WO2018116350A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2018116350A1
WO2018116350A1 PCT/JP2016/087787 JP2016087787W WO2018116350A1 WO 2018116350 A1 WO2018116350 A1 WO 2018116350A1 JP 2016087787 W JP2016087787 W JP 2016087787W WO 2018116350 A1 WO2018116350 A1 WO 2018116350A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
metal film
light
emitting device
Prior art date
Application number
PCT/JP2016/087787
Other languages
French (fr)
Japanese (ja)
Inventor
哲二 松尾
Original Assignee
サンケン電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンケン電気株式会社 filed Critical サンケン電気株式会社
Priority to JP2017529104A priority Critical patent/JP6414334B1/en
Priority to PCT/JP2016/087787 priority patent/WO2018116350A1/en
Publication of WO2018116350A1 publication Critical patent/WO2018116350A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes

Definitions

  • the present invention relates to a light emitting device to which a chip size package technology is applied.
  • a chip size package is applied to a light emitting device in order to improve the light emission efficiency and miniaturization of the light emitting device using a light emitting element such as a light emitting diode (LED) as a light source (for example, Patent Document 1). reference.).
  • a light emitting element such as a light emitting diode (LED) as a light source
  • Patent Document 1 a light emitting diode
  • the development of a structure in which the semiconductor substrate used for forming the semiconductor layer constituting the light emitting element is separated from the semiconductor layer and the semiconductor layer is enclosed in a package such as a resin is proceeding. It has been. In this structure, not a semiconductor substrate but a resin substrate or the like can be used as a support substrate that supports the light emitting element, so that an inexpensive light emitting device can be provided.
  • CSP structure In a light emitting device having a structure to which CSP is applied (hereinafter referred to as “CSP structure”), an electrode connected to the light emitting element is disposed on a surface opposite to the light extraction surface. For this reason, there is no thing which shields the emitted light of a light emitting element in the direction of a light extraction surface, and the luminous efficiency of a light-emitting device improves.
  • the second metal film on the surface opposite to the light extraction surface, the light emitted from the light emitting element traveling in the direction opposite to the light extraction surface can be reflected toward the light extraction surface. For this reason, the brightness
  • the Ag film or Al film used for the second metal film is likely to cause migration. For this reason, there existed a problem that the reliability of a light-emitting device fell.
  • an object of the present invention is to provide an inexpensive light emitting device in which a decrease in reliability is suppressed.
  • the support substrate, the first metal film disposed on the support substrate, the first metal film is embedded in a part of the upper portion, and the side surface and the bottom surface are covered with the first metal film.
  • a light emitting element disposed on the first metal film so as to cover the upper surface of the second metal film, and the second metal film is emitted from the light emitting element more than the first metal film.
  • a light emitting device having a CSP structure in which the first metal film is less likely to cause migration than the second metal film is provided.
  • the light emitting device includes a support substrate 10, a first metal film 40 disposed on the support substrate 10, and a part of an upper portion of the first metal film 40.
  • the embedded second metal film 30 and the light emitting element 20 disposed on the first metal film 40 so as to cover the upper surface of the second metal film 30 are provided.
  • the side and bottom surfaces of the second metal film 30 are covered with the first metal film 40.
  • the first metal film 40 is less prone to migration than the second metal film 30.
  • a bonded metal film 50 is disposed between the support substrate 10 and the first metal film 40.
  • the laminated metal film 50 is used as a bonding material for integrating the light emitting element 20 and the support substrate 10 together.
  • the periphery of the light emitting element 20, the first metal film 40, and the bonded metal film 50 is covered with a light-transmissive insulating protective film 100.
  • the insulating protective film 100 contributes to suppression of moisture permeation into the light emitting element 20 from the outside and improvement in mechanical strength of the light emitting device.
  • a light transmissive film 110 is disposed so as to cover the periphery of the insulating protective film 100.
  • the light emitting element 20 has a laminated structure in which a second conductive type second semiconductor layer 23 is disposed above the first conductive type first semiconductor layer 21.
  • the first semiconductor layer 21 covers the upper surface of the second metal film 30, and the lower surface of the first semiconductor layer 21 is in contact with the second metal film 30.
  • the light emitting element 20 uses the upper surface of the second semiconductor layer 23 as a light extraction surface.
  • the first conductivity type and the second conductivity type are opposite to each other. That is, if the first conductivity type is P type, the second conductivity type is N type, and if the first conductivity type is N type, the second conductivity type is P type.
  • the first conductivity type is the P type and the second conductivity type is the N type will be described as an example.
  • the light emitting element 20 is an LED element in which the first semiconductor layer 21 is a P-type cladding layer and the second semiconductor layer 23 is an N-type cladding layer.
  • the light-emitting device shown in FIG. 1 a double hetero structure in which a first semiconductor layer 21, a light-emitting layer 22, and a second semiconductor layer 23 are stacked is employed for the light-emitting element 20.
  • the first semiconductor layer 21 is electrically connected to the first electrode 61
  • the second semiconductor layer 23 is electrically connected to the second electrode 62.
  • the first electrode 61 and the second electrode 62 are electrodes for supplying a driving current for the light emitting element 20.
  • the first electrode 61 and the second electrode 62 are collectively referred to as “power supply electrode”.
  • the power supply electrode is disposed on the side surface of the support substrate 10.
  • the first electrode wiring 71 disposed on the upper surface of the support substrate 10 is connected to the first semiconductor layer via the second metal film 30, the first metal film 40, and the bonded metal film 50. It is electrically connected to the lower surface of 21.
  • the first electrode wiring 71 is drawn to the outside of the support substrate 10 and connected to the first electrode 61.
  • the second semiconductor layer 23 and the second electrode 62 include a surface electrode 80 disposed on the upper surface of the second semiconductor layer 23 and a second electrode wiring 72 disposed on the side surface of the insulating protective film 100. Are electrically connected.
  • the surface electrode 80 is disposed at the outer edge portion of the light extraction surface, and the end portion of the second electrode wiring 72 penetrating the insulating protective film 100 is connected to the surface electrode 80.
  • the first electrode wiring 71 and the second electrode wiring 72 are insulated and separated.
  • the first electrode wiring 71 and the second electrode wiring 72 are collectively referred to as “electrode wiring”.
  • Holes are supplied from the first electrode 61 to the first semiconductor layer 21 through the first electrode wiring 71, the bonded metal film 50, the first metal film 40, and the second metal film 30.
  • electrons are supplied from the second electrode 62 to the second semiconductor layer 23 through the second electrode wiring 72 and the surface electrode 80. Then, holes are injected from the first semiconductor layer 21 and electrons are injected from the second semiconductor layer 23 into the light emitting layer 22. The injected holes and electrons recombine in the light emitting layer 22 to generate light in the light emitting layer 22.
  • Light emitted from the light emitting element 20 passes through the light transmissive film 110 and is output as output light L from the light emitting device.
  • the emitted light traveling in the direction from the light emitting element 20 to the first semiconductor layer 21 is reflected on the surface of the second metal film 30. That is, the second metal film 30 can reflect the emitted light of the light emitting element 20 traveling in the direction opposite to the light extraction surface toward the light extraction surface. For this reason, the brightness of the output light L can be improved.
  • the second metal film 30 is made of a conductive material having a higher reflectance with respect to the emitted light of the light emitting element 20 than the first metal film 40 and capable of making ohmic contact with the first semiconductor layer 21.
  • a white metal film such as a silver-based alloy such as a silver-palladium alloy, an aluminum (Al) film, a dielectric multilayer film (DBR), or the like is preferably used as the material of the second metal film 30.
  • the material used for the second metal film 30 is a metal that easily undergoes migration. When migration occurs in the second metal film 30, the reliability of the light emitting device is lowered.
  • the side surface of the second metal film 30 is below the outer edge portion of the light emitting element 20 so that the outer edge portion of the second metal film 30 is not exposed to the outside. 40. Furthermore, the bottom surface of the second metal film 30 is covered with the first metal film 40 so that the second metal film 30 does not come into contact with the bonded metal film 50.
  • the first metal film 40 is less likely to cause migration than the second metal film 30. As a result, a decrease in reliability of the light emitting device is suppressed.
  • a material that is unlikely to cause migration such as Au, titanium (Ti), and tungsten (W), is preferably used.
  • the power supply electrode that shields the light from the light emitting element 20 is not disposed in the direction of the light extraction surface, the light emission efficiency of the light emitting device is improved. Moreover, since wire bonding is not used for the connection between the light emitting element and the power supply electrode, it is possible to suppress problems such as disconnection of the wire and short circuit through the wire. Therefore, the reliability of the light emitting device is improved.
  • the light-emitting device having the CSP structure has a low mechanical strength when a transparent resin such as an epoxy resin or a silicone resin is used in a portion where light is extracted. For this reason, the mechanical strength of the whole package falls.
  • the stress applied to the light emitting element 20 greatly affects the characteristics of the light emitting device. Particularly, in the case of a light emitting device having a CSP structure, since the light emitting element 20 is bonded to the support substrate 10 of the package material, the light emitting element is caused by a difference in linear expansion coefficient between the support substrate 10 and the light emitting element 20 or deformation during processing. 20 is easily stressed. When stress is applied to the light emitting element 20, the reliability of the light emitting device is lowered and the light emission efficiency is lowered.
  • the light emitting element 20 is supported from below by the support substrate 10 and the power supply electrode. In this case, the light emitting element 20 is distorted due to a difference in coefficient of linear expansion between the support substrate 10 and the power supply electrode.
  • the entire lower surface of the light emitting element 20 is covered with the support substrate 10 in plan view, and the first electrode 61 and the second electrode 62 are disposed outside the light emitting element 20. ing. That is, the support substrate 10 is disposed below the light emitting element 20 between the first electrode 61 and the second electrode 62. For this reason, there is no boundary between the support substrate 10 and the power supply electrode below the light emitting element 20. Therefore, according to the light emitting device shown in FIG. 1, the occurrence of distortion in the light emitting element 20 due to the difference in linear expansion coefficient between the support substrate 10 and the power supply electrode is suppressed.
  • the support substrate 10 an epoxy resin or a silicone resin containing a filler can be used. Moreover, the white support substrate 10 is realizable by adding a white pigment to these resin. According to the white support substrate 10, the reflectance at the support substrate 10 can be improved. As a result, the luminance of the light emitting device is improved.
  • a material having higher mechanical strength than the resin may be used for the support substrate 10.
  • a ceramic substrate is used for the support substrate 10. By using a ceramic substrate having a high mechanical strength for the support substrate 10, the mechanical strength as a package of the light emitting device can be improved.
  • the first metal film 40 is disposed so as to cover the side surface and the bottom surface of the second metal film 30.
  • the occurrence of migration in the second metal film 30 is suppressed by the first metal film 40.
  • the fall of the reliability of a light-emitting device is suppressed.
  • an inexpensive resin substrate or ceramic substrate can be used as the support substrate 10, and the light emitting element 20 is supported from below by a uniform material. For this reason, breakage of the light emitting device is prevented, and a decrease in performance of the light emitting device and a decrease in product life are suppressed. Therefore, according to the light-emitting device shown in FIG. 1, it is possible to provide a light-emitting device having a CSP structure that is inexpensive and highly reliable.
  • the surface electrode 80 is disposed on the light extraction surface. For this reason, unlike the case where the second electrode wiring 72 is disposed on the lower surface of the light emitting element 20, it is not necessary to expose the second semiconductor layer 23 on the lower surface of the light emitting element 20. Thereby, the area of the first semiconductor layer 21 can be made as large as that of the second semiconductor layer 23. As a result, the series resistance of the light emitting device is reduced, and a reliable light emitting device with high yield can be realized. In addition, the area of the surface electrode 80 can be set very small compared with the whole area of the light extraction surface of the light emitting element 20. For this reason, the fall of the light extraction efficiency by having arrange
  • the surface electrode 80 for example, an Au film is used.
  • a transparent electrode may be used for the surface electrode 80.
  • a transparent electrode such as a ZnO film or an ITO film for the surface electrode 80, a decrease in light extraction efficiency can be suppressed.
  • the light transmissive film 110 functions as a sealing material for the light emitting element 20 and a lens of the light emitting device.
  • a thermoplastic resin or a thermosetting resin can be used for the light transmissive film 110.
  • a transparent resin for the light transmissive film 110 the output light L having the same color as the light emitted from the light emitting element 20 can be output from the light emitting device.
  • a phosphor resin containing a phosphor that is excited by the light emitted from the light emitting element 20 to emit excitation light may be used for the light transmissive film 110.
