CN104215456A - 一种基于平面聚类和频域压缩感知重构的机械故障诊断方法 - Google Patents

一种基于平面聚类和频域压缩感知重构的机械故障诊断方法 Download PDF

Info

Publication number
CN104215456A
CN104215456A CN201410411671.7A CN201410411671A CN104215456A CN 104215456 A CN104215456 A CN 104215456A CN 201410411671 A CN201410411671 A CN 201410411671A CN 104215456 A CN104215456 A CN 104215456A
Authority
CN
China
Prior art keywords
signal
matrix
frequency
fault
structure element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410411671.7A
Other languages
English (en)
Other versions
CN104215456B (zh
Inventor
伍星
周俊
迟毅林
潘楠
刘畅
柳小勤
刘凤
谢金葵
陈庆
贺玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201410411671.7A priority Critical patent/CN104215456B/zh
Publication of CN104215456A publication Critical patent/CN104215456A/zh
Application granted granted Critical
Publication of CN104215456B publication Critical patent/CN104215456B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种基于平面聚类和频域压缩感知重构的机械故障诊断方法,属机械设备状态监测及故障诊断技术领域。首先拾取机械振动的观测信号;把观测信号均值化处理,再构造三角结构、半圆结构元素集合,然后再构造改进的多结构广义闭-开组合形态滤波器,再对观测信号均值化处理结果进行滤波处理得到滤波信号;对滤波信号通过平面聚类算法来估计混合矩阵;再构建传感矩阵,运用正交匹配追踪基的频域压缩感知重构估计源信号,对估计的源信号进行FFT变换,然后对变换后的信号的频域进行分析,最终实现故障诊断。本发明不要求信号充分满足稀疏性,可以充分削弱其他干扰信号对分离的源信号进行故障识别的影响,实现轴承复合故障欠定盲分离。

Description

一种基于平面聚类和频域压缩感知重构的机械故障诊断方法
技术领域
本发明涉及一种基于平面聚类和频域压缩感知重构的机械故障诊断方法,属于机械设备状态监测及故障诊断技术领域。
背景技术
由于复杂的机械结构和工业现场测试传感器拾取的观测信号往往是故障源信号和其他噪声信号的混合信号。近年来,能够在几乎没有任何先验知识的情况下,从混合信号中恢复或估计出源信号的盲信号处理技术为机械故障信号的提取提供了一个有力的解决手段。然而,传统的SCA算法在应用到机械振动信号处理时往往无法满足现实情况,不能有效进行机械故障特征的识别与提取;而改进的SCA算法则更适用于实际工业环境。
现场直接采集的观测信号存在大量的干扰信号,需要抑制这些干扰噪声信号,以期准确的提取机械故障信号进行诊断。而形态滤波作为一种非线性滤波技术,可以有效的提高信号的边缘轮廓、形态特征及抑制背景噪声。经对现有形态滤波技术在机械故障诊断领域应用相关文献检索发现,传统形态滤波采用单一结构元素对信号进行降噪,而相同尺寸的结构元素将导致滤波器输出的严重偏倚,因为形态开闭滤波器进行开运算在去除正脉冲的同时增强了负脉冲噪声,开-闭滤波器使用相同尺寸结构元素闭运算不能滤除增强了的负脉冲噪声,同理闭-开滤波器也不能滤除全部的正脉冲噪声。
并且实际工业现场信号往往存在多种类型噪声信号,降噪的效果会直接影响后期源信号能否完全估计和分离,所以很有必要采用多尺度多结构元素对信号中的不同类型噪声信号进行滤波处理。
其次,现场测试时传感器个数有限,而机械声源数目众多加之复合故障的存在,造成很多测试仅仅满足观测信号数目m小于故障源数目n的欠定条件。目前解决欠定问题常用方法是稀疏分解。
此外,现有的SCA算法大多是在源数目已知的情况下通过混合矩阵估计源信号,然而工业现场背景噪声强、干扰源多,致使在实际测试过程中故障源数目事先并不清楚。以往大部分SCA算法需信号在时域或者频域满足稀疏性来进行盲分离。
发明内容
针对以上存在问题,提出了一种基于平面聚类和频域压缩感知重构的机械故障诊断方法。该方法不要求信号充分满足稀疏性,可以充分削弱其他干扰信号对分离的源信号进行故障识别的影响,在源数目未知情况下,实现轴承复合故障欠定盲分离。
