 for each of the first portion P1 and the second portion P2.
  • the vibration absorbing body 54 is a flexible film (compliance substrate) that absorbs pressure fluctuations of the ink in the liquid storage chamber R.
  • the vibration absorber 54 is installed on the surface Fb of the first flow path substrate 32 so as to close the space Ra of the first flow path substrate 32 and the plurality of supply paths 61, and the liquid storage chamber
  • the wall of R (specifically, the bottom) is configured.
  • a space (hereinafter referred to as a “circulating liquid chamber”) 65 is formed on the surface Fb of the first flow path substrate 32 facing the nozzle plate 52.
  • the circulating fluid chamber 65 of the first embodiment fluid is a long-long bottomed hole (groove) extending in the Y direction in plan view. The opening of the circulating fluid chamber 65 is closed by the nozzle plate 52 bonded to the surface Fb of the first flow path substrate 32.
  • FIG. 5 is a block diagram of the liquid jet head 26 focusing on the circulating liquid chamber 65.
  • the circulating fluid chamber 65 is continuous across the plurality of nozzles N along the first row L1 and the second row L2. Specifically, the circulating fluid chamber 65 is formed between the arrangement of the plurality of nozzles N in the first row L1 and the arrangement of the plurality of nozzles N in the second row L2. Therefore, as illustrated in FIG. 2, the circulating fluid chamber 65 is located between the communication passage 63 of the first portion P1 and the communication passage 63 of the second portion P2.
  • the flow passage forming portion 30 of the first embodiment includes the pressure chamber C (first pressure chamber) and the communication passage 63 (first communication passage) in the first portion P1, and the second portion Circulating fluid chamber 65 located between pressure chamber C (second pressure chamber) and communication passage 63 (second communication passage) at P2, and communication passage 63 of first portion P1 and communication passage 63 of second portion P2. And are formed structures.
  • the flow path forming unit 30 according to the first embodiment includes a wall-shaped portion (hereinafter, referred to as “partition”) 69 that divides between the circulating fluid chamber 65 and each communication passage 63.
  • the plurality of pressure chambers C and the plurality of piezoelectric elements 44 are arranged in the Y direction in each of the first portion P1 and the second portion P2. Therefore, it is also possible that the circulating fluid chamber 65 extends in the Y direction so as to be continuous across the plurality of pressure chambers C or the plurality of piezoelectric elements 44 in each of the first portion P1 and the second portion P2. Further, as can be understood from FIGS. 2 and 3, the circulating fluid chamber 65 and the liquid storage chamber R extend in the Y direction at an interval from each other, and within the interval, the pressure chamber C, the communication passage 63 and the nozzle It is also possible that N is located.
  • FIG. 6 is an enlarged plan view and a cross-sectional view of a portion of the liquid jet head 26 in the vicinity of the circulating liquid chamber 65.
  • one nozzle N in the first embodiment includes a first section n1 and a second section n2.
  • the first section n1 and the second section n2 are circular spaces formed coaxially and in communication with each other.
  • the second section n2 is located on the flow path forming portion 30 side as viewed from the first section n1.
  • the inner diameter d2 of the second section n2 is larger than the inner diameter d1 of the first section n1 (d2> d1).
  • each nozzle N is formed in a step shape, there is an advantage that the flow path resistance of each nozzle N can be easily set to a desired characteristic.
  • the central axis Qa of each nozzle N in the first embodiment is located on the opposite side of the circulating fluid chamber 65 as viewed from the central axis Qb of the communication passage 63.
  • a plurality of circulation paths 72 are formed on each of the first portion P1 and the second portion P2 on the surface of the nozzle plate 52 facing the flow path forming portion 30.
  • the plurality of circulation paths 72 (example of the first circulation path) of the first portion P1 correspond to the plurality of nozzles N (or the plurality of communication paths 63 corresponding to the first line L1) of the first row L1 one to one.
  • the plurality of circulation paths 72 (example of the second circulation path) of the second portion P2 is in one-to-one correspondence with the plurality of nozzles N in the second row L2 (or the plurality of communication passages 63 corresponding to the second row L2).
  • Each circulation path 72 is a groove (that is, a long bottomed hole) extending in the X direction, and functions as a flow path through which the ink flows.
  • the circulation passage 72 in the first embodiment is formed at a position separated from the nozzle N (specifically, on the side of the circulating fluid chamber 65 as viewed from the nozzle N corresponding to the circulation passage 72).
  • the plurality of nozzles N (particularly, the second section n2) and the plurality of circulation paths 72 are collectively formed in a common step by semiconductor manufacturing technology (for example, processing technology such as dry etching or wet etching).
  • each circulation path 72 is formed in a straight line with a flow passage width Wa equivalent to the inner diameter d2 of the second section n2 of the nozzle N.
  • the flow passage width (dimension in the Y direction) Wa of the circulation passage 72 in the first embodiment is smaller than the flow passage width (dimension in the Y direction) Wb of the pressure chamber C. Therefore, as compared with a configuration in which the flow passage width Wa of the circulation passage 72 is larger than the flow passage width Wb of the pressure chamber C, it is possible to increase the flow passage resistance of the circulation passage 72.
  • the depth Da of the circulation path 72 with respect to the surface of the nozzle plate 52 is constant over the entire length.
  • each circulation path 72 is formed to the same depth as the second section n2 of the nozzle N. According to the above configuration, there is an advantage that it is easy to form the circulation passage 72 and the second section n2 as compared with the configuration in which the circulation path 72 and the second section n2 are formed in different depths.
  • the “depth” of the flow path means the depth of the flow path in the Z direction (for example, the height difference between the formation surface of the flow path and the bottom surface of the flow path).
  • One arbitrary circulation path 72 in the first portion P1 is located on the side of the circulating fluid chamber 65 as viewed from the nozzle N corresponding to the circulation path 72 in the first row L1. Further, any one circulation passage 72 in the second portion P2 is located on the side of the circulating fluid chamber 65 as viewed from the nozzle N corresponding to the circulation passage 72 in the second row L2.
  • the end of each circulation passage 72 on the opposite side (the communication passage 63 side) from the center plane O overlaps one communication passage 63 corresponding to the circulation passage 72 in a plan view. That is, the circulation passage 72 communicates with the communication passage 63.
  • an end of the circulation path 72 on the side of the center plane O overlaps the circulating fluid chamber 65 in plan view. That is, the circulation path 72 communicates with the circulating fluid chamber 65.
  • each of the plurality of communication paths 63 communicates with the circulating fluid chamber 65 via the circulation path 72. Therefore, the ink in each communication passage 63 is supplied to the circulating fluid chamber 65 through the circulation passage 72 as illustrated by a broken arrow in FIG. That is, in the first embodiment, the plurality of communication passages 63 corresponding to the first row L1 and the plurality of communication passages 63 corresponding to the second row L2 communicate with one circulating fluid chamber 65 in common.
  • the flow path length La of a portion overlapping the circulating fluid chamber 65 of any one circulation path 72 and the flow path length (dimension in the X direction) of a portion overlapping the communication path 63 of the circulation path 72 Lb and a flow path length (dimension in the X direction) Lc of a portion of the circulation path 72 overlapping the partition portion 69 of the flow path forming portion 30 are illustrated.
  • the flow path length Lc corresponds to the thickness of the partition 69.
  • the partition portion 69 functions as a throttling portion of the circulation passage 72. Therefore, the flow path resistance of the circulation path 72 increases as the flow path length Lc corresponding to the thickness of the partition portion 69 is longer.
  • the flow path length La is longer than the flow path length Lb (La> Lb), and the flow path length La is longer than the flow path length Lc (La> Lc). Furthermore, in the first embodiment, the relationship that the flow path length Lb is longer than the flow path length Lc (Lb> Lc) is established (La> Lb> Lc). According to the above configuration, the ink easily flows from the communication passage 63 into the circulating liquid chamber 65 through the circulation passage 72, as compared with the configuration in which the flow passage length La and the flow passage length Lb are shorter than the flow passage length Lc. It has the advantage of
  • the pressure chamber C indirectly communicates with the circulating fluid chamber 65 via the communication passage 63 and the circulation passage 72. That is, the pressure chamber C and the circulating fluid chamber 65 do not communicate directly.
  • the pressure in the pressure chamber C fluctuates due to the operation of the piezoelectric element 44, a part of the ink flowing in the communication passage 63 is ejected from the nozzle N to the outside, and the remaining part is the communication passage It flows into the circulating fluid chamber 65 from 63 via the circulation passage 72.
  • the amount of ink ejected through the nozzle N (hereinafter referred to as “ejection amount”) out of the ink flowing through the communication passage 63 by one drive of the piezoelectric element 44 corresponds to the communication passage 63.
  • Inertances of the communication passage 63, the nozzle, and the circulation passage 72 are selected so as to exceed the amount of ink flowing into the circulating liquid chamber 65 through the circulation passage 72 (hereinafter referred to as "circulation amount”) among the circulating ink. .
  • the total of the circulating amounts flowing into the circulating fluid chamber 65 from the plurality of communication passages 63 (for example, the circulating fluid chamber 65) than the total of the jetting amounts by the plurality of nozzles N It is also possible to say that the flow rate within the unit time is higher.
  • the ratio of the circulation amount is 70% or more (the injection amount ratio is 30% or less).
  • Each flow path resistance is determined. According to the above configuration, it is possible to effectively circulate the ink in the vicinity of the nozzle to the circulating liquid chamber 65 while securing the ejection amount of the ink.
  • the larger the flow path resistance of the circulation path 72 the smaller the circulation amount, while the injection amount increases, and the smaller the flow path resistance of the circulation path 72, the circulation amount increases, but the injection amount is smaller. There is a tendency to decrease.
  • the liquid ejecting apparatus 100 includes a circulation mechanism 75.
  • the circulation mechanism 75 is a mechanism for supplying (i.e., circulating) the ink in the circulation liquid chamber 65 to the liquid storage chamber R.
  • the circulation mechanism 75 according to the first embodiment includes, for example, a suction mechanism (for example, a pump) for sucking the ink from the circulation liquid chamber 65, a filter mechanism for collecting air bubbles and foreign substances mixed in the ink, and thickening of the ink by heating. And a heating mechanism (not shown).
  • the ink in which bubbles and foreign substances are removed by the circulation mechanism 75 and the viscosity is reduced is supplied from the circulation mechanism 75 to the liquid storage chamber R via the inlet port 482.
  • the liquid storage chamber R ⁇ supply passage 61 ⁇ pressure chamber C ⁇ communication passage 63 ⁇ circulation passage 72 ⁇ circulating liquid chamber 65 ⁇ circulation mechanism 75 ⁇ liquid storage chamber R
  • the ink circulates along the path.
  • the circulation mechanism 75 of the first embodiment sucks the ink from both sides of the circulation liquid chamber 65 in the Y direction. That is, the circulation mechanism 75 sucks the ink from the vicinity of the end on the negative side in the Y direction of the circulating liquid chamber 65 and the vicinity of the end on the positive side in the Y direction of the circulating liquid chamber 65.
  • the ink is sucked from only one end of the circulating fluid chamber 65 in the Y direction
  • a difference occurs in the pressure of the ink between both ends of the circulating fluid chamber 65, and the pressure difference in the circulating fluid chamber 65
  • the pressure of the ink in the communication passage 63 may differ depending on the position in the Y direction.
  • the ejection characteristics (for example, the ejection amount and the ejection speed) of the ink from each nozzle may differ depending on the position in the Y direction.
  • the pressure difference inside the circulating fluid chamber 65 is reduced. Therefore, it is possible to approximate the ejection characteristics of the ink with high accuracy over a plurality of nozzles arranged in the Y direction.
  • a configuration in which ink is sucked from one end of the circulating fluid chamber 65 may also be employed.
  • the circulation passage 72 and the communication passage 63 overlap in plan view, and the communication passage 63 and the pressure chamber C overlap in plan view. Therefore, the circulation passage 72 and the pressure chamber C overlap each other in plan view.
  • the circulating fluid chamber 65 and the pressure chamber C do not overlap each other in plan view.
  • the piezoelectric element 44 is formed along the X direction over the entire pressure chamber C, the circulation path 72 and the piezoelectric element 44 overlap each other in plan view, while the circulating liquid chamber 65 and the piezoelectric element 44 They do not overlap each other in plan view.
  • the pressure chamber C or the piezoelectric element 44 overlaps the circulation passage 72 in plan view, but does not overlap the circulating fluid chamber 65 in plan view. Therefore, as compared with a configuration in which the pressure chamber C or the piezoelectric element 44 does not overlap the circulation path 72 in plan view, for example, the liquid jet head 26 can be easily miniaturized.
  • the circulation passage 72 for connecting the communication passage 63 and the circulation liquid chamber 65 is formed in the nozzle plate 52. Therefore, it is possible to efficiently circulate the ink in the vicinity of the nozzle N to the circulating liquid chamber 65 as compared with the configuration of Patent Document 1 in which the circulation communication passage is formed in the communication plate. Further, in the first embodiment, the communication passage 63 corresponding to the first row L1 and the communication passage 63 corresponding to the second row L2 are in common communication with the circulating fluid chamber 65 between them.
  • Second Embodiment A second embodiment of the present invention will be described.
  • symbol used by description of 1st Embodiment is diverted and detailed description of each is abbreviate
  • FIG. 7 is a partial exploded perspective view of the liquid jet head 26 in the second embodiment, and corresponds to FIG. 3 referred to in the first embodiment.
  • FIG. 8 is an enlarged plan view and a sectional view of a portion in the vicinity of the circulating fluid chamber 65 in the liquid jet head 26, and corresponds to FIG. 6 referred to in the first embodiment.
  • the circulation passage 72 and the nozzle N are continuous with each other. That is, one circulation path 72 of the first portion P1 is continued to one nozzle N of the first row L1, and one circulation path 72 of the second portion P2 is one nozzle N of the second row L2.
  • the second section n2 of each nozzle N is continuous with the circulation path 72. That is, the circulation path 72 and the second section n2 are formed to have the same depth, and the inner circumferential surface of the circulation path 72 and the inner circumferential surface of the second section n2 are continuous with each other.
  • the nozzle N (first section n1) may be formed at the bottom of one circulation path 72 extending in the X direction. Specifically, a first section n1 of the nozzle N is formed in the vicinity of the end of the bottom surface of the circulation path 72 opposite to the central plane O.
  • the other configuration is the same as that of the first embodiment.
  • the flow path length La of a portion overlapping the circulating fluid chamber 65 in the circulation path 72 is the flow path length Lc of a portion overlapping the partition portion 69 of the flow path forming portion 30 in the circulation path 72. Longer than (La> Lc).
  • the same effect as that of the first embodiment is realized.
  • the second section n2 of each nozzle N and the circulation path 72 are continuous with each other. Therefore, as compared with the configuration of the first embodiment in which the circulation path 72 and the nozzle N are separated from each other, the effect that ink in the vicinity of the nozzle N can be efficiently circulated in the circulating liquid chamber 65 is outstanding. It is remarkable.
  • FIG. 9 is an enlarged plan view and a sectional view of a portion in the vicinity of the circulating liquid chamber 65 in the liquid jet head 26 in the third embodiment.
  • the first portion P1 and the second portion P2 A circulating fluid chamber 67 corresponding to each is formed.
  • the circulating fluid chamber 67 is an elongated bottomed hole (groove) formed on the opposite side of the communicating passage 63 and the nozzle N to the circulating fluid chamber 65 and extending in the Y direction.
  • the openings of the circulating fluid chamber 65 and the circulating fluid chamber 67 are closed by the nozzle plate 52 joined to the surface Fb of the first flow path substrate 32.
  • the circulation path 72 of the third embodiment is a groove extending in the X direction so as to extend between the circulating fluid chamber 65 and the circulating fluid chamber 67 in each of the first portion P1 and the second portion P2. Specifically, the end of the circulation path 72 on the side of the center plane O (on the side of the circulation fluid chamber 65) overlaps the circulation fluid chamber 65 in plan view, and the side opposite to the center plane O of the circulation pathway 72 (circulation fluid The end of the chamber 67 side overlaps the circulating fluid chamber 67 in plan view. Further, the circulation passage 72 overlaps the communication passage 63 in plan view. That is, each communication passage 63 communicates with both the circulating fluid chamber 65 and the circulating fluid chamber 67 via the circulation passage 72.
  • a nozzle N (first section n1) is formed at the bottom of the circulation passage 72. Specifically, a first section n1 of the nozzle N is formed on the bottom surface of a portion of the circulation path 72 overlapping the communication path 63 in a plan view. As in the second embodiment, it is also possible to express that the circulation path 72 and the nozzle N (second section n2) are continuous with each other in the third embodiment. As understood from the above description, in the first and second embodiments, the communication passage 63 and the nozzle N are located at the end of the circulation passage 72, whereas in the third embodiment, the communication passage 63 and the nozzle N extend in the X direction. The communication passage 63 and the nozzle N are located in the middle of the circulation passage 72.
  • the third embodiment when the pressure in the pressure chamber C fluctuates, part of the ink flowing in the communication passage 63 is ejected from the nozzle N to the outside, and the remaining part is discharged.
  • the fluid is supplied from the communication passage 63 to both the circulating fluid chamber 65 and the circulating fluid chamber 67 via the circulation passage 72.
  • the ink in the circulating fluid chamber 67 is sucked by the circulating mechanism 75 together with the ink in the circulating fluid chamber 65, and bubbles and foreign substances are removed by the circulating mechanism 75 and thickening is reduced before being supplied to the liquid storage chamber R. Ru.
  • FIG. 9 illustrates the configuration in which the circulation passage 72 and the nozzle N are continuous as in the second embodiment, the circulation passage 72 and the nozzle N are similar to the first embodiment in the third embodiment. Can also be spaced apart from one another.
  • the configuration in which the depths of the circulation passage 72 and the second section n2 of the nozzle N are equal is exemplified, but the relationship between the depth of the circulation path 72 and the depth of the second section n2 is It is not limited to the above examples.
  • the configuration of FIG. 10 since the flow path resistance of the circulation path 72 is smaller than that of the configuration of FIG. 11, it is possible to increase the amount of circulation compared to the configuration of FIG.
  • the configuration of FIG. 11 since the flow path resistance of the circulation path 72 is large compared to the configuration of FIG. 10, it is possible to increase the injection amount compared to the configuration of FIG.
  • the configuration in which the depth Da of the circulation passage 72 is constant is illustrated, but it is also possible to change the depth of the circulation passage 72 according to the position in the X direction.
  • the middle part of the circulation path 72 (for example, the part overlapping the partition 69 in plan view) is the part on the circulating fluid chamber 65 side and the part on the nozzle N side A deeper configuration is assumed.
  • the flow path resistance of the circulation path 72 is smaller as compared with the configuration in which the depth Da of the circulation path 72 is constant over the entire length. Therefore, there is an advantage that securing of circulation amount is easy.
  • the flow path width Wa of the circulation path 72 is exemplified to be equal to the maximum diameter of the nozzle N (inner diameter d2 of the second section n2). It is not limited to.
  • a configuration in which the flow passage width Wa of the circulation passage 72 is smaller than the maximum diameter of the nozzle N (for example, the inner diameter d2 of the second section n2) may be employed.
  • the flow path resistance of the circulation path 72 is large as compared with the structure in which the circulation path 72 is larger than the maximum diameter of the nozzle N. Therefore, it is possible to increase the injection amount.
  • a configuration in which the flow passage width Wa of the circulation passage 72 is larger than the inner diameter d1 of the first section n1 may be employed. According to the above configuration, it is possible to achieve both the securing of the circulation amount and the securing of the injection amount.
  • the flow passage width Wa of the circulation passage 72 is constant, but it is also possible to change the flow passage width of the circulation passage 72 according to the position in the X direction.
  • a configuration may be employed in which the channel width of the portion on the circulating fluid chamber 65 side of the circulation channel 72 is wider than the channel width on the nozzle N side.
  • the circulation passage 72 is formed so that the flow passage width of the circulation passage 72 has a planar shape that monotonously increases from the end on the nozzle side to the end on the circulating fluid chamber 65 side.
  • the ink easily flows in the circulation passage 72 from the communication passage 63 toward the circulating liquid chamber 65. Therefore, there is an advantage that securing of circulation amount is easy.
  • the flow passage width of the middle portion (for example, the portion overlapping the partition portion 69 in plan view) of the circulation passage 72 is the flow passage width of the portion on the circulating liquid chamber 65 side as viewed from the middle portion.
  • a configuration narrower than the channel width of the portion on the side of the nozzle N and the nozzle N may also be employed. That is, the flow passage width monotonously decreases from both ends of the circulation passage 72 to the middle portion so that the flow passage width becomes minimum at a part in the middle of the circulation passage 72 (for example, a part overlapping the partition 69 in plan view).
  • the flow path resistance of the circulation path 72 is large as compared with the configuration in which the flow path width of the circulation path 72 is constant. Therefore, it is possible to increase the injection amount.
  • the flow passage width of the middle portion (for example, the portion overlapping the partition portion 69 in plan view) of the circulation path 72 is the flow passage width of the portion on the circulation liquid chamber 65 side and the nozzle A configuration wider than the channel width of the N-side portion may also be employed. That is, the flow passage width monotonously increases from both ends of the circulation passage 72 to the middle portion so that the flow passage width becomes maximum at a middle portion of the circulation passage 72 (for example, a portion overlapping the partition 69 in plan view). .
  • the flow path resistance of the circulation path 72 is smaller as compared with the configuration in which the flow path width of the circulation path 72 is constant. Therefore, it is possible to increase the amount of circulation.
  • the partition portion 69 In order to secure mechanical strength of the partition portion 69 of the first flow path substrate 32, the partition portion 69 needs to be formed thick. However, the flow path resistance of the circulation path 72 increases as the partition portion 69 is thicker (the flow path length Lc is larger). According to the configuration of FIG. 15, even when the thickness of the partition portion 69 is secured to a degree that a sufficient strength is realized, the flow path resistance of the circulation path 72 can be reduced by widening the middle portion of the circulation path 72. It has the advantage of That is, it is possible to achieve both the securing of the strength of the partition portion 69 and the reduction of the flow path resistance of the circulation path 72.
  • the central axis Qa of the nozzle N is located on the opposite side of the circulating fluid chamber 65 when viewed from the central axis Qb of the communication passage 63.
  • the relationship between the passage 63 and the central axis Qb is not limited to the above example.
  • the central axis Qa of the nozzle N and the central axis Qb of the communication passage 63 may be at the same position. According to the configuration of FIG. 16, there is an advantage that it is easy to achieve both securing of the injection amount and securing of the circulating amount, as compared with the configuration in which the central axis Qa and the central axis Qb are at different positions.
  • FIG. 17 a configuration in which the central axis Qa of the nozzle N is located on the circulating fluid chamber 65 side (central plane O side) with respect to the central axis Qb of the communication passage 63 may be employed. According to the configuration of FIG. 17, a configuration in which the central axis Qa of the nozzle N is located on the circulating fluid chamber 65 side (central plane O side) with respect to the central axis Qb of the communication passage 63 may be employed. According to the configuration of FIG.
  • the circulating fluid chamber 65 having a shape defined by the side surface parallel to the YZ plane and the upper surface (ceiling surface) parallel to the XY plane has been illustrated.
  • the shape of is not limited to the above examples.
  • the side surface of the circulating fluid chamber 65 is inclined with respect to the upper surface such that the channel width (dimension in the X direction) of the circulating fluid chamber 65 increases as the position on the positive side in the Z direction.
  • the partition 69 is formed thicker than in the above-described configurations in which the side surface of the circulating fluid chamber 65 is parallel to the YZ plane. There is an advantage that sufficient strength can be secured.
  • the configuration of FIG. 18 which can ensure the mechanical strength of the partition portion 69 is the same as that of the first flow path substrate 32, considering that the first flow path substrate 32 is pressed in the Z direction when the wiring substrate 28 is mounted. It is effective from the viewpoint of preventing damage and the like.
  • the side surface of the circulating fluid chamber 65 is inclined as illustrated in FIG. 18, there is also an advantage that the ink can easily flow in the circulating fluid chamber 65.
  • the flow path length Lc of the portion of the circulation path 72 overlapping the partition portion 69 of the flow path forming portion 30 is the length of the portion of the circulation path 72 overlapping the surface Fb of the partition portion 69.
  • an end face of the pressure chamber C on the communication passage 63 side (central plane O side) is inclined with respect to the upper surface of the pressure chamber C (lower surface of the vibrating portion 42).
  • the configuration is also suitable.
  • the area (area not covered by the inclined surface 342) 344 of the vibrating portion 42 exposed from the second flow path substrate 34 does not overlap with the circulation path 72 in a plan view.
  • a region 344 in FIG. 19 constitutes the upper surface (ceiling surface) of the pressure chamber C.
  • a flow path (hereinafter referred to as “common to be continuous with the circulation path 72 (first circulation path) of the first portion P1 and the circulation path 72 (second circulation path) of the second portion P2. It is also possible to form the circulation path 73) in the nozzle plate 52.
  • the common circulation passage 73 is a recess formed on the surface of the nozzle plate 52 facing the flow passage forming portion 30.
  • the common circulation passage 73 is formed at the same depth as each circulation passage 72.
  • the common circulation path 73 illustrated in FIG. 20 extends in the Y direction so as to overlap the circulating fluid chamber 65 in plan view (specifically, the peripheral edge of the common circulating channel 73 is included in the peripheral edge of the circulating fluid chamber 65) Exist.
  • the width (dimension in the X direction) of the common circulation path 73 is narrower than the width (dimension in the X direction) of the circulating fluid chamber 65.
  • the X-direction negative end of each of the plurality of circulation paths 72 of the first portion P1 is continuous with the X-direction positive circumference of the common circulation path 73.
  • the end on the positive side in the X direction of each of the plurality of circulation paths 72 of the second portion P2 is continuous with the peripheral edge on the negative side in the X direction of the common circulation path 73. That is, the common circulation passage 73 is formed between the arrangement of the plurality of circulation passages 72 in the first portion P1 and the arrangement of the plurality of circulation passages 72 in the second portion P2.
  • a plurality of circulation paths 72 of the first portion P1 extend from the peripheral edge on the positive side in the X direction in the common circulation path 73 to the positive side in the X direction, and from the peripheral edge on the negative side in the X direction in the common circulation path 73 In other words, the plurality of circulation paths 72 of the two-part P2 extend on the negative side in the X direction.
  • each circulation passage 72 is compared with a configuration in which the common circulation passage 73 is not formed (for example, each form described above). It is possible to increase the flow area of the ink supplied to the circulating liquid chamber 65 (thereby reducing the flow resistance).
  • the configuration in which the common circulation path 73 is formed in the nozzle plate 52 is similarly applied to any of the above-described embodiments (the first to third embodiments and each modification).
  • the elements related to the first row L1 and the elements related to the second row L2 are arranged symmetrically with respect to the center plane O. Is not required.
  • a configuration in which elements corresponding to only the first row L1 are arranged in the same manner as in the above-described embodiments may be employed.
  • the circulation path 72 is formed in the nozzle plate 52 is illustrated in the above-described embodiments, the flow path forming portion 30 (for example, the first flow path substrate) It is also possible to form on the 32 surfaces Fb).
  • the element (pressure generating unit) for applying pressure to the inside of the pressure chamber C is not limited to the piezoelectric element 44 exemplified in the above-described embodiments.
  • a heating element that generates air bubbles inside the pressure chamber C by heating to change the pressure is a portion where the heat generating element generates heat by the supply of the drive signal (specifically, a region where air bubbles are generated in the pressure chamber C).
  • the pressure generating portion is comprehensively expressed as an element which causes the liquid in the pressure chamber C to be jetted from the nozzle N (typically, an element which applies a pressure to the inside of the pressure chamber C).
  • the operation method (piezoelectric method / thermal method) and the specific configuration are irrelevant.
  • serial type liquid ejecting apparatus 100 for reciprocating the transport body 242 having the liquid ejecting head 26 mounted is illustrated, but a line type liquid in which a plurality of nozzles N are distributed over the entire width of the medium 12 It is possible to apply the present invention to an injector.
  • the liquid ejecting apparatus 100 exemplified in each of the above-described embodiments may be adopted to various apparatuses such as a facsimile machine and a copier other than the apparatus dedicated to printing.
  • the application of the liquid ejecting apparatus of the present invention is not limited to printing.
  • a liquid ejecting apparatus that ejects a color material solution is used as a manufacturing apparatus that forms a color filter of a liquid crystal display device.
  • a liquid ejecting apparatus that ejects a solution of a conductive material is used as a manufacturing apparatus that forms wiring and electrodes of a wiring board.
  • Wiring board , 30 flow passage forming portion, 32: first flow passage substrate, 34: second flow passage substrate, 42: vibration portion, 44: piezoelectric element, 46: protection member, 48: housing portion, 482: introduction port, 52: nozzle plate, 54: vibration absorber, 61: supply passage, 63: communication passage, 65, 67: circulating fluid chamber, 67: circulating fluid chamber, 69: partition wall, n1: first section, n2: second section , 72 ... circulation path, 75 ... circulation mechanism.