  • a phosphor resin for the light transmissive film 110 output light L having a desired color can be output from the light emitting device.
  • an epoxy resin, a modified epoxy resin, a silicone resin, a modified silicone resin, or the like can be used as the transparent resin used for the light transmissive film 110.
  • a silicone resin having high heat resistance is used in a high-power light-emitting device such as a lighting application.
  • a fluorescent resin having high heat resistance is used in a high-power light-emitting device such as a lighting application.
  • what mixed the fluorescent material in the said transparent resin etc. can be used as fluorescent substance resin.
  • each layer constituting the light-emitting element 20 is formed on a semiconductor substrate 200 having a thickness of about 700 ⁇ m by an epitaxial growth method or the like. That is, the second semiconductor layer 23, the light emitting layer 22, and the first semiconductor layer 21 are sequentially stacked on the semiconductor substrate 200.
  • a nitride compound semiconductor layer such as gallium nitride is used.
  • the second metal film 30 is formed so as to be in contact with the first semiconductor layer 21.
  • the second metal film 30 is patterned so that the outer edge portion of the second metal film 30 is located inside the outer edge portion of the first semiconductor layer 21.
  • the first metal film 40 is formed on the surface of the second metal film 30 so as to cover the exposed surface of the second metal film 30. Thereafter, as shown in FIG. 3, an element-side bonded metal film 51 is formed on the surface of the first metal film 40.
  • the support substrate 10 having the first electrode wiring 71 and the substrate-side bonded metal film 52 formed on the upper surface is prepared.
  • the support substrate 10 is, for example, a resin substrate, and has a region where the first electrode 61 and the second electrode 62 are formed on the side surface.
  • the first electrode wiring 71 and the substrate-side bonded metal film 52 are disposed in a region sandwiched between the first electrode 61 and the second electrode 62. At this time, the end portion of the first electrode wiring 71 is connected to the first electrode 61.
  • the first electrode 61 and the second electrode 62 are formed by, for example, copper (Cu) plating.
  • the material of the power supply electrode is selected in consideration of the overall strength of the light emitting device.
  • an Al material or the like may be used for the power supply electrode.
  • Etching is performed by a back grinding process in which the surface of the support substrate 10 is polished in the film thickness direction until the thickness of the support substrate 10 reaches a predetermined value. As a result, as shown in FIG. 4, the lower surfaces of the first electrode 61 and the second electrode 62 are exposed below the lower surface of the support substrate 10.
  • the element-side bonded metal film 51 and the substrate-side bonded metal film 52 are bonded together, and the light emitting element 20 and the support substrate 10 are integrated.
  • the semiconductor substrate 200 is deleted from the light emitting element 20.
  • the semiconductor substrate 200 is a silicon substrate
  • the semiconductor substrate 200 is deleted by wet etching using hydrofluoric acid.
  • a laser lift-off method or the like is used.
  • an insulating protective film 100 is formed so as to cover the base disposed on the surface of the support substrate 10. That is, the periphery of the light emitting element 20, the first metal film 40, the bonded metal film 50, and the first electrode wiring 71 is covered with the light-transmitting insulating protective film 100.
  • the second electrode wiring 72 is formed so as to fill the opening of the insulating protective film 100.
  • the second electrode wiring 72 having one end connected to the surface electrode 80 is formed from the upper surface of the insulating protective film 100 so that the other end is connected to the second electrode 62. Arranged across the side. Note that a gold (Au) film or the like is used for the electrode wiring, but an aluminum (Al) film or a silver (Ag) film is also used.
  • connection electrode 91 is formed so as to cover the lower surface of the first electrode 61
  • second connection electrode 92 is formed so as to cover the lower surface of the second electrode 62.
  • the first connection electrode 91 and the second connection electrode 92 are arranged on the mounting substrate when the light emitting device is attached to the mounting substrate such as a printed circuit board.
  • the wiring pattern is used to connect the power supply electrode of the light emitting device.
  • a solder electrode or the like is preferably used as the connection electrode.
  • a light transmissive film 110 is formed on the support substrate 10 and the power supply electrode. Then, a singulation process for separating the light emitting devices individually by dicing is performed. Thus, the light emitting device shown in FIG. 1 is completed.
  • a structure in which the element-side bonded metal film 51 and the substrate-side bonded metal film 52 are bonded together is the bonded metal film 50 shown in FIG. That is, in the above manufacturing method, the element-side bonded metal film 51 and the substrate-side bonded metal film 52 are bonded together in order to integrate the support substrate 10 and the light emitting element 20.
  • a metal used as a barrier metal or a metal used for bonding can be used for the laminated metal film 50.
  • metals such as Ti, Au, Sn, nickel (Ni), chromium (Cr), gallium (Ga), indium (In), bismuth (Bi), Cu, Ag, and tantalum (Ta), or alloys thereof, Used for the laminated metal film 50.
  • the element-side bonded metal film 51 and the substrate-side bonded metal film 52 may be made of the same material or different materials.
  • the support substrate 10 and the light emitting element 20 are integrated with each other at a temperature of 300 ° C. or less and in a short time.
  • AuSn is used for the element-side bonded metal film 51 and the substrate-side bonded metal film 52.
  • the method for manufacturing a light emitting device according to the embodiment of the present invention as described above, it is possible to realize a light emitting device in which the occurrence of migration in the second metal film 30 is suppressed. Moreover, the structure where the whole light emitting element 20 is supported by the support substrate 10 from the downward direction is realizable. For this reason, it is suppressed that the stress by distortion is added to the light emitting element 20.
  • the mechanical strength of the light emitting element 20 can be reinforced to realize a highly reliable light emitting device. Further, since the semiconductor substrate 200 is removed during the manufacturing process, the height of the light emitting device can be reduced. Furthermore, removal of the semiconductor substrate 200 improves the light extraction efficiency from the light emitting element 20.
  • the support substrate 10 is a resin substrate
  • a material having higher mechanical strength than the resin for the support substrate 10 This is because in the light emitting device having the CSP structure, the semiconductor substrate 200 is omitted, and a material having low mechanical strength such as epoxy resin or silicone resin is used for the light transmissive film 110, so that the mechanical strength of the entire package is low. .
  • a material having high mechanical strength for the support substrate 10 is effective in increasing the mechanical strength of the light emitting device.
  • a liquid ceramic material is formed into a predetermined shape and then baked at a high temperature.
  • the mechanical strength of the light emitting device is improved. Furthermore, since the ceramic substrate is disposed so as to support substantially the entire lower surface of the light emitting element 20, it is possible to prevent the light emitting element 20 from being damaged due to distortion during manufacturing in the process of removing the semiconductor substrate 200 or the like. Further, it is possible to prevent the light emitting element 20 from being damaged by an impact applied to the light emitting device during product assembly or handling. As described above, by using the support substrate 10 as the ceramic substrate, it is possible to suppress damage to the light emitting device and deterioration of reliability. In addition, it is possible to suppress damage due to thermal distortion caused by solder heat treatment during product assembly.
  • the support substrate 10 is formed so that the lower surface of the first electrode 61 and the lower surface of the second electrode 62 are located below the lower surface of the support substrate 10.
  • the step between the lower surface of the support substrate 10 and the lower surface of the power supply electrode is set to about 10 ⁇ m.
  • the power supply electrode is disposed so as to penetrate the support substrate 10 at a location where the dicing blade passes in dicing for singulation processing.
  • the power supply electrode is mainly cut from the support substrate 10 by the dicing blade. For this reason, the processing time of dicing when a ceramic substrate is used is reduced. Further, since the life of the dicing blade is extended, the manufacturing cost can be reduced.
  • the power electrode is disposed on the side surface of the support substrate 10, and the above-described effect can be obtained by mainly cutting the power electrode in dicing.
  • the stress applied to the light emitting element 20 greatly affects the characteristics of the light emitting device.
  • the light emitting device having the CSP structure has a structure in which the light emitting element 20 is in close contact with the package material, stress is easily applied to the light emitting element 20 due to a difference in linear expansion coefficient from the package material or deformation during processing.
  • the first ceramic layer 11 and the second ceramic layer 12 having a higher density and a larger linear expansion coefficient than the first ceramic layer 11 are laminated on the support substrate 10.
  • a ceramic substrate having a structure may be used.
  • the first ceramic layer 11 having a low linear expansion coefficient and a low density is disposed on the side close to the light emitting element 20. That is, the first ceramic layer 11 having a linear expansion coefficient close to that of the semiconductor layer constituting the light emitting element 20 is disposed on the side close to the light emitting element 20. Thereby, the distortion at the time of hardening a ceramic is relieved and the stress added to the light emitting element 20 can be reduced.
  • the second ceramic layer 12 having a large linear expansion coefficient is provided on the side of the support substrate 10 that is far from the light emitting element 20, so that the warp of the support substrate 10 is suppressed and the strength of the entire package is prevented from being lowered. it can. Therefore, by using the support substrate 10 having the structure shown in FIG. 7, a highly reliable and highly efficient light-emitting device can be realized.
  • first ceramic layer 11 and the second ceramic layer 12 for example, a method in which two ceramic sheets (green sheets) having different linear expansion coefficients are bonded to each other, or two coating ceramics are used.
  • the method of layering can be used.
  • the first ceramic layer 11 and the second ceramic layer 12 can be formed by an inexpensive method.
  • the glass substrate when a glass substrate is used for the light transmissive film 110, the glass substrate has a high elastic coefficient and a large difference in linear expansion coefficient.
  • the linear expansion coefficient of the first ceramic layer 11 can be made closer to glass by making the linear expansion coefficient of the first ceramic layer 11 smaller than that of the second ceramic layer 12. Thereby, the stress added to the light emitting element 20 can be reduced.
  • a part of the upper portion of the support substrate 10 is extended above the first electrode 61 and above the second electrode 62. That is, the first electrode 61 and the second electrode 62 are disposed below the upper surface of the support substrate 10.
  • the first electrode wiring 71 and the second electrode wiring 72 have a portion that passes through the inside of the support substrate 10 outside the light emitting element 20 in a plan view. Thereby, the emitted light of the light emitting element 20 is reflected on the exposed upper surface of the support substrate 10.
  • the first electrode wiring 71 and the second electrode wiring 72 has a structure in which a part of the first electrode wiring 71 and the second electrode wiring 72 is arranged between the first ceramic layer 11 and the second ceramic layer 12. That is, the first electrode wiring 71 connected to the end portion of the bonded metal film 50 has the first ceramic layer extending from the light emitting element 20 to the boundary between the first ceramic layer 11 and the second ceramic layer 12 in a plan view. 11 is stretched in the film thickness direction. The end portion of the first electrode wiring 71 extending along the boundary between the first ceramic layer 11 and the second ceramic layer 12 is connected to the first electrode 61.
  • the second electrode wiring 72 disposed on the side surface of the insulating protective film 100 has the first ceramic extending from the light emitting element 20 to the boundary between the first ceramic layer 11 and the second ceramic layer 12 in a plan view. It extends through the layer 11 in the film thickness direction. Then, the end of the second electrode wiring 72 extending along the boundary between the first ceramic layer 11 and the second ceramic layer 12 is connected to the second electrode 62.
  • the light emitted from the light emitting element 20 is reflected on the exposed upper surface of the support substrate 10 by passing the first electrode wiring 71 and the second electrode wiring 72 through the inside of the support substrate 10.
  • luminance of a light-emitting device improves.
  • the first electrode wiring 71 is not arranged below the light emitting element 20. For this reason, the stress added to the light emitting element 20 is suppressed.
  • the upper surface of the support substrate 10 is exposed by disposing the first electrode wiring 71 and the second electrode wiring 72 inside the support substrate 10. Can be made.
  • FIG. 1 illustrates an example in which the second semiconductor layer 23 and the second electrode 62 are electrically connected via the surface electrode 80 disposed on the upper surface of the second semiconductor layer 23 of the light emitting element 20.
  • the second electrode wiring 72 that connects the second semiconductor layer 23 and the second electrode 62 is electrically connected to the lower surface of the second semiconductor layer 23. Has been.
  • the second semiconductor layer 23 has a stretched region that extends in the horizontal direction to a region where the first semiconductor layer 21 and the light emitting layer 22 are not arranged in plan view.
  • the second electrode wiring 72 is connected to the lower surface of the extended region of the second semiconductor layer 23.
  • the light emitted from the light emitting element 20 is emitted from the entire surface of the light extraction surface. For this reason, an effective light extraction surface can be widened.
  • the bonded metal film 50 may not be used. That is, as shown in FIG. 10, the first electrode wiring 71 and the first metal film 40 are directly bonded to each other so that the bonded metal film 50 is not disposed between the support substrate 10 and the light emitting element 20. A device is feasible. Further, instead of the laminated metal film 50, a resin adhesive having conductivity may be used.
  • the electrode wiring may be passed through the support substrate 10 as shown in FIG. 10 as well.
  • the semiconductor device of the present invention can be used for a light-emitting device having a CSP structure.

