WO2018113415A1 - 一种滚动轴承检测方法及装置 - Google Patents

一种滚动轴承检测方法及装置 Download PDF

Info

Publication number
WO2018113415A1
WO2018113415A1 PCT/CN2017/108272 CN2017108272W WO2018113415A1 WO 2018113415 A1 WO2018113415 A1 WO 2018113415A1 CN 2017108272 W CN2017108272 W CN 2017108272W WO 2018113415 A1 WO2018113415 A1 WO 2018113415A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
rolling
defect
outer ring
span
Prior art date
Application number
PCT/CN2017/108272
Other languages
English (en)
French (fr)
Inventor
郭磊
张恺
卜格非
Original Assignee
舍弗勒技术股份两合公司
郭磊
张恺
卜格非
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 郭磊, 张恺, 卜格非 filed Critical 舍弗勒技术股份两合公司
Priority to DE112017006464.3T priority Critical patent/DE112017006464T5/de
Publication of WO2018113415A1 publication Critical patent/WO2018113415A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/449Statistical methods not provided for in G01N29/4409, e.g. averaging, smoothing and interpolation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/262Linear objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2696Wheels, Gears, Bearings

Definitions

  • the invention relates to the field of testing, and in particular to a method and a device for detecting a rolling bearing.
  • the outer ring peeling of the bearing is a common form of bearing defect.
  • the existing mature testing program is to obtain the defect size information by visual inspection after the bearing is disassembled.
  • the existing testing and testing schemes have the following deficiencies: (1) Destructive testing, testing bearings can not continue to use; (2) can not be used for online testing, can not understand the development status of bearing defects in real time.
  • the technical problem solved by the present invention is to solve the problem that the testing of the existing detection scheme is destructive and cannot be used for online testing.
  • an embodiment of the present invention provides a rolling bearing detection method, including: acquiring a vibration signal in an operating state of the rolling bearing; resampling the vibration signal to obtain sampling data; At least a portion of the span of the defect of the rolling element through the bearing outer ring is determined; the size of the defect is determined according to a span of the defect of the rolling element through the bearing outer ring.
  • the resampling is equal angle domain resampling, and the angular domain resampling is performed based on an angular velocity of the inner ring motion of the bearing, and the inner ring of the bearing is rotated within a unit angle by the equal angle domain resampling
  • the obtained sample point data is the same.
  • the vibration signal corresponds to a vibration amplitude of the rolling body in a time domain. state.
  • determining, according to at least a portion of the sampled data, a span of the defect of the rolling element through the bearing outer ring includes: determining, according to at least a portion of the sampled data, the rolling element passing through the bearing outer ring The starting point and the ending point of the defect; determining the span of the defect of the rolling element through the bearing outer ring according to the starting point and the ending point.
  • the time span of the defect of the rolling element passing through the bearing outer ring according to the starting point and the ending point comprises: determining, according to a starting point and an ending point of a defect of the plurality of rolling bodies passing through the bearing outer ring a span of each of the rolling elements passing through the outer ring of the bearing; averaging the span of the plurality of rolling bodies each passing through the outer ring of the bearing to determine a defect of the rolling element passing through the outer ring of the bearing The span.
  • the starting point and the ending point are determined based on sampling points of the sampled data, and the span is identified by a number of sampling points between the starting point and the sampling point.
  • determining the size of the defect according to the span of the rolling element through the bearing outer ring includes calculating the size of the defect by the following formula: Where D Or is the diameter of the outer ring of the rolling bearing, For the span of the defect, P Circle is the total number of sampling points that rotate one revolution of the inner ring of the bearing.
  • the sampling data of one rotation of the inner ring of the bearing includes the same number of peak segments as the rolling bodies, and each peak segment corresponds to one of the rolling bodies passing the defect.
  • the first sampling point with the largest falling slope is the starting point of the rolling body passing the defect
  • the maximum point of the amplitude after the starting point is the rolling body Pass the end point of the defect.
  • At least a portion of the sampled data is subjected to cluster analysis to determine a starting point and an ending point of defects of each rolling element passing through the outer ring of the bearing.
  • the vibration signal is acquired by using an acceleration sensor disposed on a bearing housing of the rolling bearing.
  • obtaining the vibration signal in the running state of the rolling bearing comprises: acquiring an initial vibration signal in an operating state of the rolling bearing; and performing noise reduction processing on the initial vibration signal to obtain the vibration signal.
  • the noise reduction process includes any one or more of the following: wavelet noise reduction processing and adaptive filtering.
  • At least a portion of the sampled data is sample data of one or more revolutions of the inner ring of the bearing.
  • An embodiment of the present invention further provides a rolling bearing detecting device, the rolling bearing comprising a bearing outer ring, a bearing inner ring, and a rolling body between the bearing outer ring and the bearing inner ring, the rolling bearing detecting device comprises: a vibration signal An acquisition unit adapted to acquire a vibration signal in an operating state of the rolling bearing; a resampling unit adapted to resample the vibration signal to obtain sampling data; and a span determining unit adapted to be based on at least a part of the sampling data Determining a span of the defect of the rolling element through the outer ring of the bearing; a defect size determining unit adapted to determine a size of the defect according to a span of the defect of the rolling element through the bearing outer ring.
  • the resampling is equal angle domain resampling, and the angular domain resampling is performed based on an angular velocity of the inner ring motion of the bearing, and the inner ring of the bearing is rotated within a unit angle by the equal angle domain resampling
  • the obtained sample point data is the same.
  • the vibration signal corresponds to a vibration amplitude state of the rolling body in the time domain.
  • the span determining unit includes: a starting point and an ending point determining subunit, and is adapted to determine a starting point of a defect of the rolling element passing through the bearing outer ring according to at least a part of the sampling data. And an end point; a span determining subunit adapted to determine a span of defects of the rolling element through the bearing outer ring based on the starting point and the ending point.
  • the span determining unit comprises: a single rolling body span determining unit, and is adapted to determine, according to the starting point and the ending point of the defects of the bearing outer ring of the plurality of rolling bodies, each rolling body passes through the bearing Span of the defect of the outer ring; average span determination unit, suitable A span of defects of each of the plurality of rolling bodies through the bearing outer ring is averaged to determine a span of defects of the rolling elements through the bearing outer ring.
  • the starting point and the ending point are determined based on sampling points of the sampled data, and the span is identified by a number of sampling points between the starting point and the sampling point.
  • the defect size determining unit is adapted to calculate the size of the defect by the following formula: Where D Or is the diameter of the outer ring of the rolling bearing, For the span of the defect, P Circle is the total number of sampling points that rotate one revolution of the inner ring of the bearing.