本发明提供了一种基于平面聚类和频域压缩感知重构的机械故障诊断方法,提出了一种在欠定条件下从机械振动信号中提取转动型机械部件(如轴承、齿轮等)复合故障的检测方法,可在未知源数目个数且传感器数目小于故障源数目的情况下,利用机械振动信号进行故障特征提取及诊断。
本发明基于平面聚类和频域压缩感知重构的机械故障诊断方法是这样实现的:首先把加速度传感器安装在机械设备的壳体表面,通过加速度传感器拾取机械振动的观测信号;把观测信号进行均值化处理,再求出均值化处理后的三角和半圆结构元素的长度及高度集合;再构造三角结构元素集合和半圆结构元素集合,然后再构造改进的多结构广义闭-开组合形态滤波器,用改进的多结构广义闭-开组合形态滤波器对观测信号均值化处理结果进行滤波处理得到滤波信号;对滤波信号通过平面聚类算法来估计混合矩阵;再通过估计的混合矩阵构建传感矩阵,运用正交匹配追踪基的频域压缩感知重构估计源信号,对估计的源信号进行FFT变换,然后对变换后的信号的频域进行分析,确定故障类型,最终实现故障诊断。
所述基于平面聚类和频域压缩感知重构的机械故障诊断方法的具体步骤如下:
A、首先把加速度传感器安装在机械设备的壳体表面,通过加速度传感器拾取机械振动的观测信号xm×t
其中,m为传感器个数,t为采样时刻;
B、均值化处理步骤A中检测到的振动信号xm×t得到信号根据极值的定义计算信号的局部极大值和极小值,再根据信号相邻峰值的极大值和极小值之间的间隔确定三角和半圆结构元素的长度KL集合,根据信号峰值的极大值和极小值差值确定三角和半圆结构元素的高度HL集合;
C、将步骤B中得到的集合HL和集合KL代入三角结构元素公式和半圆结构元素公式构造三角结构元素集合g1和半圆结构元素集合g2
其中i为结构元素长度集合KL数据点序列号,即集合HL或集合KL内元素的个数,集合HL或集合KL内元素的个数相等;
D、通过步骤C中得到的三角结构元素集合g1和半圆结构元素集合g2构造改进的多结构广义闭-开组合形态滤波器C-OACMF;构造改进的多结构广义闭-开组合形态滤波器C-OACMF的具体步骤如下:
D1、将三角结构元素集合g1和半圆结构元素集合g2分别代入公式y1(n)=(f⊕g1Θg1Θg2)(n)和y2(n)=(f⊕g1Θg1Θg2⊕g2)(n),求出形态滤波结构腐蚀和膨胀相结合的运算结果y1(n)和y2(n);
其中,Θ和⊕分别表示腐蚀和膨胀运算;
D2、然后将y1(n)和y2(n)代入y(n)=[y1(n)+y2(n)]/2,得到y(n),y(n)即为改进的多结构广义闭-开组合形态滤波器C-OACMF;
E、用改进的多结构广义闭-开组合形态滤波器C-OACMF对均值化处理结果进行滤波处理得到滤波信号icm×t
F、对滤波信号icm×t通过平面聚类算法来估计混合矩阵;
G、通过估计的混合矩阵构建传感矩阵,运用正交匹配追踪基OMP的频域压缩感知重构估计源信号y(t);
H、对估计的源信号y(t)进行FFT变换,然后对变换后的信号的频域进行分析,查看频谱图上是否存在实际故障轴承计算的故障特征的频率及其倍频;
如果存在,那么就确定频谱图上的频率对应于实际故障轴承故障类型的频率,即确定故障类型,最终实现故障诊断;
如果不存在,轴承不存在故障,频谱图仅显示转轴的特征频率。
所述步骤G中,所述构建传感矩阵,运用正交匹配追踪基OMP的频域压缩感知重构估计源信号y(t)的具体步骤如下:
G1、初始化OMP参数,其中包括残差r0、迭代次数,计算傅立叶正交变换矩阵Et×t,根据式Bkj=Et×tAkj构造传感矩阵W=(mt×nt)=Bkj=Et×tAkj,将信号转到频域运算;
其中,式中Et×t的维数由信号长度t决定,Akj为混合矩阵A(m×n)的元素值,Bkj是传感矩阵W=(mt×nt)的一个块矩阵,维数可由Bkj=Et×tAkj得知,n为混合矩阵的列数,即估计源信号的数目,m为传感器个数,t为采样时刻;
G2、使用内积法计算传感矩阵的列向量与残差r0的投影系数,并记录本次迭代最大投影系数对应的位置βl
G3、使用最小二乘法计算本次迭代的重构信号估计值xl=(βl T·βl)-1·βl T·rl
G4、更新残差rl+1=rl-xl,并且重复步骤G2、G3,直到迭代结束;
G5、使用Et×t做逆傅立叶变换重构得到维数为nt×1的时域信号x,将时域信号x分成n段得到估计的源信号y(t);
其中,步骤G2、G3、G4中的l为OMP初始化参数中的迭代次数。
本发明的有益效果是:
(1)本发明提出的滤波算法相比传统的形态滤波能更好的抑制、滤除噪声的同时保持信号的特征信号;
(2)本发明所述方法在无需得知源数目个数的情况下,能够明显分离、计算轴承故障特征频率,特别是针对故障中的微弱信号故障是一种简单有效的新方法,如保持架微弱信号故障频率;
(3)本发明所述方法不要求信号充分满足稀疏性,可以充分削弱其他干扰信号对分离的源信号进行故障识别的影响,实现轴承复合故障欠定盲分离。
附图说明
图1为本发明中轴承故障模拟实验台及传感器位置图;
图2为本发明所述方法的流程图;
图3为本发明轴承故障模拟实验台运行时传感器拾取振动观测信号的时域波形,其中,第1个分量为传感器Ⅰ拾取振动观测信号的时域波形,第2个分量为传感器Ⅱ拾取振动观测信号的时域波形;