Abstract

Provided is a light-emitting device having a CSP structure, the light-emitting device being provided with: a support substrate 10; a first metallic film 40 disposed over the support substrate 10; a second metallic film 30 embedded in an upper portion of the first metallic film 40 and having side surfaces and a bottom surface covered by the first metallic film 40; and a light-emitting element 20 that covers the upper surface of the second metallic film 30 and is disposed over the first metallic film 40. The second metallic film 30 has a higher reflectivity for light exiting the light-emitting element 20 than the first metallic film 40, and migration is less likely to occur in the first metallic film 40 than in the second metallic film 30.

Description

発光装置Light emitting device
 本発明は、チップサイズパッケージの技術を適用した発光装置に関する。 The present invention relates to a light emitting device to which a chip size package technology is applied.
 発光ダイオード(LED)などの発光素子を光源に用いる発光装置の発光効率向上や小型化のために、チップサイズパッケージ(Chip Size Package:CSP)が、発光装置に適用されている(例えば特許文献1参照。)。さらに極小サイズの半導体発光装置を実現するために、発光素子を構成する半導体層の形成に使用された半導体基板を半導体層から分離し、半導体層を樹脂などのパッケージに封入した構造の開発が進められている。この構造では、半導体基板ではなく、樹脂基板などが発光素子を支持する支持基板に使用できるため、安価な発光装置を提供できる。 A chip size package (CSP) is applied to a light emitting device in order to improve the light emission efficiency and miniaturization of the light emitting device using a light emitting element such as a light emitting diode (LED) as a light source (for example, Patent Document 1). reference.). Furthermore, in order to realize a semiconductor light emitting device of extremely small size, the development of a structure in which the semiconductor substrate used for forming the semiconductor layer constituting the light emitting element is separated from the semiconductor layer and the semiconductor layer is enclosed in a package such as a resin is proceeding. It has been. In this structure, not a semiconductor substrate but a resin substrate or the like can be used as a support substrate that supports the light emitting element, so that an inexpensive light emitting device can be provided.
 CSPを適用した構造(以下において「CSP構造」という。)の発光装置では、発光素子に接続する電極が、光取り出し面とは反対の面に配置される。このため、光取り出し面の方向に発光素子の出射光を遮蔽する物がなく、発光装置の発光効率が向上する。また、光取り出し面とは反対の面に第2金属膜を配置することにより、光取り出し面とは逆方向に進行する発光素子の出射光を、光取り出し面に向けて反射させることができる。このため、出力光の輝度が向上する。 In a light emitting device having a structure to which CSP is applied (hereinafter referred to as “CSP structure”), an electrode connected to the light emitting element is disposed on a surface opposite to the light extraction surface. For this reason, there is no thing which shields the emitted light of a light emitting element in the direction of a light extraction surface, and the luminous efficiency of a light-emitting device improves. In addition, by disposing the second metal film on the surface opposite to the light extraction surface, the light emitted from the light emitting element traveling in the direction opposite to the light extraction surface can be reflected toward the light extraction surface. For this reason, the brightness | luminance of output light improves.
特開2014-150196号公報JP 2014-150196 A
 しかしながら、第2金属膜に使用されるAg膜やAl膜などはマイグレーションを発生しやすい。このため、発光装置の信頼性が低下するという問題があった。 However, the Ag film or Al film used for the second metal film is likely to cause migration. For this reason, there existed a problem that the reliability of a light-emitting device fell.
 上記問題点に鑑み、本発明は、信頼性の低下が抑制された安価な発光装置を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide an inexpensive light emitting device in which a decrease in reliability is suppressed.
 本発明の一態様によれば、支持基板と、支持基板の上に配置された第1金属膜と、第1金属膜の上部の一部に埋め込まれ、側面及び底面を第1金属膜に覆われた第2金属膜と、第2金属膜の上面を覆って第1金属膜の上に配置された発光素子とを備え、第2金属膜が、第1金属膜よりも発光素子の出射光に対する反射率が高く、第1金属膜が、第2金属膜よりもマイグレーションが発生しにくいCSP構造の発光装置が提供される。 According to one aspect of the present invention, the support substrate, the first metal film disposed on the support substrate, the first metal film is embedded in a part of the upper portion, and the side surface and the bottom surface are covered with the first metal film. And a light emitting element disposed on the first metal film so as to cover the upper surface of the second metal film, and the second metal film is emitted from the light emitting element more than the first metal film. A light emitting device having a CSP structure in which the first metal film is less likely to cause migration than the second metal film is provided.
 本発明によれば、信頼性の低下が抑制された安価な発光装置を提供できる。 According to the present invention, it is possible to provide an inexpensive light emitting device in which a decrease in reliability is suppressed.
本発明の実施形態に係る発光装置の構造を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の製造方法を説明するための工程断面図である(その1)。It is process sectional drawing for demonstrating the manufacturing method of the light-emitting device which concerns on embodiment of this invention (the 1). 本発明の実施形態に係る発光装置の製造方法を説明するための工程断面図である(その2)。It is process sectional drawing for demonstrating the manufacturing method of the light-emitting device which concerns on embodiment of this invention (the 2). 本発明の実施形態に係る発光装置の製造方法を説明するための工程断面図である(その3)。It is process sectional drawing for demonstrating the manufacturing method of the light-emitting device which concerns on embodiment of this invention (the 3). 本発明の実施形態に係る発光装置の製造方法を説明するための工程断面図である(その4)。It is process sectional drawing for demonstrating the manufacturing method of the light-emitting device which concerns on embodiment of this invention (the 4). 本発明の実施形態に係る発光装置の製造方法を説明するための工程断面図である(その5)。It is process sectional drawing for demonstrating the manufacturing method of the light-emitting device which concerns on embodiment of this invention (the 5). 本発明の実施形態の第1の変形例に係る発光装置の構造を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the light-emitting device which concerns on the 1st modification of embodiment of this invention. 本発明の実施形態の第2の変形例に係る発光装置の構造を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the light-emitting device which concerns on the 2nd modification of embodiment of this invention. 本発明の実施形態の第3の変形例に係る発光装置の構造を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the light-emitting device which concerns on the 3rd modification of embodiment of this invention. 本発明のその他の実施形態に係る発光装置の構造を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the light-emitting device which concerns on other embodiment of this invention.
 次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。また、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の形状、構造、配置などを下記のものに特定するものでない。この発明の実施形態は、請求の範囲において、種々の変更を加えることができる。 Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the shape, structure, arrangement, etc. of components. It is not specified to the following. The embodiment of the present invention can be variously modified within the scope of the claims.
 本発明の実施形態に係る発光装置は、図1に示すように、支持基板10と、支持基板10の上に配置された第1金属膜40と、第1金属膜40の上部の一部に埋め込まれた第2金属膜30と、第2金属膜30の上面を覆って第1金属膜40の上に配置された発光素子20とを備える。第2金属膜30の側面及び底面は、第1金属膜40に覆われている。第1金属膜40は、第2金属膜30よりもマイグレーションが発生しにくい。 As shown in FIG. 1, the light emitting device according to the embodiment of the present invention includes a support substrate 10, a first metal film 40 disposed on the support substrate 10, and a part of an upper portion of the first metal film 40. The embedded second metal film 30 and the light emitting element 20 disposed on the first metal film 40 so as to cover the upper surface of the second metal film 30 are provided. The side and bottom surfaces of the second metal film 30 are covered with the first metal film 40. The first metal film 40 is less prone to migration than the second metal film 30.
 また、支持基板10と第1金属膜40との間には、張り合わせ金属膜50が配置されている。後述するように、張り合わせ金属膜50は、発光素子20と支持基板10とを一体化するための接合材として用いられている。 Further, a bonded metal film 50 is disposed between the support substrate 10 and the first metal film 40. As will be described later, the laminated metal film 50 is used as a bonding material for integrating the light emitting element 20 and the support substrate 10 together.
 図1に示すように、発光素子20、第1金属膜40及び張り合わせ金属膜50の周囲は、光透過性の絶縁性保護膜100によって覆われている。絶縁性保護膜100は、外部から発光素子20への水分の浸入の抑制や、発光装置の機械的強度の向上に寄与する。絶縁性保護膜100の周囲を覆って、光透過性膜110が配置されている。 As shown in FIG. 1, the periphery of the light emitting element 20, the first metal film 40, and the bonded metal film 50 is covered with a light-transmissive insulating protective film 100. The insulating protective film 100 contributes to suppression of moisture permeation into the light emitting element 20 from the outside and improvement in mechanical strength of the light emitting device. A light transmissive film 110 is disposed so as to cover the periphery of the insulating protective film 100.
 発光素子20は、第1導電型の第1の半導体層21の上方に、第2導電型の第2の半導体層23を配置した積層構造を有する。第1の半導体層21が第2金属膜30の上面を覆い、第1の半導体層21の下面が第2金属膜30に接している。発光素子20は、第2の半導体層23の上面を光取り出し面としている。 The light emitting element 20 has a laminated structure in which a second conductive type second semiconductor layer 23 is disposed above the first conductive type first semiconductor layer 21. The first semiconductor layer 21 covers the upper surface of the second metal film 30, and the lower surface of the first semiconductor layer 21 is in contact with the second metal film 30. The light emitting element 20 uses the upper surface of the second semiconductor layer 23 as a light extraction surface.
 第1導電型と第2導電型とは互いに反対導電型である。即ち、第1導電型がP型であれば、第2導電型はN型であり、第1導電型がN型であれば、第2導電型はP型である。以下では、第1導電型がP型であり、第2導電型がN型である場合を例示的に説明する。 The first conductivity type and the second conductivity type are opposite to each other. That is, if the first conductivity type is P type, the second conductivity type is N type, and if the first conductivity type is N type, the second conductivity type is P type. Hereinafter, a case where the first conductivity type is the P type and the second conductivity type is the N type will be described as an example.
 例えば、発光素子20は、第1の半導体層21をP型クラッド層、第2の半導体層23をN型クラッド層とするLED素子である。図1に示した発光装置では、第1の半導体層21、発光層22、第2の半導体層23が積層されたダブルヘテロ構造を発光素子20に採用している。 For example, the light emitting element 20 is an LED element in which the first semiconductor layer 21 is a P-type cladding layer and the second semiconductor layer 23 is an N-type cladding layer. In the light-emitting device shown in FIG. 1, a double hetero structure in which a first semiconductor layer 21, a light-emitting layer 22, and a second semiconductor layer 23 are stacked is employed for the light-emitting element 20.
 第1の半導体層21は第1の電極61と電気的に接続され、第2の半導体層23は第2の電極62と電気的に接続されている。第1の電極61と第2の電極62は、発光素子20の駆動電流を供給するための電極である。以下において、第1の電極61と第2の電極62を総称して、「電源電極」という。電源電極は、支持基板10の側面に配置されている。 The first semiconductor layer 21 is electrically connected to the first electrode 61, and the second semiconductor layer 23 is electrically connected to the second electrode 62. The first electrode 61 and the second electrode 62 are electrodes for supplying a driving current for the light emitting element 20. Hereinafter, the first electrode 61 and the second electrode 62 are collectively referred to as “power supply electrode”. The power supply electrode is disposed on the side surface of the support substrate 10.
 図1に示したように、支持基板10の上面に配置された第1の電極配線71が、第2金属膜30、第1金属膜40及び張り合わせ金属膜50を介して、第1の半導体層21の下面と電気的に接続している。第1の電極配線71は、支持基板10の外側に引き出されて、第1の電極61と接続している。 As shown in FIG. 1, the first electrode wiring 71 disposed on the upper surface of the support substrate 10 is connected to the first semiconductor layer via the second metal film 30, the first metal film 40, and the bonded metal film 50. It is electrically connected to the lower surface of 21. The first electrode wiring 71 is drawn to the outside of the support substrate 10 and connected to the first electrode 61.
 第2の半導体層23と第2の電極62とは、第2の半導体層23の上面に配置された表面電極80、及び絶縁性保護膜100の側面に配置された第2の電極配線72を介して、電気的に接続されている。表面電極80は、光取り出し面の外縁部に配置され、絶縁性保護膜100を貫通する第2の電極配線72の端部と表面電極80とが接続される。絶縁性保護膜100によって、第1の電極配線71と第2の電極配線72とが絶縁分離される。以下において、第1の電極配線71と第2の電極配線72を総称して「電極配線」という。 The second semiconductor layer 23 and the second electrode 62 include a surface electrode 80 disposed on the upper surface of the second semiconductor layer 23 and a second electrode wiring 72 disposed on the side surface of the insulating protective film 100. Are electrically connected. The surface electrode 80 is disposed at the outer edge portion of the light extraction surface, and the end portion of the second electrode wiring 72 penetrating the insulating protective film 100 is connected to the surface electrode 80. By the insulating protective film 100, the first electrode wiring 71 and the second electrode wiring 72 are insulated and separated. Hereinafter, the first electrode wiring 71 and the second electrode wiring 72 are collectively referred to as “electrode wiring”.