  • the sampling data of one rotation of the inner ring of the bearing includes the same number of peak segments as the rolling bodies, and each peak segment corresponds to one of the rolling bodies passing the defect.
  • the first sampling point with the largest falling slope is the starting point of the rolling body passing the defect
  • the maximum point of the amplitude after the starting point is the rolling body Pass the end point of the defect.
  • the starting point and ending point determining unit is adapted to perform cluster analysis on at least a part of the sampling data to determine a starting point of a defect of each rolling element passing through the bearing outer ring and End point.
  • the vibration signal acquisition unit is adapted to acquire the vibration signal by using an acceleration sensor disposed on a bearing housing of the rolling bearing.
  • the vibration signal acquiring unit includes: an initial vibration signal acquiring unit, configured to acquire an initial vibration signal in an operating state of the rolling bearing; and a noise reduction unit adapted to perform noise reduction processing on the initial vibration signal, The vibration signal is obtained.
  • the noise reduction process includes any one or more of the following: wavelet noise reduction processing and adaptive filtering.
  • At least a portion of the sampled data is sample data of one or more revolutions of the inner ring of the bearing.
  • the vibration signal is resampled by acquiring the vibration signal in the running state of the rolling bearing, and the span of the defect of the outer ring of the bearing is determined according to at least a part of the sampling data, and then the span of the defect of the outer ring of the bearing can be determined.
  • the size of the defect is determined.
  • the size of the defect of the outer ring of the rolling bearing can be determined without breaking the rolling bearing; the obtained vibration signal is a signal in the running state of the bearing, and thus can be used for online testing.
  • the vibration signal is re-sampled in an equal-angle domain, so that the sampling point data obtained by rotating the inner ring of the bearing is the same, and the sampling point in the sampled data can be directly proportional to the size of the defect, because the span of the defect is
  • the sampling data determines that the size of the defect can be determined by simple calculation according to the span of the defect, and the efficiency of calculating the size of the defect can be further improved.
  • each of the plurality of rolling bodies passes through the The span of the defects of the bearing outer ring is averaged to determine the span of the defect of the rolling element through the outer ring of the bearing.
  • FIG. 1 is a flow chart of a method for detecting a rolling bearing according to an embodiment of the present invention
  • FIG. 2 is a schematic waveform diagram of an initial vibration signal in an embodiment of the present invention.
  • FIG. 3 is a flow chart of a method for determining a span of defects of the rolling element through the outer ring of the bearing in an embodiment of the present invention
  • Figure 4 is a schematic view of the force of the rolling element when passing through the defect of the outer ring of the bearing
  • Figure 5 is a schematic view showing sampling data corresponding to one rotation of the inner ring of the bearing in the embodiment of the present invention
  • FIG. 6 is a schematic diagram of sampling data of a single rolling body passing a defect in an embodiment of the present invention.
  • Figure 7 is a schematic structural view of a rolling bearing detecting device in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a specific implementation of the span determining unit 73 of FIG.
  • the existing mature testing scheme is to obtain the defect size information by visual inspection after the bearing is disassembled.
  • the existing testing and testing schemes have the following deficiencies: (1) Destructive testing, testing bearings can not continue to use; (2) can not be used for online testing, can not understand the development status of bearing defects in real time.
  • the vibration signal is resampled by acquiring the vibration signal in the running state of the rolling bearing, and the span of the defect of the outer ring of the bearing is determined according to at least a part of the sampling data, and then the span of the defect of the outer ring of the bearing can be determined.
  • the size of the defect is determined.
  • the size of the defect of the outer ring of the rolling bearing can be determined without breaking the rolling bearing; the obtained vibration signal is a signal in the running state of the bearing, and thus can be used for online testing.
  • FIG. 1 is a flow chart of a method for detecting a rolling bearing according to an embodiment of the present invention, which may specifically include steps S11 to S14:
  • step S11 acquiring a vibration signal in an operating state of the rolling bearing
  • step S12 the vibration signal is resampled to obtain sampling data
  • step S13 determining, according to at least a portion of the sampled data, a span of defects of the rolling element through the bearing outer ring;
  • step S14 the size of the defect is determined according to the span of the defect of the rolling element through the bearing outer ring.
  • the vibration signal may correspond to a vibration amplitude state of the rolling device in the time domain, and may be acquired by an acceleration sensor disposed in a bearing housing of the rolling bearing.
  • the obtained initial vibration signal may be subjected to a noise reduction process to obtain a vibration signal.
  • the noise reduction process may be performed by wavelet noise reduction processing and/or adaptive filtering.
  • the waveform of the initial vibration signal before noise reduction can be as shown in Fig. 2, wherein the horizontal axis is time and the vertical axis is amplitude.
  • the vibration signal can be re-sampled in an equal angle field in step S12 of FIG.
  • the angular domain resampling may be performed based on the angular velocity of the inner ring motion of the bearing, and by the equal angular domain resampling, the sampling point data obtained in the unit rotation of the inner ring of the bearing is the same.
  • Equal-angle domain resampling of the vibration signal makes the sampling point data obtained in the unit rotation of the inner ring of the bearing the same, which can make the sampling point in the sampled data directly proportional to the size of the defect, since the span of the defect is sampled by the data. It is determined that the size of the defect can be determined by simple calculation according to the span of the defect, and the efficiency of calculating the size of the defect can be further improved.
  • the vibration signal can also be resampled according to other methods, and the span of the defect corresponds to the sampled data.
  • the size of the defect is determined according to the span of the defect, the calculation is performed in cooperation with the resampling.
  • the span of the defect of the rolling element through the bearing outer ring can be determined by:
  • Step S31 determining, according to at least a part of the sampling data, a starting point and an ending point of a defect of the rolling element passing through the bearing outer ring;
  • Step S32 determining a span of the defect of the rolling body through the bearing outer ring according to the starting point and the ending point.
  • FIG. 4 shows a force diagram of the rolling element 43 when passing through the defect 42 of the bearing outer ring 41.
  • the rolling element is different between the force passing through the defect of the outer ring of the bearing and the time when the defect is not passed.
  • the magnitude of the sample data can reflect the starting and ending points of the defect in the outer ring of the bearing. Further, according to the starting point and the ending point, the span of the defect of the rolling element through the bearing outer ring can be determined.
  • the rolling bearing usually comprises a plurality of rolling bodies, each of which changes in the amplitude of the time domain vibration when passing through the defect of the outer ring of the bearing, at least a part of the sampling data may at least comprise a rolling element passing through the outer ring of the bearing The corresponding sampled data when the defect.