图4为本发明轴承故障模拟实验台运行时传感器拾取振动观测信号的包络谱;其中,第1个分量为传感器Ⅰ拾取振动观测信号的包络谱,第2个分量为传感器Ⅱ拾取振动观测信号的包络谱;
图5为本发明振动观测信号经闭-开形态滤波的包络谱;其中,第1个分量为传感器Ⅰ拾取振动观测信号经闭-开形态滤波的包络谱,第2个分量为传感器Ⅱ拾取振动观测信号经闭-开形态滤波的包络谱;
图6为本发明滤波信号经基于平面聚类和频域压缩感知重构的机械故障诊断方法分析的故障信号的包络谱。第1个分量为保持架故障故障信号的包络谱,第2个分量为内圈故障故障信号的包络谱,第3个分量为外圈故障故障信号的包络谱。
图1中:1-电动机、2-齿轮箱、3-轴承座、4-传感器Ⅰ、5-故障轴承、6-传感器Ⅱ、7-传动轴、8-转盘。
具体实施方式
实施例1:如图1-6所示,一种基于平面聚类和频域压缩感知重构的机械故障诊断方法,首先把加速度传感器安装在机械设备的壳体表面,通过加速度传感器拾取机械振动的观测信号;把观测信号进行均值化处理,再求出均值化处理后的三角和半圆结构元素的长度及高度集合;再构造三角结构元素集合和半圆结构元素集合,然后再构造改进的多结构广义闭-开组合形态滤波器,用改进的多结构广义闭-开组合形态滤波器对观测信号均值化处理结果进行滤波处理得到滤波信号;对滤波信号通过平面聚类算法来估计混合矩阵;再通过估计的混合矩阵构建传感矩阵,运用正交匹配追踪基的频域压缩感知重构估计源信号,对估计的源信号进行FFT变换,然后对变换后的信号的频域进行分析,确定故障类型,最终实现故障诊断。
实施例2:如图1-6所示,一种基于平面聚类和频域压缩感知重构的机械故障诊断方法,首先把加速度传感器安装在机械设备的壳体表面,通过加速度传感器拾取机械振动的观测信号;把观测信号进行均值化处理,再求出均值化处理后的三角和半圆结构元素的长度及高度集合;再构造三角结构元素集合和半圆结构元素集合,然后再构造改进的多结构广义闭-开组合形态滤波器,用改进的多结构广义闭-开组合形态滤波器对观测信号均值化处理结果进行滤波处理得到滤波信号;对滤波信号通过平面聚类算法来估计混合矩阵;再通过估计的混合矩阵构建传感矩阵,运用正交匹配追踪基的频域压缩感知重构估计源信号,对估计的源信号进行FFT变换,然后对变换后的信号的频域进行分析,确定故障类型,最终实现故障诊断。
所述基于平面聚类和频域压缩感知重构的机械故障诊断方法的具体步骤如下:
A、首先把加速度传感器安装在机械设备的壳体表面,通过加速度传感器拾取机械振动的观测信号xm×t
其中,m为传感器个数,t为采样时刻;
B、均值化处理步骤A中检测到的振动信号xm×t得到信号根据极值的定义计算信号的局部极大值和极小值,再根据信号相邻峰值的极大值和极小值之间的间隔确定三角和半圆结构元素的长度KL集合,根据信号峰值的极大值和极小值差值确定三角和半圆结构元素的高度HL集合;
C、将步骤B中得到的集合HL和集合KL代入三角结构元素公式和半圆结构元素公式构造三角结构元素集合g1和半圆结构元素集合g2
其中i为结构元素长度集合KL数据点序列号,即集合HL或集合KL内元素的个数,集合HL或集合KL内元素的个数相等;
D、通过步骤C中得到的三角结构元素集合g1和半圆结构元素集合g2构造改进的多结构广义闭-开组合形态滤波器C-OACMF;构造改进的多结构广义闭-开组合形态滤波器C-OACMF的具体步骤如下:
D1、将三角结构元素集合g1和半圆结构元素集合g2分别代入公式y1(n)=(f⊕g1Θg1Θg2)(n)和y2(n)=(f⊕g1Θg1Θg2⊕g2)(n),求出形态滤波结构腐蚀和膨胀相结合的运算结果y1(n)和y2(n);
其中,Θ和⊕分别表示腐蚀和膨胀运算;
D2、然后将y1(n)和y2(n)代入y(n)=[y1(n)+y2(n)]/2,得到y(n),y(n)即为改进的多结构广义闭-开组合形态滤波器C-OACMF;
E、用改进的多结构广义闭-开组合形态滤波器C-OACMF对均值化处理结果进行滤波处理得到滤波信号icm×t
F、对滤波信号icm×t通过平面聚类算法来估计混合矩阵;
G、通过估计的混合矩阵构建传感矩阵,运用正交匹配追踪基OMP的频域压缩感知重构估计源信号y(t);
H、对估计的源信号y(t)进行FFT变换,然后对变换后的信号的频域进行分析,查看频谱图上是否存在实际故障轴承计算的故障特征的频率及其倍频;
如果存在,那么就确定频谱图上的频率对应于实际故障轴承故障类型的频率,即确定故障类型,最终实现故障诊断;
如果不存在,轴承不存在故障,频谱图仅显示转轴的特征频率。
实施例3:如图1-6所示,一种基于平面聚类和频域压缩感知重构的机械故障诊断方法,首先把加速度传感器安装在机械设备的壳体表面,通过加速度传感器拾取机械振动的观测信号;把观测信号进行均值化处理,再求出均值化处理后的三角和半圆结构元素的长度及高度集合;再构造三角结构元素集合和半圆结构元素集合,然后再构造改进的多结构广义闭-开组合形态滤波器,用改进的多结构广义闭-开组合形态滤波器对观测信号均值化处理结果进行滤波处理得到滤波信号;对滤波信号通过平面聚类算法来估计混合矩阵;再通过估计的混合矩阵构建传感矩阵,运用正交匹配追踪基的频域压缩感知重构估计源信号,对估计的源信号进行FFT变换,然后对变换后的信号的频域进行分析,确定故障类型,最终实现故障诊断。