 第1の電極61から、第1の電極配線71、張り合わせ金属膜50、第1金属膜40及び第2金属膜30を介して、第1の半導体層21に正孔が供給される。一方、第2の電極62から、第2の電極配線72及び表面電極80を介して、第2の半導体層23に電子が供給される。そして、発光層22に、第1の半導体層21から正孔が注入され、第2の半導体層23から電子が注入される。注入された正孔と電子が発光層22で再結合することにより、発光層22で光が発生する。発光素子20の出射光は、光透過性膜110を透過して、発光装置から出力光Lとして出力される。 Holes are supplied from the first electrode 61 to the first semiconductor layer 21 through the first electrode wiring 71, the bonded metal film 50, the first metal film 40, and the second metal film 30. On the other hand, electrons are supplied from the second electrode 62 to the second semiconductor layer 23 through the second electrode wiring 72 and the surface electrode 80. Then, holes are injected from the first semiconductor layer 21 and electrons are injected from the second semiconductor layer 23 into the light emitting layer 22. The injected holes and electrons recombine in the light emitting layer 22 to generate light in the light emitting layer 22. Light emitted from the light emitting element 20 passes through the light transmissive film 110 and is output as output light L from the light emitting device.
 このとき、発光素子20から第1の半導体層21の方向に進行した出射光は、第2金属膜30の表面において反射する。即ち、第2金属膜30によって、光取り出し面とは逆方向に進行する発光素子20の出射光を、光取り出し面に向けて反射させることができる。このため、出力光Lの輝度を向上することができる。 At this time, the emitted light traveling in the direction from the light emitting element 20 to the first semiconductor layer 21 is reflected on the surface of the second metal film 30. That is, the second metal film 30 can reflect the emitted light of the light emitting element 20 traveling in the direction opposite to the light extraction surface toward the light extraction surface. For this reason, the brightness of the output light L can be improved.
 第2金属膜30には、第1金属膜40よりも発光素子20の出射光に対する反射率が高く、且つ、第1の半導体層21とオーミック接触の可能な導電性材料が使用される。例えば、銀パラジウム合金などの銀系合金などの白色系の金属膜や、アルミニウム(Al)膜、誘電体多層膜(DBR)などが、第2金属膜30の材料に好適に使用される。 The second metal film 30 is made of a conductive material having a higher reflectance with respect to the emitted light of the light emitting element 20 than the first metal film 40 and capable of making ohmic contact with the first semiconductor layer 21. For example, a white metal film such as a silver-based alloy such as a silver-palladium alloy, an aluminum (Al) film, a dielectric multilayer film (DBR), or the like is preferably used as the material of the second metal film 30.
 しかしながら、第2金属膜30に使用される材料は、マイグレーションの発生しやすい金属である。第2金属膜30でマイグレーションが発生すると、発光装置の信頼性が低下する。 However, the material used for the second metal film 30 is a metal that easily undergoes migration. When migration occurs in the second metal film 30, the reliability of the light emitting device is lowered.
 これに対し、図1に示した発光装置では、第2金属膜30の外縁部が外部に露出しないように、発光素子20の外縁部の下方で第2金属膜30の側面が第1金属膜40に覆われている。更に、第2金属膜30が張り合わせ金属膜50と接触しないように、第2金属膜30の底面が、第1金属膜40に覆われている。そして、第2金属膜30よりも第1金属膜40の方がマイグレーションを発生しにくい。その結果、発光装置の信頼性の低下が抑制される。第1金属膜40には、Au、チタン(Ti)、タングステン(W)などのマイグレーションが起きにくい材料が好適に使用される。 In contrast, in the light emitting device shown in FIG. 1, the side surface of the second metal film 30 is below the outer edge portion of the light emitting element 20 so that the outer edge portion of the second metal film 30 is not exposed to the outside. 40. Furthermore, the bottom surface of the second metal film 30 is covered with the first metal film 40 so that the second metal film 30 does not come into contact with the bonded metal film 50. The first metal film 40 is less likely to cause migration than the second metal film 30. As a result, a decrease in reliability of the light emitting device is suppressed. For the first metal film 40, a material that is unlikely to cause migration, such as Au, titanium (Ti), and tungsten (W), is preferably used.
 ところで、CSP構造の発光装置では、光取り出し面の方向に発光素子20からの光を遮蔽する電源電極が配置されていないため、発光装置の発光効率が向上する。また、発光素子と電源電極との接続などにワイヤボンディングを使用しないため、ワイヤの断線やワイヤを介しての短絡などの不具合を抑制することができる。したがって、発光装置の信頼性が向上する。 By the way, in the light emitting device having the CSP structure, since the power supply electrode that shields the light from the light emitting element 20 is not disposed in the direction of the light extraction surface, the light emission efficiency of the light emitting device is improved. Moreover, since wire bonding is not used for the connection between the light emitting element and the power supply electrode, it is possible to suppress problems such as disconnection of the wire and short circuit through the wire. Therefore, the reliability of the light emitting device is improved.
 しかし、CSP構造の発光装置は、光を取り出す部分にエポキシ樹脂やシリコーン樹脂などの透明樹脂を使用する場合に機械的強度が弱い。このため、パッケージ全体の機械的強度が低下する。 However, the light-emitting device having the CSP structure has a low mechanical strength when a transparent resin such as an epoxy resin or a silicone resin is used in a portion where light is extracted. For this reason, the mechanical strength of the whole package falls.
 また、発光素子20に加わる応力が、発光装置の特性に大きく影響する。特に、CSP構造の発光装置の場合は、発光素子20がパッケージ材料の支持基板10と接着される構造なので、支持基板10と発光素子20との線膨張係数の差や加工時の変形により発光素子20に応力が加わりやすい。発光素子20に応力が加わると、発光装置の信頼性の低下や発光効率の低下などを生じる。 Also, the stress applied to the light emitting element 20 greatly affects the characteristics of the light emitting device. Particularly, in the case of a light emitting device having a CSP structure, since the light emitting element 20 is bonded to the support substrate 10 of the package material, the light emitting element is caused by a difference in linear expansion coefficient between the support substrate 10 and the light emitting element 20 or deformation during processing. 20 is easily stressed. When stress is applied to the light emitting element 20, the reliability of the light emitting device is lowered and the light emission efficiency is lowered.
 更に、発光素子20の下方で支持基板10を貫通して電源電極を配置した場合には、支持基板10と電源電極によって発光素子20が下方から支持されることになる。この場合、支持基板10と電源電極との線膨張係数の差などによって、発光素子20に歪みが発生する。 Further, when the power supply electrode is disposed through the support substrate 10 below the light emitting element 20, the light emitting element 20 is supported from below by the support substrate 10 and the power supply electrode. In this case, the light emitting element 20 is distorted due to a difference in coefficient of linear expansion between the support substrate 10 and the power supply electrode.
 しかし、図1に示した発光装置では、平面視で、発光素子20の下面の全体が支持基板10に覆われ、発光素子20の外側に第1の電極61と第2の電極62が配置されている。つまり、第1の電極61と第2の電極62とに挟まれて、発光素子20の下方に支持基板10が配置されている。このため、発光素子20の下方において、支持基板10と電源電極との境界がない。したがって、図1に示した発光装置によれば、支持基板10と電源電極との線膨張係数の違いに起因して発光素子20に歪みが発生することが抑制される。 However, in the light emitting device illustrated in FIG. 1, the entire lower surface of the light emitting element 20 is covered with the support substrate 10 in plan view, and the first electrode 61 and the second electrode 62 are disposed outside the light emitting element 20. ing. That is, the support substrate 10 is disposed below the light emitting element 20 between the first electrode 61 and the second electrode 62. For this reason, there is no boundary between the support substrate 10 and the power supply electrode below the light emitting element 20. Therefore, according to the light emitting device shown in FIG. 1, the occurrence of distortion in the light emitting element 20 due to the difference in linear expansion coefficient between the support substrate 10 and the power supply electrode is suppressed.
 支持基板10には、フィラー入りのエポキシ樹脂やシリコーン樹脂などを採用可能である。また、これらの樹脂に白色顔料を加えることによって、白色の支持基板10を実現できる。白色の支持基板10によれば、支持基板10での反射率を向上させることができる。その結果、発光装置の輝度が向上する。 For the support substrate 10, an epoxy resin or a silicone resin containing a filler can be used. Moreover, the white support substrate 10 is realizable by adding a white pigment to these resin. According to the white support substrate 10, the reflectance at the support substrate 10 can be improved. As a result, the luminance of the light emitting device is improved.
 また、樹脂よりも機械的強度の高い材料を支持基板10に使用してもよい。例えば、セラミック基板を支持基板10に使用する。支持基板10に機械的強度の高いセラミック基板を使用することによって、発光装置のパッケージとしての機械的強度を向上できる。 Further, a material having higher mechanical strength than the resin may be used for the support substrate 10. For example, a ceramic substrate is used for the support substrate 10. By using a ceramic substrate having a high mechanical strength for the support substrate 10, the mechanical strength as a package of the light emitting device can be improved.
 以上に説明したように、本発明の実施形態に係る発光装置では、第2金属膜30の側面及び底面を覆って第1金属膜40が配置されている。これにより、第2金属膜30でのマイグレーションの発生が、第1金属膜40によって抑制される。このため、発光装置の信頼性の低下が抑制される。また、支持基板10として安価な樹脂基板やセラミック基板を使用でき、更に、発光素子20が均一な材料によって下方から支持される。このため、発光装置の破損が防止され、発光装置の性能の低下や製品寿命の低下が抑制される。したがって、図1に示した発光装置によれば、安価で信頼性の高い、CSP構造の発光装置を提供することができる。 As described above, in the light emitting device according to the embodiment of the present invention, the first metal film 40 is disposed so as to cover the side surface and the bottom surface of the second metal film 30. Thereby, the occurrence of migration in the second metal film 30 is suppressed by the first metal film 40. For this reason, the fall of the reliability of a light-emitting device is suppressed. In addition, an inexpensive resin substrate or ceramic substrate can be used as the support substrate 10, and the light emitting element 20 is supported from below by a uniform material. For this reason, breakage of the light emitting device is prevented, and a decrease in performance of the light emitting device and a decrease in product life are suppressed. Therefore, according to the light-emitting device shown in FIG. 1, it is possible to provide a light-emitting device having a CSP structure that is inexpensive and highly reliable.
 なお、図1に示した発光装置では、光取り出し面に表面電極80を配置している。このため、発光素子20の下面に第2の電極配線72を配置する場合と異なり、発光素子20の下面に第2の半導体層23を露出させる必要がない。これにより、第1の半導体層21の面積を、第2の半導体層23と同等に広くできる。その結果、発光装置のシリーズ抵抗が低減され、歩留まりのよい、信頼性の高い発光装置を実現できる。なお、表面電極80の面積は発光素子20の光取り出し面の全体の面積に比べて非常に小さく設定できる。このため、表面電極80を配置したことによる光取り出し効率の低下は小さい。 In the light emitting device shown in FIG. 1, the surface electrode 80 is disposed on the light extraction surface. For this reason, unlike the case where the second electrode wiring 72 is disposed on the lower surface of the light emitting element 20, it is not necessary to expose the second semiconductor layer 23 on the lower surface of the light emitting element 20. Thereby, the area of the first semiconductor layer 21 can be made as large as that of the second semiconductor layer 23. As a result, the series resistance of the light emitting device is reduced, and a reliable light emitting device with high yield can be realized. In addition, the area of the surface electrode 80 can be set very small compared with the whole area of the light extraction surface of the light emitting element 20. For this reason, the fall of the light extraction efficiency by having arrange | positioned the surface electrode 80 is small.
 表面電極80には、例えばAu膜などが使用される。或いは、表面電極80に透明電極を使用してもよい。例えばZnO膜やITO膜などの透明電極を表面電極80に使用することにより、光取り出し効率の低下を抑制できる。 For the surface electrode 80, for example, an Au film is used. Alternatively, a transparent electrode may be used for the surface electrode 80. For example, by using a transparent electrode such as a ZnO film or an ITO film for the surface electrode 80, a decrease in light extraction efficiency can be suppressed.
 また、光透過性膜110は、発光素子20の封止材及び発光装置のレンズとして機能する。例えば、光透過性膜110に熱可塑性樹脂や熱硬化性樹脂を使用できる。光透過性膜110に透明樹脂を使用することによって、発光素子20の出射光と同色の出力光Lを発光装置から出力できる。 Further, the light transmissive film 110 functions as a sealing material for the light emitting element 20 and a lens of the light emitting device. For example, a thermoplastic resin or a thermosetting resin can be used for the light transmissive film 110. By using a transparent resin for the light transmissive film 110, the output light L having the same color as the light emitted from the light emitting element 20 can be output from the light emitting device.
 或いは、発光素子20の出射光によって励起されて励起光を放射する蛍光体を含有する蛍光体樹脂を光透過性膜110に使用してもよい。光透過性膜110に蛍光体樹脂を使用することにより、所望の色の出力光Lを発光装置から出力できる。また、発光装置から、発光素子20の出射光と励起光とが混色された出力光Lを出力させることも可能である。 Alternatively, a phosphor resin containing a phosphor that is excited by the light emitted from the light emitting element 20 to emit excitation light may be used for the light transmissive film 110. By using a phosphor resin for the light transmissive film 110, output light L having a desired color can be output from the light emitting device. Moreover, it is also possible to output the output light L in which the light emitted from the light emitting element 20 and the excitation light are mixed from the light emitting device.
 光透過性膜110に使用する透明樹脂として、エポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂などを使用可能である。例えば、照明用途などの大電力の発光装置では、耐熱性が高いシリコーン系の樹脂が使用される。また、蛍光体樹脂として前記の透明樹脂に蛍光材料を混合したものなどを使用できる。 As the transparent resin used for the light transmissive film 110, an epoxy resin, a modified epoxy resin, a silicone resin, a modified silicone resin, or the like can be used. For example, in a high-power light-emitting device such as a lighting application, a silicone resin having high heat resistance is used. Moreover, what mixed the fluorescent material in the said transparent resin etc. can be used as fluorescent substance resin.
 以下に、図2~図6を参照して、本発明の実施形態に係る発光装置の製造方法を説明する。なお、以下に述べる発光装置の製造方法は一例であり、この変形例を含めて、これ以外の種々の製造方法により実現可能であることはもちろんである。 Hereinafter, a method for manufacturing a light-emitting device according to an embodiment of the present invention will be described with reference to FIGS. Note that the manufacturing method of the light-emitting device described below is an example, and it is needless to say that it can be realized by various other manufacturing methods including this modification.