Abstract

The present invention efficiently circulates a liquid in the vicinity of a nozzle. This liquid ejection head is provided with: a flow path formation part including a nozzle plate to which a first nozzle and a second nozzle are provided, a first pressure chamber and a second pressure chamber to which a liquid is supplied, a first connection path which connects the first nozzle and the first pressure chamber to each other, a second connection path which connects the second nozzle and the second pressure chamber to each other, and a circulation liquid chamber which is located between the first connection path and the second connection path; and a pressure generation part which causes a pressure change in each of the first pressure chamber and the second pressure chamber, wherein the nozzle plate includes a first circulation path which connects the first connection path and the circulation liquid chamber to each other, and a second circulation path which connects the second connection path and the circulation liquid chamber to each other.

Description

液体噴射ヘッドおよび液体噴射装置Liquid jet head and liquid jet apparatus
 本発明は、インク等の液体を噴射する技術に関する。 The present invention relates to a technique for ejecting a liquid such as ink.
 インク等の液体を複数のノズルから噴射する液体噴射ヘッドが従来から提案されている。例えば特許文献1には、連通板の一方側の表面に流路形成基板を設置し、他方側の表面にノズルプレートを設置した積層構造の液体噴射ヘッドが開示されている。流路形成基板には、共通液体室(リザーバー)から供給される液体が充填される圧力発生室が形成され、ノズルプレートにはノズルが形成される。連通板に形成された連通路を介して圧力発生室とノズルとが相互に連通する。連通板のうちノズルプレートが設置される表面には、共通液体室に連通する循環流路と、連通路と循環流路とを相互に連通させる溝状の循環連通路とが形成される。以上の構成によれば、循環連通路と循環流路とを介して連通路の内部の液体を共通液体室に循環させることが可能である。 Conventionally, a liquid jet head has been proposed in which liquid such as ink is jetted from a plurality of nozzles. For example, Patent Document 1 discloses a liquid jet head having a laminated structure in which a flow path forming substrate is installed on the surface on one side of a communication plate and a nozzle plate is installed on the surface on the other side. In the flow path forming substrate, a pressure generating chamber filled with the liquid supplied from the common liquid chamber (reservoir) is formed, and a nozzle is formed in the nozzle plate. The pressure generating chamber and the nozzle communicate with each other through the communication passage formed in the communication plate. On the surface of the communication plate on which the nozzle plate is installed, a circulation flow passage communicating with the common liquid chamber and a groove-like circulation communication passage communicating the communication passage with the circulation flow passage are formed. According to the above configuration, it is possible to circulate the liquid inside the communication passage to the common liquid chamber through the circulation communication passage and the circulation passage.
特開2012-143948号公報JP, 2012-143948, A
 特許文献1の技術では、連通板のうちノズルプレートが接合される表面に循環連通路が形成される。以上の構成では、ノズルの近傍に位置する液体を循環流路に対して効率的に循環させることは実際には困難である。以上の事情を考慮して、本発明の好適な態様は、ノズルの近傍の液体を効率的に循環させることをひとつの目的とする。 In the technique of Patent Document 1, a circulation communication passage is formed on the surface of the communication plate to which the nozzle plate is joined. In the above configuration, it is practically difficult to efficiently circulate the liquid located in the vicinity of the nozzle with respect to the circulation channel. In consideration of the above circumstances, a preferred embodiment of the present invention has an object to efficiently circulate the liquid in the vicinity of the nozzle.
<態様1>
 以上の課題を解決するために、本発明の好適な態様(態様1)に係る液体噴射ヘッドは、第1ノズルおよび第2ノズルが設けられたノズルプレートと、液体が供給される第1圧力室および第2圧力室と、前記第1ノズルと前記第1圧力室とを連通させる第1連通路と、前記第2ノズルと前記第2圧力室とを連通させる第2連通路と、前記第1連通路と前記第2連通路との間に位置する循環液室とが設けられた流路形成部と、前記第1圧力室および前記第2圧力室の各々に圧力変化を発生させる圧力発生部とを具備し、前記ノズルプレートには、前記第1連通路と前記循環液室とを連通させる第1循環路、および、前記第2連通路と前記循環液室とを連通させる第2循環路が設けられる。以上の態様によれば、第1連通路と循環液室とを連通させる第1循環路がノズルプレートに形成されるから、循環連通路が連通板に形成される特許文献1の構成と比較して、ノズルの近傍の液体を効率的に循環液室に供給することが可能である。また、第1連通路と第2連通路との間に位置する循環液室に第1循環路と第2循環路とが共通に連通するから、第1循環路が連通する循環液室と第2循環路が連通する循環液室とを別個に設ける構成と比較して、液体噴射ヘッドの構成が簡素化されるという利点もある。なお、以下の説明では、第1連通路を流通する液体のうち第1循環路を介して循環液室に流入する液体の量を「循環量」と表記し、第1連通路を流通する液体のうち第1ノズルを介して噴射される液体の量を「噴射量」と表記する。
<態様2>
 態様1の好適例(態様2)において、前記第1ノズルは、第1区間と、前記第1区間よりも大径であり当該第1区間からみて前記流路形成部側に位置する第2区間とを含む。以上の態様では、内径が異なる第1区間と第2区間とを第1ノズルが含むから、第1ノズルの流路抵抗を所望の特性に設定し易いという利点がある。
<態様3>
 態様2の好適例(態様3)において、前記第1循環路は、前記第2区間と同一の深さである。以上の態様では、第1循環路と第1ノズルの第2区間とが同一の深さであるから、第1循環路と第2区間とで深さが異なる構成と比較して、第1循環路および第2区間を形成し易いという利点がある。
<態様4>
 態様2の好適例(態様4)において、前記第1循環路は、前記第2区間よりも深い。以上の態様では、第1循環路が第1ノズルの第2区間よりも深いから、第1循環路が第2区間よりも浅い構成と比較して第1循環路の流路抵抗が小さい。したがって、第1循環路が第2区間よりも浅い構成と比較して循環量を多くすることが可能である。
<態様5>
 態様2の好適例(態様5)において、前記第1循環路は、前記第2区間よりも浅い。以上の態様では、第1循環路が第1ノズルの第2区間よりも浅いから、第1循環路が第2区間よりも深い構成と比較して第1循環路の流路抵抗が大きい。したがって、第1循環路が第2区間よりも深い構成と比較して噴射量を多くすることが可能である。
<態様6>
 態様2から態様5の何れかの好適例(態様6)において、前記第2区間は、前記第1循環路に連続する。以上の態様では、第1ノズルの第2区間と第1循環路とが連続する。したがって、ノズルの近傍の液体を効率的に循環液室に循環させることができるという前述の効果は格別に顕著である。
<態様7>
 態様1から態様5の何れかの好適例(態様7)において、前記第1ノズルと前記第1循環路とは、前記ノズルプレートの面内において相互に離間する。以上の態様では、第1ノズルと第1循環路とが相互に離間する。したがって、循環量の確保と噴射量の確保との両立が容易であるという利点がある。
<態様8>
 態様7の好適例(態様8)において、前記第1循環路のうち前記循環液室に重なる部分の流路長Laと、前記第1循環路のうち前記第1連通路に重なる部分の流路長Lbとは、La>Lbを満たす。以上の態様によれば、第1連通路内の液体が第1循環路を介して循環液室に供給され易いという利点がある。
<態様9>
 態様8の好適例(態様9)において、前記第1循環路のうち、前記流路形成部における前記第1連通路と前記循環液室との間の隔壁部に重なる部分の流路長Lcは、La>Lb>Lcを満たす。以上の態様によれば、第1連通路内の液体が第1循環路を介して循環液室に供給され易いという利点がある。
<態様10>
 態様6または態様7の好適例(態様10)において、前記第1循環路のうち前記循環液室に重なる部分の流路長Laと、前記第1循環路のうち、前記流路形成部における前記第1連通路と前記循環液室との間の隔壁部に重なる部分の流路長Lcとは、La>Lcを満たす。以上の態様によれば、第1連通路内の液体が第1循環路を介して循環液室に供給され易いという利点がある。
<態様11>
 態様1から態様10の何れかの好適例(態様11)において、前記第1循環路の流路幅は、前記第1ノズルの最大径よりも小さい。以上の態様では、第1循環路の流路幅が第1ノズルの最大径よりも小さいから、第1循環路の流路幅が第1ノズルの最大径よりも大きい構成と比較して、第1循環路の流路抵抗が大きい。したがって、噴射量を多くすることが可能である。
<態様12>
 態様1から態様11の何れかの好適例(態様12)において、前記第1循環路の流路幅は、前記第1圧力室の流路幅よりも小さい。以上の態様では、第1循環路の流路幅が第1圧力室の流路幅よりも小さいから、第1循環路の流路幅が第1圧力室の流路幅よりも大きい構成と比較して、第1循環路の流路抵抗が大きい。したがって、噴射量を多くすることが可能である。
<態様13>
 態様1から態様12の何れかの好適例(態様13)において、前記第1循環路のうち前記循環液室側の部分の流路幅は、前記第1ノズル側の部分の流路幅よりも広い。以上の態様では、第1循環路のうち循環液室側の部分の流路幅が第1ノズル側の部分の流路幅よりも広いから、第1連通路内の液体が第1循環路を介して循環液室に供給され易い。したがって、循環量を確保し易いという利点がある。
<態様14>
 態様1から態様12の何れかの好適例(態様14)において、前記第1循環路のうち中間部分の流路幅は、前記中間部分からみて前記循環液室側の部分の流路幅および前記第1ノズル側の部分の流路幅よりも狭い。以上の態様では、第1循環路のうち中間部分の流路幅が循環液室側の部分および第1ノズル側の部分よりも狭いから、第1循環路の流路幅が一定である構成と比較して第1循環路の流路抵抗が大きい。したがって、噴射量を多くすることが可能である。
<態様15>
 態様1から態様12の何れかの好適例(態様15)において、前記第1循環路のうち中間部分の流路幅は、前記中間部分からみて前記循環液室側の部分の流路幅および前記第1ノズル側の部分の流路幅よりも広い。以上の態様では、第1循環路のうち中間部分の流路幅が循環液室側の部分および第1ノズル側の部分よりも広いから、第1循環路の流路幅が一定である構成と比較して第1循環路の流路抵抗が小さい。したがって、循環量を多くすることが可能である。
<態様16>
 態様1から態様15の何れかの好適例(態様16)において、前記第1ノズルの中心軸は、前記第1連通路の中心軸からみて前記循環液室とは反対側に位置する。以上の態様では、第1ノズルの中心軸が第1連通路の中心軸からみて循環液室とは反対側に位置するから、第1ノズルの中心軸が第1連通路の中心軸からみて循環液室側に位置する構成と比較して、循環量を低減するとともに噴射量を増加させることが可能である。
<態様17>
 態様1から態様15の何れかの好適例(態様17)において、前記第1ノズルの中心軸は、前記第1連通路の中心軸と同じ位置にある。以上の態様では、第1ノズルの中心軸と第1連通路の中心軸とが同じ位置にあるから、第1ノズルの中心軸と第1連通路の中心軸とが相異なる位置にある構成と比較して、噴射量の確保と循環量の確保とを両立し易いという利点がある。
<態様18>
 態様1から態様15の何れかの好適例(態様18)において、前記第1ノズルの中心軸は、前記第1連通路の中心軸からみて前記循環液室側に位置する。以上の態様では、第1ノズルの中心軸が第1連通路の中心軸からみて循環液室側に位置するから、第1ノズルの中心軸が第1連通路の中心軸からみて循環液室とは反対側に位置する構成と比較して、循環量を増加させるとともに噴射量を低減することが可能である。
<態様19>
 態様1から態様18の何れかの好適例(態様19)において、前記第1循環路のうち中間部分は、前記中間部分からみて前記循環液室側の部分および前記第1ノズル側の部分よりも深い。以上の態様では、第1循環路の中間部分が循環液室側の部分および第1ノズル側の部分よりも深いから、第1循環路の深さが全長にわたり一定である構成と比較して第1循環路の流路抵抗が小さい。したがって、循環量を多くすることが可能である。
<態様20>
 態様1から態様19の何れかの好適例(態様20)において、前記第1圧力室に圧力変化を発生させた場合に、前記第1循環路を介して循環液室に供給される液体の量は、前記第1ノズルから噴射される液体の量よりも多い。以上の態様では、循環量が噴射量よりも多い。すなわち、噴射量を確保しながら、ノズルの近傍の液体を効果的に循環液室に循環させることが可能である。
<態様21>
 態様1から態様20の何れかの好適例(態様21)において、前記第1循環路と前記循環液室とは相互に重なり、前記第1循環路と前記第1圧力室とは相互に重なり、前記循環液室と前記第1圧力室とは相互に重ならない。以上の態様では、第1循環路が循環液室および第1圧力室に重なる一方、循環液室と第1圧力室とは相互に重ならない。したがって、例えば第1循環路と第1圧力室とが相互に重ならない構成と比較して、液体噴射ヘッドを小型化し易いという利点がある。
<態様22>
 態様1から態様20の何れかの好適例(態様22)において、前記第1循環路と前記循環液室とは相互に重なり、前記第1循環路と前記圧力発生部とは相互に重なり、前記循環液室と前記圧力発生部とは相互に重ならない。以上の態様では、第1循環路が循環液室および圧力発生部に重なる一方、循環液室と圧力発生部と相互に重ならない。したがって、例えば第1循環路と圧力発生部とが相互に重ならない構成と比較して、液体噴射ヘッドを小型化し易いという利点がある。
<態様23>
 態様1から態様20の何れかの好適例(態様23)において、前記第1圧力室のうち前記第1連通路側の端面は、当該第1圧力室の上面に対して傾斜した傾斜面であり、前記第1循環路と前記第1圧力室の上面とは相互に重ならない。
<態様24>
 態様1から態様23の何れかの好適例(態様24)において、前記第1圧力室と前記循環液室とは、前記第1連通路と前記第1循環路とを介して連通する。以上の態様では、第1圧力室と循環液室とが第1連通路と第1循環路とを介して関節的に連通する。したがって、第1圧力室と循環液室とが直接的に連通する構成と比較して、噴射量を適切に確保しながら循環液室に液体を供給することが可能である。
<態様25>
 態様1から態様24の何れかの好適例(態様25)において、前記ノズルプレートおよび流路形成部の各々は、シリコンで形成された基板を含む。以上の態様では、ノズルプレートおよび流路形成部の各々がシリコンの基板を含むから、例えば半導体製造技術を利用することで、ノズルプレートおよび流路形成部に対して高精度に流路を形成できるという利点がある。
<態様26>
 態様1から態様25の何れかの好適例(態様26)において、前記ノズルプレートには、前記第1循環路と前記第2循環路とに連続する共通循環路が設けられる。以上の態様では、第1循環路と第2循環路とに連続する共通循環路がノズルプレートに形成されるから、共通循環路が形成されない構成と比較して液体の流路面積を増加させることが可能である。
<態様27>
 本発明の好適な態様に係る液体噴射装置は、以上に例示した各態様に係る液体噴射ヘッドを具備する。液体噴射装置の好例は、インクを噴射する印刷装置であるが、本発明に係る液体噴射装置の用途は印刷に限定されない。
<Aspect 1>
In order to solve the above problems, a liquid jet head according to a preferred aspect (aspect 1) of the present invention includes a nozzle plate provided with a first nozzle and a second nozzle, and a first pressure chamber to which liquid is supplied. And a second communication passage connecting the first nozzle and the first pressure chamber, a second communication passage connecting the second nozzle and the second pressure chamber, and A flow passage forming portion provided with a circulating fluid chamber positioned between a communication passage and the second communication passage, and a pressure generation unit generating pressure change in each of the first pressure chamber and the second pressure chamber A first circulation passage connecting the first communication passage and the circulating fluid chamber, and a second circulation passage connecting the second communication passage and the circulating fluid chamber. Is provided. According to the above aspect, since the first circulation passage connecting the first communication passage and the circulating fluid chamber is formed in the nozzle plate, the configuration of Patent Document 1 in which the circulation communication passage is formed in the communication plate is compared. Thus, it is possible to efficiently supply the liquid in the vicinity of the nozzle to the circulating liquid chamber. Further, since the first circulation passage and the second circulation passage are commonly communicated with the circulation fluid chamber positioned between the first communication passage and the second communication passage, the circulation fluid chamber and the first communication passage are communicated with each other. There is also an advantage that the configuration of the liquid jet head is simplified as compared with the configuration in which the circulating fluid chamber communicating with the two circulation paths is separately provided. In the following description, of the liquid flowing through the first communication passage, the amount of the liquid flowing into the circulating fluid chamber through the first circulation passage is referred to as the “circulation amount”, and the liquid flowing through the first communication passage The amount of the liquid jetted through the first nozzle is expressed as “jetting amount”.
<Aspect 2>
In the preferable example (aspect 2) of aspect 1, the first nozzle has a first section and a second section having a larger diameter than the first section and located on the flow path forming portion side with respect to the first section. And. In the above aspect, since the first nozzle includes the first section and the second section having different inner diameters, there is an advantage that the flow path resistance of the first nozzle can be easily set to a desired characteristic.
<Aspect 3>
In the preferable example (aspect 3) of aspect 2, the said 1st circuit is the same depth as the said 2nd area. In the above aspect, since the first circulation path and the second section of the first nozzle have the same depth, the first circulation is compared with a configuration in which the depths of the first circulation path and the second section are different. There is an advantage that it is easy to form the road and the second section.
<Aspect 4>
In a preferred example of the second aspect (Aspect 4), the first circulation path is deeper than the second section. In the above aspect, since the first circulation passage is deeper than the second section of the first nozzle, the flow resistance of the first circulation passage is smaller compared to the configuration in which the first circulation passage is shallower than the second section. Therefore, it is possible to increase the amount of circulation as compared with the configuration in which the first circulation passage is shallower than the second section.
<Aspect 5>
In the preferable example (aspect 5) of aspect 2, the said 1st circuit is shallower than the said 2nd area. In the above aspect, since the first circulation passage is shallower than the second section of the first nozzle, the flow resistance of the first circulation passage is larger compared to the configuration in which the first circulation passage is deeper than the second section. Therefore, it is possible to increase the injection amount as compared with the configuration in which the first circulation path is deeper than the second section.
<Aspect 6>
In the preferred embodiment (Aspect 6) according to any one of Aspects 2 to 5, the second section is continuous with the first circulation path. In the above aspect, the second section of the first nozzle and the first circulation path are continuous. Therefore, the above-mentioned effect that the liquid in the vicinity of the nozzle can be efficiently circulated to the circulating liquid chamber is particularly remarkable.
<Aspect 7>
In the preferred embodiment (Aspect 7) according to any of Aspects 1 to 5, the first nozzle and the first circulation path are mutually separated in the plane of the nozzle plate. In the above aspect, the first nozzle and the first circulation path are separated from each other. Therefore, there is an advantage that it is easy to achieve both of securing the circulation amount and securing the injection amount.
<Aspect 8>
In the preferable example (aspect 8) of the aspect 7, the flow path length La of the portion of the first circulation path overlapping the circulating fluid chamber and the flow path of the portion overlapping the first communication path of the first circulation path The length Lb satisfies La> Lb. According to the above aspect, there is an advantage that the liquid in the first communication passage is easily supplied to the circulating fluid chamber via the first circulation passage.
<Aspect 9>
In the preferable example (aspect 9) of aspect 8, the flow path length Lc of the portion of the first circulation path overlapping the partition portion between the first communication passage and the circulating fluid chamber in the flow passage forming portion is the channel length Lc , La>Lb> Lc is satisfied. According to the above aspect, there is an advantage that the liquid in the first communication passage is easily supplied to the circulating fluid chamber via the first circulation passage.
<Aspect 10>
In the preferable example (aspect 10) of the aspect 6 or the aspect 7, the flow path length La of a portion overlapping the circulating fluid chamber in the first circulation path, and the flow path forming portion in the flow path formation portion of the first circulation path The flow path length Lc of the portion overlapping the partition wall portion between the first communication path and the circulating fluid chamber satisfies La> Lc. According to the above aspect, there is an advantage that the liquid in the first communication passage is easily supplied to the circulating fluid chamber via the first circulation passage.
<Aspect 11>
In the preferred embodiment (embodiment 11) according to any of embodiments 1 to 10, the flow passage width of the first circulation passage is smaller than the maximum diameter of the first nozzle. In the above aspect, since the flow passage width of the first circulation passage is smaller than the maximum diameter of the first nozzle, the flow passage width of the first circulation passage is larger than the maximum diameter of the first nozzle. (1) The flow path resistance of the circulation path is large. Therefore, it is possible to increase the injection amount.
<Aspect 12>
In the preferred embodiment (embodiment 12) according to any one of embodiments 1 to 11, the channel width of the first circulation channel is smaller than the channel width of the first pressure chamber. In the above aspect, since the flow passage width of the first circulation passage is smaller than the flow passage width of the first pressure chamber, the flow passage width of the first circulation passage is compared with the configuration larger than the flow passage width of the first pressure chamber The flow resistance of the first circulation path is large. Therefore, it is possible to increase the injection amount.
<Aspect 13>
In the preferred embodiment (embodiment 13) according to any one of embodiments 1 to 12, the channel width of the portion on the circulating fluid chamber side of the first circulation channel is greater than the channel width of the portion on the first nozzle side wide. In the above aspect, since the flow passage width of the portion on the circulating fluid chamber side of the first circulation passage is wider than the flow passage width of the portion on the first nozzle side, the liquid in the first communication passage runs the first circulation passage. It is easy to be supplied to the circulating fluid chamber via Therefore, there is an advantage that it is easy to secure the amount of circulation.
<Aspect 14>
In the preferable example (Aspect 14) according to any one of Aspects 1 to 12, the flow path width of the middle portion of the first circulation path is the flow path width of the portion on the circulating fluid chamber side as viewed from the middle portion It is narrower than the channel width of the portion on the first nozzle side. In the above aspect, the flow passage width of the first circulation passage is constant because the flow passage width of the middle portion of the first circulation passage is narrower than the circulation liquid chamber side and the first nozzle side. In comparison, the flow path resistance of the first circulation path is large. Therefore, it is possible to increase the injection amount.
<Aspect 15>
In the preferred embodiment (embodiment 15) according to any one of embodiments 1 to 12, the channel width of the middle portion of the first circulation channel is the channel width of the portion on the circulating fluid chamber side as viewed from the middle portion and the channel width It is wider than the flow passage width of the portion on the first nozzle side. In the above aspect, the flow passage width of the first circulation passage is constant because the flow passage width of the middle part of the first circulation passage is wider than the circulation liquid chamber side and the first nozzle side. In comparison, the flow resistance of the first circulation path is small. Therefore, it is possible to increase the amount of circulation.
<Aspect 16>
In the preferred embodiment (Aspect 16) according to any one of Aspects 1 to 15, the central axis of the first nozzle is located on the opposite side of the circulating fluid chamber with respect to the central axis of the first communication passage. In the above aspect, since the central axis of the first nozzle is located on the opposite side to the circulating fluid chamber when viewed from the central axis of the first communication passage, the central axis of the first nozzle is circulated when viewed from the central axis of the first communication passage. Compared with the configuration located on the liquid chamber side, it is possible to reduce the circulation amount and to increase the injection amount.
<Aspect 17>
In a preferred embodiment (aspect 17) according to any one of the aspects 1 to 15, the central axis of the first nozzle is at the same position as the central axis of the first communication passage. In the above aspect, since the central axis of the first nozzle and the central axis of the first communication passage are at the same position, the central axis of the first nozzle and the central axis of the first communication passage are at different positions. In comparison, there is an advantage that it is easy to achieve both securing of the injection amount and securing of the circulating amount.
<Aspect 18>
In the preferable example (Aspect 18) in any one of Aspects 1 to 15, the central axis of the first nozzle is located on the circulating fluid chamber side as viewed from the central axis of the first communication passage. In the above aspect, since the central axis of the first nozzle is located on the circulating fluid chamber side as viewed from the central axis of the first communication passage, the central axis of the first nozzle is the circulating fluid chamber as viewed from the central axis of the first communication passage. It is possible to increase the amount of circulation and to reduce the amount of injection compared to the configuration on the opposite side.
<Aspect 19>