所述基于平面聚类和频域压缩感知重构的机械故障诊断方法的具体步骤如下:
A、首先把加速度传感器安装在机械设备的壳体表面,通过加速度传感器拾取机械振动的观测信号xm×t
其中,m为传感器个数,t为采样时刻;
B、均值化处理步骤A中检测到的振动信号xm×t得到信号根据极值的定义计算信号的局部极大值和极小值,再根据信号相邻峰值的极大值和极小值之间的间隔确定三角和半圆结构元素的长度KL集合,根据信号峰值的极大值和极小值差值确定三角和半圆结构元素的高度HL集合;
C、将步骤B中得到的集合HL和集合KL代入三角结构元素公式和半圆结构元素公式构造三角结构元素集合g1和半圆结构元素集合g2
其中i为结构元素长度集合KL数据点序列号,即集合HL或集合KL内元素的个数,集合HL或集合KL内元素的个数相等;
D、通过步骤C中得到的三角结构元素集合g1和半圆结构元素集合g2构造改进的多结构广义闭-开组合形态滤波器C-OACMF;构造改进的多结构广义闭-开组合形态滤波器C-OACMF的具体步骤如下:
D1、将三角结构元素集合g1和半圆结构元素集合g2分别代入公式y1(n)=(f⊕g1Θg1Θg2)(n)和y2(n)=(f⊕g1Θg1Θg2⊕g2)(n),求出形态滤波结构腐蚀和膨胀相结合的运算结果y1(n)和y2(n);
其中,Θ和⊕分别表示腐蚀和膨胀运算;
D2、然后将y1(n)和y2(n)代入y(n)=[y1(n)+y2(n)]/2,得到y(n),y(n)即为改进的多结构广义闭-开组合形态滤波器C-OACMF;
E、用改进的多结构广义闭-开组合形态滤波器C-OACMF对均值化处理结果进行滤波处理得到滤波信号icm×t
F、对滤波信号icm×t通过平面聚类算法来估计混合矩阵;
G、通过估计的混合矩阵构建传感矩阵,运用正交匹配追踪基OMP的频域压缩感知重构估计源信号y(t);
H、对估计的源信号y(t)进行FFT变换,然后对变换后的信号的频域进行分析,查看频谱图上是否存在实际故障轴承计算的故障特征的频率及其倍频;
如果存在,那么就确定频谱图上的频率对应于实际故障轴承故障类型的频率,即确定故障类型,最终实现故障诊断;
如果不存在,轴承不存在故障,频谱图仅显示转轴的特征频率。
所述步骤G中,所述构建传感矩阵,运用正交匹配追踪基OMP的频域压缩感知重构估计源信号y(t)的具体步骤如下:
G1、初始化OMP参数,其中包括残差r0、迭代次数,计算傅立叶正交变换矩阵Et×t,根据式Bkj=Et×tAkj构造传感矩阵W=(mt×nt)=Bkj=Et×tAkj,将信号转到频域运算;
其中,式中Et×t的维数由信号长度t决定,Akj为混合矩阵A(m×n)的元素值,Bkj是传感矩阵W=(mt×nt)的一个块矩阵,维数可由Bkj=Et×tAkj得知,n为混合矩阵的列数,即估计源信号的数目,m为传感器个数,t为采样时刻;
G2、使用内积法计算传感矩阵的列向量与残差r0的投影系数,并记录本次迭代最大投影系数对应的位置βl
G3、使用最小二乘法计算本次迭代的重构信号估计值xl=(βl T·βl)-1·βl T·rl
G4、更新残差rl+1=rl-xl,并且重复步骤G2、G3,直到迭代结束;
G5、使用Et×t做逆傅立叶变换重构得到维数为nt×1的时域信号x,将时域信号x分成n段得到估计的源信号y(t);
其中,步骤G2、G3、G4中的l为OMP初始化参数中的迭代次数。
实施例4:如图1-6所示,一种基于平面聚类和频域压缩感知重构的机械故障诊断方法,本实施例与实施例3相同,不同之处在于本实施例以某旋转试验台中轴承复合故障诊断实验为实施实例,本实施例使用的故障轴承NU205型号的相关参数为:节圆直径D=39mm,滚动体直径d=7.5mm,滚动体数目Z=12,接触角α=0,根据故障轴承相关参数可以直接计算计算可得轴承外圈故障特征频率为64.61Hz,内圈故障特征频率为95.38Hz,保持架故障特征频率为5.38Hz,具体诊断方法包括以下步骤::
A、把两个加速度传感器相互垂直安装在试验台上机械设备的壳体表面如图1所示的4和6位置,利用NI SignalExpress采集模块及NI-9234四通道采集卡进行信号采集,获取加速度传感器拾取的机械振动的观测信号xm×t。实验数据采集是在恒定转数800r/min条件下采集的,其对应的轴的转频为13.33Hz。采样频率fs=8192Hz,采样点数N=8192Hz,xm×t的时域波形图如图3所示,其对应的包络谱如图4所示,从包络谱图中清楚发现外圈、内圈和保持架故障特征频率成分完全混在一起,尤其是微弱保持架故障频率完全被覆盖,无法识别其故障;
其中,m是传感器个数为2,t为采样时刻;
B、均值化处理步骤A中检测到的振动信号xm×t得到信号根据极值的定义计算信号的局部极大值和极小值,再根据信号相邻峰值的极大值和极小值之间的间隔确定三角和半圆结构元素的长度KL集合,根据信号峰值的极大值和极小值差值确定三角和半圆结构元素的高度HL集合;