 先ず、図2に示すように、厚さ700μm程度の半導体基板200上に発光素子20を構成する各層をエピタキシャル成長法などによって形成する。即ち、第2の半導体層23、発光層22及び第1の半導体層21を半導体基板200上に順次積層する。第2の半導体層23、発光層22及び第1の半導体層21には、窒化ガリウムなどの窒化物系化合物半導体層などが使用される。 First, as shown in FIG. 2, each layer constituting the light-emitting element 20 is formed on a semiconductor substrate 200 having a thickness of about 700 μm by an epitaxial growth method or the like. That is, the second semiconductor layer 23, the light emitting layer 22, and the first semiconductor layer 21 are sequentially stacked on the semiconductor substrate 200. For the second semiconductor layer 23, the light emitting layer 22, and the first semiconductor layer 21, a nitride compound semiconductor layer such as gallium nitride is used.
 次に、第1の半導体層21と接触するように、第2金属膜30を形成する。このとき、第1の半導体層21の外縁部よりも第2金属膜30の外縁部が内側に位置するように、第2金属膜30をパターニングする。次いで、第2金属膜30の露出した表面を覆うように、第2金属膜30の表面に第1金属膜40を形成する。その後、図3に示すように、第1金属膜40の表面に素子側張り合わせ金属膜51を形成する。 Next, the second metal film 30 is formed so as to be in contact with the first semiconductor layer 21. At this time, the second metal film 30 is patterned so that the outer edge portion of the second metal film 30 is located inside the outer edge portion of the first semiconductor layer 21. Next, the first metal film 40 is formed on the surface of the second metal film 30 so as to cover the exposed surface of the second metal film 30. Thereafter, as shown in FIG. 3, an element-side bonded metal film 51 is formed on the surface of the first metal film 40.
 一方、図4に示すように、第1の電極配線71と基板側張り合わせ金属膜52が上面に形成された支持基板10を準備する。支持基板10は、例えば樹脂基板であり、側面に第1の電極61と第2の電極62が形成された領域を有する。第1の電極配線71と基板側張り合わせ金属膜52は、第1の電極61と第2の電極62に挟まれた領域に配置されている。このとき、第1の電極配線71の端部が第1の電極61と接続するようにする。 On the other hand, as shown in FIG. 4, the support substrate 10 having the first electrode wiring 71 and the substrate-side bonded metal film 52 formed on the upper surface is prepared. The support substrate 10 is, for example, a resin substrate, and has a region where the first electrode 61 and the second electrode 62 are formed on the side surface. The first electrode wiring 71 and the substrate-side bonded metal film 52 are disposed in a region sandwiched between the first electrode 61 and the second electrode 62. At this time, the end portion of the first electrode wiring 71 is connected to the first electrode 61.
 第1の電極61及び第2の電極62は、例えば、銅(Cu)メッキによって形成する。電源電極の材料は、発光装置の全体の強度などを考慮して選択される。Cuメッキ以外にも、Al材などを電源電極に使用してもよい。 The first electrode 61 and the second electrode 62 are formed by, for example, copper (Cu) plating. The material of the power supply electrode is selected in consideration of the overall strength of the light emitting device. In addition to Cu plating, an Al material or the like may be used for the power supply electrode.
 なお、支持基板10の厚みが所定値になるまで、支持基板10の表面を膜厚方向に研磨するバックグラインド工程によってエッチングする。これにより、図4に示すように、第1の電極61及び第2の電極62の下面が、支持基板10の下面よりも下方に露出する。 Etching is performed by a back grinding process in which the surface of the support substrate 10 is polished in the film thickness direction until the thickness of the support substrate 10 reaches a predetermined value. As a result, as shown in FIG. 4, the lower surfaces of the first electrode 61 and the second electrode 62 are exposed below the lower surface of the support substrate 10.
 そして、図5に示すように、素子側張り合わせ金属膜51と基板側張り合わせ金属膜52を張り合わせて、発光素子20と支持基板10を一体化する。 Then, as shown in FIG. 5, the element-side bonded metal film 51 and the substrate-side bonded metal film 52 are bonded together, and the light emitting element 20 and the support substrate 10 are integrated.
 次いで、発光素子20から半導体基板200を削除する。例えば、半導体基板200がシリコン基板である場合には、フッ硝酸を用いたウェットエッチングによって半導体基板200を削除する。半導体基板200がサファイア基板である場合には、レーザリフトオフ法などを使用する。 Next, the semiconductor substrate 200 is deleted from the light emitting element 20. For example, when the semiconductor substrate 200 is a silicon substrate, the semiconductor substrate 200 is deleted by wet etching using hydrofluoric acid. When the semiconductor substrate 200 is a sapphire substrate, a laser lift-off method or the like is used.
 その後、図6に示すように、支持基板10の表面に配置された基体を覆うように絶縁性保護膜100を形成する。即ち、発光素子20、第1金属膜40、張り合わせ金属膜50及び第1の電極配線71の周囲が、光透過性の絶縁性保護膜100によって覆われる。 Thereafter, as shown in FIG. 6, an insulating protective film 100 is formed so as to cover the base disposed on the surface of the support substrate 10. That is, the periphery of the light emitting element 20, the first metal film 40, the bonded metal film 50, and the first electrode wiring 71 is covered with the light-transmitting insulating protective film 100.
 そして、発光素子20の上方で絶縁性保護膜100の開口部を形成し、この開口部に露出する第2の半導体層23の上面に表面電極80を形成する。更に、絶縁性保護膜100の開口部を埋め込むように第2の電極配線72を形成する。図6に示すように、一方の端部が表面電極80に接続する第2の電極配線72は、他方の端部が第2の電極62に接続するように、絶縁性保護膜100の上面から側面に渡って配置される。なお、電極配線には、金(Au)膜などを使用するが、アルミニウム(Al)膜や銀(Ag)膜も使用される。 Then, an opening of the insulating protective film 100 is formed above the light emitting element 20, and the surface electrode 80 is formed on the upper surface of the second semiconductor layer 23 exposed in the opening. Further, the second electrode wiring 72 is formed so as to fill the opening of the insulating protective film 100. As shown in FIG. 6, the second electrode wiring 72 having one end connected to the surface electrode 80 is formed from the upper surface of the insulating protective film 100 so that the other end is connected to the second electrode 62. Arranged across the side. Note that a gold (Au) film or the like is used for the electrode wiring, but an aluminum (Al) film or a silver (Ag) film is also used.
 次いで、図6に示したように、第1の電極61の下面を覆うように第1の接続用電極91を形成し、第2の電極62の下面を覆うように第2の接続用電極92を形成する。第1の接続用電極91及び第2の接続用電極92(以下、総称して「接続用電極」という。)は、例えばプリント基板などの実装基板に発光装置を取り付ける場合に、実装基板に配置された配線パターンと発光装置の電源電極とを接続するために使用される。接続用電極には、半田電極などが好適に使用される。 Next, as shown in FIG. 6, a first connection electrode 91 is formed so as to cover the lower surface of the first electrode 61, and a second connection electrode 92 is formed so as to cover the lower surface of the second electrode 62. Form. The first connection electrode 91 and the second connection electrode 92 (hereinafter collectively referred to as “connection electrode”) are arranged on the mounting substrate when the light emitting device is attached to the mounting substrate such as a printed circuit board. The wiring pattern is used to connect the power supply electrode of the light emitting device. A solder electrode or the like is preferably used as the connection electrode.
 その後、支持基板10と電源電極の上に光透過性膜110を形成する。そして、ダイシングによって発光装置を個々に分離する個片化処理を行う。以上により、図1に示す発光装置が完成する。 Thereafter, a light transmissive film 110 is formed on the support substrate 10 and the power supply electrode. Then, a singulation process for separating the light emitting devices individually by dicing is performed. Thus, the light emitting device shown in FIG. 1 is completed.
 なお、素子側張り合わせ金属膜51と基板側張り合わせ金属膜52を張り合わせた構造が、図1に示した張り合わせ金属膜50である。即ち、上記の製造方法では、支持基板10と発光素子20とを一体化するために、素子側張り合わせ金属膜51と基板側張り合わせ金属膜52とを張り合わせている。 A structure in which the element-side bonded metal film 51 and the substrate-side bonded metal film 52 are bonded together is the bonded metal film 50 shown in FIG. That is, in the above manufacturing method, the element-side bonded metal film 51 and the substrate-side bonded metal film 52 are bonded together in order to integrate the support substrate 10 and the light emitting element 20.
 バリア金属として使用される金属やボンディングに使用される金属などを、張り合わせ金属膜50に使用できる。例えば、Ti、Au、Sn、ニッケル(Ni)、クロム(Cr)、ガリウム(Ga)、インジウム(In)、ビスマス(Bi)、Cu、Ag及びタンタル(Ta)などの金属或いはこれらの合金が、張り合わせ金属膜50に使用される。なお、素子側張り合わせ金属膜51と基板側張り合わせ金属膜52は、同一の材料でもよいし、異なる材料でもよい。 A metal used as a barrier metal or a metal used for bonding can be used for the laminated metal film 50. For example, metals such as Ti, Au, Sn, nickel (Ni), chromium (Cr), gallium (Ga), indium (In), bismuth (Bi), Cu, Ag, and tantalum (Ta), or alloys thereof, Used for the laminated metal film 50. The element-side bonded metal film 51 and the substrate-side bonded metal film 52 may be made of the same material or different materials.
 なお、半田やスズ(Sn)などのAuよりも融点の低い材料を張り合わせ金属膜50に使用することにより、300℃以下の温度で、且つ短時間で、支持基板10と発光素子20とを一体化できる。例えば、素子側張り合わせ金属膜51と基板側張り合わせ金属膜52にAuSnを使用する。 In addition, by using a material having a melting point lower than that of Au, such as solder or tin (Sn), for the laminated metal film 50, the support substrate 10 and the light emitting element 20 are integrated with each other at a temperature of 300 ° C. or less and in a short time. Can be For example, AuSn is used for the element-side bonded metal film 51 and the substrate-side bonded metal film 52.
 上記のような本発明の実施形態に係る発光装置の製造方法によれば、第2金属膜30でのマイグレーションの発生が抑制された発光装置を実現できる。また、下方から支持基板10によって発光素子20の全体が支持される構造を実現できる。このため、発光素子20に歪みによる応力が加わることが抑制される。 According to the method for manufacturing a light emitting device according to the embodiment of the present invention as described above, it is possible to realize a light emitting device in which the occurrence of migration in the second metal film 30 is suppressed. Moreover, the structure where the whole light emitting element 20 is supported by the support substrate 10 from the downward direction is realizable. For this reason, it is suppressed that the stress by distortion is added to the light emitting element 20.
 CSP構造の発光装置では、パッケージが発光素子20と接しているため、発光素子20の機械的強度を補強して、信頼性の高い発光装置を実現できる。また、製造の過程で半導体基板200が除去されるため、発光装置の高さを低くできる。更に、半導体基板200の除去によって、発光素子20からの光取り出し効率が向上する。 In the light emitting device having the CSP structure, since the package is in contact with the light emitting element 20, the mechanical strength of the light emitting element 20 can be reinforced to realize a highly reliable light emitting device. Further, since the semiconductor substrate 200 is removed during the manufacturing process, the height of the light emitting device can be reduced. Furthermore, removal of the semiconductor substrate 200 improves the light extraction efficiency from the light emitting element 20.
 なお、上記の製造方法では、支持基板10が樹脂基板である例を記載したが、支持基板10に樹脂よりも機械的強度の高い材料を使用することが好ましい。なぜなら、CSP構造の発光装置では、半導体基板200が削除され、且つ、光透過性膜110にエポキシ樹脂やシリコーン樹脂などの機械的強度の低い材料を使用するため、パッケージ全体の機械的強度が低い。 In the above manufacturing method, an example in which the support substrate 10 is a resin substrate has been described. However, it is preferable to use a material having higher mechanical strength than the resin for the support substrate 10. This is because in the light emitting device having the CSP structure, the semiconductor substrate 200 is omitted, and a material having low mechanical strength such as epoxy resin or silicone resin is used for the light transmissive film 110, so that the mechanical strength of the entire package is low. .
 パッケージの機械的強度が低いと、発光装置を製品基板に組み込む際や、組み込んだ後に破損する危険がある。また、発光装置が破損しないように、組み込み装置の構成を工夫したり、組み込み速度を遅くしたりするなどの対応が必要である。 If the mechanical strength of the package is low, there is a risk of damage when the light emitting device is incorporated into the product substrate or after it is incorporated. In addition, it is necessary to take measures such as devising the configuration of the built-in device or slowing down the built-in speed so that the light emitting device is not damaged.
 したがって、支持基板10に機械的強度の高い材料を使用することによって、パッケージ全体の機械的強度を高くすることが好ましい。例えば支持基板10にセラミック基板を使用することが、発光装置の機械的強度を高める上で有効である。支持基板10をセラミック基板とするためには、例えば、液状にしたセラミック材料を所定の形状に形成した後に、高温で焼き固める。 Therefore, it is preferable to increase the mechanical strength of the entire package by using a material having high mechanical strength for the support substrate 10. For example, using a ceramic substrate for the support substrate 10 is effective in increasing the mechanical strength of the light emitting device. In order to use the support substrate 10 as a ceramic substrate, for example, a liquid ceramic material is formed into a predetermined shape and then baked at a high temperature.
 支持基板10にセラミック基板を使用することによって、発光装置の機械的強度が向上する。更に、セラミック基板は発光素子20の下面の略全面を支持するように配置されるため、半導体基板200を削除する工程などにおける製造時の歪みにより発光素子20が破損することを抑制できる。また、製品組み立て時や取り扱い時に発光装置に加わる衝撃によって発光素子20がダメージを受けることを防止できる。このように、支持基板10をセラミック基板にすることによって、発光装置の破損や信頼性の低下を抑制することができる。また、製品組み立て時での半田熱処理などにより発生する熱歪みによるダメージを抑制できる。 By using a ceramic substrate for the support substrate 10, the mechanical strength of the light emitting device is improved. Furthermore, since the ceramic substrate is disposed so as to support substantially the entire lower surface of the light emitting element 20, it is possible to prevent the light emitting element 20 from being damaged due to distortion during manufacturing in the process of removing the semiconductor substrate 200 or the like. Further, it is possible to prevent the light emitting element 20 from being damaged by an impact applied to the light emitting device during product assembly or handling. As described above, by using the support substrate 10 as the ceramic substrate, it is possible to suppress damage to the light emitting device and deterioration of reliability. In addition, it is possible to suppress damage due to thermal distortion caused by solder heat treatment during product assembly.