In the preferable example (Aspect 19) according to any one of Aspects 1 to 18, an intermediate portion of the first circulation path is closer to the circulating fluid chamber side and the portion on the first nozzle side as viewed from the intermediate portion. deep. In the above aspect, since the middle portion of the first circulation path is deeper than the portion on the circulating fluid chamber side and the portion on the first nozzle side, the first circulation path has a constant depth over the entire length as compared to the configuration 1 The flow path resistance of the circulation path is small. Therefore, it is possible to increase the amount of circulation.
<Aspect 20>
In a preferred embodiment (aspect 20) according to any one of the aspects 1 to 19, when a pressure change is generated in the first pressure chamber, the amount of liquid supplied to the circulating fluid chamber through the first circulation path. Is larger than the amount of liquid ejected from the first nozzle. In the above aspect, the circulation amount is larger than the injection amount. That is, it is possible to effectively circulate the liquid in the vicinity of the nozzle to the circulating liquid chamber while securing the injection amount.
<Aspect 21>
In the preferable example (Aspect 21) according to any one of Aspects 1 to 20, the first circulation path and the circulating fluid chamber overlap each other, and the first circulation path and the first pressure chamber overlap each other, The circulating fluid chamber and the first pressure chamber do not overlap with each other. In the above aspect, while the first circulation passage overlaps the circulating fluid chamber and the first pressure chamber, the circulating fluid chamber and the first pressure chamber do not overlap with each other. Therefore, there is an advantage that the liquid jet head can be easily miniaturized as compared with, for example, a configuration in which the first circulation passage and the first pressure chamber do not overlap with each other.
<Aspect 22>
In the preferable example (Aspect 22) according to any one of Aspects 1 to 20, the first circulation path and the circulating fluid chamber overlap each other, and the first circulation path and the pressure generating portion overlap each other, The circulating fluid chamber and the pressure generator do not overlap with each other. In the above aspect, while the first circulation passage overlaps the circulating fluid chamber and the pressure generating portion, the circulating fluid chamber and the pressure generating portion do not overlap each other. Therefore, there is an advantage that the liquid jet head can be easily miniaturized as compared with, for example, a configuration in which the first circulation path and the pressure generating unit do not overlap with each other.
<Aspect 23>
In the preferable example (Aspect 23) according to any one of Aspects 1 to 20, the end face of the first pressure chamber on the side of the first communication passage is an inclined surface inclined with respect to the upper surface of the first pressure chamber The first circuit and the upper surface of the first pressure chamber do not overlap with each other.
<Aspect 24>
In the preferable example (Aspect 24) according to any one of Aspects 1 to 23, the first pressure chamber and the circulating fluid chamber communicate with each other through the first communication passage and the first circulation passage. In the above aspect, the first pressure chamber and the circulating fluid chamber are in articulated communication via the first communication passage and the first circulation passage. Therefore, compared with the configuration in which the first pressure chamber and the circulating fluid chamber are in direct communication, it is possible to supply the liquid to the circulating fluid chamber while appropriately securing the injection amount.
<Aspect 25>
In the preferable embodiment (embodiment 25) according to any one of the embodiments 1 to 24, each of the nozzle plate and the flow path forming portion includes a substrate formed of silicon. In the above aspect, since each of the nozzle plate and the flow path forming portion includes the silicon substrate, the flow path can be formed with high accuracy for the nozzle plate and the flow path forming portion by using, for example, a semiconductor manufacturing technology It has the advantage of
<Aspect 26>
In the preferred embodiment (Aspect 26) according to any one of Aspects 1 to 25, the nozzle plate is provided with a common circuit that is continuous with the first circuit and the second circuit. In the above aspect, since the common circulation path continuous to the first circulation path and the second circulation path is formed in the nozzle plate, the flow path area of the liquid is increased as compared with the configuration in which the common circulation path is not formed. Is possible.
<Aspect 27>
A liquid ejecting apparatus according to a preferred aspect of the present invention includes the liquid ejecting head according to each aspect exemplified above. A good example of the liquid ejecting apparatus is a printing apparatus that ejects ink, but the application of the liquid ejecting apparatus according to the present invention is not limited to printing.
本発明の第1実施形態における液体噴射装置の構成図である。It is a block diagram of the liquid injection device in 1st Embodiment of this invention. 液体噴射ヘッドの断面図である。FIG. 2 is a cross-sectional view of a liquid jet head. 液体噴射ヘッドの部分的な分解斜視図である。FIG. 2 is a partial exploded perspective view of a liquid jet head. 圧電素子の断面図である。It is sectional drawing of a piezoelectric element. 液体噴射ヘッドにおけるインクの循環の説明図である。FIG. 6 is an explanatory view of circulation of ink in the liquid jet head. 液体噴射ヘッドのうち循環液室の近傍の平面図および断面図である。FIG. 7A is a plan view and a cross-sectional view of the vicinity of the circulating fluid chamber in the liquid jet head. 第2実施形態における液体噴射ヘッドの部分的な分解斜視図である。FIG. 7 is a partial exploded perspective view of a liquid jet head according to a second embodiment. 第2実施形態における循環液室の近傍の平面図および断面図である。It is the top view and sectional drawing of the vicinity of the circulating fluid chamber in 2nd Embodiment. 第3実施形態における循環液室の近傍の平面図および断面図である。It is the top view and sectional drawing of the vicinity of the circulating fluid chamber in 3rd Embodiment. 変形例の液体噴射ヘッドにおける循環液室の近傍の断面図である。FIG. 13 is a cross-sectional view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example. 変形例の液体噴射ヘッドにおける循環液室の近傍の断面図である。FIG. 13 is a cross-sectional view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example. 変形例の液体噴射ヘッドにおける循環液室の近傍の断面図である。FIG. 13 is a cross-sectional view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example. 変形例の液体噴射ヘッドにおける循環液室の近傍の平面図である。FIG. 14 is a plan view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example. 変形例の液体噴射ヘッドにおける循環液室の近傍の平面図である。FIG. 14 is a plan view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example. 変形例の液体噴射ヘッドにおける循環液室の近傍の平面図である。FIG. 14 is a plan view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example. 変形例の液体噴射ヘッドのうち循環液室の近傍の平面図および断面図である。FIG. 14 is a plan view and a cross-sectional view of the vicinity of the circulating fluid chamber in the liquid jet head of the modified example. 変形例の液体噴射ヘッドのうち循環液室の近傍の平面図および断面図である。FIG. 14 is a plan view and a cross-sectional view of the vicinity of the circulating fluid chamber in the liquid jet head of the modified example. 変形例の液体噴射ヘッドにおける循環液室の近傍の断面図である。FIG. 13 is a cross-sectional view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example. 変形例の液体噴射ヘッドにおける循環液室の近傍の断面図である。FIG. 13 is a cross-sectional view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example. 変形例の液体噴射ヘッドにおける循環液室の近傍の平面図および断面図である。FIG. 13 is a plan view and a cross-sectional view of the vicinity of a circulating fluid chamber in a liquid jet head of a modified example.
<第1実施形態>
 図1は、本発明の第1実施形態に係る液体噴射装置100を例示する構成図である。第1実施形態の液体噴射装置100は、液体の例示であるインクを媒体12に噴射するインクジェット方式の印刷装置である。媒体12は、典型的には印刷用紙であるが、樹脂フィルムまたは布帛等の任意の材質の印刷対象が媒体12として利用され得る。図1に例示される通り、液体噴射装置100には、インクを貯留する液体容器14が設置される。例えば液体噴射装置100に着脱可能なカートリッジ、可撓性のフィルムで形成された袋状のインクパック、またはインクを補充可能なインクタンクが液体容器14として利用される。色彩が相違する複数種のインクが液体容器14には貯留される。
First Embodiment
FIG. 1 is a configuration diagram illustrating a liquid ejecting apparatus 100 according to a first embodiment of the present invention. The liquid ejecting apparatus 100 according to the first embodiment is an ink jet printing apparatus that ejects an ink, which is an example of a liquid, to the medium 12. The medium 12 is typically a printing paper, but a print target of any material such as a resin film or fabric may be used as the medium 12. As illustrated in FIG. 1, the liquid ejecting apparatus 100 is provided with a liquid container 14 storing ink. For example, a cartridge removable from the liquid ejecting apparatus 100, a bag-like ink pack formed of a flexible film, or an ink tank capable of refilling ink is used as the liquid container 14. A plurality of types of ink having different colors are stored in the liquid container 14.
 図1に例示される通り、液体噴射装置100は、制御ユニット20と搬送機構22と移動機構24と液体噴射ヘッド26とを具備する。制御ユニット20は、例えばCPU(Central Processing Unit)またはFPGA(Field Programmable Gate Array)等の処理回路と半導体メモリ等の記憶回路とを含み、液体噴射装置100の各要素を統括的に制御する。搬送機構22は、制御ユニット20による制御のもとで媒体12をY方向に搬送する。 As illustrated in FIG. 1, the liquid ejecting apparatus 100 includes a control unit 20, a transport mechanism 22, a moving mechanism 24, and a liquid ejecting head 26. The control unit 20 includes, for example, a processing circuit such as a central processing unit (CPU) or a field programmable gate array (FPGA) and a storage circuit such as a semiconductor memory, and centrally controls each element of the liquid ejecting apparatus 100. The transport mechanism 22 transports the medium 12 in the Y direction under the control of the control unit 20.
 移動機構24は、制御ユニット20による制御のもとで液体噴射ヘッド26をX方向に往復させる。X方向は、媒体12が搬送されるY方向に交差(典型的には直交)する方向である。第1実施形態の移動機構24は、液体噴射ヘッド26を収容する略箱型の搬送体242(キャリッジ)と、搬送体242が固定された搬送ベルト244とを具備する。なお、複数の液体噴射ヘッド26を搬送体242に搭載した構成や、液体容器14を液体噴射ヘッド26とともに搬送体242に搭載した構成も採用され得る。 The moving mechanism 24 reciprocates the liquid jet head 26 in the X direction under the control of the control unit 20. The X direction is a direction intersecting (typically orthogonal) to the Y direction in which the medium 12 is transported. The moving mechanism 24 according to the first embodiment includes a substantially box-shaped transport body 242 (carriage) accommodating the liquid jet head 26 and a transport belt 244 to which the transport body 242 is fixed. A configuration in which the plurality of liquid jet heads 26 are mounted on the transport body 242 or a configuration in which the liquid container 14 is mounted on the transport body 242 together with the liquid jet heads 26 may be adopted.
 液体噴射ヘッド26は、液体容器14から供給されるインクを制御ユニット20による制御のもとで複数のノズルN(噴射孔)から媒体12に噴射する。搬送機構22による媒体12の搬送と搬送体242の反復的な往復とに並行して各液体噴射ヘッド26が媒体12にインクを噴射することで、媒体12の表面に所望の画像が形成される。なお、X-Y平面(例えば媒体12の表面に平行な平面)に垂直な方向を以下ではZ方向と表記する。各液体噴射ヘッド26によるインクの噴射方向(典型的には鉛直方向)がZ方向に相当する。 The liquid jet head 26 jets the ink supplied from the liquid container 14 from the plurality of nozzles N (jet holes) to the medium 12 under the control of the control unit 20. A desired image is formed on the surface of the medium 12 by the ink jetted onto the medium 12 by each liquid jet head 26 in parallel with the conveyance of the medium 12 by the conveyance mechanism 22 and the repetitive reciprocation of the conveyance body 242. . The direction perpendicular to the XY plane (for example, a plane parallel to the surface of the medium 12) is hereinafter referred to as the Z direction. The jetting direction (typically, the vertical direction) of the ink by each liquid jet head 26 corresponds to the Z direction.
 図1に例示される通り、液体噴射ヘッド26の複数のノズルNはY方向に配列される。第1実施形態の複数のノズルNは、X方向に相互に間隔をあけて並設された第1列L1と第2列L2とに区分される。第1列L1および第2列L2の各々は、Y方向に直線状に配列された複数のノズルNの集合である。なお、第1列L1と第2列L2との間で各ノズルNのY方向に位置を相違させること(すなわち千鳥配置またはスタガ配置)も可能であるが、第1列L1と第2列L2とで各ノズルNのY方向の位置を一致させた構成を以下では便宜的に例示する。液体噴射ヘッド26においてY方向に平行な中心軸を通過するとともにZ方向に平行な平面(Y-Z平面)Oを以下の説明では「中心面」と表記する。 As illustrated in FIG. 1, the plurality of nozzles N of the liquid jet head 26 are arranged in the Y direction. The plurality of nozzles N in the first embodiment are divided into a first row L1 and a second row L2 arranged in parallel at intervals in the X direction. Each of the first row L1 and the second row L2 is a set of a plurality of nozzles N linearly arranged in the Y direction. Although it is possible to make the positions of the nozzles N different in the Y direction between the first row L1 and the second row L2 (that is, staggered or staggered), the first row L1 and the second row L2 are also possible. The configuration in which the positions of the nozzles N in the Y direction are made to coincide with each other will be exemplified below for convenience. In the liquid jet head 26, a plane (YZ plane) O which passes through a central axis parallel to the Y direction and is parallel to the Z direction will be referred to as a "central plane" in the following description.
 図2は、Y方向に垂直な断面における液体噴射ヘッド26の断面図であり、図3は、液体噴射ヘッド26の部分的な分解斜視図である。図2および図3から理解される通り、第1実施形態の液体噴射ヘッド26は、第1列L1の各ノズルN(第1ノズルの例示)に関連する要素と第2列L2の各ノズルN(第2ノズルの例示)に関連する要素とが中心面Oを挟んで面対称に配置された構造である。すなわち、液体噴射ヘッド26のうち中心面Oを挟んでX方向の正側の部分(以下「第1部分」という)P1とX方向の負側の部分(以下「第2部分」という)P2とで構造は実質的に共通する。第1列L1の複数のノズルNは第1部分P1に形成され、第2列L2の複数のノズルNは第2部分P2に形成される。中心面Oは、第1部分P1と第2部分P2との境界面に相当する。 FIG. 2 is a cross-sectional view of the liquid jet head 26 in a cross section perpendicular to the Y direction, and FIG. 3 is a partial exploded perspective view of the liquid jet head 26. As can be understood from FIGS. 2 and 3, the liquid jet head 26 according to the first embodiment includes an element associated with each nozzle N of the first row L1 (exemplary first nozzle) and each nozzle N of the second row L2. An element related to (an example of the second nozzle) is a structure in which the elements are arranged in plane symmetry with respect to the central plane O. That is, a portion (hereinafter referred to as a “first portion”) P1 on the positive side in the X direction across the central plane O of the liquid jet head 26 and a portion P2 on the negative side (hereinafter referred to as “second portion”) in the X direction. The structure is substantially common. The plurality of nozzles N in the first row L1 are formed in the first portion P1, and the plurality of nozzles N in the second row L2 are formed in the second portion P2. The center plane O corresponds to the interface between the first portion P1 and the second portion P2.
 図2および図3に例示される通り、液体噴射ヘッド26は流路形成部30を具備する。流路形成部30は、複数のノズルNにインクを供給するための流路を形成する構造体である。第1実施形態の流路形成部30は、第1流路基板32(連通板)と第2流路基板34(圧力室形成板)との積層で構成される。第1流路基板32および第2流路基板34の各々は、Y方向に長尺な板状部材である。第1流路基板32のうちZ方向の負側の表面Faに、例えば接着剤を利用して第2流路基板34が設置される。 As illustrated in FIGS. 2 and 3, the liquid jet head 26 includes a flow path forming unit 30. The flow path forming unit 30 is a structure forming a flow path for supplying the ink to the plurality of nozzles N. The flow path forming unit 30 according to the first embodiment is configured by stacking the first flow path substrate 32 (communication plate) and the second flow path substrate 34 (pressure chamber formation plate). Each of the first flow path substrate 32 and the second flow path substrate 34 is a plate-like member elongated in the Y direction. The second flow path substrate 34 is installed on the surface Fa on the negative side in the Z direction of the first flow path substrate 32 using, for example, an adhesive.
 図2に例示される通り、第1流路基板32の表面Faの面上には、第2流路基板34のほか、振動部42と複数の圧電素子44と保護部材46と筐体部48とが設置される(図3では図示略)。他方、第1流路基板32のうちZ方向の正側(すなわち表面Faとは反対側)の表面Fbにはノズルプレート52と吸振体54とが設置される。液体噴射ヘッド26の各要素は、概略的には第1流路基板32や第2流路基板34と同様にY方向に長尺な板状部材であり、例えば接着剤を利用して相互に接合される。第1流路基板32と第2流路基板34とが積層される方向や第1流路基板32とノズルプレート52とが積層される方向(あるいは板状の各要素の表面に垂直な方向)を、Z方向として把握することも可能である。 As illustrated in FIG. 2, on the surface Fa of the first flow path substrate 32, in addition to the second flow path substrate 34, the vibration portion 42, the plurality of piezoelectric elements 44, the protective member 46, and the housing portion 48 are included. And (not shown in FIG. 3). On the other hand, the nozzle plate 52 and the vibration absorber 54 are disposed on the surface Fb of the first flow path substrate 32 on the positive side in the Z direction (ie, the side opposite to the surface Fa). The respective elements of the liquid jet head 26 are generally plate-like members elongated in the Y direction similarly to the first flow path substrate 32 and the second flow path substrate 34, and for example, mutually using an adhesive agent It is joined. The direction in which the first flow path substrate 32 and the second flow path substrate 34 are stacked, or the direction in which the first flow path substrate 32 and the nozzle plate 52 are stacked (or the direction perpendicular to the surface of each plate-like element) It is also possible to grasp it as a Z direction.
 ノズルプレート52は、複数のノズルNが形成された板状部材であり、例えば接着剤を利用して第1流路基板32の表面Fbに設置される。複数のノズルNの各々は、インクを通過させる円形状の貫通孔である。第1実施形態のノズルプレート52には、第1列L1を構成する複数のノズルNと第2列L2を構成する複数のノズルNとが形成される。具体的には、ノズルプレート52のうち中心面OからみてX方向の正側の領域に、第1列L1の複数のノズルNがY方向に沿って形成され、X方向の負側の領域に、第2列L2の複数のノズルNがY方向に沿って形成される。第1実施形態のノズルプレート52は、第1列L1の複数のノズルNが形成された部分と第2列L2の複数のノズルNが形成された部分とにわたり連続する単体の板状部材である。第1実施形態のノズルプレート52は、半導体製造技術(例えばドライエッチングやウェットエッチング等の加工技術)を利用してシリコン(Si)の単結晶基板を加工することで製造される。ただし、ノズルプレート52の製造には公知の材料や製法が任意に採用され得る。 The nozzle plate 52 is a plate-like member in which a plurality of nozzles N are formed, and is installed on the surface Fb of the first flow path substrate 32 using, for example, an adhesive. Each of the plurality of nozzles N is a circular through hole through which the ink passes. In the nozzle plate 52 of the first embodiment, a plurality of nozzles N constituting a first row L1 and a plurality of nozzles N constituting a second row L2 are formed. Specifically, a plurality of nozzles N in the first row L1 are formed along the Y direction in the region on the positive side in the X direction with respect to the central plane O of the nozzle plate 52, and in the region on the negative side in the X direction. The plurality of nozzles N in the second row L2 are formed along the Y direction. The nozzle plate 52 of the first embodiment is a single plate-like member that is continuous over a portion in which the plurality of nozzles N in the first row L1 is formed and a portion in which the plurality of nozzles N in the second row L2 is formed. . The nozzle plate 52 of the first embodiment is manufactured by processing a silicon (Si) single crystal substrate using semiconductor manufacturing technology (for example, processing technology such as dry etching or wet etching). However, known materials and manufacturing methods can be arbitrarily adopted for manufacturing the nozzle plate 52.
 図2および図3に例示される通り、第1流路基板32には、第1部分P1および第2部分P2の各々について、空間Raと複数の供給路61と複数の連通路63とが形成される。空間Raは、平面視で(すなわちZ方向からみて)Y方向に沿う長尺状に形成された開口であり、供給路61および連通路63はノズルN毎に形成された貫通孔である。複数の連通路63は平面視でY方向に配列し、複数の供給路61は、複数の連通路63の配列と空間Raとの間でY方向に配列する。複数の供給路61は、空間Raに共通に連通する。また、任意の1個の連通路63は、当該連通路63に対応するノズルNに平面視で重なる。具体的には、第1部分P1の任意の1個の連通路63は、第1列L1のうち当該連通路63に対応する1個のノズルNに連通する。同様に、第2部分P2の任意の1個の連通路63は、第2列L2のうち当該連通路63に対応する1個のノズルNに連通する。 As illustrated in FIGS. 2 and 3, in the first flow path substrate 32, the space Ra, the plurality of supply paths 61, and the plurality of communication paths 63 are formed for each of the first portion P1 and the second portion P2. Be done. The space Ra is an opening formed in a long shape along the Y direction in plan view (that is, viewed from the Z direction), and the supply passage 61 and the communication passage 63 are through holes formed for each nozzle N. The plurality of communication paths 63 are arranged in the Y direction in plan view, and the plurality of supply paths 61 are arranged in the Y direction between the arrangement of the plurality of communication paths 63 and the space Ra. The plurality of supply paths 61 commonly communicate with the space Ra. In addition, any one communication passage 63 overlaps the nozzle N corresponding to the communication passage 63 in a plan view. Specifically, any one communication passage 63 of the first portion P1 communicates with one nozzle N corresponding to the communication passage 63 in the first row L1. Similarly, any one communication passage 63 of the second portion P2 communicates with one nozzle N corresponding to the communication passage 63 in the second row L2.
 図2および図3に例示される通り、第2流路基板34は、第1部分P1および第2部分P2の各々について複数の圧力室Cが形成された板状部材である。複数の圧力室CはY方向に配列する。各圧力室C(キャビティ)は、ノズルN毎に形成されて平面視でX方向に沿う長尺状の空間である。第1流路基板32および第2流路基板34は、前述のノズルプレート52と同様に、例えば半導体製造技術を利用してシリコンの単結晶基板を加工することで製造される。ただし、第1流路基板32および第2流路基板34の製造には公知の材料や製法が任意に採用され得る。以上の例示の通り、第1実施形態における流路形成部30(第1流路基板32および第2流路基板34)とノズルプレート52とはシリコンで形成された基板を包含する。したがって、例えば前述の例示のように半導体製造技術を利用することで、流路形成部30およびノズルプレート52に微細な流路を高精度に形成できるという利点がある。 As illustrated in FIGS. 2 and 3, the second flow path substrate 34 is a plate-like member in which a plurality of pressure chambers C are formed for each of the first portion P1 and the second portion P2. The plurality of pressure chambers C are arranged in the Y direction. Each pressure chamber C (cavity) is a long space formed for each nozzle N and extending in the X direction in plan view. The first flow path substrate 32 and the second flow path substrate 34 are manufactured by processing a single crystal silicon substrate using, for example, a semiconductor manufacturing technology, as in the case of the nozzle plate 52 described above. However, known materials and manufacturing methods may be arbitrarily adopted for manufacturing the first flow path substrate 32 and the second flow path substrate 34. As described above, the flow path forming portion 30 (the first flow path substrate 32 and the second flow path substrate 34) and the nozzle plate 52 in the first embodiment include a substrate formed of silicon. Therefore, there is an advantage that fine flow paths can be formed in the flow path forming portion 30 and the nozzle plate 52 with high accuracy by utilizing the semiconductor manufacturing technology as exemplified in the above-mentioned example, for example.