C、将步骤B中得到的集合HL和集合KL代入三角结构元素公式和半圆结构元素公式构造三角结构元素集合g1和半圆结构元素集合g2
其中i为结构元素长度集合KL数据点序列号,即集合HL或集合KL内元素的个数,集合HL或集合KL内元素的个数相等;
D、通过步骤C中得到的三角结构元素集合g1和半圆结构元素集合g2构造改进的多结构广义闭-开组合形态滤波器C-OACMF;构造改进的多结构广义闭-开组合形态滤波器C-OACMF的具体步骤如下:
D1、将三角结构元素集合g1和半圆结构元素集合g2分别代入公式y1(n)=(f⊕g1Θg1Θg2)(n)和y2(n)=(f⊕g1Θg1Θg2⊕g2)(n),求出形态滤波结构腐蚀和膨胀相结合的运算结果y1(n)和y2(n);
其中,Θ和⊕分别表示腐蚀和膨胀运算;
D2、然后将y1(n)和y2(n)代入y(n)=[y1(n)+y2(n)]/2,得到y(n),y(n)即为改进的多结构广义闭-开组合形态滤波器C-OACMF;
E、用改进的多结构广义闭-开组合形态滤波器C-OACMF对均值化处理结果进行滤波处理得到滤波信号icm×t,滤波后的包络谱如图5所示,从包络谱图中都能清楚发现背景噪声得到较好的滤波,但内圈和保持架故障特征频率成分仍混在一起,无法辨别保持架和内圈故障;
F、对滤波信号icm×t通过平面聚类算法来估计混合矩阵Akj
G、通过估计的混合矩阵构建传感矩阵,运用正交匹配追踪基OMP的频域压缩感知重构估计源信号y(t);所述构建传感矩阵,运用正交匹配追踪基OMP的频域压缩感知重构估计源信号y(t)的具体步骤如下:
G1、初始化OMP参数,其中包括残差r0、迭代次数l=45,计算傅立叶正交变换矩阵Et×t,根据式Bkj=Et×tAkj构造传感矩阵W=(mt×nt)=Bkj=Et×tAkj,将信号转到频域运算;
其中,式中Et×t的维数由信号长度t决定,Akj为混合矩阵A(m×n)的元素值,Bkj是传感矩阵W=(mt×nt)的一个块矩阵,维数可由Bkj=Et×tAkj得知,n为混合矩阵的列数3,即估计源信号的数目,m为传感器个数2,t为采样时刻9192;
G2、使用内积法计算传感矩阵的列向量与残差r0的投影系数,并记录本次迭代最大投影系数对应的位置βl
G3、使用最小二乘法计算本次迭代的重构信号估计值xl=(βl T·βl)-1·βl T·rl
G4、更新残差rl+1=rl-xl,并且重复步骤G2、G3,直到迭代结束;
G5、使用Et×t做逆傅立叶变换重构得到维数为nt×1的时域信号x,将时域信号x分成3段得到估计的源信号y(t);
其中,步骤G2、G3、G4中的l均为OMP初始化参数中的迭代次数。
H、对估计的源信号y(t)进行FFT变换,估计源信号的频谱图如图6,从图6中的第1个分离信号中清晰辨出保持架故障特征频率5Hz和2倍频约11Hz的频率成分,对应于保持架频率5.38Hz。第2个分离信号存在转频13Hz和95Hz的谱线及其倍频,以及在95Hz和190Hz两侧间隔为旋转频率13Hz的边频较多,对应于内圈故障频率95.38Hz,诊断其为内圈故障。频率误差值由频率分辨率导致,一般在±1Hz以内,第3个分离信号几乎仅存在65Hz的X1、X2、X3等倍频的幅值,对应于轴承外圈故障频率64.61Hz,3个分量图几乎不存在其他干扰成分,说明该算法可以将故障能够完全分离。频谱图上存在实际故障轴承计算的故障特征的频率及其倍频,即确定故障类型,最终实现故障诊断。
上面结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (3)

1.一种基于平面聚类和频域压缩感知重构的机械故障诊断方法,其特征在于:首先把加速度传感器安装在机械设备的壳体表面,通过加速度传感器拾取机械振动的观测信号;把观测信号进行均值化处理,再求出均值化处理后的三角和半圆结构元素的长度及高度集合;再构造三角结构元素集合和半圆结构元素集合,然后再构造改进的多结构广义闭-开组合形态滤波器,用改进的多结构广义闭-开组合形态滤波器对观测信号均值化处理结果进行滤波处理得到滤波信号;对滤波信号通过平面聚类算法来估计混合矩阵;再通过估计的混合矩阵构建传感矩阵,运用正交匹配追踪基的频域压缩感知重构估计源信号,对估计的源信号进行FFT变换,然后对变换后的信号的频域进行分析,确定故障类型,最终实现故障诊断。
2.根据权利要求1所述的基于平面聚类和频域压缩感知重构的机械故障诊断方法,其特征在于:所述基于平面聚类和频域压缩感知重构的机械故障诊断方法的具体步骤如下:
A、首先把加速度传感器安装在机械设备的壳体表面,通过加速度传感器拾取机械振动的观测信号xm×t
其中,m为传感器个数,t为采样时刻;
B、均值化处理步骤A中检测到的振动信号xm×t得到信号根据极值的定义计算信号的局部极大值和极小值,再根据信号相邻峰值的极大值和极小值之间的间隔确定三角和半圆结构元素的长度KL集合,根据信号峰值的极大值和极小值差值确定三角和半圆结构元素的高度HL集合;
C、将步骤B中得到的集合HL和集合KL代入三角结构元素公式和半圆结构元素公式构造三角结构元素集合g1和半圆结构元素集合g2