  • At least a portion of the sampled data may also include sampled data corresponding to the plurality of rolling elements passing through the outer ring of the bearing.
  • the span of each rolling body through the bearing outer ring may be determined, and the plurality of rolling bodies are respectively passed through
  • the span of the defects of the bearing outer ring is averaged to determine the span of the defect of the rolling element through the outer ring of the bearing.
  • the sampling data of one rotation of the inner ring of the bearing may include the same peak segment as the number of the rolling bodies, and each peak segment corresponds to one of the rolling bodies passing the defect, and the schematic diagram thereof is shown in the figure. 5.
  • the horizontal axis is the number of sampling points on the table, and the vertical axis is the vibration amplitude.
  • the size of the defect corresponding to the peak segment can be independently calculated.
  • At least a portion of the sampled data in embodiments of the invention may include a peak segment.
  • the sampled data in the embodiment of the present invention may also include a plurality of peak segments, for example, may include one or more corresponding peak segments of the inner ring of the bearing.
  • each rolling body can be determined to pass through the bearing by performing cluster analysis on each peak segment. The starting and ending points of the defect of the circle.
  • the sampling point with the largest falling slope may be the starting point of the rolling body passing the defect, and the width after the starting point
  • the degree maximum point is the end point of the rolling body through the defect.
  • FIG. 6 is a schematic diagram of the amplitude of a peak segment corresponding to a rolling element, wherein point A is the first sampling point with the largest decreasing slope, which can be used as a starting point of the defect by the rolling element, and point B is the maximum point of the amplitude after the starting point. It is possible to pass the end point of the defect as a rolling element.
  • point C in Fig. 6 generally occurs.
  • the foregoing cluster analysis is performed for each peak segment, and the target thereof may be to determine points A and B in FIG. 6. It can be understood that other fitting methods can also be used to determine the sampling point with the largest falling slope and the maximum value point after the starting point as the starting point and the ending point of the rolling body through the defect.
  • the starting point and the ending point can be determined based on sampling points of the sampled data, the span being identified by the number of sampling points between the starting point and the sampling point.
  • the size of the defect can be calculated by the following formula:
  • D Or is the diameter of the outer ring of the rolling bearing
  • P Circle is the total number of sampling points that rotate one revolution of the inner ring of the bearing.
  • the resampling is equal angle domain resampling
  • the span of the defect is identified by the number of sampling points between the starting point and the sampling point, so the sampling of the inner circumference of the bearing by the defect span is one rotation.
  • the ratio of the total number of points can determine the ratio of the outer ring of the bearing to the circumference of the outer ring of the bearing, and the size of the defect can be determined.
  • the vibration signal is resampled by acquiring the vibration signal in the running state of the rolling bearing, and the span of the defect of the outer ring of the bearing is determined according to at least a part of the sampling data, and then the span of the defect of the outer ring of the bearing can be determined.
  • the size of the defect is determined.
  • the size of the defect of the outer ring of the rolling bearing can be determined without breaking the rolling bearing; the obtained vibration signal is a signal in the running state of the bearing, and thus can be used for online testing.
  • Embodiments of the present invention also provide a rolling bearing detecting device, wherein the rolling bearing includes a bearing outer ring, a bearing inner ring, and a rolling element between the bearing outer ring and the bearing inner ring.
  • the rolling bearing detecting device may include:
  • the vibration signal acquiring unit 71 is adapted to acquire a vibration signal of the rolling bearing in an operating state
  • Resampling unit 72 adapted to resample the vibration signal to obtain sampling data
  • a span determining unit 73 configured to determine a span of defects of the rolling body through the bearing outer ring according to at least a portion of the sampling data
  • the defect size determining unit 74 is adapted to determine the size of the defect according to the span of the defect of the rolling element through the bearing outer ring.
  • the vibration signal may correspond to a vibration amplitude state of the rolling body in the time domain. At least a portion of the sampled data is sampled data of one or more revolutions of the inner ring of the bearing.
  • the vibration signal acquisition unit 71 is adapted to acquire the vibration signal using an acceleration sensor disposed in a bearing housing of the rolling bearing.
  • the resampling may be an equal angle domain resampling, the angular domain resampling is performed based on an angular velocity of the bearing inner ring motion, and the bearing inner ring rotation unit is resampled by the equal angle domain
  • the sample point data obtained in the angle is the same.
  • the span determining unit 73 in FIG. 7 may include:
  • a starting point and ending point determining subunit 81 adapted to determine a starting point and an ending point of a defect of the rolling element passing through the bearing outer ring according to at least a portion of the sampling data
  • a span determining subunit 82 is adapted to determine a span of defects of the rolling body through the bearing outer ring based on the starting point and the ending point.
  • the span determining unit 73 in FIG. 7 may include:
  • a single rolling body span determining unit adapted to determine a defect of each rolling element passing through the bearing outer ring according to a starting point and an ending point of a defect of the plurality of rolling bodies passing through the bearing outer ring Span
  • An average span determining unit adapted to average the span of defects of each of the plurality of rolling bodies through the bearing outer ring to determine a span of defects of the rolling bodies through the bearing outer ring.
  • the starting point and the ending point are determined based on sampling points of the sampled data, the span being identified by a number of sampling points between the starting point and the sampling point.
  • the defect size determining unit 74 of FIG. 7 is adapted to calculate the size of the defect by the following formula:
  • D Or is the diameter of the outer ring of the rolling bearing
  • P Circle is the total number of sampling points that rotate one revolution of the inner ring of the bearing.
  • the sampling data of one rotation of the inner ring of the bearing includes the same number of peak segments as the rolling bodies, and each peak segment corresponds to one of the rolling bodies passing the defect.
  • the first sampling point with the largest falling slope can be used as the starting point of the rolling body through the defect, and the maximum point of the amplitude after the starting point can be used as the rolling body The end point of the defect.
  • the starting point and ending point determining unit 81 in FIG. 8 is adapted to perform cluster analysis on at least a portion of the sampled data to determine a defect of each rolling element passing through the bearing outer ring. Start and end points.
  • the vibration signal acquisition unit 71 in FIG. 7 may include: an initial vibration signal acquisition unit adapted to acquire an initial vibration signal in an operating state of the rolling bearing; and a noise reduction unit adapted to the initial vibration signal A noise reduction process is performed to obtain the vibration signal.
  • the noise reduction process may include any one or more of the following: wavelet noise reduction processing and adaptive filtering.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Probability & Statistics with Applications (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