 図2に例示される通り、第2流路基板34のうち第1流路基板32とは反対側の表面には振動部42が設置される。第1実施形態の振動部42は、弾性的に振動可能な板状部材(振動板)である。なお、所定の板厚の板状部材のうち圧力室Cに対応する領域について板厚方向の一部を選択的に除去することで、第2流路基板34と振動部42とを一体に形成することも可能である。 As illustrated in FIG. 2, a vibrating portion 42 is provided on the surface of the second flow path substrate 34 opposite to the first flow path substrate 32. The vibrating portion 42 of the first embodiment is a plate-like member (diaphragm) that can elastically vibrate. The second flow path substrate 34 and the vibrating portion 42 are integrally formed by selectively removing a part in the thickness direction of a region corresponding to the pressure chamber C in the plate-like member having a predetermined thickness. It is also possible.
 図2から理解される通り、第1流路基板32の表面Faと振動部42とは、各圧力室Cの内側で相互に間隔をあけて対向する。圧力室Cは、第1流路基板32の表面Faと振動部42との間に位置する空間であり、当該空間に充填されたインクに圧力変化を発生させる。各圧力室Cは、例えばX方向を長手方向とする空間であり、ノズルN毎に個別に形成される。第1列L1および第2列L2の各々について、複数の圧力室CがY方向に配列する。図2および図3に例示される通り、任意の1個の圧力室Cのうち中心面O側の端部は平面視で連通路63に重なり、中心面Oとは反対側の端部は平面視で供給路61に重なる。したがって、第1部分P1および第2部分P2の各々において、圧力室Cは、連通路63を介してノズルNに連通するとともに、供給路61を介して空間Raに連通する。なお、流路幅が狭窄された絞り流路を圧力室Cに形成することで所定の流路抵抗を付加することも可能である。 As understood from FIG. 2, the surface Fa of the first flow path substrate 32 and the vibrating portion 42 oppose each other at an interval inside the pressure chambers C. The pressure chamber C is a space located between the surface Fa of the first flow path substrate 32 and the vibrating portion 42, and generates pressure change in the ink filled in the space. Each pressure chamber C is a space whose longitudinal direction is, for example, the X direction, and is formed individually for each nozzle N. A plurality of pressure chambers C are arranged in the Y direction for each of the first row L1 and the second row L2. As illustrated in FIG. 2 and FIG. 3, the end on the central plane O side of any one pressure chamber C overlaps the communication passage 63 in plan view, and the end on the opposite side to the central plane O is a flat It overlaps with the supply path 61 visually. Therefore, in each of the first portion P1 and the second portion P2, the pressure chamber C communicates with the nozzle N through the communication passage 63, and communicates with the space Ra through the supply passage 61. In addition, it is also possible to add predetermined | prescribed flow path resistance by forming the throttling flow path by which the flow path width was narrowed in the pressure chamber C. FIG.
 図2に例示される通り、振動部42のうち圧力室Cとは反対側の面上には、第1部分P1および第2部分P2の各々について、相異なるノズルNに対応する複数の圧電素子44が設置される。圧電素子44は、駆動信号の供給により変形する受動素子である。複数の圧電素子44は、各圧力室Cに対応するようにY方向に配列する。任意の1個の圧電素子44は、図4に例示される通り、相互に対向する第1電極441と第2電極442との間に圧電体層443を介在させた積層体である。なお、第1電極441および第2電極442の一方を、複数の圧電素子44にわたり連続する電極(すなわち共通電極)とすることも可能である。第1電極441と第2電極442と圧電体層443とが平面視で重なる部分が圧電素子44として機能する。なお、駆動信号の供給により変形する部分(すなわち振動部42を振動させる能動部)を圧電素子44として画定することも可能である。以上の説明から理解される通り、第1実施形態の液体噴射ヘッド26は第1圧電素子と第2圧電素子とを具備する。例えば、第1圧電素子は、中心面OからみてX方向の一方側(例えば図2における右側)の圧電素子44であり、第2圧電素子は、中心面OからみてX方向の他方側(例えば図2における左側)の圧電素子44である。圧電素子44の変形に連動して振動部42が振動すると、圧力室C内の圧力が変動することで、圧力室Cに充填されたインクが連通路63とノズルNとを通過して噴射される。 As illustrated in FIG. 2, a plurality of piezoelectric elements corresponding to different nozzles N for each of the first portion P1 and the second portion P2 on the surface of the vibrating portion 42 opposite to the pressure chamber C. 44 are installed. The piezoelectric element 44 is a passive element that is deformed by the supply of a drive signal. The plurality of piezoelectric elements 44 are arranged in the Y direction so as to correspond to the pressure chambers C. The optional one piezoelectric element 44 is a laminate in which a piezoelectric layer 443 is interposed between the first electrode 441 and the second electrode 442 facing each other, as illustrated in FIG. 4. Note that one of the first electrode 441 and the second electrode 442 may be an electrode continuous across the plurality of piezoelectric elements 44 (that is, a common electrode). A portion where the first electrode 441, the second electrode 442, and the piezoelectric layer 443 overlap in a plan view functions as the piezoelectric element 44. It is also possible to define a portion that is deformed by the supply of the drive signal (that is, an active portion that vibrates the vibrating portion 42) as the piezoelectric element 44. As understood from the above description, the liquid jet head 26 according to the first embodiment includes the first piezoelectric element and the second piezoelectric element. For example, the first piezoelectric element is the piezoelectric element 44 on one side (for example, the right side in FIG. 2) of the central plane O in the X direction, and the second piezoelectric element is the other side of the central axis O in the X direction (for example, It is the piezoelectric element 44 of the left side in FIG. When the vibration unit 42 vibrates in conjunction with the deformation of the piezoelectric element 44, the pressure in the pressure chamber C fluctuates, and the ink filled in the pressure chamber C is ejected through the communication passage 63 and the nozzle N. Ru.
 図2の保護部材46は、複数の圧電素子44を保護するための板状部材であり、振動部42の表面(または第2流路基板34の表面)に設置される。保護部材46の材料や製法は任意であるが、第1流路基板32や第2流路基板34と同様に、例えばシリコン(Si)の単結晶基板を半導体製造技術により加工することで保護部材46は形成され得る。保護部材46のうち振動部42側の表面に形成された凹部に複数の圧電素子44が収容される。 The protective member 46 in FIG. 2 is a plate-like member for protecting the plurality of piezoelectric elements 44, and is disposed on the surface of the vibrating portion 42 (or the surface of the second flow path substrate 34). Although the material and manufacturing method of the protection member 46 are arbitrary, the protection member is obtained by processing the single crystal substrate of silicon (Si), for example, by the semiconductor manufacturing technology, like the first flow path substrate 32 and the second flow path substrate 34. 46 may be formed. The plurality of piezoelectric elements 44 are accommodated in the recess formed on the surface of the protective member 46 on the side of the vibrating portion 42.
 振動部42のうち流路形成部30とは反対側の表面(または流路形成部30の表面)には配線基板28の端部が接合される。配線基板28は、制御ユニット20と液体噴射ヘッド26とを電気的に接続する複数の配線(図示略)が形成された可撓性の実装部品である。配線基板28のうち、保護部材46に形成された開口部と筐体部48に形成された開口部とを通過して外部に延出した端部が制御ユニット20に接続される。例えばFPC(Flexible Printed Circuit)やFFC(Flexible Flat Cable)等の可撓性の配線基板28が好適に採用される。 The end of the wiring board 28 is bonded to the surface of the vibrating portion 42 opposite to the flow path forming portion 30 (or the surface of the flow path forming portion 30). The wiring substrate 28 is a flexible mounting component on which a plurality of wires (not shown) for electrically connecting the control unit 20 and the liquid jet head 26 are formed. An end portion of the wiring substrate 28 which passes through the opening formed in the protective member 46 and the opening formed in the housing 48 and is extended to the outside is connected to the control unit 20. For example, a flexible wiring substrate 28 such as a flexible printed circuit (FPC) or a flexible flat cable (FFC) is preferably employed.
 筐体部48は、複数の圧力室C(さらには複数のノズルN)に供給されるインクを貯留するためのケースである。筐体部48のうちZ方向の正側の表面が例えば接着剤で第1流路基板32の表面Faに接合される。筐体部48の製造には公知の技術や製法が任意に採用され得る。例えば樹脂材料の射出成形で筐体部48を形成することが可能である。 The housing portion 48 is a case for storing the ink supplied to the plurality of pressure chambers C (and further, the plurality of nozzles N). The surface of the housing portion 48 on the positive side in the Z direction is bonded to the surface Fa of the first flow path substrate 32 with, for example, an adhesive. A well-known technique and manufacturing method can be arbitrarily employ | adopted for manufacture of the housing | casing part 48. FIG. For example, the housing 48 can be formed by injection molding of a resin material.
 図2に例示される通り、第1実施形態の筐体部48には、第1部分P1および第2部分P2の各々について空間Rbが形成される。筐体部48の区間Rbと第1流路基板32の空間Raとは相互に連通する。空間Raと空間Rbとで構成される空間は、複数の圧力室Cに供給されるインクを貯留する液体貯留室(リザーバー)Rとして機能する。液体貯留室Rは、複数のノズルNについて共用される共通液室である。第1部分P1および第2部分P2の各々に液体貯留室Rが形成される。第1部分P1の液体貯留室Rは、中心面OからみてX方向の正側に位置し、第2部分P2の液体貯留室Rは、中心面OからみてX方向の負側に位置する。筐体部48のうち第1流路基板32とは反対側の表面には、液体容器14から供給されるインクを液体貯留室Rに導入するための導入口482が形成される。 As illustrated in FIG. 2, in the housing unit 48 of the first embodiment, a space Rb is formed for each of the first portion P1 and the second portion P2. The section Rb of the housing portion 48 and the space Ra of the first flow path substrate 32 communicate with each other. A space configured by the space Ra and the space Rb functions as a liquid storage chamber (reservoir) R that stores the ink supplied to the plurality of pressure chambers C. The liquid storage chamber R is a common liquid chamber shared by the plurality of nozzles N. A liquid storage chamber R is formed in each of the first portion P1 and the second portion P2. The liquid storage chamber R of the first portion P1 is located on the positive side in the X direction with respect to the center plane O, and the liquid storage chamber R for the second portion P2 is located on the negative side with respect to the X direction as viewed from the central surface O. An inlet port 482 for introducing the ink supplied from the liquid container 14 into the liquid storage chamber R is formed on the surface of the housing 48 opposite to the first flow path substrate 32.
 図2に例示される通り、第1流路基板32の表面Fbには、第1部分P1および第2部分P2の各々について吸振体54が設置される。吸振体54は、液体貯留室R内のインクの圧力変動を吸収する可撓性のフィルム(コンプライアンス基板)である。図3に例示される通り、吸振体54は、第1流路基板32の空間Raと複数の供給路61とを閉塞するように第1流路基板32の表面Fbに設置されて液体貯留室Rの壁面(具体的には底面)を構成する。 As illustrated in FIG. 2, vibration absorbers 54 are provided on the surface Fb of the first flow path substrate 32 for each of the first portion P1 and the second portion P2. The vibration absorbing body 54 is a flexible film (compliance substrate) that absorbs pressure fluctuations of the ink in the liquid storage chamber R. As illustrated in FIG. 3, the vibration absorber 54 is installed on the surface Fb of the first flow path substrate 32 so as to close the space Ra of the first flow path substrate 32 and the plurality of supply paths 61, and the liquid storage chamber The wall of R (specifically, the bottom) is configured.
 図2に例示される通り、第1流路基板32のうちノズルプレート52に対向する表面Fbには空間(以下「循環液室」という)65が形成される。第1実施液体の循環液室65は、平面視でY方向に延在する長尺状の有底孔(溝部)である。第1流路基板32の表面Fbに接合されたノズルプレート52により循環液室65の開口は閉塞される。 As illustrated in FIG. 2, a space (hereinafter referred to as a “circulating liquid chamber”) 65 is formed on the surface Fb of the first flow path substrate 32 facing the nozzle plate 52. The circulating fluid chamber 65 of the first embodiment fluid is a long-long bottomed hole (groove) extending in the Y direction in plan view. The opening of the circulating fluid chamber 65 is closed by the nozzle plate 52 bonded to the surface Fb of the first flow path substrate 32.
 図5は、循環液室65に着目した液体噴射ヘッド26の構成図である。図5に例示される通り、循環液室65は、第1列L1および第2列L2に沿って複数のノズルNにわたり連続する。具体的には、第1列L1の複数のノズルNの配列と第2列L2の複数のノズルNの配列との間に循環液室65が形成される。したがって、図2に例示される通り、循環液室65は、第1部分P1の連通路63と第2部分P2の連通路63との間に位置する。以上の説明から理解される通り、第1実施形態の流路形成部30は、第1部分P1における圧力室C(第1圧力室)および連通路63(第1連通路)と、第2部分P2における圧力室C(第2圧力室)および連通路63(第2連通路)と、第1部分P1の連通路63と第2部分P2の連通路63との間に位置する循環液室65とが形成された構造体である。図2に例示される通り、第1実施形態の流路形成部30は、循環液室65と各連通路63との間を仕切る壁状の部分(以下「隔壁部」という)69を含む。 FIG. 5 is a block diagram of the liquid jet head 26 focusing on the circulating liquid chamber 65. As illustrated in FIG. 5, the circulating fluid chamber 65 is continuous across the plurality of nozzles N along the first row L1 and the second row L2. Specifically, the circulating fluid chamber 65 is formed between the arrangement of the plurality of nozzles N in the first row L1 and the arrangement of the plurality of nozzles N in the second row L2. Therefore, as illustrated in FIG. 2, the circulating fluid chamber 65 is located between the communication passage 63 of the first portion P1 and the communication passage 63 of the second portion P2. As understood from the above description, the flow passage forming portion 30 of the first embodiment includes the pressure chamber C (first pressure chamber) and the communication passage 63 (first communication passage) in the first portion P1, and the second portion Circulating fluid chamber 65 located between pressure chamber C (second pressure chamber) and communication passage 63 (second communication passage) at P2, and communication passage 63 of first portion P1 and communication passage 63 of second portion P2. And are formed structures. As illustrated in FIG. 2, the flow path forming unit 30 according to the first embodiment includes a wall-shaped portion (hereinafter, referred to as “partition”) 69 that divides between the circulating fluid chamber 65 and each communication passage 63.
 なお、前述の通り、第1部分P1および第2部分P2の各々において複数の圧力室Cおよび複数の圧電素子44がY方向に配列する。したがって、第1部分P1および第2部分P2の各々における複数の圧力室Cまたは複数の圧電素子44にわたり連続するように、循環液室65がY方向に延在すると換言することも可能である。また、図2および図3から理解される通り、循環液室65と液体貯留室Rとが相互に間隔をあけてY方向に延在し、当該間隔内に圧力室Cと連通路63とノズルNとが位置するということも可能である。 As described above, the plurality of pressure chambers C and the plurality of piezoelectric elements 44 are arranged in the Y direction in each of the first portion P1 and the second portion P2. Therefore, it is also possible that the circulating fluid chamber 65 extends in the Y direction so as to be continuous across the plurality of pressure chambers C or the plurality of piezoelectric elements 44 in each of the first portion P1 and the second portion P2. Further, as can be understood from FIGS. 2 and 3, the circulating fluid chamber 65 and the liquid storage chamber R extend in the Y direction at an interval from each other, and within the interval, the pressure chamber C, the communication passage 63 and the nozzle It is also possible that N is located.
 図6は、液体噴射ヘッド26のうち循環液室65の近傍の部分を拡大した平面図および断面図である。図6に例示される通り、第1実施形態における1個のノズルNは、第1区間n1と第2区間n2とを含む。第1区間n1と第2区間n2とは同軸に形成されて相互に連通する円形状の空間である。第2区間n2は、第1区間n1からみて流路形成部30側に位置する。第2区間n2の内径d2は第1区間n1の内径d1よりも大きい(d2>d1)。以上のように各ノズルNを階段状に形成した構成によれば、各ノズルNの流路抵抗を所望の特性に設定し易いという利点がある。また、図6に例示される通り、第1実施形態における各ノズルNの中心軸Qaは、連通路63の中心軸Qbからみて循環液室65とは反対側に位置する。 FIG. 6 is an enlarged plan view and a cross-sectional view of a portion of the liquid jet head 26 in the vicinity of the circulating liquid chamber 65. As illustrated in FIG. 6, one nozzle N in the first embodiment includes a first section n1 and a second section n2. The first section n1 and the second section n2 are circular spaces formed coaxially and in communication with each other. The second section n2 is located on the flow path forming portion 30 side as viewed from the first section n1. The inner diameter d2 of the second section n2 is larger than the inner diameter d1 of the first section n1 (d2> d1). As described above, according to the configuration in which each nozzle N is formed in a step shape, there is an advantage that the flow path resistance of each nozzle N can be easily set to a desired characteristic. Further, as illustrated in FIG. 6, the central axis Qa of each nozzle N in the first embodiment is located on the opposite side of the circulating fluid chamber 65 as viewed from the central axis Qb of the communication passage 63.
 図6に例示される通り、ノズルプレート52のうち流路形成部30に対向する表面には、第1部分P1および第2部分P2の各々について複数の循環路72が形成される。第1部分P1の複数の循環路72(第1循環路の例示)は、第1列L1の複数のノズルN(または第1列L1に対応する複数の連通路63)に1対1に対応する。また、第2部分P2の複数の循環路72(第2循環路の例示)は、第2列L2の複数のノズルN(または第2列L2に対応する複数の連通路63)に1対1に対応する。 As illustrated in FIG. 6, a plurality of circulation paths 72 are formed on each of the first portion P1 and the second portion P2 on the surface of the nozzle plate 52 facing the flow path forming portion 30. The plurality of circulation paths 72 (example of the first circulation path) of the first portion P1 correspond to the plurality of nozzles N (or the plurality of communication paths 63 corresponding to the first line L1) of the first row L1 one to one. Do. Further, the plurality of circulation paths 72 (example of the second circulation path) of the second portion P2 is in one-to-one correspondence with the plurality of nozzles N in the second row L2 (or the plurality of communication passages 63 corresponding to the second row L2). Corresponds to
 各循環路72は、X方向に延在する溝部(すなわち長尺状の有底孔)であり、インクを流通させる流路として機能する。第1実施形態の循環路72は、ノズルNから離間した位置(具体的には、当該循環路72に対応するノズルNからみて循環液室65側)に形成される。例えば、半導体製造技術(例えばドライエッチングやウェットエッチング等の加工技術)により複数のノズルN(特に第2区間n2)と複数の循環路72とが共通の工程で一括的に形成される。 Each circulation path 72 is a groove (that is, a long bottomed hole) extending in the X direction, and functions as a flow path through which the ink flows. The circulation passage 72 in the first embodiment is formed at a position separated from the nozzle N (specifically, on the side of the circulating fluid chamber 65 as viewed from the nozzle N corresponding to the circulation passage 72). For example, the plurality of nozzles N (particularly, the second section n2) and the plurality of circulation paths 72 are collectively formed in a common step by semiconductor manufacturing technology (for example, processing technology such as dry etching or wet etching).
 図6に例示される通り、各循環路72は、ノズルNのうち第2区間n2の内径d2と同等の流路幅Waで直線状に形成される。また、第1実施形態における循環路72の流路幅(Y方向の寸法)Waは、圧力室Cの流路幅(Y方向の寸法)Wbよりも小さい。したがって、循環路72の流路幅Waが圧力室Cの流路幅Wbよりも大きい構成と比較して循環路72の流路抵抗を大きくすることが可能である。他方、ノズルプレート52の表面に対する循環路72の深さDaは全長にわたり一定である。具体的には、各循環路72はノズルNの第2区間n2と同等の深さに形成される。以上の構成によれば、循環路72と第2区間n2とを相異なる深さに形成する構成と比較して、循環路72および第2区間n2を形成し易いという利点がある。なお、流路の「深さ」とは、Z方向における流路の深さ(例えば流路の形成面と流路の底面との高低差)を意味する。 As illustrated in FIG. 6, each circulation path 72 is formed in a straight line with a flow passage width Wa equivalent to the inner diameter d2 of the second section n2 of the nozzle N. Further, the flow passage width (dimension in the Y direction) Wa of the circulation passage 72 in the first embodiment is smaller than the flow passage width (dimension in the Y direction) Wb of the pressure chamber C. Therefore, as compared with a configuration in which the flow passage width Wa of the circulation passage 72 is larger than the flow passage width Wb of the pressure chamber C, it is possible to increase the flow passage resistance of the circulation passage 72. On the other hand, the depth Da of the circulation path 72 with respect to the surface of the nozzle plate 52 is constant over the entire length. Specifically, each circulation path 72 is formed to the same depth as the second section n2 of the nozzle N. According to the above configuration, there is an advantage that it is easy to form the circulation passage 72 and the second section n2 as compared with the configuration in which the circulation path 72 and the second section n2 are formed in different depths. The “depth” of the flow path means the depth of the flow path in the Z direction (for example, the height difference between the formation surface of the flow path and the bottom surface of the flow path).
 第1部分P1における任意の1個の循環路72は、第1列L1のうち当該循環路72に対応するノズルNからみて循環液室65側に位置する。また、第2部分P2における任意の1個の循環路72は、第2列L2のうち当該循環路72に対応するノズルNからみて循環液室65側に位置する。そして、各循環路72のうち中心面Oとは反対側(連通路63側)の端部は、当該循環路72に対応する1個の連通路63に平面視で重なる。すなわち、循環路72は連通路63に連通する。他方、各循環路72のうち中心面O側(循環液室65側)の端部は循環液室65に平面視で重なる。すなわち、循環路72は循環液室65に連通する。以上の説明から理解される通り、複数の連通路63の各々が循環路72を介して循環液室65に連通する。したがって、図6に破線の矢印で図示される通り、各連通路63内のインクは循環路72を介して循環液室65に供給される。すなわち、第1実施形態では、第1列L1に対応する複数の連通路63と第2列L2に対応する複数の連通路63とが1個の循環液室65に対して共通に連通する。 One arbitrary circulation path 72 in the first portion P1 is located on the side of the circulating fluid chamber 65 as viewed from the nozzle N corresponding to the circulation path 72 in the first row L1. Further, any one circulation passage 72 in the second portion P2 is located on the side of the circulating fluid chamber 65 as viewed from the nozzle N corresponding to the circulation passage 72 in the second row L2. The end of each circulation passage 72 on the opposite side (the communication passage 63 side) from the center plane O overlaps one communication passage 63 corresponding to the circulation passage 72 in a plan view. That is, the circulation passage 72 communicates with the communication passage 63. On the other hand, an end of the circulation path 72 on the side of the center plane O (on the side of the circulating fluid chamber 65) overlaps the circulating fluid chamber 65 in plan view. That is, the circulation path 72 communicates with the circulating fluid chamber 65. As understood from the above description, each of the plurality of communication paths 63 communicates with the circulating fluid chamber 65 via the circulation path 72. Therefore, the ink in each communication passage 63 is supplied to the circulating fluid chamber 65 through the circulation passage 72 as illustrated by a broken arrow in FIG. That is, in the first embodiment, the plurality of communication passages 63 corresponding to the first row L1 and the plurality of communication passages 63 corresponding to the second row L2 communicate with one circulating fluid chamber 65 in common.