 ただし、セラミック基板の場合、セラミック基板を形成した後のバックグラインド工程やダイシングによる個片化処理が、樹脂基板に比べて困難である。このため、図4を参照して説明したように、第1の電極61の下面及び第2の電極62の下面が、支持基板10の下面よりも下方に位置するように、支持基板10を形成する。例えば、支持基板10の下面と電源電極の下面との段差を、10μm程度に設定する。これにより、支持基板10としてセラミック基板を形成した後の、セラミック基板の研磨処理が不要になる。このため、研磨処理が支持基板10や発光素子20に与えるダメージを小さくすることができる。その結果、発光装置の歩留まりの低下や信頼性の低下を抑制できる。 However, in the case of a ceramic substrate, the back-grinding process after forming the ceramic substrate and the singulation process by dicing are difficult compared to the resin substrate. Therefore, as described with reference to FIG. 4, the support substrate 10 is formed so that the lower surface of the first electrode 61 and the lower surface of the second electrode 62 are located below the lower surface of the support substrate 10. To do. For example, the step between the lower surface of the support substrate 10 and the lower surface of the power supply electrode is set to about 10 μm. Thereby, the polishing process of the ceramic substrate after the ceramic substrate is formed as the support substrate 10 becomes unnecessary. For this reason, the damage which the polishing process gives to the support substrate 10 and the light emitting element 20 can be reduced. As a result, a decrease in yield and reliability of the light emitting device can be suppressed.
 更に、個片化処理するダイシングにおいてダイシングブレードが通過する場所に、電源電極が支持基板10を貫通して配置されているようにすることが好ましい。これにより、ダイシングブレードによって支持基板10よりも電源電極が主に切断される。このため、セラミック基板を使用した場合におけるダイシングの処理時間が減少する。また、ダイシングブレードの寿命が延びるため、製造コストを低減することができる。 Furthermore, it is preferable that the power supply electrode is disposed so as to penetrate the support substrate 10 at a location where the dicing blade passes in dicing for singulation processing. As a result, the power supply electrode is mainly cut from the support substrate 10 by the dicing blade. For this reason, the processing time of dicing when a ceramic substrate is used is reduced. Further, since the life of the dicing blade is extended, the manufacturing cost can be reduced.
 また、金属の方がセラミックよりも硬度が低いため、切断時の歪みが金属の電源電極で緩和される。このため、発光素子20に与えるダメージが緩和され、歩留まりよく信頼性の高い発光装置を実現できる。 Also, since the hardness of metal is lower than that of ceramic, distortion at the time of cutting is relieved by the metal power electrode. For this reason, the damage given to the light emitting element 20 is relieved, and a light emitting device with high yield and high reliability can be realized.
 図1に示した発光装置では、電源電極が支持基板10の側面に配置されおり、ダイシングにおいて電源電極が主に切断されることによる上記の効果を得られる。 In the light-emitting device shown in FIG. 1, the power electrode is disposed on the side surface of the support substrate 10, and the above-described effect can be obtained by mainly cutting the power electrode in dicing.
 <第1の変形例>
 既に述べたように、発光素子20に加わる応力が、発光装置の特性に大きく影響する。特に、CSP構造の発光装置は、発光素子20がパッケージ材料と密着する構造であるため、パッケージ材料との線膨張係数との違いや加工時の変形によって、発光素子20に応力が加わりやすい。
<First Modification>
As already described, the stress applied to the light emitting element 20 greatly affects the characteristics of the light emitting device. In particular, since the light emitting device having the CSP structure has a structure in which the light emitting element 20 is in close contact with the package material, stress is easily applied to the light emitting element 20 due to a difference in linear expansion coefficient from the package material or deformation during processing.
 このため、図7に示すように、支持基板10に、第1のセラミック層11と、第1のセラミック層11よりも密度が高く、線膨張係数の大きい第2のセラミック層12とを積層した構造を有するセラミック基板を使用してもよい。図7に示すように、発光素子20に近い側に、線膨張係数が小さく密度が低い第1のセラミック層11が配置される。つまり、発光素子20に近い側に、発光素子20を構成する半導体層と線膨張係数の近い第1のセラミック層11を配置する。これにより、セラミックを硬化させるときの歪みが緩和され、発光素子20に加わる応力を低下させることができる。 Therefore, as shown in FIG. 7, the first ceramic layer 11 and the second ceramic layer 12 having a higher density and a larger linear expansion coefficient than the first ceramic layer 11 are laminated on the support substrate 10. A ceramic substrate having a structure may be used. As shown in FIG. 7, the first ceramic layer 11 having a low linear expansion coefficient and a low density is disposed on the side close to the light emitting element 20. That is, the first ceramic layer 11 having a linear expansion coefficient close to that of the semiconductor layer constituting the light emitting element 20 is disposed on the side close to the light emitting element 20. Thereby, the distortion at the time of hardening a ceramic is relieved and the stress added to the light emitting element 20 can be reduced.
 また、支持基板10の発光素子20から遠い側を、線膨張係数の大きい第2のセラミック層12にすることによって、支持基板10の反りが抑制され、パッケージ全体としての強度が低下することを防止できる。したがって、図7に示した構造の支持基板10を使用することによって、信頼性の高い、高効率の発光装置を実現できる。第1のセラミック層11の線膨張係数や弾性係数を低くするには、例えば、フィラーを混入させたり、空孔率を高くしたりする方法などがある。 Further, the second ceramic layer 12 having a large linear expansion coefficient is provided on the side of the support substrate 10 that is far from the light emitting element 20, so that the warp of the support substrate 10 is suppressed and the strength of the entire package is prevented from being lowered. it can. Therefore, by using the support substrate 10 having the structure shown in FIG. 7, a highly reliable and highly efficient light-emitting device can be realized. In order to reduce the linear expansion coefficient and the elastic coefficient of the first ceramic layer 11, for example, there is a method of mixing a filler or increasing the porosity.
 第1のセラミック層11と第2のセラミック層12を積層するためには、例えば、線膨張係数の異なる2枚のセラミックシート(グリーンシート)を接着して形成する方法や、塗布型セラミックスを2層重ねる方法などを使用できる。このように、第1のセラミック層11及び第2のセラミック層12は安価な方法で形成できる。 In order to laminate the first ceramic layer 11 and the second ceramic layer 12, for example, a method in which two ceramic sheets (green sheets) having different linear expansion coefficients are bonded to each other, or two coating ceramics are used. The method of layering can be used. Thus, the first ceramic layer 11 and the second ceramic layer 12 can be formed by an inexpensive method.
 また、光透過性膜110にガラス基板を使用した場合、ガラス基板は弾性係数が高く、線膨張係数が大きく異なるため、発光素子20に大きな応力が発生する。この場合は、第1のセラミック層11の線膨張係数を第2のセラミック層12の線膨張係数よりも小さくすることで、第1のセラミック層11の線膨張係数をガラスに近づけることができる。これにより、発光素子20に加わる応力を低下させることができる。 Further, when a glass substrate is used for the light transmissive film 110, the glass substrate has a high elastic coefficient and a large difference in linear expansion coefficient. In this case, the linear expansion coefficient of the first ceramic layer 11 can be made closer to glass by making the linear expansion coefficient of the first ceramic layer 11 smaller than that of the second ceramic layer 12. Thereby, the stress added to the light emitting element 20 can be reduced.
 <第2の変形例>
 支持基板10の上面に電極配線が配置されると、支持基板10による光反射機能が阻害される。このため、平面視で、発光素子20の外側で支持基板10の上面が露出していることが好ましい。
<Second Modification>
When the electrode wiring is arranged on the upper surface of the support substrate 10, the light reflection function by the support substrate 10 is hindered. For this reason, it is preferable that the upper surface of the support substrate 10 is exposed outside the light emitting element 20 in plan view.
 例えば、図8に示すように、第1の電極61の上方及び第2の電極62の上方に、支持基板10の上部の一部を延在させる。即ち、第1の電極61及び第2の電極62は、支持基板10の上面よりも下方に配置される。このとき、第1の電極配線71と第2の電極配線72は、平面視で発光素子20の外側において、支持基板10の内部を通過する部分を有する。これにより、発光素子20の出射光が支持基板10の露出した上面で反射する。 For example, as shown in FIG. 8, a part of the upper portion of the support substrate 10 is extended above the first electrode 61 and above the second electrode 62. That is, the first electrode 61 and the second electrode 62 are disposed below the upper surface of the support substrate 10. At this time, the first electrode wiring 71 and the second electrode wiring 72 have a portion that passes through the inside of the support substrate 10 outside the light emitting element 20 in a plan view. Thereby, the emitted light of the light emitting element 20 is reflected on the exposed upper surface of the support substrate 10.
 図8に示した発光装置は、第1の電極配線71と第2の電極配線72の一部が、第1のセラミック層11と第2のセラミック層12の間に配置された構造である。即ち、張り合わせ金属膜50の端部と接続する第1の電極配線71が、平面視で発光素子20の外側を第1のセラミック層11と第2のセラミック層12の境界まで第1のセラミック層11を貫通して膜厚方向に延伸する。そして、第1のセラミック層11と第2のセラミック層12の境界に沿って延伸する第1の電極配線71の端部が、第1の電極61に接続する。また、絶縁性保護膜100の側面に配置された第2の電極配線72が、平面視で発光素子20の外側を第1のセラミック層11と第2のセラミック層12の境界まで第1のセラミック層11を貫通して膜厚方向に延伸する。そして、第1のセラミック層11と第2のセラミック層12の境界に沿って延伸する第2の電極配線72の端部が、第2の電極62に接続する。 8 has a structure in which a part of the first electrode wiring 71 and the second electrode wiring 72 is arranged between the first ceramic layer 11 and the second ceramic layer 12. That is, the first electrode wiring 71 connected to the end portion of the bonded metal film 50 has the first ceramic layer extending from the light emitting element 20 to the boundary between the first ceramic layer 11 and the second ceramic layer 12 in a plan view. 11 is stretched in the film thickness direction. The end portion of the first electrode wiring 71 extending along the boundary between the first ceramic layer 11 and the second ceramic layer 12 is connected to the first electrode 61. In addition, the second electrode wiring 72 disposed on the side surface of the insulating protective film 100 has the first ceramic extending from the light emitting element 20 to the boundary between the first ceramic layer 11 and the second ceramic layer 12 in a plan view. It extends through the layer 11 in the film thickness direction. Then, the end of the second electrode wiring 72 extending along the boundary between the first ceramic layer 11 and the second ceramic layer 12 is connected to the second electrode 62.
 上記のように第1の電極配線71と第2の電極配線72を支持基板10の内部を通過させることにより、発光素子20から出射された光が支持基板10の露出した上面で反射する。これにより、発光装置の輝度が向上する。 As described above, the light emitted from the light emitting element 20 is reflected on the exposed upper surface of the support substrate 10 by passing the first electrode wiring 71 and the second electrode wiring 72 through the inside of the support substrate 10. Thereby, the brightness | luminance of a light-emitting device improves.
 更に、支持基板10の内部に第1の電極配線71を配置することにより、発光素子20の下方には第1の電極配線71が配置されない。このため、発光素子20に加わる応力が抑制される。 Furthermore, by arranging the first electrode wiring 71 inside the support substrate 10, the first electrode wiring 71 is not arranged below the light emitting element 20. For this reason, the stress added to the light emitting element 20 is suppressed.
 なお、セラミック層を積層した構造ではない支持基板10の場合にも、第1の電極配線71と第2の電極配線72を支持基板10の内部に配置することにより、支持基板10の上面を露出させることができる。 Even in the case of the support substrate 10 not having a structure in which ceramic layers are laminated, the upper surface of the support substrate 10 is exposed by disposing the first electrode wiring 71 and the second electrode wiring 72 inside the support substrate 10. Can be made.
 <第3の変形例>
 図1では、発光素子20の第2の半導体層23の上面に配置した表面電極80を介して、第2の半導体層23と第2の電極62とを電気的に接続する例を示した。これに対し、図9に示した発光装置では、第2の半導体層23と第2の電極62とを接続する第2の電極配線72が、第2の半導体層23の下面と電気的に接続されている。
<Third Modification>
FIG. 1 illustrates an example in which the second semiconductor layer 23 and the second electrode 62 are electrically connected via the surface electrode 80 disposed on the upper surface of the second semiconductor layer 23 of the light emitting element 20. On the other hand, in the light emitting device shown in FIG. 9, the second electrode wiring 72 that connects the second semiconductor layer 23 and the second electrode 62 is electrically connected to the lower surface of the second semiconductor layer 23. Has been.
 図9に示すように、第2の半導体層23は、平面視で第1の半導体層21及び発光層22の配置されていない領域まで水平方向に延伸する延伸領域を有する。第2の電極配線72は、第2の半導体層23の延伸領域の下面に接続している。 As shown in FIG. 9, the second semiconductor layer 23 has a stretched region that extends in the horizontal direction to a region where the first semiconductor layer 21 and the light emitting layer 22 are not arranged in plan view. The second electrode wiring 72 is connected to the lower surface of the extended region of the second semiconductor layer 23.
 図9に示した発光装置では、光取り出し面の全面から発光素子20の出射光が出射される。このため、有効な光取り出し面を広くすることができる。 In the light emitting device shown in FIG. 9, the light emitted from the light emitting element 20 is emitted from the entire surface of the light extraction surface. For this reason, an effective light extraction surface can be widened.
 (その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 上記では、支持基板10と発光素子20とを、張り合わせ金属膜50によって一体化する例を示した。しかし、張り合わせ金属膜50を使用しなくてもよい。つまり、図10に示すように、第1の電極配線71と第1金属膜40を直接に接合することにより、支持基板10と発光素子20との間に張り合わせ金属膜50が配置されていない発光装置を実現可能である。また、張り合わせ金属膜50の代わりに導電性を有する樹脂接着剤を使用してもよい。 In the above, an example in which the support substrate 10 and the light emitting element 20 are integrated by the bonded metal film 50 is shown. However, the bonded metal film 50 may not be used. That is, as shown in FIG. 10, the first electrode wiring 71 and the first metal film 40 are directly bonded to each other so that the bonded metal film 50 is not disposed between the support substrate 10 and the light emitting element 20. A device is feasible. Further, instead of the laminated metal film 50, a resin adhesive having conductivity may be used.
 なお、図10に示した発光装置においても、図8に示したように電極配線を支持基板10の内部に通過させてもよい。 In the light emitting device shown in FIG. 10 as well, the electrode wiring may be passed through the support substrate 10 as shown in FIG.
 このように、本発明はここでは記載していない様々な実施形態等を含むことはもちろんである。したがって、本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。 Thus, it goes without saying that the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 本発明の半導体装置は、CSP構造の発光装置の用途に利用可能である。 The semiconductor device of the present invention can be used for a light-emitting device having a CSP structure.