一种滚动轴承检测方法及装置,方法包括:获取滚动轴承运行状态下的振动信号(S11);对振动信号进行重采样,以得到采样数据(S12);根据采样数据的至少一部分,确定滚动体通过轴承外圈的缺陷的跨度(S13);根据滚动体通过轴承外圈的缺陷的跨度,确定缺陷的尺寸(S14)。方法及装置无需对滚动轴承进行破坏即可确定滚动轴承外圈的缺陷的尺寸,并可以用于在线测试。

Description

一种滚动轴承检测方法及装置
本申请要求于2016年12月23日提交中国专利局、申请号为201611208133.3、发明名称为“一种滚动轴承检测方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及检测领域,尤其涉及一种滚动轴承检测方法及装置。
背景技术
轴承外圈剥落是一种常见的轴承缺陷形式,现有的成熟检测方案是在轴承解体后,通过目视测试,获取缺陷大小尺寸信息。
现有测检测方案存在以下不足:(1)破坏性测试,测试轴承无法继续使用;(2)不能用于在线测试,无法实时了解轴承缺陷的发展状态。
发明内容
本发明解决的技术问题是解决现有检测方案的测试的破坏性和无法用于在线测试的问题。
为解决上述技术问题,本发明实施例提供一种滚动轴承检测方法,包括:获取所述滚动轴承运行状态下的振动信号;对所述振动信号进行重采样,以得到采样数据;根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的跨度;根据所述滚动体通过所述轴承外圈的缺陷的跨度,确定所述缺陷的尺寸。
可选的,所述重采样为等角度域重采样,所述角度域重采样基于所述轴承内圈运动的角速度进行,通过所述等角度域重采样,所述轴承内圈旋转单位角度内得到的采样点数据相同。
可选的,所述振动信号对应于所述滚动体在时域中的振动幅度状 态。
可选的,根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的跨度包括:根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的起始点和结束点;根据所述起始点和结束点确定所述滚动体通过所述轴承外圈的缺陷的跨度。
可选的,根据所述起始点和结束点所述滚动体通过所述轴承外圈的缺陷的时间跨度包括:根据多个滚动体通过所述轴承外圈的缺陷的起始点和结束点,确定每一滚动体通过所述轴承外圈的缺陷的跨度;对所述多个滚动体各自通过所述轴承外圈的缺陷的跨度进行平均,以确定所述滚动体通过所述轴承外圈的缺陷的跨度。
可选的,所述起始点和所述结束点基于所述采样数据的采样点确定,所述跨度由所述起始点和所述采样点之间的采样点的数目标识。
可选的,根据所述滚动体通过所述轴承外圈的缺陷的跨度,确定所述缺陷的尺寸包括以如下公式计算所述缺陷的尺寸:
Figure PCTCN2017108272-appb-000001
其中,DOr为所述滚动轴承外圈的直径,
Figure PCTCN2017108272-appb-000002
为所述缺陷的跨度,PCircle为所述轴承内圈转动一圈的采样点的总数目。
可选的,所述轴承内圈旋转一圈的采样数据中包括与所述滚动体的数量相同的尖峰段,每一尖峰段对应于其中一个滚动体通过所述缺陷。
可选的,每一滚动体对应的尖峰段中,首个下降斜率最大的采样点为所述滚动体通过所述缺陷的起始点,所述起始点后的幅度最大值点为所述滚动体通过所述缺陷的结束点。
可选的,对所述采样数据的至少一部分进行聚类分析,以确定每一滚动体通过所述轴承外圈的缺陷的起始点和结束点。
可选的,利用配置于所述滚动轴承的轴承座的加速度传感器,获取所述振动信号。
可选的,获取所述滚动轴承运行状态下的振动信号包括:获取所述滚动轴承运行状态下的初始振动信号;对所述初始振动信号进行降噪处理,以得到所述振动信号。
可选的,所述降噪处理包括以下任一种或多种:小波降噪处理和自适应滤波。
可选的,所述采样数据的至少一部分为所述轴承内圈旋转一圈或多圈的采样数据。
本发明实施例还提供一种滚动轴承检测装置,所述滚动轴承包括轴承外圈、轴承内圈,以及位于所述轴承外圈与所述轴承内圈之间的滚动体,滚动轴承检测装置包括:振动信号获取单元,适于获取所述滚动轴承运行状态下的振动信号;重采样单元,适于对所述振动信号进行重采样,以得到采样数据;跨度确定单元,适于根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的跨度;缺陷尺寸确定单元,适于根据所述滚动体通过所述轴承外圈的缺陷的跨度,确定所述缺陷的尺寸。
可选的,所述重采样为等角度域重采样,所述角度域重采样基于所述轴承内圈运动的角速度进行,通过所述等角度域重采样,所述轴承内圈旋转单位角度内得到的采样点数据相同。
可选的,所述振动信号对应于所述滚动体在时域中的振动幅度状态。
可选的,所述跨度所述确定单元,包括:起始点和结束点确定子单元,适于根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的起始点和结束点;跨度确定子单元,适于根据所述起始点和结束点确定所述滚动体通过所述轴承外圈的缺陷的跨度。
可选的,所述跨度确定单元,包括:单滚动体跨度确定单元,适于根据多个滚动体通过所述轴承外圈的缺陷的起始点和结束点,确定每一滚动体通过所述轴承外圈的缺陷的跨度;平均跨度确定单元,适 于对所述多个滚动体各自通过所述轴承外圈的缺陷的跨度进行平均,以确定所述滚动体通过所述轴承外圈的缺陷的跨度。
可选的,所述起始点和所述结束点基于所述采样数据的采样点确定,所述跨度由所述起始点和所述采样点之间的采样点的数目标识。
可选的,所述缺陷尺寸确定单元,适于以如下公式计算所述缺陷的尺寸:
Figure PCTCN2017108272-appb-000003
其中,DOr为所述滚动轴承外圈的直径,
Figure PCTCN2017108272-appb-000004
为所述缺陷的跨度,PCircle为所述轴承内圈转动一圈的采样点的总数目。
可选的,所述轴承内圈旋转一圈的采样数据中包括与所述滚动体的数量相同的尖峰段,每一尖峰段对应于其中一个滚动体通过所述缺陷。
可选的,每一滚动体对应的尖峰段中,首个下降斜率最大的采样点为所述滚动体通过所述缺陷的起始点,所述起始点后的幅度最大值点为所述滚动体通过所述缺陷的结束点。