 図6には、任意の1個の循環路72のうち循環液室65に重なる部分の流路長Laと、循環路72のうち連通路63に重なる部分の流路長(X方向の寸法)Lbと、循環路72のうち流路形成部30の隔壁部69に重なる部分の流路長(X方向の寸法)Lcとが図示されている。流路長Lcは、隔壁部69の厚さに相当する。隔壁部69は、循環路72の絞り部分として機能する。したがって、隔壁部69の厚さに相当する流路長Lcが長いほど、循環路72の流路抵抗が増大する。第1実施形態では、流路長Laが流路長Lbよりも長く(La>Lb)、流路長Laが流路長Lcよりも長い(La>Lc)、という関係が成立する。さらに、第1実施形態では、流路長Lbが流路長Lcよりも長い(Lb>Lc)という関係が成立する(La>Lb>Lc)。以上の構成によれば、流路長Laや流路長Lbが流路長Lcよりも短い構成と比較して、連通路63から循環路72を介して循環液室65にインクが流入し易いという利点がある。 In FIG. 6, the flow path length La of a portion overlapping the circulating fluid chamber 65 of any one circulation path 72 and the flow path length (dimension in the X direction) of a portion overlapping the communication path 63 of the circulation path 72 Lb and a flow path length (dimension in the X direction) Lc of a portion of the circulation path 72 overlapping the partition portion 69 of the flow path forming portion 30 are illustrated. The flow path length Lc corresponds to the thickness of the partition 69. The partition portion 69 functions as a throttling portion of the circulation passage 72. Therefore, the flow path resistance of the circulation path 72 increases as the flow path length Lc corresponding to the thickness of the partition portion 69 is longer. In the first embodiment, the flow path length La is longer than the flow path length Lb (La> Lb), and the flow path length La is longer than the flow path length Lc (La> Lc). Furthermore, in the first embodiment, the relationship that the flow path length Lb is longer than the flow path length Lc (Lb> Lc) is established (La> Lb> Lc). According to the above configuration, the ink easily flows from the communication passage 63 into the circulating liquid chamber 65 through the circulation passage 72, as compared with the configuration in which the flow passage length La and the flow passage length Lb are shorter than the flow passage length Lc. It has the advantage of
 以上に例示した通り、第1実施形態では、圧力室Cが連通路63と循環路72とを介して間接的に循環液室65に連通する。すなわち、圧力室Cと循環液室65とは直接的には連通しない。以上の構成において、圧電素子44の動作により圧力室C内の圧力が変動すると、連通路63内を流動するインクのうちの一部がノズルNから外部に噴射され、残りの一部が連通路63から循環路72を経由して循環液室65に流入する。第1実施形態では、圧電素子44の1回の駆動により連通路63を流通するインクのうち、ノズルNを介して噴射されるインクの量(以下「噴射量」という)が、連通路63を流通するインクのうち循環路72を介して循環液室65に流入するインクの量(以下「循環量」という)を上回るように、連通路63とノズルと循環路72とのイナータンスが選定される。全部の圧電素子44を一斉に駆動した場合を想定すると、複数のノズルNによる噴射量の合計よりも、複数の連通路63から循環液室65に流入する循環量の合計(例えば循環液室65内の単位時間内の流量)のほうが多い、と換言することも可能である。 As exemplified above, in the first embodiment, the pressure chamber C indirectly communicates with the circulating fluid chamber 65 via the communication passage 63 and the circulation passage 72. That is, the pressure chamber C and the circulating fluid chamber 65 do not communicate directly. In the above configuration, when the pressure in the pressure chamber C fluctuates due to the operation of the piezoelectric element 44, a part of the ink flowing in the communication passage 63 is ejected from the nozzle N to the outside, and the remaining part is the communication passage It flows into the circulating fluid chamber 65 from 63 via the circulation passage 72. In the first embodiment, the amount of ink ejected through the nozzle N (hereinafter referred to as “ejection amount”) out of the ink flowing through the communication passage 63 by one drive of the piezoelectric element 44 corresponds to the communication passage 63. Inertances of the communication passage 63, the nozzle, and the circulation passage 72 are selected so as to exceed the amount of ink flowing into the circulating liquid chamber 65 through the circulation passage 72 (hereinafter referred to as "circulation amount") among the circulating ink. . Assuming that all the piezoelectric elements 44 are simultaneously driven, the total of the circulating amounts flowing into the circulating fluid chamber 65 from the plurality of communication passages 63 (for example, the circulating fluid chamber 65) than the total of the jetting amounts by the plurality of nozzles N It is also possible to say that the flow rate within the unit time is higher.
 具体的には、連通路63を流通するインクのうち循環量の比率が70%以上となる(噴射量の比率が30%以下)となるように、連通路63とノズルと循環路72との各々の流路抵抗が決定される。以上の構成によれば、インクの噴射量を確保しながら、ノズルの近傍のインクを効果的に循環液室65に循環させることが可能である。概略的には、循環路72の流路抵抗が大きいほど、循環量が減少する一方で噴射量が増加し、循環路72の流路抵抗が小さいほど、循環量が増加する一方で噴射量が減少する、という傾向がある。 Specifically, of the ink flowing through the communication passage 63, the ratio of the circulation amount is 70% or more (the injection amount ratio is 30% or less). Each flow path resistance is determined. According to the above configuration, it is possible to effectively circulate the ink in the vicinity of the nozzle to the circulating liquid chamber 65 while securing the ejection amount of the ink. Generally speaking, the larger the flow path resistance of the circulation path 72, the smaller the circulation amount, while the injection amount increases, and the smaller the flow path resistance of the circulation path 72, the circulation amount increases, but the injection amount is smaller. There is a tendency to decrease.
 図5に例示される通り、第1実施形態の液体噴射装置100は循環機構75を具備する。循環機構75は、循環液室65内のインクを液体貯留室Rに供給(すなわち循環)するための機構である。第1実施形態の循環機構75は、例えば、循環液室65からインクを吸引する吸引機構(例えばポンプ)と、インクに混在する気泡や異物を捕集するフィルター機構と、インクの加熱により増粘を低減する加温機構とを具備する(図示略)。循環機構75により気泡や異物が除去されるとともに増粘が低減されたインクが、循環機構75から導入口482を介して液体貯留室Rに供給される。以上の説明から理解される通り、第1実施形態では、液体貯留室R→供給路61→圧力室C→連通路63→循環路72→循環液室65→循環機構75→液体貯留室Rという経路でインクが循環する。 As illustrated in FIG. 5, the liquid ejecting apparatus 100 according to the first embodiment includes a circulation mechanism 75. The circulation mechanism 75 is a mechanism for supplying (i.e., circulating) the ink in the circulation liquid chamber 65 to the liquid storage chamber R. The circulation mechanism 75 according to the first embodiment includes, for example, a suction mechanism (for example, a pump) for sucking the ink from the circulation liquid chamber 65, a filter mechanism for collecting air bubbles and foreign substances mixed in the ink, and thickening of the ink by heating. And a heating mechanism (not shown). The ink in which bubbles and foreign substances are removed by the circulation mechanism 75 and the viscosity is reduced is supplied from the circulation mechanism 75 to the liquid storage chamber R via the inlet port 482. As understood from the above description, in the first embodiment, the liquid storage chamber R → supply passage 61 → pressure chamber C → communication passage 63 → circulation passage 72 → circulating liquid chamber 65 → circulation mechanism 75 → liquid storage chamber R The ink circulates along the path.
 図5から理解される通り、第1実施形態の循環機構75は、Y方向における循環液室65の両側からインクを吸引する。すなわち、循環機構75は、循環液室65のうちY方向の負側の端部の近傍と循環液室65のうちY方向の正側の端部の近傍とからインクを吸引する。なお、Y方向における循環液室65の一方の端部のみからインクを吸引する構成では、循環液室65の両端部間でインクの圧力に差異が発生し、循環液室65内の圧力差に起因して連通路63内のインクの圧力がY方向の位置に応じて相違し得る。したがって、各ノズルからのインクの噴射特性(例えば噴射量や噴射速度)がY方向の位置に応じて相違する可能性がある。以上の構成とは対照的に、第1実施形態では、循環液室65の両側からインクが吸引されるから、循環液室65の内部における圧力差が低減される。したがって、Y方向に配列する複数のノズルにわたりインクの噴射特性を高精度に近似させることが可能である。ただし、循環液室65内でのY方向における圧力差が特段の問題とならない場合には、循環液室65の一方の端部からインクを吸引する構成も採用され得る。 As understood from FIG. 5, the circulation mechanism 75 of the first embodiment sucks the ink from both sides of the circulation liquid chamber 65 in the Y direction. That is, the circulation mechanism 75 sucks the ink from the vicinity of the end on the negative side in the Y direction of the circulating liquid chamber 65 and the vicinity of the end on the positive side in the Y direction of the circulating liquid chamber 65. In the configuration in which the ink is sucked from only one end of the circulating fluid chamber 65 in the Y direction, a difference occurs in the pressure of the ink between both ends of the circulating fluid chamber 65, and the pressure difference in the circulating fluid chamber 65 As a result, the pressure of the ink in the communication passage 63 may differ depending on the position in the Y direction. Therefore, the ejection characteristics (for example, the ejection amount and the ejection speed) of the ink from each nozzle may differ depending on the position in the Y direction. In contrast to the above configuration, in the first embodiment, since the ink is sucked from both sides of the circulating fluid chamber 65, the pressure difference inside the circulating fluid chamber 65 is reduced. Therefore, it is possible to approximate the ejection characteristics of the ink with high accuracy over a plurality of nozzles arranged in the Y direction. However, when the pressure difference in the Y direction in the circulating fluid chamber 65 does not pose a particular problem, a configuration in which ink is sucked from one end of the circulating fluid chamber 65 may also be employed.
 前述の通り、循環路72と連通路63とは平面視で重なり、連通路63と圧力室Cとは平面視で重なる。したがって、循環路72と圧力室Cとは平面視で相互に重なる。他方、図5および図6から理解される通り、循環液室65と圧力室Cとは平面視で相互に重ならない。また、圧電素子44は、X方向に沿って圧力室Cの全体にわたり形成されるから、循環路72と圧電素子44とは平面視で相互に重なる一方、循環液室65と圧電素子44とは平面視で相互に重ならない。以上の説明から理解され通り、圧力室Cまたは圧電素子44は、循環路72に平面視で重なる一方、循環液室65には平面視で重ならない。したがって、例えば圧力室Cまたは圧電素子44が循環路72に平面視で重ならない構成と比較して、液体噴射ヘッド26を小型化し易いという利点がある。 As described above, the circulation passage 72 and the communication passage 63 overlap in plan view, and the communication passage 63 and the pressure chamber C overlap in plan view. Therefore, the circulation passage 72 and the pressure chamber C overlap each other in plan view. On the other hand, as understood from FIGS. 5 and 6, the circulating fluid chamber 65 and the pressure chamber C do not overlap each other in plan view. Further, since the piezoelectric element 44 is formed along the X direction over the entire pressure chamber C, the circulation path 72 and the piezoelectric element 44 overlap each other in plan view, while the circulating liquid chamber 65 and the piezoelectric element 44 They do not overlap each other in plan view. As understood from the above description, the pressure chamber C or the piezoelectric element 44 overlaps the circulation passage 72 in plan view, but does not overlap the circulating fluid chamber 65 in plan view. Therefore, as compared with a configuration in which the pressure chamber C or the piezoelectric element 44 does not overlap the circulation path 72 in plan view, for example, the liquid jet head 26 can be easily miniaturized.
 以上に説明した通り、第1実施形態では、連通路63と循環液室65とを連通させる循環路72がノズルプレート52に形成される。したがって、循環連通路が連通板に形成される特許文献1の構成と比較して、ノズルNの近傍のインクを効率的に循環液室65に循環させることが可能である。また、第1実施形態では、第1列L1に対応する連通路63と第2列L2に対応する連通路63とが両者間の循環液室65に共通に連通する。したがって、第1列L1に対応する各循環路72が連通する循環液室と第2列L2に対応する各循環路72が連通する循環液室とを別個に設けた構成と比較して、液体噴射ヘッド26の構成が簡素化される(ひいては小型化が実現される)という利点もある。 As described above, in the first embodiment, the circulation passage 72 for connecting the communication passage 63 and the circulation liquid chamber 65 is formed in the nozzle plate 52. Therefore, it is possible to efficiently circulate the ink in the vicinity of the nozzle N to the circulating liquid chamber 65 as compared with the configuration of Patent Document 1 in which the circulation communication passage is formed in the communication plate. Further, in the first embodiment, the communication passage 63 corresponding to the first row L1 and the communication passage 63 corresponding to the second row L2 are in common communication with the circulating fluid chamber 65 between them. Therefore, as compared with a configuration in which the circulating fluid chamber in communication with the circulation passages 72 corresponding to the first row L1 and the circulating fluid chamber in communication with the circulation passages 72 corresponding to the second row L2 are separately provided, There is also an advantage that the configuration of the ejection head 26 is simplified (and, consequently, miniaturization is realized).
<第2実施形態>
 本発明の第2実施形態を説明する。なお、以下に例示する各形態において作用や機能が第1実施形態と同様である要素については、第1実施形態の説明で使用した符号を流用して各々の詳細な説明を適宜に省略する。
Second Embodiment
A second embodiment of the present invention will be described. In addition, about the element which an operation | movement and a function are the same as 1st Embodiment in each form illustrated below, the code | symbol used by description of 1st Embodiment is diverted and detailed description of each is abbreviate | omitted suitably.
 図7は、第2実施形態における液体噴射ヘッド26の部分的な分解斜視図であり、第1実施形態で参照した図3に対応する。また、図8は、液体噴射ヘッド26のうち循環液室65の近傍の部分を拡大した平面図および断面図であり、第1実施形態で参照した図6に対応する。 FIG. 7 is a partial exploded perspective view of the liquid jet head 26 in the second embodiment, and corresponds to FIG. 3 referred to in the first embodiment. FIG. 8 is an enlarged plan view and a sectional view of a portion in the vicinity of the circulating fluid chamber 65 in the liquid jet head 26, and corresponds to FIG. 6 referred to in the first embodiment.
 第1実施形態では、循環路72とノズルNとが相互に離間した構成を例示した。第2実施形態では、図7および図8から理解される通り、循環路72とノズルNとが相互に連続する。すなわち、第1部分P1の1個の循環路72は第1列L1の1個のノズルNに連続し、第2部分P2の1個の循環路72は第2列L2の1個のノズルNに連続する。具体的には、図8に例示される通り、各ノズルNの第2区間n2が循環路72に連続する。すなわち、循環路72と第2区間n2とは相互に同等の深さに形成され、循環路72の内周面と第2区間n2の内周面とが相互に連続する。X方向に延在する1個の循環路72の底面にノズルN(第1区間n1)が形成された構成とも換言され得る。具体的には、循環路72の底面のうち中心面Oとは反対側の端部の近傍にノズルNの第1区間n1が形成される。その他の構成は第1実施形態と同様である。例えば、第2実施形態においても、循環路72のうち循環液室65に重なる部分の流路長Laは、循環路72のうち流路形成部30の隔壁部69に重なる部分の流路長Lcよりも長い(La>Lc)。 In the first embodiment, the configuration in which the circulation path 72 and the nozzle N are separated from each other is illustrated. In the second embodiment, as understood from FIGS. 7 and 8, the circulation passage 72 and the nozzle N are continuous with each other. That is, one circulation path 72 of the first portion P1 is continued to one nozzle N of the first row L1, and one circulation path 72 of the second portion P2 is one nozzle N of the second row L2. To be continuous. Specifically, as illustrated in FIG. 8, the second section n2 of each nozzle N is continuous with the circulation path 72. That is, the circulation path 72 and the second section n2 are formed to have the same depth, and the inner circumferential surface of the circulation path 72 and the inner circumferential surface of the second section n2 are continuous with each other. In other words, the nozzle N (first section n1) may be formed at the bottom of one circulation path 72 extending in the X direction. Specifically, a first section n1 of the nozzle N is formed in the vicinity of the end of the bottom surface of the circulation path 72 opposite to the central plane O. The other configuration is the same as that of the first embodiment. For example, also in the second embodiment, the flow path length La of a portion overlapping the circulating fluid chamber 65 in the circulation path 72 is the flow path length Lc of a portion overlapping the partition portion 69 of the flow path forming portion 30 in the circulation path 72. Longer than (La> Lc).
 第2実施形態においても第1実施形態と同様の効果が実現される。また、第2実施形態では、各ノズルNの第2区間n2と循環路72とが相互に連続する。したがって、循環路72とノズルNとが相互に離間する第1実施形態の構成と比較して、ノズルNの近傍のインクを効率的に循環液室65に循環させることができるという効果は格別に顕著である。 Also in the second embodiment, the same effect as that of the first embodiment is realized. In the second embodiment, the second section n2 of each nozzle N and the circulation path 72 are continuous with each other. Therefore, as compared with the configuration of the first embodiment in which the circulation path 72 and the nozzle N are separated from each other, the effect that ink in the vicinity of the nozzle N can be efficiently circulated in the circulating liquid chamber 65 is outstanding. It is remarkable.
<第3実施形態>
 図9は、第3実施形態における液体噴射ヘッド26のうち循環液室65の近傍の部分を拡大した平面図および断面図である。図9に例示される通り、第3実施形態における第1流路基板32の表面Fbには、前述の第1実施形態と同様の循環液室65のほか、第1部分P1および第2部分P2の各々に対応する循環液室67が形成される。循環液室67は、連通路63およびノズルNを挟んで循環液室65とは反対側に形成されてY方向に延在する長尺状の有底孔(溝部)である。第1流路基板32の表面Fbに接合されたノズルプレート52により、循環液室65および循環液室67の各々の開口が閉塞される。
Third Embodiment
FIG. 9 is an enlarged plan view and a sectional view of a portion in the vicinity of the circulating liquid chamber 65 in the liquid jet head 26 in the third embodiment. As illustrated in FIG. 9, in the surface Fb of the first flow path substrate 32 in the third embodiment, in addition to the circulating fluid chamber 65 similar to the first embodiment described above, the first portion P1 and the second portion P2 A circulating fluid chamber 67 corresponding to each is formed. The circulating fluid chamber 67 is an elongated bottomed hole (groove) formed on the opposite side of the communicating passage 63 and the nozzle N to the circulating fluid chamber 65 and extending in the Y direction. The openings of the circulating fluid chamber 65 and the circulating fluid chamber 67 are closed by the nozzle plate 52 joined to the surface Fb of the first flow path substrate 32.
 第3実施形態の循環路72は、第1部分P1および第2部分P2の各々において、循環液室65と循環液室67とにわたるようにX方向に延在する溝部である。具体的には、循環路72のうち中心面O側(循環液室65側)の端部は平面視で循環液室65に重なり、循環路72のうち中心面Oとは反対側(循環液室67側)の端部は循環液室67に平面視で重なる。また、循環路72は平面視で連通路63に重なる。すなわち、各連通路63は、循環路72を介して循環液室65および循環液室67の双方に連通する。 The circulation path 72 of the third embodiment is a groove extending in the X direction so as to extend between the circulating fluid chamber 65 and the circulating fluid chamber 67 in each of the first portion P1 and the second portion P2. Specifically, the end of the circulation path 72 on the side of the center plane O (on the side of the circulation fluid chamber 65) overlaps the circulation fluid chamber 65 in plan view, and the side opposite to the center plane O of the circulation pathway 72 (circulation fluid The end of the chamber 67 side overlaps the circulating fluid chamber 67 in plan view. Further, the circulation passage 72 overlaps the communication passage 63 in plan view. That is, each communication passage 63 communicates with both the circulating fluid chamber 65 and the circulating fluid chamber 67 via the circulation passage 72.
 循環路72の底面にノズルN(第1区間n1)が形成される。具体的には、循環路72のうち平面視で連通路63に重なる部分の底面にノズルNの第1区間n1が形成される。第2実施形態と同様に、第3実施形態においても、循環路72とノズルN(第2区間n2)とが相互に連続する、と表現することも可能である。以上の説明から理解される通り、第1実施形態および第2実施形態では循環路72の端部に連通路63およびノズルNが位置するのに対し、第3実施形態では、X方向に延在する循環路72のうちの途中の部分に連通路63およびノズルNが位置する。 A nozzle N (first section n1) is formed at the bottom of the circulation passage 72. Specifically, a first section n1 of the nozzle N is formed on the bottom surface of a portion of the circulation path 72 overlapping the communication path 63 in a plan view. As in the second embodiment, it is also possible to express that the circulation path 72 and the nozzle N (second section n2) are continuous with each other in the third embodiment. As understood from the above description, in the first and second embodiments, the communication passage 63 and the nozzle N are located at the end of the circulation passage 72, whereas in the third embodiment, the communication passage 63 and the nozzle N extend in the X direction. The communication passage 63 and the nozzle N are located in the middle of the circulation passage 72.
 以上の説明から理解される通り、第3実施形態では、圧力室C内の圧力が変動すると、連通路63内を流動するインクの一部がノズルNから外部に噴射され、残りの一部が連通路63から循環路72を介して循環液室65および循環液室67の双方に供給される。循環液室67内のインクは、循環液室65内のインクとともに循環機構75により吸引され、循環機構75により気泡や異物が除去されるとともに増粘が低減されてから液体貯留室Rに供給される。 As understood from the above description, in the third embodiment, when the pressure in the pressure chamber C fluctuates, part of the ink flowing in the communication passage 63 is ejected from the nozzle N to the outside, and the remaining part is discharged. The fluid is supplied from the communication passage 63 to both the circulating fluid chamber 65 and the circulating fluid chamber 67 via the circulation passage 72. The ink in the circulating fluid chamber 67 is sucked by the circulating mechanism 75 together with the ink in the circulating fluid chamber 65, and bubbles and foreign substances are removed by the circulating mechanism 75 and thickening is reduced before being supplied to the liquid storage chamber R. Ru.
 第3実施形態においても第1実施形態と同様の効果が実現される。また、第3実施形態では、循環液室65に加えて循環液室67が形成されるから、第1実施形態と比較して循環量を充分に確保できるという利点がある。なお、図9では、第2実施形態と同様に循環路72とノズルNとを連続させた構成を例示したが、第3実施形態において、第1実施形態と同様に循環路72とノズルNとを相互に離間させることも可能である。 Also in the third embodiment, the same effect as that of the first embodiment is realized. Further, in the third embodiment, since the circulating fluid chamber 67 is formed in addition to the circulating fluid chamber 65, there is an advantage that the circulating amount can be sufficiently secured as compared with the first embodiment. Although FIG. 9 illustrates the configuration in which the circulation passage 72 and the nozzle N are continuous as in the second embodiment, the circulation passage 72 and the nozzle N are similar to the first embodiment in the third embodiment. Can also be spaced apart from one another.
<変形例>
 以上に例示した各形態は多様に変形され得る。前述の各形態に適用され得る具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は、相互に矛盾しない範囲で適宜に併合され得る。
<Modification>
Each form illustrated above can be variously deformed. The aspect of the specific deformation | transformation which may be applied to each above-mentioned form is illustrated below. Two or more aspects arbitrarily selected from the following exemplifications may be combined appropriately as long as they do not contradict each other.
(1)前述の各形態では、循環路72とノズルNの第2区間n2とで深さが同等である構成を例示したが、循環路72の深さと第2区間n2の深さとの関係は以上の例示に限定されない。例えば、図10の例示の通り第2区間n2よりも深い循環路72を形成した構成や、図11の例示の通り第2区間n2よりも浅い循環路72を形成した構成も採用され得る。図10の構成によれば、図11の構成と比較して循環路72の流路抵抗が小さいから、図11の構成と比較して循環量を多くすることが可能である。他方、図11の構成によれば、図10の構成と比較して循環路72の流路抵抗が大きいから、図10の構成と比較して噴射量を多くすることが可能である。 (1) In each of the above-described embodiments, the configuration in which the depths of the circulation passage 72 and the second section n2 of the nozzle N are equal is exemplified, but the relationship between the depth of the circulation path 72 and the depth of the second section n2 is It is not limited to the above examples. For example, a configuration in which the circulation path 72 deeper than the second section n2 is formed as illustrated in FIG. 10 or a configuration in which a circulation path 72 shallower than the second section n2 is formed as illustrated in FIG. According to the configuration of FIG. 10, since the flow path resistance of the circulation path 72 is smaller than that of the configuration of FIG. 11, it is possible to increase the amount of circulation compared to the configuration of FIG. On the other hand, according to the configuration of FIG. 11, since the flow path resistance of the circulation path 72 is large compared to the configuration of FIG. 10, it is possible to increase the injection amount compared to the configuration of FIG.