其中i为结构元素长度集合KL数据点序列号,即集合HL或集合KL内元素的个数,集合HL或集合KL内元素的个数相等;
D、通过步骤C中得到的三角结构元素集合g1和半圆结构元素集合g2构造改进的多结构广义闭-开组合形态滤波器C-OACMF;构造改进的多结构广义闭-开组合形态滤波器C-OACMF的具体步骤如下:
D1、将三角结构元素集合g1和半圆结构元素集合g2分别代入公式y1(n)=(f⊕g1Θg1Θg2)(n)和y2(n)=(f⊕g1Θg1Θg2⊕g2)(n),求出形态滤波结构腐蚀和膨胀相结合的运算结果y1(n)和y2(n);
其中,Θ和⊕分别表示腐蚀和膨胀运算;
D2、然后将y1(n)和y2(n)代入y(n)=[y1(n)+y2(n)]/2,得到y(n),y(n)即为改进的多结构广义闭-开组合形态滤波器C-OACMF;
E、用改进的多结构广义闭-开组合形态滤波器C-OACMF对均值化处理结果进行滤波处理得到滤波信号icm×t
F、对滤波信号icm×t通过平面聚类算法来估计混合矩阵;
G、通过估计的混合矩阵构建传感矩阵,运用正交匹配追踪基OMP的频域压缩感知重构估计源信号y(t);
H、对估计的源信号y(t)进行FFT变换,然后对变换后的信号的频域进行分析,查看频谱图上是否存在实际故障轴承计算的故障特征的频率及其倍频;
如果存在,那么就确定频谱图上的频率对应于实际故障轴承故障类型的频率,即确定故障类型,最终实现故障诊断;
如果不存在,轴承不存在故障,频谱图仅显示转轴的特征频率。
3.根据权利要求1所述的基于平面聚类和频域压缩感知重构的机械故障诊断方法,其特征在于:所述步骤G中,所述构建传感矩阵,运用正交匹配追踪基OMP的频域压缩感知重构估计源信号y(t)的具体步骤如下:
G1、初始化OMP参数,其中包括残差r0、迭代次数,计算傅立叶正交变换矩阵Et×t,根据式Bkj=Et×tAkj构造传感矩阵W=(mt×nt)=Bkj=Et×tAkj,将信号转到频域运算;
其中,式中Et×t的维数由信号长度t决定,Akj为混合矩阵A(m×n)的元素值,Bkj是传感矩阵W=(mt×nt)的一个块矩阵,维数可由Bkj=Et×tAkj得知,n为混合矩阵的列数,即估计源信号的数目,m为传感器个数,t为采样时刻;
G2、使用内积法计算传感矩阵的列向量与残差r0的投影系数,并记录本次迭代最大投影系数对应的位置βl
G3、使用最小二乘法计算本次迭代的重构信号估计值xl=(βl T·βl)-1·βl T·rl
G4、更新残差rl+1=rl-xl,并且重复步骤G2、G3,直到迭代结束;
G5、使用Et×t做逆傅立叶变换重构得到维数为nt×1的时域信号x,将时域信号x分成n段得到估计的源信号y(t);
其中,步骤G2、G3、G4中的l为OMP初始化参数中的迭代次数。
CN201410411671.7A 2014-08-20 2014-08-20 一种基于平面聚类和频域压缩感知重构的机械故障诊断方法 Active CN104215456B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410411671.7A CN104215456B (zh) 2014-08-20 2014-08-20 一种基于平面聚类和频域压缩感知重构的机械故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410411671.7A CN104215456B (zh) 2014-08-20 2014-08-20 一种基于平面聚类和频域压缩感知重构的机械故障诊断方法

Publications (2)

Publication Number Publication Date
CN104215456A true CN104215456A (zh) 2014-12-17
CN104215456B CN104215456B (zh) 2017-02-15

Family

ID=52097179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410411671.7A Active CN104215456B (zh) 2014-08-20 2014-08-20 一种基于平面聚类和频域压缩感知重构的机械故障诊断方法

Country Status (1)

Country Link
CN (1) CN104215456B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105258947A (zh) * 2015-11-06 2016-01-20 北京航空航天大学 一种基于压缩感知的工况扰动条件下的滚动轴承故障诊断方法
CN105403422A (zh) * 2015-11-30 2016-03-16 惠州学院 一种基于盲分离技术诊断救生舱co2空调故障检测系统
CN105928702A (zh) * 2016-04-29 2016-09-07 石家庄铁道大学 基于形态分量分析的变工况齿轮箱轴承故障诊断方法