可选的,所述起始所述点和结束点确定单元,适于对所述采样数据的至少一部分进行聚类分析,以确定每一滚动体通过所述轴承外圈的缺陷的起始点和结束点。
可选的,所述振动信号获取单元适于利用配置于所述滚动轴承的轴承座的加速度传感器,获取所述振动信号。
可选的,所述振动信号获取单元包括:初始振动信号获取单元,适于获取所述滚动轴承运行状态下的初始振动信号;降噪单元,适于对所述初始振动信号进行降噪处理,以得到所述振动信号。
可选的,所述降噪处理包括以下任一种或多种:小波降噪处理和自适应滤波。
可选的,所述采样数据的至少一部分为所述轴承内圈旋转一圈或多圈的采样数据。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
在本发明实施例中,通过获取滚动轴承运行状态下的振动信号,对振动信号进行重采样,根据采样数据至少一部分,确定轴承外圈的缺陷的跨度,进而可以根据轴承外圈的缺陷的跨度,确定所述缺陷的尺寸。由此,在本发明实施例中,无需对滚动轴承进行破坏即可确定滚动轴承外圈的缺陷的尺寸;获取的振动信号是轴承运行状态下的信号,故可以用于在线测试。
进一步,对振动信号进行等角度域重采样,使得轴承内圈旋转单位角度内得到的采样点数据相同,进而可以使得采样数据中的采样点直和缺陷的尺寸形成比例关系,由于缺陷的跨度由采样数据确定,进行根据缺陷的跨度经过简单计算即可确定缺陷的尺寸,进一步可以提升计算缺陷的尺寸的效率。
另外,根据多个滚动体通过所述轴承外圈的缺陷的起始点和结束点,确定每一滚动体通过所述轴承外圈的缺陷的跨度后,对所述多个滚动体各自通过所述轴承外圈的缺陷的跨度进行平均,以确定所述滚动体通过所述轴承外圈的缺陷的跨度。由此,可以充分利用多个滚动体对应的振动信号进行缺陷尺寸的计算,可以提升缺陷尺寸计算的准确性。
附图说明
图1是本发明实施例中一种滚动轴承检测方法的流程图;
图2是本发明实施例中一种初始振动信号的波形示意图;
图3是本发明实施例中一种确定所述滚动体通过所述轴承外圈的缺陷的跨度的方法的流程图;
图4是滚动体在经过轴承外圈的缺陷时的受力示意图;
图5是本发明实施例中对应轴承内圈旋转一圈的采样数据的示意图;
图6是本发明实施例中单个滚动体通过缺陷的采样数据的示意图;
图7是本发明实施例中一种滚动轴承检测装置的结构示意图;
图8是图7中的跨度确定单元73的一种具体实现的结构示意图。
具体实施方式
如前所述,轴承外圈剥落是一种常见的轴承缺陷形式,现有的成熟检测方案是在轴承解体后,通过目视测试,获取缺陷大小尺寸信息。现有测检测方案存在以下不足:(1)破坏性测试,测试轴承无法继续使用;(2)不能用于在线测试,无法实时了解轴承缺陷的发展状态。
在本发明实施例中,通过获取滚动轴承运行状态下的振动信号,对振动信号进行重采样,根据采样数据至少一部分,确定轴承外圈的缺陷的跨度,进而可以根据轴承外圈的缺陷的跨度,确定所述缺陷的尺寸。由此,在本发明实施例中,无需对滚动轴承进行破坏即可确定滚动轴承外圈的缺陷的尺寸;获取的振动信号是轴承运行状态下的信号,故可以用于在线测试。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明实施例中一种滚动轴承检测方法的流程图,具体可以包括步骤S11至步骤S14:
在步骤S11中,获取所述滚动轴承运行状态下的振动信号;
在步骤S12中,对所述振动信号进行重采样,以得到采样数据;
在步骤S13中,根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的跨度;
在步骤S14中,根据所述滚动体通过所述轴承外圈的缺陷的跨度,确定所述缺陷的尺寸。
其中,振动信号可以对应于滚动器在时域中的振动幅度状态,可以利用配置于所述滚动轴承的轴承座的加速度传感器获取。在具体实施中,可以对获取到的初始振动信号进行降噪处理,以得到振动信号,例如,可以小波降噪处理和/或自适应滤波进行上述降噪处理。降噪前的初始振动信号的波形可以如图2所示,其中,横轴为时间,纵轴为幅度。
为了更便捷的确定轴承外圈的缺陷跨度和缺陷的尺寸,在图1中步骤S12中可以对振动信号进行等角度域重采样。角度域重采样可以基于所述轴承内圈运动的角速度进行,通过所述等角度域重采样,所述轴承内圈旋转单位角度内得到的采样点数据相同。
对振动信号进行等角度域重采样,使得轴承内圈旋转单位角度内得到的采样点数据相同,进而可以使得采样数据中的采样点直和缺陷的尺寸形成比例关系,由于缺陷的跨度由采样数据确定,进行根据缺陷的跨度经过简单计算即可确定缺陷的尺寸,进一步可以提升计算缺陷的尺寸的效率。
可以理解的是,也可以按照其它方式对振动信号进行重采样,缺陷的跨度是对应于采样数据的,在根据缺陷的跨度确定缺陷的尺寸时,采用与重采样相配合的方式进行计算。
参见图3,在具体实施中,可以通过如下方式确定所述滚动体通过所述轴承外圈的缺陷的跨度:
步骤S31,根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的起始点和结束点;
步骤S32,根据所述起始点和结束点确定所述滚动体通过所述轴承外圈的缺陷的跨度。
在滚动体通过所述轴承外圈的缺陷时,时域的振动幅度会发生变化,图4示出了滚动体43在经过轴承外圈41的缺陷42时的受力示意图。滚动体在通过轴承外圈的缺陷时受力与未经过缺陷时不同,采 样数据的幅度可以体现轴承外圈的缺陷的起始点和结束点。进一步根据所述起始点和结束点可以确定所述滚动体通过所述轴承外圈的缺陷的跨度。
滚动轴承中通常包括多个滚动体,每个滚动体在经过轴承外圈的缺陷时,时域振动幅度均会发生变化,所述采样数据的至少一部分至少可以包括一个滚动体经过所述轴承外圈的缺陷时对应的采样数据。
采样数据的至少一部分也可以包括多个滚动体经过所述轴承外圈的缺陷时对应的采样数据。此时可以根据多个滚动体通过所述轴承外圈的缺陷的起始点和结束点,确定每一滚动体通过所述轴承外圈的缺陷的跨度,并对所述多个滚动体各自通过所述轴承外圈的缺陷的跨度进行平均,以确定所述滚动体通过所述轴承外圈的缺陷的跨度。由此,可以充分利用多个滚动体对应的振动信号进行缺陷尺寸的计算,可以提升缺陷尺寸计算的准确性。