Claims (8)

  1.  支持基板と、
     前記支持基板の上に配置された第1金属膜と、
     前記第1金属膜の上部の一部に埋め込まれ、側面及び底面を前記第1金属膜に覆われた第2金属膜と、
     前記第2金属膜の上面を覆って前記第1金属膜の上に配置された発光素子と
     を備え、
     前記第2金属膜が、前記第1金属膜よりも前記発光素子の出射光に対する反射率が高く、
     前記第1金属膜が、前記第2金属膜よりもマイグレーションが発生しにくい
     ことを特徴とするCSP構造の発光装置。
    A support substrate;
    A first metal film disposed on the support substrate;
    A second metal film embedded in a part of the upper part of the first metal film and having side and bottom surfaces covered with the first metal film;
    A light emitting device disposed on the first metal film so as to cover an upper surface of the second metal film;
    The second metal film has a higher reflectance with respect to the emitted light of the light emitting element than the first metal film,
    The CSP structure light-emitting device, wherein the first metal film is less likely to cause migration than the second metal film.
  2.  前記支持基板と前記第1金属膜との間に配置された張り合わせ金属膜を更に備えることを特徴とする請求項1に記載の発光装置。 The light-emitting device according to claim 1, further comprising a bonded metal film disposed between the support substrate and the first metal film.
  3.  前記支持基板がセラミック基板であることを特徴とする請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein the support substrate is a ceramic substrate.
  4.  前記セラミック基板が、
     第1のセラミック層と、
     前記第1のセラミック層よりも線膨張係数の大きい第2のセラミック層と
     を積層した構造を有し、前記第1のセラミック層の上方に前記発光素子が配置されていることを特徴とする請求項3に記載の発光装置。
    The ceramic substrate is
    A first ceramic layer;
    2. A structure in which a second ceramic layer having a linear expansion coefficient larger than that of the first ceramic layer is laminated, and the light emitting element is disposed above the first ceramic layer. Item 4. The light emitting device according to Item 3.
  5.  前記発光素子が、第1の半導体層の上方に第2の半導体層を配置した積層構造を有し、
     前記第1の半導体層と電気的に接続する第1の電極と、
     前記第2の半導体層と電気的に接続する第2の電極と
     を更に備え、
     平面視で、前記発光素子の下面の全体が前記支持基板に覆われ、前記発光素子の外側に前記第1の電極と前記第2の電極がそれぞれ配置されていることを特徴とする請求項1に記載の発光装置。
    The light-emitting element has a stacked structure in which a second semiconductor layer is disposed above a first semiconductor layer,
    A first electrode electrically connected to the first semiconductor layer;
    A second electrode electrically connected to the second semiconductor layer,
    2. The plan view of claim 1, wherein the lower surface of the light emitting element is entirely covered with the support substrate, and the first electrode and the second electrode are respectively disposed outside the light emitting element. The light emitting device according to 1.
  6.  前記第1の半導体層と前記第1の電極とを電気的に接続する第1の電極配線と、
     前記第2の半導体層と前記第2の電極とを電気的に接続する第2の電極配線と
     を更に備え、
     前記第1の電極配線と前記第2の電極配線が、平面視で前記発光素子の外側に前記支持基板の内部を通過する部分を有し、
     前記発光素子の外側で前記支持基板の上面が露出していることを特徴とする請求項5に記載の発光装置。
    A first electrode wiring for electrically connecting the first semiconductor layer and the first electrode;
    A second electrode wiring for electrically connecting the second semiconductor layer and the second electrode;
    The first electrode wiring and the second electrode wiring have a portion that passes through the inside of the support substrate outside the light emitting element in a plan view,
    The light emitting device according to claim 5, wherein an upper surface of the support substrate is exposed outside the light emitting element.
  7.  前記第1の電極の上方及び前記第2の電極の上方に前記支持基板の上部の一部が延在していることを特徴とする請求項6に記載の発光装置。 The light emitting device according to claim 6, wherein a part of the upper portion of the support substrate extends above the first electrode and above the second electrode.
  8.  前記第2の半導体層と前記第2の電極とが、前記第2の半導体層の上面に配置された表面電極を介して電気的に接続されていることを特徴とする請求項5に記載の発光装置。 The said 2nd semiconductor layer and the said 2nd electrode are electrically connected through the surface electrode arrange | positioned at the upper surface of the said 2nd semiconductor layer, The Claim 5 characterized by the above-mentioned. Light emitting device.
PCT/JP2016/087787 2016-12-19 2016-12-19 Light-emitting device WO2018116350A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017529104A JP6414334B1 (en) 2016-12-19 2016-12-19 Light emitting device
PCT/JP2016/087787 WO2018116350A1 (en) 2016-12-19 2016-12-19 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087787 WO2018116350A1 (en) 2016-12-19 2016-12-19 Light-emitting device