(2)前述の各形態では、循環路72の深さDaが一定である構成を例示したが、循環路72の深さをX方向の位置に応じて変化させることも可能である。例えば、図12に例示される通り、循環路72のうちの中間部分(例えば平面視で隔壁部69に重なる部分)が、当該中間部分からみて循環液室65側の部分およびノズルN側の部分よりも深い構成が想定される。図12の構成によれば、循環路72の深さDaが全長にわたり一定である構成と比較して循環路72の流路抵抗が小さい。したがって、循環量の確保が容易であるという利点がある。 (2) In each of the above-described embodiments, the configuration in which the depth Da of the circulation passage 72 is constant is illustrated, but it is also possible to change the depth of the circulation passage 72 according to the position in the X direction. For example, as illustrated in FIG. 12, the middle part of the circulation path 72 (for example, the part overlapping the partition 69 in plan view) is the part on the circulating fluid chamber 65 side and the part on the nozzle N side A deeper configuration is assumed. According to the configuration of FIG. 12, the flow path resistance of the circulation path 72 is smaller as compared with the configuration in which the depth Da of the circulation path 72 is constant over the entire length. Therefore, there is an advantage that securing of circulation amount is easy.
(3)前述の各形態では、循環路72の流路幅WaがノズルNの最大径(第2区間n2の内径d2)と同等である構成を例示したが、流路幅Waは以上の例示に限定されない。例えば、循環路72の流路幅WaがノズルNの最大径(例えば第2区間n2の内径d2)よりも小さい構成も採用され得る。以上の構成によれば、循環路72がノズルNの最大径よりも大きい構成と比較して循環路72の流路抵抗が大きい。したがって、噴射量を多くすることが可能である。また、循環路72の流路幅Waが第1区間n1の内径d1よりも大きい構成も採用され得る。以上の構成によれば、循環量の確保と噴射量の確保との両立が可能である。 (3) In each of the above-described embodiments, the flow path width Wa of the circulation path 72 is exemplified to be equal to the maximum diameter of the nozzle N (inner diameter d2 of the second section n2). It is not limited to. For example, a configuration in which the flow passage width Wa of the circulation passage 72 is smaller than the maximum diameter of the nozzle N (for example, the inner diameter d2 of the second section n2) may be employed. According to the above configuration, the flow path resistance of the circulation path 72 is large as compared with the structure in which the circulation path 72 is larger than the maximum diameter of the nozzle N. Therefore, it is possible to increase the injection amount. Also, a configuration in which the flow passage width Wa of the circulation passage 72 is larger than the inner diameter d1 of the first section n1 may be employed. According to the above configuration, it is possible to achieve both the securing of the circulation amount and the securing of the injection amount.
(4)前述の各形態では、循環路72の流路幅Waが一定である構成を形成したが、循環路72の流路幅をX方向の位置に応じて変化させることも可能である。例えば、図13に例示される通り、循環路72のうち循環液室65側の部分の流路幅がノズルN側の流路幅よりも広い構成が採用され得る。具体的には、循環路72の流路幅が、ノズル側の端部から循環液室65側の端部にかけて単調に増加する平面形状となるように循環路72が形成される。図13の構成によれば、連通路63から循環液室65に向けてインクが循環路72を流れ易い。したがって、循環量の確保が容易であるという利点がある。 (4) In the above-described embodiments, the flow passage width Wa of the circulation passage 72 is constant, but it is also possible to change the flow passage width of the circulation passage 72 according to the position in the X direction. For example, as illustrated in FIG. 13, a configuration may be employed in which the channel width of the portion on the circulating fluid chamber 65 side of the circulation channel 72 is wider than the channel width on the nozzle N side. Specifically, the circulation passage 72 is formed so that the flow passage width of the circulation passage 72 has a planar shape that monotonously increases from the end on the nozzle side to the end on the circulating fluid chamber 65 side. According to the configuration of FIG. 13, the ink easily flows in the circulation passage 72 from the communication passage 63 toward the circulating liquid chamber 65. Therefore, there is an advantage that securing of circulation amount is easy.
 また、図14に例示される通り、循環路72のうち中間部分(例えば平面視で隔壁部69に重なる部分)の流路幅が、中間部分からみて循環液室65側の部分の流路幅およびノズルN側の部分の流路幅よりも狭い構成も採用され得る。すなわち、循環路72の途中の部分(例えば平面視で隔壁部69に重なる部分)において流路幅が最小となるように、循環路72の両端部から中間部分にかけて流路幅が単調に減少する。図14の構成によれば、循環路72の流路幅が一定である構成と比較して循環路72の流路抵抗が大きい。したがって、噴射量を多くすることが可能である。 Further, as illustrated in FIG. 14, the flow passage width of the middle portion (for example, the portion overlapping the partition portion 69 in plan view) of the circulation passage 72 is the flow passage width of the portion on the circulating liquid chamber 65 side as viewed from the middle portion. A configuration narrower than the channel width of the portion on the side of the nozzle N and the nozzle N may also be employed. That is, the flow passage width monotonously decreases from both ends of the circulation passage 72 to the middle portion so that the flow passage width becomes minimum at a part in the middle of the circulation passage 72 (for example, a part overlapping the partition 69 in plan view). . According to the configuration of FIG. 14, the flow path resistance of the circulation path 72 is large as compared with the configuration in which the flow path width of the circulation path 72 is constant. Therefore, it is possible to increase the injection amount.
 図15に例示される通り、循環路72のうち中間部分(例えば平面視で隔壁部69に重なる部分)の流路幅が、中間部分からみて循環液室65側の部分の流路幅およびノズルN側の部分の流路幅よりも広い構成も採用され得る。すなわち、循環路72の途中の部分(例えば平面視で隔壁部69に重なる部分)において流路幅が最大となるように、循環路72の両端部から中間部分にかけて流路幅が単調に増加する。図15の構成によれば、循環路72の流路幅が一定である構成と比較して循環路72の流路抵抗が小さい。したがって、循環量を多くすることが可能である。 As illustrated in FIG. 15, the flow passage width of the middle portion (for example, the portion overlapping the partition portion 69 in plan view) of the circulation path 72 is the flow passage width of the portion on the circulation liquid chamber 65 side and the nozzle A configuration wider than the channel width of the N-side portion may also be employed. That is, the flow passage width monotonously increases from both ends of the circulation passage 72 to the middle portion so that the flow passage width becomes maximum at a middle portion of the circulation passage 72 (for example, a portion overlapping the partition 69 in plan view). . According to the configuration of FIG. 15, the flow path resistance of the circulation path 72 is smaller as compared with the configuration in which the flow path width of the circulation path 72 is constant. Therefore, it is possible to increase the amount of circulation.
 なお、第1流路基板32の隔壁部69の機械的な強度を確保するためには隔壁部69を厚く形成する必要がある。しかし、隔壁部69が厚い(流路長Lcが大きい)ほど循環路72の流路抵抗が増大する。図15の構成によれば、充分な強度が実現される程度に隔壁部69の厚さを確保した場合でも、循環路72の中間部分を広くすることで循環路72の流路抵抗を低減できるという利点がある。すなわち、隔壁部69の強度の確保と循環路72の流路抵抗の低減とを両立することが可能である。 In order to secure mechanical strength of the partition portion 69 of the first flow path substrate 32, the partition portion 69 needs to be formed thick. However, the flow path resistance of the circulation path 72 increases as the partition portion 69 is thicker (the flow path length Lc is larger). According to the configuration of FIG. 15, even when the thickness of the partition portion 69 is secured to a degree that a sufficient strength is realized, the flow path resistance of the circulation path 72 can be reduced by widening the middle portion of the circulation path 72. It has the advantage of That is, it is possible to achieve both the securing of the strength of the partition portion 69 and the reduction of the flow path resistance of the circulation path 72.
(5)前述の各形態では、ノズルNの中心軸Qaが連通路63の中心軸Qbからみて循環液室65とは反対側に位置する構成を例示したが、ノズルNの中心軸Qaと連通路63の中心軸Qbとの関係は以上の例示に限定されない。例えば、図16に例示される通り、ノズルNの中心軸Qaと連通路63の中心軸Qbとを同じ位置とすることも可能である。図16の構成によれば、中心軸Qaと中心軸Qbとが相異なる位置にある構成と比較して、噴射量の確保と循環量の確保とを両立し易いという利点がある。 (5) In each embodiment described above, the central axis Qa of the nozzle N is located on the opposite side of the circulating fluid chamber 65 when viewed from the central axis Qb of the communication passage 63. The relationship between the passage 63 and the central axis Qb is not limited to the above example. For example, as illustrated in FIG. 16, the central axis Qa of the nozzle N and the central axis Qb of the communication passage 63 may be at the same position. According to the configuration of FIG. 16, there is an advantage that it is easy to achieve both securing of the injection amount and securing of the circulating amount, as compared with the configuration in which the central axis Qa and the central axis Qb are at different positions.
 また、図17に例示される通り、ノズルNの中心軸Qaが連通路63の中心軸Qbからみて循環液室65側(中心面O側)に位置する構成も採用され得る。図17の構成によれば、ノズルNの中心軸Qaが連通路63の中心軸Qbからみて循環液室65とは反対側に位置する構成(例えば第1実施形態)と比較して、循環量を増加させるとともに噴射量を低減することが可能である。他方、前述の各形態のようにノズルNの中心軸Qaが連通路63の中心軸Qbからみて循環液室65とは反対側に位置する構成によれば、図17の構成と比較して、循環量を低減するとともに噴射量を増加させることが可能である。 Further, as exemplified in FIG. 17, a configuration in which the central axis Qa of the nozzle N is located on the circulating fluid chamber 65 side (central plane O side) with respect to the central axis Qb of the communication passage 63 may be employed. According to the configuration of FIG. 17, compared to the configuration (for example, the first embodiment) in which the central axis Qa of the nozzle N is located on the opposite side to the circulating fluid chamber 65 when viewed from the central axis Qb of the communication passage 63 It is possible to reduce the injection amount while increasing the On the other hand, according to the configuration in which the central axis Qa of the nozzle N is located on the opposite side of the circulating fluid chamber 65 when viewed from the central axis Qb of the communication passage 63 as in each of the embodiments described above, compared with the configuration of FIG. It is possible to reduce the amount of circulation and to increase the amount of injection.
(6)前述の各形態では、Y-Z平面に平行な側面とX-Y平面に平行な上面(天井面)とで画定される形状の循環液室65を例示したが、循環液室65の形状は以上の例示に限定されない。例えば、図18に例示される通り、X-Y平面に平行な上面に対して側面が傾斜した形状の循環液室65を第1流路基板32に形成することも可能である。具体的には、循環液室65の流路幅(X方向の寸法)がZ方向の正側の位置ほど増加するように、循環液室65の側面は上面に対して傾斜する。 (6) In each of the above-described embodiments, the circulating fluid chamber 65 having a shape defined by the side surface parallel to the YZ plane and the upper surface (ceiling surface) parallel to the XY plane has been illustrated. The shape of is not limited to the above examples. For example, as illustrated in FIG. 18, it is also possible to form in the first flow path substrate 32 a circulating fluid chamber 65 whose side surface is inclined with respect to the upper surface parallel to the XY plane. Specifically, the side surface of the circulating fluid chamber 65 is inclined with respect to the upper surface such that the channel width (dimension in the X direction) of the circulating fluid chamber 65 increases as the position on the positive side in the Z direction.
 図18の構成によれば、循環液室65の側面がY-Z平面に平行である前述の各形態の構成と比較して隔壁部69が厚く形成されるから、隔壁部69の機械的な強度を充分に確保できるという利点がある。なお、配線基板28の実装時に第1流路基板32がZ方向に押圧されることを考慮すると、隔壁部69の機械的な強度を確保できる図18の構成は、第1流路基板32の破損等を防止する観点から有効である。また、図18の例示のように循環液室65の側面が傾斜した構成によれば、循環液室65内をインクが流通し易いという利点もある。なお、以上の説明では循環液室65に着目したが、第3実施形態で例示した循環液室67についても同様に、X-Y平面に平行な上面に対して側面が傾斜した形状を採用することが可能である。なお、図18において、循環路72のうち流路形成部30の隔壁部69に重なる部分の流路長Lcは、循環路72のうち隔壁部69の表面Fbに重なる部分の長さである。 According to the configuration of FIG. 18, the partition 69 is formed thicker than in the above-described configurations in which the side surface of the circulating fluid chamber 65 is parallel to the YZ plane. There is an advantage that sufficient strength can be secured. The configuration of FIG. 18 which can ensure the mechanical strength of the partition portion 69 is the same as that of the first flow path substrate 32, considering that the first flow path substrate 32 is pressed in the Z direction when the wiring substrate 28 is mounted. It is effective from the viewpoint of preventing damage and the like. Further, according to the configuration in which the side surface of the circulating fluid chamber 65 is inclined as illustrated in FIG. 18, there is also an advantage that the ink can easily flow in the circulating fluid chamber 65. In the above description, attention was paid to the circulating fluid chamber 65, but similarly for the circulating fluid chamber 67 exemplified in the third embodiment, a shape in which the side surface is inclined with respect to the upper surface parallel to the XY plane is adopted. It is possible. In FIG. 18, the flow path length Lc of the portion of the circulation path 72 overlapping the partition portion 69 of the flow path forming portion 30 is the length of the portion of the circulation path 72 overlapping the surface Fb of the partition portion 69.
(7)図19に例示される通り、圧力室Cのうち連通路63側(中心面O側)の端面を、圧力室Cの上面(振動部42の下面)に対して傾斜した傾斜面342とした構成も好適である。図19から理解される通り、振動部42のうち第2流路基板34から露出した領域(傾斜面342で覆われていない領域)344は、平面視で循環路72と重ならない。図19の領域344は、圧力室Cの上面(天井面)を構成する。 (7) As illustrated in FIG. 19, an end face of the pressure chamber C on the communication passage 63 side (central plane O side) is inclined with respect to the upper surface of the pressure chamber C (lower surface of the vibrating portion 42). The configuration is also suitable. As understood from FIG. 19, the area (area not covered by the inclined surface 342) 344 of the vibrating portion 42 exposed from the second flow path substrate 34 does not overlap with the circulation path 72 in a plan view. A region 344 in FIG. 19 constitutes the upper surface (ceiling surface) of the pressure chamber C.
(8)図20に例示される通り、第1部分P1の循環路72(第1循環路)と第2部分P2の循環路72(第2循環路)とに連続する流路(以下「共通循環路」という)73をノズルプレート52に形成することも可能である。共通循環路73は、ノズルプレート52において流路形成部30に対向する表面に形成された窪みである。共通循環路73は、各循環路72と同等の深さに形成される。図20に例示された共通循環路73は、循環液室65に平面視で重なる(具体的には共通循環路73の周縁が循環液室65の周縁に内包される)ようにY方向に延在する。共通循環路73の幅(X方向の寸法)は、循環液室65の幅(X方向の寸法)よりも狭い。 (8) As exemplified in FIG. 20, a flow path (hereinafter referred to as “common to be continuous with the circulation path 72 (first circulation path) of the first portion P1 and the circulation path 72 (second circulation path) of the second portion P2. It is also possible to form the circulation path 73) in the nozzle plate 52. The common circulation passage 73 is a recess formed on the surface of the nozzle plate 52 facing the flow passage forming portion 30. The common circulation passage 73 is formed at the same depth as each circulation passage 72. The common circulation path 73 illustrated in FIG. 20 extends in the Y direction so as to overlap the circulating fluid chamber 65 in plan view (specifically, the peripheral edge of the common circulating channel 73 is included in the peripheral edge of the circulating fluid chamber 65) Exist. The width (dimension in the X direction) of the common circulation path 73 is narrower than the width (dimension in the X direction) of the circulating fluid chamber 65.
 図20に例示される通り、第1部分P1の複数の循環路72の各々におけるX方向の負側の端部が、共通循環路73におけるX方向の正側の周縁に連続する。同様に、第2部分P2の複数の循環路72の各々におけるX方向の正側の端部が、共通循環路73におけるX方向の負側の周縁に連続する。すなわち、第1部分P1における複数の循環路72の配列と、第2部分P2における複数の循環路72の配列との間に、共通循環路73が形成される。共通循環路73におけるX方向の正側の周縁から、第1部分P1の複数の循環路72がX方向の正側に延在し、共通循環路73におけるX方向の負側の周縁から、第2部分P2の複数の循環路72がX方向の負側に延在する、とも換言され得る。 As illustrated in FIG. 20, the X-direction negative end of each of the plurality of circulation paths 72 of the first portion P1 is continuous with the X-direction positive circumference of the common circulation path 73. Similarly, the end on the positive side in the X direction of each of the plurality of circulation paths 72 of the second portion P2 is continuous with the peripheral edge on the negative side in the X direction of the common circulation path 73. That is, the common circulation passage 73 is formed between the arrangement of the plurality of circulation passages 72 in the first portion P1 and the arrangement of the plurality of circulation passages 72 in the second portion P2. A plurality of circulation paths 72 of the first portion P1 extend from the peripheral edge on the positive side in the X direction in the common circulation path 73 to the positive side in the X direction, and from the peripheral edge on the negative side in the X direction in the common circulation path 73 In other words, the plurality of circulation paths 72 of the two-part P2 extend on the negative side in the X direction.
 以上に例示した通り、共通循環路73がノズルプレート52に形成された図20の構成によれば、共通循環路73が形成されない構成(例えば前述の各形態)と比較して、各循環路72から循環液室65に供給されるインクの流路面積を増加させる(したがって流路抵抗を低減する)ことが可能である。なお、共通循環路73をノズルプレート52に形成した構成は、前述した何れの形態(第1実施形態から第3実施形態および各変形例)にも同様に適用される。 As exemplified above, according to the configuration of FIG. 20 in which the common circulation passage 73 is formed in the nozzle plate 52, each circulation passage 72 is compared with a configuration in which the common circulation passage 73 is not formed (for example, each form described above). It is possible to increase the flow area of the ink supplied to the circulating liquid chamber 65 (thereby reducing the flow resistance). The configuration in which the common circulation path 73 is formed in the nozzle plate 52 is similarly applied to any of the above-described embodiments (the first to third embodiments and each modification).
(9)前述の各形態では、第1列L1に関連する要素と第2列L2に関連する要素とが中心面Oを挟んで面対称に配置された構成を例示したが、面対称の構成は必須ではない。例えば、第1列L1のみに対応する要素を前述の各形態と同様に配置した構成も採用され得る。また、前述の各形態では循環路72をノズルプレート52に形成した構成を例示したが、各連通路63を循環液室65に連通させる流路を流路形成部30(例えば第1流路基板32の表面Fb)に形成することも可能である。 (9) In each of the above-described embodiments, the elements related to the first row L1 and the elements related to the second row L2 are arranged symmetrically with respect to the center plane O. Is not required. For example, a configuration in which elements corresponding to only the first row L1 are arranged in the same manner as in the above-described embodiments may be employed. Further, although the configuration in which the circulation path 72 is formed in the nozzle plate 52 is illustrated in the above-described embodiments, the flow path forming portion 30 (for example, the first flow path substrate) It is also possible to form on the 32 surfaces Fb).
(10)圧力室Cの内部に圧力を付与する要素(圧力発生部)は、前述の各形態で例示した圧電素子44に限定されない。例えば、加熱により圧力室Cの内部に気泡を発生させて圧力を変動させる発熱素子を圧力発生部として利用することも可能である。発熱素子は、駆動信号の供給により発熱体が発熱する部分(具体的には圧力室C内に気泡を発生させる領域)である。以上の例示から理解される通り、圧力発生部は、圧力室C内の液体をノズルNから噴射させる要素(典型的には圧力室Cの内部に圧力を付与する要素)として包括的に表現され、動作方式(圧電方式/熱方式)や具体的な構成の如何は不問である。 (10) The element (pressure generating unit) for applying pressure to the inside of the pressure chamber C is not limited to the piezoelectric element 44 exemplified in the above-described embodiments. For example, it is also possible to use a heating element that generates air bubbles inside the pressure chamber C by heating to change the pressure as a pressure generation unit. The heat generating element is a portion where the heat generating element generates heat by the supply of the drive signal (specifically, a region where air bubbles are generated in the pressure chamber C). As understood from the above examples, the pressure generating portion is comprehensively expressed as an element which causes the liquid in the pressure chamber C to be jetted from the nozzle N (typically, an element which applies a pressure to the inside of the pressure chamber C). The operation method (piezoelectric method / thermal method) and the specific configuration are irrelevant.
(11)前述の各形態では、液体噴射ヘッド26を搭載した搬送体242を往復させるシリアル方式の液体噴射装置100を例示したが、複数のノズルNが媒体12の全幅にわたり分布するライン方式の液体噴射装置にも本発明を適用することが可能である。 (11) In each of the above-described embodiments, the serial type liquid ejecting apparatus 100 for reciprocating the transport body 242 having the liquid ejecting head 26 mounted is illustrated, but a line type liquid in which a plurality of nozzles N are distributed over the entire width of the medium 12 It is possible to apply the present invention to an injector.
(12)前述の各形態で例示した液体噴射装置100は、印刷に専用される機器のほか、ファクシミリ装置やコピー機等の各種の機器に採用され得る。もっとも、本発明の液体噴射装置の用途は印刷に限定されない。例えば、色材の溶液を噴射する液体噴射装置は、液晶表示装置のカラーフィルターを形成する製造装置として利用される。また、導電材料の溶液を噴射する液体噴射装置は、配線基板の配線や電極を形成する製造装置として利用される。 (12) The liquid ejecting apparatus 100 exemplified in each of the above-described embodiments may be adopted to various apparatuses such as a facsimile machine and a copier other than the apparatus dedicated to printing. However, the application of the liquid ejecting apparatus of the present invention is not limited to printing. For example, a liquid ejecting apparatus that ejects a color material solution is used as a manufacturing apparatus that forms a color filter of a liquid crystal display device. In addition, a liquid ejecting apparatus that ejects a solution of a conductive material is used as a manufacturing apparatus that forms wiring and electrodes of a wiring board.
100…液体噴射装置、12…媒体、14…液体容器、20…制御ユニット、22…搬送機構、24…移動機構、242…搬送体、244…搬送ベルト、26…液体噴射ヘッド、28…配線基板、30…流路形成部、32…第1流路基板、34…第2流路基板、42…振動部、44…圧電素子、46…保護部材、48…筐体部、482…導入口、52…ノズルプレート、54…吸振体、61…供給路、63…連通路、65,67…循環液室、67…循環液室、69…隔壁部、n1…第1区間、n2…第2区間、72…循環路、75…循環機構。 DESCRIPTION OF SYMBOLS 100 ... Liquid ejection apparatus, 12 ... Medium, 14 ... Liquid container, 20 ... Control unit, 22 ... Transport mechanism, 24 ... Movement mechanism, 242 ... Transport body, 244 ... Transport belt, 26 ... Liquid ejection head, 28 ... Wiring board , 30: flow passage forming portion, 32: first flow passage substrate, 34: second flow passage substrate, 42: vibration portion, 44: piezoelectric element, 46: protection member, 48: housing portion, 482: introduction port, 52: nozzle plate, 54: vibration absorber, 61: supply passage, 63: communication passage, 65, 67: circulating fluid chamber, 67: circulating fluid chamber, 69: partition wall, n1: first section, n2: second section , 72 ... circulation path, 75 ... circulation mechanism.

Claims (27)

  1.  第1ノズルおよび第2ノズルが設けられたノズルプレートと、
     液体が供給される第1圧力室および第2圧力室と、前記第1ノズルと前記第1圧力室とを連通させる第1連通路と、前記第2ノズルと前記第2圧力室とを連通させる第2連通路と、前記第1連通路と前記第2連通路との間に位置する循環液室とが設けられた流路形成部と、
     前記第1圧力室および前記第2圧力室の各々に圧力変化を発生させる圧力発生部とを具備し、
     前記ノズルプレートには、前記第1連通路と前記循環液室とを連通させる第1循環路、および、前記第2連通路と前記循環液室とを連通させる第2循環路が設けられる
     液体噴射ヘッド。
    A nozzle plate provided with a first nozzle and a second nozzle;
    The first pressure chamber and the second pressure chamber to which the liquid is supplied, the first communication passage connecting the first nozzle and the first pressure chamber, the second nozzle and the second pressure chamber are communicated. A flow passage forming portion provided with a second communication passage, and a circulating fluid chamber positioned between the first communication passage and the second communication passage;
    A pressure generating unit for generating a pressure change in each of the first pressure chamber and the second pressure chamber;
    The nozzle plate is provided with a first circulation passage connecting the first communication passage and the circulating fluid chamber, and a second circulation passage connecting the second communication passage and the circulating fluid chamber. head.
  2.  前記第1ノズルは、第1区間と、前記第1区間よりも大径であり当該第1区間からみて前記流路形成部側に位置する第2区間とを含む
     請求項1の液体噴射ヘッド。
    2. The liquid jet head according to claim 1, wherein the first nozzle includes a first section, and a second section which is larger in diameter than the first section and located on the flow path forming portion side with respect to the first section.
  3.  前記第1循環路は、前記第2区間と同一の深さである
     請求項2の液体噴射ヘッド。
    The liquid jet head according to claim 2, wherein the first circulation path has the same depth as the second section.
  4.  前記第1循環路は、前記第2区間よりも深い
     請求項2の液体噴射ヘッド。
    The liquid jet head according to claim 2, wherein the first circulation path is deeper than the second section.
  5.  前記第1循環路は、前記第2区間よりも浅い
     請求項2の液体噴射ヘッド。
    The liquid jet head according to claim 2, wherein the first circulation path is shallower than the second section.
  6.  前記第2区間は、前記第1循環路に連続する
     請求項2から請求項5の何れかの液体噴射ヘッド。
    The liquid jet head according to any one of claims 2 to 5, wherein the second section is continuous with the first circulation path.
  7.  前記第1ノズルと前記第1循環路とは、前記ノズルプレートの面内において相互に離間する
     請求項1から請求項5の何れかの液体噴射ヘッド。
    The liquid jet head according to any one of claims 1 to 5, wherein the first nozzle and the first circulation path are separated from each other in a plane of the nozzle plate.
  8.  前記第1循環路のうち前記循環液室に重なる部分の流路長Laと、前記第1循環路のうち前記第1連通路に重なる部分の流路長Lbとは、La>Lbを満たす
     請求項7の液体噴射ヘッド。
    A flow path length La of a portion overlapping the circulating fluid chamber in the first circulation path and a flow path length Lb of a portion overlapping the first communication path in the first circulation path satisfy La> Lb. 8. A liquid jet head according to item 7.
  9.  前記第1循環路のうち、前記流路形成部における前記第1連通路と前記循環液室との間の隔壁部に重なる部分の流路長Lcは、La>Lb>Lcを満たす
     請求項8の液体噴射ヘッド。
    A flow path length Lc of a portion of the first circulation path that overlaps the partition wall portion between the first communication path and the circulating fluid chamber in the flow path formation portion satisfies La>Lb> Lc. Liquid jet head.
  10.  前記第1循環路のうち前記循環液室に重なる部分の流路長Laと、前記第1循環路のうち、前記流路形成部における前記第1連通路と前記循環液室との間の隔壁部に重なる部分の流路長Lcとは、La>Lcを満たす
     請求項6または請求項7の液体噴射ヘッド。
    A flow path length La of a portion of the first circulation path overlapping the circulation liquid chamber, and a partition between the first communication path and the circulation liquid chamber in the flow path formation portion of the first circulation path The liquid jet head according to claim 6, wherein a flow path length Lc of a portion overlapping the portion satisfies La> Lc.
  11.  前記第1循環路の流路幅は、前記第1ノズルの最大径よりも小さい
     請求項1から請求項10の何れかの液体噴射ヘッド。
    The liquid jet head according to any one of claims 1 to 10, wherein a flow passage width of the first circulation passage is smaller than a maximum diameter of the first nozzle.
  12.  前記第1循環路の流路幅は、前記第1圧力室の流路幅よりも小さい
     請求項1から請求項11の何れかの液体噴射ヘッド。
    The liquid jet head according to any one of claims 1 to 11, wherein a flow passage width of the first circulation passage is smaller than a flow passage width of the first pressure chamber.
  13.  前記第1循環路のうち前記循環液室側の部分の流路幅は、前記第1ノズル側の部分の流路幅よりも広い
     請求項1から請求項12の何れかの液体噴射ヘッド。
    The liquid jet head according to any one of claims 1 to 12, wherein a flow passage width of a portion on the circulation liquid chamber side of the first circulation passage is wider than a flow passage width of a portion on the first nozzle side.
  14.  前記第1循環路のうち中間部分の流路幅は、前記中間部分からみて前記循環液室側の部分の流路幅および前記第1ノズル側の部分の流路幅よりも狭い
     請求項1から請求項12の何れかの液体噴射ヘッド。
    The flow passage width of the middle portion of the first circulation passage is narrower than the flow passage width of the portion on the circulating fluid chamber side and the flow passage width of the portion on the first nozzle side as viewed from the middle portion. The liquid jet head according to claim 12.
  15.  前記第1循環路のうち中間部分の流路幅は、前記中間部分からみて前記循環液室側の部分の流路幅および前記第1ノズル側の部分の流路幅よりも広い
     請求項1から請求項12の何れかの液体噴射ヘッド。
    The flow passage width of the middle portion of the first circulation passage is wider than the flow passage width of the portion on the circulating fluid chamber side and the flow passage width of the portion on the first nozzle side as viewed from the middle portion. The liquid jet head according to claim 12.
  16.  前記第1ノズルの中心軸は、前記第1連通路の中心軸からみて前記循環液室とは反対側に位置する
     請求項1から請求項15の何れかの液体噴射ヘッド。
    The liquid jet head according to any one of claims 1 to 15, wherein a central axis of the first nozzle is located on the opposite side of the circulating liquid chamber when viewed from a central axis of the first communication passage.
  17.  前記第1ノズルの中心軸は、前記第1連通路の中心軸と同じ位置にある
     請求項1から請求項15の何れかの液体噴射ヘッド。
    The liquid jet head according to any one of claims 1 to 15, wherein a central axis of the first nozzle is at the same position as a central axis of the first communication passage.
  18.  前記第1ノズルの中心軸は、前記第1連通路の中心軸からみて前記循環液室側に位置する
     請求項1から請求項15の何れかの液体噴射ヘッド。
    The liquid jet head according to any one of claims 1 to 15, wherein a central axis of the first nozzle is located on the circulating liquid chamber side with respect to a central axis of the first communication passage.
  19.  前記第1循環路のうち中間部分は、前記中間部分からみて前記循環液室側の部分および前記第1ノズル側の部分よりも深い
     請求項1から請求項18の何れかの液体噴射ヘッド。
    The liquid jet head according to any one of claims 1 to 18, wherein an intermediate portion of the first circulation path is deeper than a portion on the circulating fluid chamber side and a portion on the first nozzle side as viewed from the intermediate portion.
  20.  前記第1圧力室に圧力変化を発生させた場合に、前記第1循環路を介して循環液室に供給される液体の量は、前記第1ノズルから噴射される液体の量よりも多い
     請求項1から請求項19の何れかの液体噴射ヘッド。
    When a pressure change occurs in the first pressure chamber, the amount of liquid supplied to the circulating fluid chamber through the first circulation path is larger than the amount of liquid injected from the first nozzle. 20. A liquid jet head according to any one of claims 1 to 19.
  21.  前記第1循環路と前記循環液室とは相互に重なり、
     前記第1循環路と前記第1圧力室とは相互に重なり、
     前記循環液室と前記第1圧力室とは相互に重ならない
     請求項1から請求項20の何れかの液体噴射ヘッド。
    The first circulation path and the circulating fluid chamber overlap each other,
    The first circulation passage and the first pressure chamber overlap each other,
    The liquid jet head according to any one of claims 1 to 20, wherein the circulating fluid chamber and the first pressure chamber do not overlap with each other.
  22.  前記第1循環路と前記循環液室とは相互に重なり、
     前記第1循環路と前記圧力発生部とは相互に重なり、
     前記循環液室と前記圧力発生部とは相互に重ならない
     請求項1から請求項20の何れかの液体噴射ヘッド。
    The first circulation path and the circulating fluid chamber overlap each other,
    The first circulation passage and the pressure generating portion overlap each other,
    The liquid jet head according to any one of claims 1 to 20, wherein the circulating fluid chamber and the pressure generator do not overlap with each other.
  23.  前記第1圧力室のうち前記第1連通路側の端面は、当該第1圧力室の上面に対して傾斜した傾斜面であり、
     前記第1循環路と前記第1圧力室の上面とは相互に重ならない
     請求項1から請求項20の何れかの液体噴射ヘッド。
    The end face of the first pressure chamber on the side of the first communication passage is an inclined surface inclined with respect to the upper surface of the first pressure chamber,
    The liquid jet head according to any one of claims 1 to 20, wherein the first circulation path and the upper surface of the first pressure chamber do not overlap with each other.
  24.  前記第1圧力室と前記循環液室とは、前記第1連通路と前記第1循環路とを介して連通する
     請求項1から請求項23の何れかの液体噴射ヘッド。
    The liquid jet head according to any one of claims 1 to 23, wherein the first pressure chamber and the circulating fluid chamber communicate with each other through the first communication passage and the first circulation passage.
  25.  前記ノズルプレートおよび流路形成部の各々は、シリコンで形成された基板を含む
     請求項1から請求項24の何れかの液体噴射ヘッド。
    The liquid jet head according to any one of claims 1 to 24, wherein each of the nozzle plate and the flow path forming portion includes a substrate formed of silicon.
  26.  前記ノズルプレートには、前記第1循環路と前記第2循環路とに連続する共通循環路が設けられる
     請求項1から請求項25の何れかの液体噴射ヘッド。
    The liquid jet head according to any one of claims 1 to 25, wherein the nozzle plate is provided with a common circulation passage which is continuous with the first circulation passage and the second circulation passage.
  27.  請求項1から請求項26の何れかの液体噴射ヘッドを具備する液体噴射装置。 A liquid ejecting apparatus comprising the liquid ejecting head according to any one of claims 1 to 26.
PCT/JP2017/043810 2016-12-22 2017-12-06 Liquid ejection head and liquid ejection device WO2018116833A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/472,781 US10987928B2 (en) 2016-12-22 2017-12-06 Liquid ejecting head and liquid ejecting apparatus
CN201780078690.4A CN110114222B (en) 2016-12-22 2017-12-06 Liquid ejecting head and liquid ejecting apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016249118 2016-12-22
JP2016-249118 2016-12-22
JP2017-077593 2017-04-10
JP2017077593A JP6969139B2 (en) 2016-12-22 2017-04-10 Liquid injection head and liquid injection device

Publications (1)

Publication Number Publication Date
WO2018116833A1 true WO2018116833A1 (en) 2018-06-28

Family

ID=62627489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043810 WO2018116833A1 (en) 2016-12-22 2017-12-06 Liquid ejection head and liquid ejection device

Country Status (1)

Country Link
WO (1) WO2018116833A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100018A (en) * 2018-12-20 2020-07-02 セイコーエプソン株式会社 Liquid jet head and liquid jet device
US11554584B2 (en) * 2020-01-31 2023-01-17 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051155A (en) * 2009-08-31 2011-03-17 Konica Minolta Holdings Inc Ink jet head
US20130257994A1 (en) * 2012-03-28 2013-10-03 Hrishikesh V. Panchawagh Functional liquid deposition using continuous liquid
JP2015134507A (en) * 2015-05-08 2015-07-27 セイコーエプソン株式会社 Liquid ejecting head, and liquid ejecting apparatus
JP2016124146A (en) * 2014-12-26 2016-07-11 キヤノン株式会社 Liquid discharge head and liquid discharge device
JP2016147442A (en) * 2015-02-13 2016-08-18 セイコーエプソン株式会社 Inkjet head and inkjet printer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051155A (en) * 2009-08-31 2011-03-17 Konica Minolta Holdings Inc Ink jet head
US20130257994A1 (en) * 2012-03-28 2013-10-03 Hrishikesh V. Panchawagh Functional liquid deposition using continuous liquid
JP2016124146A (en) * 2014-12-26 2016-07-11 キヤノン株式会社 Liquid discharge head and liquid discharge device
JP2016147442A (en) * 2015-02-13 2016-08-18 セイコーエプソン株式会社 Inkjet head and inkjet printer
JP2015134507A (en) * 2015-05-08 2015-07-27 セイコーエプソン株式会社 Liquid ejecting head, and liquid ejecting apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100018A (en) * 2018-12-20 2020-07-02 セイコーエプソン株式会社 Liquid jet head and liquid jet device
JP7155997B2 (en) 2018-12-20 2022-10-19 セイコーエプソン株式会社 Liquid ejecting head and liquid ejecting device
US11554584B2 (en) * 2020-01-31 2023-01-17 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus

Similar Documents

Publication Publication Date Title
JP6969139B2 (en) Liquid injection head and liquid injection device
JP7069909B2 (en) Liquid discharge head and liquid discharge device
US20170225457A1 (en) Liquid ejecting head and liquid ejecting apparatus
JP7230980B2 (en) Liquid ejection head and liquid ejection device
US10507648B2 (en) Liquid ejecting head and liquid ejecting apparatus
WO2018116846A1 (en) Liquid ejection head and liquid ejection device
JP2017140821A (en) Liquid jetting head and liquid jetting device
WO2018116833A1 (en) Liquid ejection head and liquid ejection device
US10513115B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP7318399B2 (en) Liquid ejection head and liquid ejection device
WO2019167385A1 (en) Liquid discharge head and liquid discharge device
JP6648459B2 (en) Liquid ejection head and liquid ejection device
JP7139790B2 (en) LIQUID EJECTING HEAD AND LIQUID EJECTING APPARATUS
JP7102777B2 (en) Liquid discharge head and liquid discharge device
US10723129B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP7318398B2 (en) Liquid ejection head and liquid ejection device
CN111347783B (en) Liquid discharge head and liquid discharge apparatus
CN111347784B (en) Liquid discharge head and liquid discharge apparatus
JP2018103514A (en) Liquid discharge head and liquid discharge device
JP2017061061A (en) Liquid jet head and liquid jet device
JP2017124536A (en) Liquid jet head and liquid jet device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884114

Country of ref document: EP

Kind code of ref document: A1