经发明人测试发现,轴承内圈旋转一圈的采样数据中,可以包括与所述滚动体的数量相同的尖峰段,每一尖峰段对应于其中一个滚动体通过所述缺陷,其示意图参见图5。其中,横轴为表采样点数,纵轴为振动幅度。
故根据每个滚动体对应的尖峰段,均可独立的计算出该尖峰段对应的缺陷的尺寸。本发明实施例中的采样数据的至少一部分可以包括一个尖峰段。
本发明实施例中的采样数据也可以包括多个尖峰段,例如可以包括轴承内圈旋转一圈或多圈对应的尖峰段。
对每个尖峰段均可以确定滚动体通过轴承外圈的缺陷的起始点和结束点,具体地,可以通过对每个尖峰段进行聚类分析的方式,确定每一滚动体通过所述轴承外圈的缺陷的起始点和结束点。
例如,在每一滚动体对应的尖峰段中,可以将首个下降斜率最大的采样点为所述滚动体通过所述缺陷的起始点,将所述起始点后的幅 度最大值点为所述滚动体通过所述缺陷的结束点。
图6是一滚动体对应的尖峰段的幅度示意图,其中A点为首个下降斜率最大的采样点,可以作为滚动体通过所述缺陷的起始点,B点为起始点后的幅度最大值点,可以作为滚动体通过所述缺陷的结束点。当所述轴承外圈的缺陷的尺寸大于所述滚动体的尺寸时,通常会出现图6中C点。
前述对每个尖峰段进行聚类分析,其目标可以是确定图6中的A点与B点。可以理解的是,也可以利用其它拟合方式确定首个下降斜率最大的采样点和起始点后的幅度最大值点,以作为滚动体通过所述缺陷的起始点和结束点。
可以看出,所述起始点和所述结束点可以基于所述采样数据的采样点确定,所述跨度由所述起始点和所述采样点之间的采样点的数目标识。在具体实施中,可以通过如下公式计算所述缺陷的尺寸:
Figure PCTCN2017108272-appb-000005
其中,DOr为所述滚动轴承外圈的直径,
Figure PCTCN2017108272-appb-000006
为所述缺陷的跨度,PCircle为所述轴承内圈转动一圈的采样点的总数目。
在上述计算方式中,重采样为等角度域重采样,缺陷的跨度由所述起始点和所述采样点之间的采样点的数目标识,故通过缺陷跨度占轴承内圈转动一圈的采样点的总数目的比值,可以确定轴承外圈的缺陷占轴承外圈周长的比例,进而可以确定缺陷的尺寸。
在本发明实施例中,通过获取滚动轴承运行状态下的振动信号,对振动信号进行重采样,根据采样数据至少一部分,确定轴承外圈的缺陷的跨度,进而可以根据轴承外圈的缺陷的跨度,确定所述缺陷的尺寸。由此,在本发明实施例中,无需对滚动轴承进行破坏即可确定滚动轴承外圈的缺陷的尺寸;获取的振动信号是轴承运行状态下的信号,故可以用于在线测试。
本发明实施例还提供一种滚动轴承检测装置,所述滚动轴承包括 轴承外圈、轴承内圈,以及位于所述轴承外圈与所述轴承内圈之间的滚动体,参见图7,滚动轴承检测装置可以包括:
振动信号获取单元71,适于获取所述滚动轴承运行状态下的振动信号;
重采样单元72,适于对所述振动信号进行重采样,以得到采样数据;
跨度确定单元73,适于根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的跨度;
缺陷尺寸确定单元74,适于根据所述滚动体通过所述轴承外圈的缺陷的跨度,确定所述缺陷的尺寸。
其中,所述振动信号可以对应于所述滚动体在时域中的振动幅度状态。所述采样数据的至少一部分为所述轴承内圈旋转一圈或多圈的采样数据。所述振动信号获取单元71适于利用配置于所述滚动轴承的轴承座的加速度传感器,获取所述振动信号。
在具体实施中,所述重采样可以是等角度域重采样,所述角度域重采样基于所述轴承内圈运动的角速度进行,通过所述等角度域重采样,所述轴承内圈旋转单位角度内得到的采样点数据相同。
参见图8,图7中的跨度确定单元73可以包括:
起始点和结束点确定子单元81,适于根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的起始点和结束点;
跨度确定子单元82,适于根据所述起始点和结束点确定所述滚动体通过所述轴承外圈的缺陷的跨度。
从滚动体数量的层面,图7中的跨度确定单元73可以包括:
单滚动体跨度确定单元,适于根据多个滚动体通过所述轴承外圈的缺陷的起始点和结束点,确定每一滚动体通过所述轴承外圈的缺陷 的跨度;
平均跨度确定单元,适于对所述多个滚动体各自通过所述轴承外圈的缺陷的跨度进行平均,以确定所述滚动体通过所述轴承外圈的缺陷的跨度。
根据多个滚动体通过所述轴承外圈的缺陷的起始点和结束点,确定每一滚动体通过所述轴承外圈的缺陷的跨度后,对所述多个滚动体各自通过所述轴承外圈的缺陷的跨度进行平均,以确定所述滚动体通过所述轴承外圈的缺陷的跨度。由此,可以充分利用多个滚动体对应的振动信号进行缺陷尺寸的计算,可以提升缺陷尺寸计算的准确性。
在具体实施中,所述起始点和所述结束点基于所述采样数据的采样点确定,所述跨度由所述起始点和所述采样点之间的采样点的数目标识。
在一具体实现中,图7中缺陷尺寸确定单元74,适于以如下公式计算所述缺陷的尺寸:
Figure PCTCN2017108272-appb-000007
其中,DOr为所述滚动轴承外圈的直径,
Figure PCTCN2017108272-appb-000008
为所述缺陷的跨度,PCircle为所述轴承内圈转动一圈的采样点的总数目。
在具体实施中,所述轴承内圈旋转一圈的采样数据中包括与所述滚动体的数量相同的尖峰段,每一尖峰段对应于其中一个滚动体通过所述缺陷。
每一滚动体对应的尖峰段中,首个下降斜率最大的采样点可以作为所述滚动体通过所述缺陷的起始点,所述起始点后的幅度最大值点可以作为所述滚动体通过所述缺陷的结束点。
在具体实施中,图8中起始所述点和结束点确定单元81,适于对所述采样数据的至少一部分进行聚类分析,以确定每一滚动体通过所述轴承外圈的缺陷的起始点和结束点。
在具体实施中,图7中所述振动信号获取单元71可以包括:初始振动信号获取单元,适于获取所述滚动轴承运行状态下的初始振动信号;降噪单元,适于对所述初始振动信号进行降噪处理,以得到所述振动信号。其中,所述降噪处理可以包括以下任一种或多种:小波降噪处理和自适应滤波。
本发明实施例中的滚动轴承检测装置的具体实现和有益效果可以参见滚动轴承检测方法,在此不再赘述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (28)

  1. 一种滚动轴承检测方法,所述滚动轴承包括轴承外圈、轴承内圈,以及位于所述轴承外圈与所述轴承内圈之间的滚动体,其特征在于,包括:
    获取所述滚动轴承运行状态下的振动信号;
    对所述振动信号进行重采样,以得到采样数据;
    根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的跨度;
    根据所述滚动体通过所述轴承外圈的缺陷的跨度,确定所述缺陷的尺寸。
  2. 根据权利要求1所述的滚动轴承检测方法,其特征在于,所述重采样为等角度域重采样,所述角度域重采样基于所述轴承内圈运动的角速度进行,通过所述等角度域重采样,所述轴承内圈旋转单位角度内得到的采样点数据相同。
  3. 根据权利要求1所述的滚动轴承检测方法,其特征在于,所述振动信号对应于所述滚动体在时域中的振动幅度状态。
  4. 根据权利要求1所述的滚动轴承检测方法,其特征在于,根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的跨度包括:
    根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的起始点和结束点;
    根据所述起始点和结束点确定所述滚动体通过所述轴承外圈的缺陷的跨度。
  5. 根据权利要求4所述的滚动轴承检测方法,其特征在于,根据所述起始点和结束点所述滚动体通过所述轴承外圈的缺陷的时间跨度包括:
    根据多个滚动体通过所述轴承外圈的缺陷的起始点和结束点,确定每一滚动体通过所述轴承外圈的缺陷的跨度;
    对所述多个滚动体各自通过所述轴承外圈的缺陷的跨度进行平均,以确定所述滚动体通过所述轴承外圈的缺陷的跨度。
  6. 根据权利要求4所述的滚动轴承检测方法,其特征在于,所述起始点和所述结束点基于所述采样数据的采样点确定,所述跨度由所述起始点和所述采样点之间的采样点的数目标识。
  7. 根据权利要求6所述的滚动轴承检测方法,其特征在于,根据所述滚动体通过所述轴承外圈的缺陷的跨度,确定所述缺陷的尺寸包括以如下公式计算所述缺陷的尺寸:
    Figure PCTCN2017108272-appb-100001
    其中,DOr为所述滚动轴承外圈的直径,
    Figure PCTCN2017108272-appb-100002
    为所述缺陷的跨度,PCircle为所述轴承内圈转动一圈的采样点的总数目。
  8. 根据权利要求4所述的滚动轴承检测方法,其特征在于,所述轴承内圈旋转一圈的采样数据中包括与所述滚动体的数量相同的尖峰段,每一尖峰段对应于其中一个滚动体通过所述缺陷。
  9. 根据权利要求8所述的滚动轴承检测方法,其特征在于,每一滚动体对应的尖峰段中,首个下降斜率最大的采样点为所述滚动体通过所述缺陷的起始点,所述起始点后的幅度最大值点为所述滚动体通过所述缺陷的结束点。
  10. 根据权利要求4所述的滚动轴承检测方法,其特征在于,对所述采样数据的至少一部分进行聚类分析,以确定每一滚动体通过所述轴承外圈的缺陷的起始点和结束点。
  11. 根据权利要求1所述的滚动轴承检测方法,其特征在于,利用配置于所述滚动轴承的轴承座的加速度传感器,获取所述振动信号。
  12. 根据权利要求1所述的滚动轴承检测方法,其特征在于,获取所 述滚动轴承运行状态下的振动信号包括:
    获取所述滚动轴承运行状态下的初始振动信号;
    对所述初始振动信号进行降噪处理,以得到所述振动信号。
  13. 根据权利要求12所述的滚动轴承检测方法,其特征在于,所述降噪处理包括以下任一种或多种:小波降噪处理和自适应滤波。
  14. 根据权利要求1至13任一项所述的滚动轴承检测方法,其特征在于,所述采样数据的至少一部分为所述轴承内圈旋转一圈或多圈的采样数据。
  15. 一种滚动轴承检测装置,所述滚动轴承包括轴承外圈、轴承内圈,以及位于所述轴承外圈与所述轴承内圈之间的滚动体,其特征在于,包括:
    振动信号获取单元,适于获取所述滚动轴承运行状态下的振动信号;
    重采样单元,适于对所述振动信号进行重采样,以得到采样数据;
    跨度确定单元,适于根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的跨度;
    缺陷尺寸确定单元,适于根据所述滚动体通过所述轴承外圈的缺陷的跨度,确定所述缺陷的尺寸。
  16. 根据权利要求15所述的滚动轴承检测装置,其特征在于,所述重采样为等角度域重采样,所述角度域重采样基于所述轴承内圈运动的角速度进行,通过所述等角度域重采样,所述轴承内圈旋转单位角度内得到的采样点数据相同。
  17. 根据权利要求15所述的滚动轴承检测装置,其特征在于,所述振动信号对应于所述滚动体在时域中的振动幅度状态。
  18. 根据权利要求15所述的滚动轴承检测装置,其特征在于,跨度所 述确定单元,包括:
    起始点和结束点确定子单元,适于根据所述采样数据的至少一部分,确定所述滚动体通过所述轴承外圈的缺陷的起始点和结束点;
    跨度确定子单元,适于根据所述起始点和结束点确定所述滚动体通过所述轴承外圈的缺陷的跨度。
  19. 根据权利要求18所述的滚动轴承检测装置,其特征在于,所述跨度确定单元,包括:
    单滚动体跨度确定单元,适于根据多个滚动体通过所述轴承外圈的缺陷的起始点和结束点,确定每一滚动体通过所述轴承外圈的缺陷的跨度;
    平均跨度确定单元,适于对所述多个滚动体各自通过所述轴承外圈的缺陷的跨度进行平均,以确定所述滚动体通过所述轴承外圈的缺陷的跨度。
  20. 根据权利要求18所述的滚动轴承检测装置,其特征在于,所述起始点和所述结束点基于所述采样数据的采样点确定,所述跨度由所述起始点和所述采样点之间的采样点的数目标识。
  21. 根据权利要求20所述的滚动轴承检测装置,其特征在于,所述缺陷尺寸确定单元,适于以如下公式计算所述缺陷的尺寸:
    Figure PCTCN2017108272-appb-100003
    其中,DOr为所述滚动轴承外圈的直径,
    Figure PCTCN2017108272-appb-100004
    为所述缺陷的跨度,PCircle为所述轴承内圈转动一圈的采样点的总数目。
  22. 根据权利要求18所述的滚动轴承检测装置,其特征在于,所述轴承内圈旋转一圈的采样数据中包括与所述滚动体的数量相同的尖峰段,每一尖峰段对应于其中一个滚动体通过所述缺陷。
  23. 根据权利要求22所述的滚动轴承检测装置,其特征在于,每一滚动体对应的尖峰段中,首个下降斜率最大的采样点为所述滚动体 通过所述缺陷的起始点,所述起始点后的幅度最大值点为所述滚动体通过所述缺陷的结束点。
  24. 根据权利要求18所述的滚动轴承检测装置,其特征在于,起始所述点和结束点确定单元,适于对所述采样数据的至少一部分进行聚类分析,以确定每一滚动体通过所述轴承外圈的缺陷的起始点和结束点。
  25. 根据权利要求15所述的滚动轴承检测装置,其特征在于,所述振动信号获取单元适于利用配置于所述滚动轴承的轴承座的加速度传感器,获取所述振动信号。
  26. 根据权利要求15所述的滚动轴承检测装置,其特征在于,所述振动信号获取单元包括:
    初始振动信号获取单元,适于获取所述滚动轴承运行状态下的初始振动信号;
    降噪单元,适于对所述初始振动信号进行降噪处理,以得到所述振动信号。
  27. 根据权利要求26所述的滚动轴承检测装置,其特征在于,所述降噪处理包括以下任一种或多种:小波降噪处理和自适应滤波。
  28. 根据权利要求15至27任一项所述的滚动轴承检测装置,其特征在于,所述采样数据的至少一部分为所述轴承内圈旋转一圈或多圈的采样数据。
PCT/CN2017/108272 2016-12-23 2017-10-30 一种滚动轴承检测方法及装置 WO2018113415A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017006464.3T DE112017006464T5 (de) 2016-12-23 2017-10-30 Detektionsverfahren und Detektionsvorrichtung für ein Wälzlager

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611208133.3 2016-12-23
CN201611208133.3A CN108241021B (zh) 2016-12-23 2016-12-23 一种滚动轴承检测方法及装置

Publications (1)

Publication Number Publication Date
WO2018113415A1 true WO2018113415A1 (zh) 2018-06-28

Family

ID=62624507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108272 WO2018113415A1 (zh) 2016-12-23 2017-10-30 一种滚动轴承检测方法及装置

Country Status (3)

Country Link
CN (1) CN108241021B (zh)
DE (1) DE112017006464T5 (zh)
WO (1) WO2018113415A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933055A (zh) * 2021-10-08 2022-01-14 重庆邮电大学 滚动轴承滚道缺陷尺寸量化方法、装置及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196166B (zh) * 2019-05-28 2020-09-29 重庆邮电大学 一种滚动轴承高速运动滚动体的定位方法
CN110186684A (zh) * 2019-06-25 2019-08-30 东北大学 一种航空发动机机械振动故障信号特征提取方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118869A (ja) * 2004-10-19 2006-05-11 Nsk Ltd 転がり軸受の欠陥検出装置および転がり軸受の欠陥検出方法
CN101943682A (zh) * 2010-09-07 2011-01-12 中国矿业大学 基于阵列式声发射器的分布式机械故障实时监测装置及方法
CN102831325A (zh) * 2012-09-04 2012-12-19 北京航空航天大学 一种基于高斯过程回归的轴承故障预测方法
CN103336140A (zh) * 2013-06-20 2013-10-02 苏州大学 一种基于齿轮啮合振动的转速估计方法及装置
US20140039809A1 (en) * 2012-07-31 2014-02-06 Eurocopter Method of detecting defects of a rolling bearing by vibration analysis
CN104091088A (zh) * 2014-07-25 2014-10-08 北京工业大学 一种基于阶跃-冲击原子库mp算法的轴承故障定量诊断方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065193B2 (ja) * 1987-04-28 1994-01-19 光洋精工株式会社 軸受残存寿命予知装置
JP4617168B2 (ja) * 2005-02-04 2011-01-19 公立大学法人高知工科大学 軸受損傷評価装置および軸受損傷評価方法
JP6378624B2 (ja) 2014-12-12 2018-08-22 花王株式会社 吸収性物品
CN105651504A (zh) * 2016-01-15 2016-06-08 北京工业大学 基于自适应小波能量的旋转机械故障特征提取方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118869A (ja) * 2004-10-19 2006-05-11 Nsk Ltd 転がり軸受の欠陥検出装置および転がり軸受の欠陥検出方法
CN101943682A (zh) * 2010-09-07 2011-01-12 中国矿业大学 基于阵列式声发射器的分布式机械故障实时监测装置及方法
US20140039809A1 (en) * 2012-07-31 2014-02-06 Eurocopter Method of detecting defects of a rolling bearing by vibration analysis
CN102831325A (zh) * 2012-09-04 2012-12-19 北京航空航天大学 一种基于高斯过程回归的轴承故障预测方法
CN103336140A (zh) * 2013-06-20 2013-10-02 苏州大学 一种基于齿轮啮合振动的转速估计方法及装置
CN104091088A (zh) * 2014-07-25 2014-10-08 北京工业大学 一种基于阶跃-冲击原子库mp算法的轴承故障定量诊断方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933055A (zh) * 2021-10-08 2022-01-14 重庆邮电大学 滚动轴承滚道缺陷尺寸量化方法、装置及系统
CN113933055B (zh) * 2021-10-08 2024-06-04 重庆邮电大学 滚动轴承滚道缺陷尺寸量化方法、装置及系统

Also Published As

Publication number Publication date
CN108241021A (zh) 2018-07-03
CN108241021B (zh) 2022-09-27
DE112017006464T5 (de) 2019-09-26

Similar Documents

Publication Publication Date Title
JP5492214B2 (ja) 差動軸受の損傷シグネチャのための合成同期サンプリングおよび加速度包絡線処理
WO2018113415A1 (zh) 一种滚动轴承检测方法及装置
CN107941510B (zh) 基于等角度双重采样的滚动轴承故障特征的提取方法
CN110567574B (zh) 一种旋转叶片叶端定时振动参数辨识方法与系统
CN106481785A (zh) 一种用于将行星齿轮传动装置的行星齿轮支撑到行星齿轮架上的轴承的状态监测方法和单元
EP3732457B1 (fr) Procédé et dispositif de surveillance d'un roulement équipant un dispositif tournant
CN109682601A (zh) 一种变转速工况下滚动轴承的早期故障识别方法
CN109724802B (zh) 一种基于频谱图评价与优选的电机轴承微弱故障诊断方法
CN110163190B (zh) 一种滚动轴承故障诊断方法及装置
CN109946081B (zh) 一种用于变转速下滚动轴承打滑时的故障诊断方法
JP2012503208A5 (zh)
JP2008249699A (ja) エンジン軸受への損傷を検出する方法
CN206601236U (zh) 轴承振动噪音检测仪
CN104634570A (zh) 基于振动检测的便携式轴承故障诊断装置及诊断方法
CN110987438A (zh) 水轮发电机变转速过程周期性振动冲击信号检测的方法
CN104215456A (zh) 一种基于平面聚类和频域压缩感知重构的机械故障诊断方法
CN105067048B (zh) 一种抗振动干扰的数字化涡街流量计的测量方法
CN105388012A (zh) 基于非线性调频小波变换的阶次跟踪方法
CN107665337A (zh) 一种轴承滚动体故障增强诊断方法
JP2020143934A (ja) 軸受情報解析装置及び軸受情報解析方法
JP2010204018A (ja) タイヤ試験機及びタイヤ試験方法
JP2003232674A (ja) 機械設備又は機器の異常診断方法及び異常診断装置
CN106441899A (zh) 基于振动信号检测卫星动量轮轴承损伤诊断及筛选方法
CN110219816A (zh) 用于风机故障诊断的方法和系统
CN107271184B (zh) 一种滚动轴承故障诊断的核回归分解方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884882

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17884882

Country of ref document: EP

Kind code of ref document: A1