Publications (1)

Publication Number Publication Date
WO2018116350A1 true WO2018116350A1 (en) 2018-06-28

Family

ID=62627401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087787 WO2018116350A1 (en) 2016-12-19 2016-12-19 Light-emitting device

Country Status (2)

Country Link
JP (1) JP6414334B1 (en)
WO (1) WO2018116350A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042952A (en) * 2005-08-04 2007-02-15 Showa Denko Kk Gallium nitride based compound semiconductor light emitting element
JP2011166150A (en) * 2010-02-11 2011-08-25 Lg Innotek Co Ltd Light emitting device
JP2014158001A (en) * 2013-02-18 2014-08-28 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element and manufacturing method of the same
JP2015159203A (en) * 2014-02-25 2015-09-03 スタンレー電気株式会社 Semiconductor light emitting device
JP2016207924A (en) * 2015-04-27 2016-12-08 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101946914B1 (en) * 2012-06-08 2019-02-12 엘지이노텍 주식회사 Light emitting device, light emitting device package, and light unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042952A (en) * 2005-08-04 2007-02-15 Showa Denko Kk Gallium nitride based compound semiconductor light emitting element
JP2011166150A (en) * 2010-02-11 2011-08-25 Lg Innotek Co Ltd Light emitting device
JP2014158001A (en) * 2013-02-18 2014-08-28 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element and manufacturing method of the same
JP2015159203A (en) * 2014-02-25 2015-09-03 スタンレー電気株式会社 Semiconductor light emitting device
JP2016207924A (en) * 2015-04-27 2016-12-08 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP6414334B1 (en) 2018-10-31
JPWO2018116350A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
JP5432234B2 (en) Mounting for semiconductor light emitting devices
US10566509B2 (en) Light emitting structure
JP4812369B2 (en) Method for manufacturing light emitting device
JP5657591B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5698633B2 (en) Semiconductor light emitting device, light emitting module, and method of manufacturing semiconductor light emitting device
JP2007103901A (en) Light emitting device
JP2016171164A (en) Semiconductor light emission device
KR102461968B1 (en) Light emitting device
JP6536859B2 (en) Light emitting device
JP2015191910A (en) Semiconductor light emitting device
JP2006073618A (en) Optical element and manufacturing method thereof
TWI453952B (en) Light emitting element and manufacturing method thereof
KR101764129B1 (en) Semiconductor light emitting device and method of manufacturing the same
JP6414334B1 (en) Light emitting device
US9698307B2 (en) Light emitting device
JP6964421B2 (en) Semiconductor light emitting device
JP6269901B1 (en) Light emitting device
JP6265306B1 (en) Light emitting device
KR102387082B1 (en) Supporting substrate for semiconductor device, semiconductor apparatus with the same and method of manufacturing the same
KR20170052546A (en) Semiconductor light emitting device and method of manufacturing the same
KR20160047306A (en) Semiconductor light emitting device and method of manufacturing the same
KR20170124496A (en) Semiconductor light emitting device and method of manufacturing the same
KR20160097082A (en) Supporting substrate for semiconductor device, semiconductor apparatus with the same and method of manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017529104

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924268

Country of ref document: EP

Kind code of ref document: A1