CN108776801A (zh) * 2018-04-17 2018-11-09 重庆大学 一种基于欠定盲源分离的模拟电路早期故障特征提取方法
CN111142020A (zh) * 2019-12-26 2020-05-12 东北石油大学 通过多结构方式进行风力发电机故障诊断的方法和装置
CN111263324A (zh) * 2020-01-16 2020-06-09 南京审计大学金审学院 一种基于K-medoids分簇的无线传感网压缩感知处理方法
CN113074935A (zh) * 2021-04-01 2021-07-06 西华大学 一种用于齿轮箱冲击故障特征的声学分离和诊断方法
CN114938707A (zh) * 2019-11-15 2022-08-23 Abb瑞士股份有限公司 用于处理传感器数据以进行传输的方法和系统
CN117574113A (zh) * 2024-01-15 2024-02-20 北京建筑大学 一种基于球坐标欠定盲源分离的轴承故障监测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123920A1 (en) * 2007-04-10 2008-10-16 Exxonmobil Upstream Research Company Separation and noise removal for multiple vibratory source seismic data
CN101764652A (zh) * 2010-01-18 2010-06-30 哈尔滨工业大学 基于正交匹配追踪的具有压缩感知过程的信号检测方法
EP2347230B1 (en) * 2008-10-14 2013-03-27 Aktiebolaget SKF Signal analyzer
CN103940597A (zh) * 2014-04-08 2014-07-23 昆明理工大学 一种基于广义极值形态滤波的机械故障检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123920A1 (en) * 2007-04-10 2008-10-16 Exxonmobil Upstream Research Company Separation and noise removal for multiple vibratory source seismic data
EP2347230B1 (en) * 2008-10-14 2013-03-27 Aktiebolaget SKF Signal analyzer
CN101764652A (zh) * 2010-01-18 2010-06-30 哈尔滨工业大学 基于正交匹配追踪的具有压缩感知过程的信号检测方法
CN103940597A (zh) * 2014-04-08 2014-07-23 昆明理工大学 一种基于广义极值形态滤波的机械故障检测方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
季赛 等: "《面向无线传感结构健康监测的压缩感知方法研究》", 《传感技术学报》 *
尹海波 等: "《元素随机排列的傅里叶测量矩阵构造方法》", 《探测与控制学报》 *
李卓凡 等: "《压缩感知及应用》", 《微计算机应用》 *
李豫川 等: "《基于形态滤波和稀疏分量分析的滚动轴承故障盲分离》", 《振动与冲击》 *
王金富 等: "《机械故障诊断的信号处理方法:频域分析》", 《噪声与振动控制》 *
耿宏 等: "《基于压缩感知的QAR数据重构》", 《计算机测量与控制》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105258947B (zh) * 2015-11-06 2017-06-23 北京航空航天大学 一种基于压缩感知的工况扰动条件下的滚动轴承故障诊断方法
CN105258947A (zh) * 2015-11-06 2016-01-20 北京航空航天大学 一种基于压缩感知的工况扰动条件下的滚动轴承故障诊断方法
CN105403422A (zh) * 2015-11-30 2016-03-16 惠州学院 一种基于盲分离技术诊断救生舱co2空调故障检测系统
CN105928702A (zh) * 2016-04-29 2016-09-07 石家庄铁道大学 基于形态分量分析的变工况齿轮箱轴承故障诊断方法
CN108776801A (zh) * 2018-04-17 2018-11-09 重庆大学 一种基于欠定盲源分离的模拟电路早期故障特征提取方法
CN114938707A (zh) * 2019-11-15 2022-08-23 Abb瑞士股份有限公司 用于处理传感器数据以进行传输的方法和系统
CN111142020B (zh) * 2019-12-26 2021-11-23 东北石油大学 通过多结构方式进行风力发电机故障诊断的方法和装置
CN111142020A (zh) * 2019-12-26 2020-05-12 东北石油大学 通过多结构方式进行风力发电机故障诊断的方法和装置
CN111263324A (zh) * 2020-01-16 2020-06-09 南京审计大学金审学院 一种基于K-medoids分簇的无线传感网压缩感知处理方法
CN111263324B (zh) * 2020-01-16 2022-02-08 南京审计大学金审学院 一种基于K-medoids分簇的无线传感网压缩感知处理方法
CN113074935A (zh) * 2021-04-01 2021-07-06 西华大学 一种用于齿轮箱冲击故障特征的声学分离和诊断方法
CN113074935B (zh) * 2021-04-01 2022-09-13 西华大学 一种用于齿轮箱冲击故障特征的声学分离和诊断方法
CN117574113A (zh) * 2024-01-15 2024-02-20 北京建筑大学 一种基于球坐标欠定盲源分离的轴承故障监测方法及系统
CN117574113B (zh) * 2024-01-15 2024-03-15 北京建筑大学 一种基于球坐标欠定盲源分离的轴承故障监测方法及系统

Also Published As

Publication number Publication date
CN104215456B (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN104215456A (zh) 一种基于平面聚类和频域压缩感知重构的机械故障诊断方法
CN103499445B (zh) 一种基于时频切片分析的滚动轴承故障诊断方法
Guo et al. Envelope extraction based dimension reduction for independent component analysis in fault diagnosis of rolling element bearing
CN108106830B (zh) 一种基于时频谱分割的变速旋转机械故障诊断方法
CN105784366A (zh) 一种变转速下的风电机组轴承故障诊断方法
Qu et al. A new acoustic emission sensor based gear fault detection approach
CN102840907B (zh) 早期故障状态下滚动轴承振动信号特征提取和分析方法
Osman et al. An enhanced Hilbert–Huang transform technique for bearing condition monitoring
Hu et al. Bearing fault diagnosis based on an improved morphological filter
CN108388692B (zh) 基于分层稀疏编码的滚动轴承故障特征提取方法
CN103940597A (zh) 一种基于广义极值形态滤波的机械故障检测方法
CN104596766B (zh) 一种轴承早期故障确定方法及装置
CN102721545A (zh) 一种基于多特征参量的滚动轴承故障诊断方法
CN103335841A (zh) 一种采用脉冲小波能量谱分析的滚动轴承故障诊断方法
Wang et al. Sparse and low-rank decomposition of the time–frequency representation for bearing fault diagnosis under variable speed conditions
CN105043767B (zh) 一种滚动球轴承外圈剥落故障双冲击特征提取方法及系统
CN110987434A (zh) 一种基于去噪技术的滚动轴承早期故障诊断方法
CN105588720A (zh) 基于声信号形态分量分析的滚动轴承故障诊断装置及方法
CN104330258A (zh) 一种基于特征参量的滚动轴承故障灰色关联度辨识方法
Zhang et al. Improved local cepstrum and its applications for gearbox and rolling bearing fault detection
CN110940522A (zh) 强背景噪声下轴承故障周期性脉冲稀疏分离与诊断方法
Zheng et al. Faults diagnosis of rolling bearings based on shift invariant K-singular value decomposition with sensitive atom nonlocal means enhancement
CN112098093A (zh) 一种轴承故障特征识别方法及识别系统
CN114486263B (zh) 一种旋转机械滚动轴承振动信号降噪解调方法
CN115017953A (zh) 基于密度峰值聚类的稀疏分量分析的机械故障诊断方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant