WO2018112988A1 - 一种光模块封装结构及光模块 - Google Patents

一种光模块封装结构及光模块 Download PDF

Info

Publication number
WO2018112988A1
WO2018112988A1 PCT/CN2016/112017 CN2016112017W WO2018112988A1 WO 2018112988 A1 WO2018112988 A1 WO 2018112988A1 CN 2016112017 W CN2016112017 W CN 2016112017W WO 2018112988 A1 WO2018112988 A1 WO 2018112988A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
chip
horizontal plate
plate
top surface
Prior art date
Application number
PCT/CN2016/112017
Other languages
English (en)
French (fr)
Inventor
仲兆良
姜瑜斐
魏伦
潘凯
王永乐
杨启亮
张帅
Original Assignee
中航海信光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中航海信光电技术有限公司 filed Critical 中航海信光电技术有限公司
Priority to EP16924884.6A priority Critical patent/EP3470899B1/en
Publication of WO2018112988A1 publication Critical patent/WO2018112988A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4272Cooling with mounting substrates of high thermal conductivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • G02B6/4281Electrical aspects containing printed circuit boards [PCB] the printed circuit boards being flexible
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres

Definitions

  • Invention name an optical module package structure and optical module
  • the present invention relates to the field of photoelectric conversion devices, and in particular to a package structure of an optical module.
  • the heat generated by the operation of the high-power photoelectric conversion module mainly comes from internal chips, such as optical transceiver chips, driving chips, and the like.
  • internal chips such as optical transceiver chips, driving chips, and the like.
  • the heat dissipation effect is far from ideal.
  • the existing optical module package structure generally has the problem that the carrier of the chip is separated from the housing of the optical module, and the air gap or the thermal conductive glue is included in the heat dissipation channel from the chip to the housing, thereby increasing the thermal resistance.
  • the long-term stability and product consistency of the heat dissipation are not good, and the optical circuit circuit sealing and the chip heat dissipation cannot be taken into consideration.
  • the chip carrier and the heat dissipation housing are independent and separated from each other, and a plurality of contact interfaces exist in the entire heat conduction path, and an air gap or a thermal conductive glue exists between the interfaces, and these bottlenecks seriously hinder heat conduction, and heat is difficult to be efficiently conducted to the heat dissipation case. Therefore, the heat dissipation effect is not ideal, and the long-term stability of heat dissipation and product consistency are not good. Moreover, the lower part of the connector is lowered and the integral seal is not achieved.
  • An object of the present invention is to provide a package structure of an optical module to effectively solve the heat dissipation problem of the chip inside the optical module.
  • the present invention provides an optical module package structure including a top cover, a bottom plate, and an intermediate case; a cavity for inserting an electrical connector is disposed on the bottom plate; the intermediate case
  • the peripheral casing includes a peripheral casing, a horizontal plate and a chip carrier;
  • the surrounding casing includes a left side wall and a right side wall in a relative positional relationship, and a front side wall and a rear side wall in a relative position relationship, wherein the top cover is installed around the circumference a top portion of the outer casing, the bottom plate being located at a bottom of the outer casing;
  • the horizontal plate extending from an inner side of the left side wall of the surrounding outer casing to an inner side of the right side wall, and two sides are formed along the extending direction a long strip-shaped mounting hole in a relative position relationship, wherein the mounting hole is used for assembling the PCB board of the optical module to the bottom surface of the horizontal board, so that the two side flexible boards of the PCB board can pass through, and then a
  • the front and rear sides of the horizontal plate are separated from the front side wall and the rear side wall of the surrounding casing to form two gaps before and after, and the two gaps are preferably used as two
  • the elongated assembly holes are described.
  • the present invention preferably designs the chip carrier to protrude from the top surface of the horizontal plate, and includes a front carrier, a rear carrier and an intermediate carrier; wherein, the intermediate carrier is used An optical transceiver chip in the optical module, located between the front carrier and the rear carrier, and having a height higher than a top surface of the horizontal plate than the front carrier and the rear carrier protruding from the horizontal plate a height of the top surface; the front carrier is used to carry a driving chip in the optical module, and extends from the intermediate carrier to a front wall of the surrounding outer casing; the rear carrier is used to carry a driving chip in the optical module Extending from the intermediate carrier toward the rear side wall of the surrounding outer casing; the height of the front and rear carriers protruding from the top surface of the horizontal plate preferably satisfies the following requirements: when the driving chip is mounted to The front carrier and the rear carrier are stacked, and the wiring of the driving chip is opposite to the
  • the present invention further comprises a plurality of columns on the top surface of the horizontal plate, the columns being perpendicular to the horizontal plate.
  • the top surface extends upwardly for inserting holes into the two side flexible plates of the PCB board and the lens assembly in the optical module The insertion hole is inserted and positioned.
  • the present invention further includes a left mesa and a right mesa in the optical module package structure; the bottom surface of the left mesa is combined with the top surface of the horizontal plate, and the left side of the left mesa is In combination with the left side wall of the surrounding outer casing, the top surface of the left mesa is fitted to the top cover after the top cover is mounted on the surrounding outer casing; the bottom surface of the right mesa and the top of the horizontal plate The right side surface of the right mesa is combined with the right side wall of the surrounding outer casing, and the top surface of the right mesa is attached to the top cover after the top cover is attached to the surrounding outer casing;
  • the left table top, the right table top and the top cover are made of a metal material, so that the heat generated by the chip can be radiated to the top cover through the left and right mesa, and the heat can be dissipated through the top cover.
  • the left mesa and the right mesa are integrally formed with the surrounding outer casing and the horizontal plate to avoid an air gap, resulting in a decrease in heat dissipation performance.
  • the top surface of the left mesa and the top surface of the right mesa are respectively bonded to the top cover by a thermal adhesive to seal the upper cavity.
  • the present invention further provides heat dissipating fins on the outer side of the left side wall of the surrounding outer casing and the outer side of the right side wall to further accelerate the heat dissipation speed.
  • the present invention provides an optical module provided with a top cover, a bottom plate, an intermediate casing, a PCB board, a chip for generating heat, a lens assembly, and an optical fiber ribbon; a cavity for inserting an electrical connector; the intermediate casing comprising a peripheral casing, a transverse plate and a chip carrier; the peripheral casing comprising a left side wall and a right side wall in a relative positional relationship and a front position in a relative positional relationship a side wall mounted on a top of the surrounding outer casing, the bottom plate being located at a bottom of the surrounding outer casing; the transverse plate extending from an inner side of the left side wall of the surrounding outer casing to the An inner side of the right side wall, and two elongated assembly holes in a relative positional relationship are formed along the extending direction; the chip carrier is located on a top surface of the horizontal plate, and the chip is mounted on the chip carrier
  • the PCB board includes a PCB rigid board and two side flexible boards extending
  • the present invention is respectively formed with a concave area on the side edges of the chip on the two side flexible plates, and the chip is at least partially located in the In the recessed area, the three sides forming the recessed area serve as the lead ends of the side flex plates, and are connected to the wiring ports on the chip through the leads.
  • At least one electronic component protruding from the top surface of the PCB rigid plate is disposed on the PCB rigid plate, and in order to achieve close adhesion between the PCB rigid plate and the horizontal plate, the present invention is
  • the bottom surface of the horizontal plate is further formed with a groove matching the shape of the top surface of the electronic component; when the PCB board is mounted on the horizontal plate, the electronic component on the PCB rigid plate Extending into the recess, and a top surface of the electronic component is attached to a bottom surface of the recess.
  • the present invention preferably bonds the chip to the chip carrier through a heat-conductive patch adhesive;
  • the top surface of the PCB rigid plate is bonded to the bottom surface of the horizontal plate by a thermal conductive adhesive;
  • the bottom surface of the PCB rigid plate is bonded to the bottom plate;
  • a groove is formed on a bottom surface of the lens assembly, and the chip is located In the groove, the lens assembly is bonded to the side flexible plate of the PCB board around the bottom wall of the groove.
  • the conductive contacts on the electrical connector can be accurately contacted with the corresponding conductive contacts on the PCB board,
  • the position of the optical module on the external main board is limited.
  • the present invention further includes a positioning post on the bottom surface of the horizontal plate, the positioning post is downward in a direction perpendicular to the bottom surface of the horizontal plate. A plane extending beyond the bottom of the surrounding casing and extending through the positioning hole provided in the PCB rigid plate extends through the cavity on the bottom plate.
  • the electrical connector may be placed in the cavity of the bottom plate, and a positioning through hole is disposed on the electrical connector, the positioning The post passes through the positioning through hole to limit the mounting position of the electrical connector in the optical module.
  • the present invention designs the positioning post to have an interference fit with the positioning through hole, so that The disassembly and assembly operation of the electrical connector on the optical module.
  • a conductive contact is disposed on a bottom surface of the PCB substrate, and the conductive contact is in contact with a conductive contact disposed on a top surface of the electrical connector to achieve effective transmission of an electrical signal.
  • the invention has a special structural design on the outer casing of the optical module, so that the chip carrier and the outer casing of the optical module form an integrated metal structure, thereby constructing a pure metal heat dissipation channel from the chip carrier to the optical module casing.
  • the heat generating chip in the optical module is mounted on the chip carrier, so that the heat generated by the chip is conducted and diffused to the entire outer casing through the heat dissipation channel. Since the entire heat dissipation channel has no air gap and thermal conductive glue, the heat dissipation bottleneck in the heat conduction path is eliminated.
  • the thermal resistance between the chip and the outer casing is effectively reduced, the heat conduction efficiency is improved, the external heat dissipation area is increased, and the heat dissipation problem of the optical module is effectively solved from the package structure.
  • the sealing property is good, and the ability to withstand harsh environments is strong, so that the high-efficiency heat dissipation and the circuit sealing are perfectly combined, and the vibration resistance is good, the parts are few, and the assembly is simple. .
  • FIG. 1 is an exploded view of an overall structure of an embodiment of a light module proposed by the present invention
  • FIG. 2 is a top plan view of the intermediate casing of FIG. 1; [0025] FIG.
  • Figure 3 is a bottom plan view of the intermediate casing of Figure 1;
  • FIG. 4 is an exploded perspective view of the intermediate case and the PCB board of FIG. 1; [0027] FIG.
  • FIG. 5 is an assembled view of the intermediate case and the PCB board of FIG. 1;
  • 6 is an assembled exploded view of the intermediate case and the bottom plate and the electrical connector assembled with the PCB board of FIG. 1;
  • 7 is an exploded view showing the assembly of the intermediate case, the lens assembly, and the optical fiber ribbon assembled with the PCB board of FIG. 1;
  • FIG. 8 is an assembled view of the intermediate casing, the lens assembly, and the optical fiber ribbon assembled with the PCB board of FIG.
  • FIG. 9 is an assembled exploded view of the assembly diagram and the top plate shown in FIG. 8;
  • FIG. 10 is a top plan view of the overall structure of the optical module according to the present invention after assembly; [0033] FIG.
  • FIG. 11 is a bottom plan view of the overall structure of the optical module according to the present invention after assembly; [0034] FIG.
  • Figure 12 is a cross-sectional view of the optical module shown in Figure 10 taken along the line A-A;
  • FIG. 13 is a cross-sectional view of the optical module shown in FIG. 10 taken along the line B-B.
  • This embodiment is directed to a chip that is easy to generate heat during operation of the optical module (for example, an optical transceiver chip, a driving chip, etc., such a chip rises rapidly during the working process, and the temperature reaches a limit value ⁇ , the chip performance will The heat dissipation problem of the thermal module is improved, and the optical module package structure with significant heat conduction effect is proposed.
  • the main component is used to package the heat generating chip 800, the PCB board 400, the lens assembly 600, and a portion of the optical fiber ribbon 700 in the optical module.
  • the packaged optical module can be further equipped with an electrical connector 500 at the bottom according to the design requirements, so as to be plugged into the system motherboard for reliable transmission of electrical signals.
  • the intermediate casing 200 serves as a main bearing member of the heat generating chip 800, the PCB board 400, and the lens assembly 600, and has the dual function of the heat dissipating passage.
  • the main casing 200 mainly includes a surrounding casing 210, The cross plate 220, the chip carrier 230 and the like are components.
  • the peripheral casing 210, the transverse plate 220, and the chip carrier 230 are all made of a metal material and are manufactured by an integrated molding process, thereby forming a pure metal heat dissipation passage from the chip carrier to the optical module casing. Since there is no air gap and thermal grease in the entire heat dissipation channel, the heat dissipation bottleneck problem in the prior art can be eliminated to achieve better heat dissipation.
  • the surrounding casing 210 constitutes an outer peripheral frame of the intermediate casing 200, and includes a left side wall 211, a right side wall 212, a front side wall 213, and a rear side wall. 214, as shown in Figure 2.
  • the four positions of the front, the rear, the left, and the right defined in this embodiment are determined by the view direction relationship shown in FIG. 2, and are not limited to the embodiment, just to clearly reflect the relative positional relationship between the side walls.
  • the cross plate 220 is located in a cavity surrounded by the outer casing 210 and extends from the left side wall 211 of the outer casing 210 to the right side wall 212 thereof.
  • Two elongated mounting holes 240 are formed on the front and rear sides of the horizontal plate 220 for mounting the PCB board 400 in the optical module to the horizontal plate 220.
  • the front and rear sides of the horizontal plate 220 may be separated from the front side wall 213 and the rear side wall 214 of the surrounding casing 210 to form two gaps.
  • the two elongated strip-shaped mounting holes 240 are formed using the two described gaps.
  • the lengths of the left and right sides of the design cross plate 220 are only different from the lengths of the left side wall 211 and the right side wall 212 of the surrounding outer casing 210 by the width of the two gaps, by increasing the horizontal plate 220 as far as possible to the left and right sides.
  • the joint area between the walls 211, 212 is to accelerate the transfer of heat to the outside as much as possible.
  • the long-shaped mounting hole 240 can also be formed directly on the horizontal plate 220, that is, the long-shaped through-hole is formed on the horizontal plate 220, which is not specifically limited in this embodiment.
  • the chip carrier 230 is designed on the top surface 221 of the cross plate 220, as shown in FIG. 2, preferably in a centered position to facilitate assembly of the PCB board 400 on the cross plate 220. Specifically, the chip carrier 230 preferably protrudes from the top surface 221 of the horizontal plate 220 to facilitate the wiring operation of the chip 800 and the PCB board 400.
  • the chip carrier 230 of the present embodiment is integrally formed with the horizontal plate 220 to form a "convex"-shaped structure having a middle height and a low front and rear sides, specifically including a front carrier 233, a rear carrier 232, and an intermediate carrier 231.
  • the front carrier 23 3 is configured to carry the driving chip 802 in the heat generating chip 800, and extends from the intermediate carrier 231 toward the front side wall 213 of the surrounding outer casing 210 as shown in FIG. 5; the rear carrier 232 is used for The driving chip 803 in the heat generating chip 800 extends from the intermediate carrier 231 toward the rear side wall 214 of the surrounding casing 210; the intermediate carrier 231 is used to carry the optical transceiver chip 801 in the heat generating chip 800, for 24 channels of light.
  • the optical transceiver chip 801 can form two rows of front and rear, 12 optical ports per row, to support the transmission and reception of 24 optical signals.
  • the front optical transceiver chip 801 is connected to the driving chip 802 mounted on the front carrier 233, the rear optical transceiver chip 801 is connected to the driving chip 803 mounted on the rear carrier 232, and the optical transceiver chip is driven by the driving chips 802 and 803. 801 performs drive control.
  • the intermediate carrier 231 is designed to be located between the front carrier 233 and the rear carrier 23 2 , and the height of the top surface 221 of the horizontal plate is greater than the height of the front carrier 233 and the rear carrier 232 protruding from the top surface 221 of the horizontal plate, so as to facilitate The wiring operation between the optical transceiver chip 801 and the driving chips 802, 803.
  • the chip 800 is preferably pasted on the chip carrier 230 by a thermal paste, so that the heat generated by the chip 800 can be quickly transmitted to the chip carrier 230, and then through the chip carrier 230. It spreads rapidly to the cross plate 220, and then rapidly dissipates to the outside through the surrounding outer casing 210. Since the chip carrier 230, the horizontal plate 220 and the surrounding outer casing 210 of the embodiment are an integrally formed metal structure, and the outer side of the outer casing 210 is folded, a heat sink having a large heat dissipation area, that is, an optical module is formed. The outer casing and the heat sink are unified into one. Since the chip 800 is directly attached to the heat sink, the intermediate link between the chip and the heat sink is removed, the bottleneck of the interface of the heat conduction path is eliminated, the thermal resistance of the heat conduction path is reduced, and the heat conduction effect is enhanced.
  • heat dissipation fins 270 are respectively disposed on the outer side of the left side wall 211 of the surrounding outer casing 210 and the outer side of the right side wall 212, as shown in FIG. .
  • the heat dissipating fins 270 are integrally formed with the surrounding outer casing 210 to rapidly dissipate the heat conducted to the surrounding outer casing 210 to the outside through its increased heat dissipating surface to further accelerate the heat dissipating speed.
  • the present embodiment preferably adds a left mesa 250 and a right mesa 260 on the top surface 221 of the cross plate 220, as shown in FIG.
  • the left mesa 250 and the right mesa 260 are also made of a metal material that is thermally conductive, and is preferably formed integrally with the cross plate 220 to further reduce the air gap and the thermal paste in the heat conduction path.
  • the left mesa 250 may be disposed on the left side of the horizontal plate 220, and the bottom surface thereof is combined with the top surface 221 of the horizontal plate 220, and the left side surface of the left mesa 250 and the surrounding outer casing.
  • the inner side of the left side wall 211 of the 210 is joined, and the top surface of the left mesa 250 is attached to the outer casing 210 at the top cover 100, just in engagement with the top cover 100.
  • the right mesa 260 can be disposed on the right side of the horizontal plate 220, and the bottom surface thereof is combined with the top surface 221 of the horizontal plate 220, and the right side surface of the right mesa 260 and the right side of the surrounding casing 21 0
  • the inner side of the side wall 212 is joined, and the top surface of the right side surface 260 is attached to the outer casing 210 at the top cover 100, just in contact with the top cover 100.
  • the outer casing 2 10 and the left mesa 250 and the right mesa 260 may be integrally formed to realize the joint between the outer casing 210 and the left mesa 250 and between the outer casing 210 and the right mesa 260.
  • a threaded connection may be adopted, as shown in FIG. 1 and FIG. That is, the through holes 110 may be disposed at the four corner positions of the top cover 100, and the threaded holes 280 may be disposed at the four corner positions of the outer casing 210, and the four screws 120 are used to pass through the four on the top cover 100.
  • the through holes 110 are screwed to the four threaded holes 280 on the outer casing 210, so that the assembly and fixing of the top cover 100 on the intermediate casing 200 can be achieved.
  • the top cover 100 is made of a metal material having good thermal conductivity, and preferably the bottom surface thereof is bonded to the top surface of the left mesa 250 and the top surface of the right mesa 260 through the thermal conductive adhesive, respectively. Eliminate air gaps.
  • the cover 100 is used to achieve the effect of assisting heat dissipation by means of the top cover 100. As shown in FIG. 12, the heat dissipation path of the chip 800 is as indicated by the arrow in FIG.
  • the top cover 100 since the top cover 100 is assembled with the intermediate casing 200 by screwing and gluing, the upper chamber enclosed by the intermediate casing 200 and the top cover 100 can be sealed. Then, the top cover 100 has the dual function of heat dissipation + packaging.
  • the PCB board 400 of the present embodiment is a rigid flexible integrated PCB board comprising a rigid PCB rigid board 4 10 and two soft side flexible boards 420, 430.
  • the two side flexible plates 420 and 430 are distributed on the front and rear sides of the PCB rigid plate 410, and extend outward along the front and rear sides of the PCB rigid plate 410, respectively.
  • the two side flex plates 420, 430 are bent upward to be perpendicular to the plane of the PCB rigid plate 410.
  • the PC B plate 400 is placed under the horizontal plate 220, and the two side flexible plates 420, 430 are correspondingly passed through the two elongated mounting holes 240 from bottom to top, that is, the two side flexible plates 420 are , 430 extends above the horizontal plate 220. Then, the two side flexible plates 420, 430 are bent in a direction parallel to the top surface 221 of the horizontal plate to wrap the horizontal plate 22 0 as shown in FIG.
  • a column 223 may further be provided, as shown in FIG.
  • the uprights 223 are provided in four, extending upward in a direction perpendicular to the top surface 221 of the transverse plate.
  • two insertion holes 421 and 431 are provided on each of the side flexible plates 420 and 430, and the two side flexible plates 420 and 430 are bent to be attached to the top surface 221 of the horizontal plate 220.
  • the four uprights 223 correspond to the four insertion holes 421, 431 inserted into the two side flex plates 420, 430, thereby making it possible to position the mounting position of the PCB board 400 on the cross plate 220.
  • this embodiment is preferably in two.
  • One of the side edges 422, 432 of the side flex plates 420, 430 respectively defines a recessed area 423, 433, as shown in FIG. Show.
  • the sides 422, 432 are toward the sides of the chip 800.
  • the recessed areas 423, 433 correspond to the three peripherals surrounding the drive chips 802, 803, as shown in FIG.
  • Three side edges of the recessed regions 423, 433 are formed as lead terminals of the side flex plates 420, 430, and are connected to the wiring ports on the chip 800 by wires.
  • a plurality of soft leads connected to the PCB rigid plate 410 are distributed, and the soft leads are connected to the corresponding wiring ports on the chip 800 through the lead ends of the side flex plates 420 and 430.
  • the electrical connection between the chip 800 and the PCB rigid plate 410 can be realized.
  • the present embodiment applies the heights of the front carrier 233 and the rear carrier 232 in the chip carrier 230 to the top surface 221 of the horizontal plate.
  • the following design that is, meets the following requirements:
  • the wiring ports of the driving chips 802, 803 are just opposite the lead terminals of the side flex plates 420, 430.
  • a plurality of electronic components 440 may be soldered on the top surface 411 of the PCB rigid plate 410. As shown in FIG. 4, these electronic components 440 are higher than the top surface of the PCB rigid plate 410, in order to make the PCB.
  • the top surface 411 of the PCB rigid plate 410 can be attached to the bottom surface 222 of the horizontal plate 220.
  • a plurality of bottom surfaces 222 of the horizontal plate 220 are preferably disposed.
  • the groove 224 is shown in conjunction with FIG. The shape of the groove 2 24 is matched with the shape of the top surface of the electronic component 440.
  • the electronic element on the PCB rigid plate 410 The device 440 just protrudes into the recess 224, and the top surface of the electronic component 440 just fits the bottom surface of the recess 224. Therefore, not only the bonding of the PCB rigid plate 410 and the horizontal surface 222 of the horizontal plate can be realized, but also a small amount of heat which may be generated during the operation of the electronic component 440 can be transmitted to the horizontal plate 220, and then rapidly spread to The surrounding casing 210 is released to the outside through the surrounding casing to achieve rapid heat dissipation.
  • the present embodiment preferably applies a thermal conductive adhesive between the top surface 411 of the PCB rigid plate 41 0 and the bottom surface 222 of the horizontal plate 220, and two pieces are The side flex plates 420, 430 are bonded to the top surface 221 of the cross plate 220 to ensure that the PCB board 400 does not fall off the cross plate 220 during use of the optical module.
  • the rigid and flexible PCB board 400 is used and the PCB board 400 and the horizontal board 220 are assembled and fixed by means of bending and wrapping, thereby realizing circuit switching in a small space, thereby effectively reducing the optical module.
  • Overall Package size is used.
  • a positioning post 225 is further disposed on the bottom surface 222 of the horizontal plate 220, as shown in FIG.
  • the positioning posts 225 are disposed on the left and right sides of the bottom surface 222, and extend downward in a direction perpendicular to the bottom surface 222 of the horizontal plate, and beyond the plane of the bottom of the surrounding outer casing 210, in combination with FIG. Shown.
  • Two positioning holes 413 are disposed on the PCB rigid plate 410, as shown in FIG. After the PCB board 400 is assembled to the horizontal plate 220, the two positioning posts 225 pass through the two positioning holes 413 and extend downward.
  • a threaded hole 290 is provided for mounting on the main board of the external module, and is fixed to the main board.
  • all of the components forming the intermediate casing 200 are preferably fabricated by a process in which a metal material is integrally formed. That is, the surrounding outer casing 210, the horizontal plate 220, the chip carrier 230, the left mesa 250, the right mesa 260, the heat dissipating fins 270, the column 223, and the positioning post 225 are integrally formed of the same metal material to form a unitary structure. It can be used both for packaging and as a heat sink to effectively dissipate the heat-generating chip inside the optical module.
  • a conductive contact 450 (eg, a pad) is disposed on the bottom surface 412 of the PCB rigid plate 410, and a cavity 310 is disposed on the bottom plate 300, and the position and size of the cavity 310 are disposed. It should be determined according to the position and size of the conductive contact 45 0 and the positioning post 225, that is, after the bottom plate 300 is mounted to the bottom of the surrounding casing 210, the conductive contact 450 and the positioning post 310 pass through the empty The cavity 310 is exposed.
  • the size of the cavity 310 is also related to the size of the electrical connector 500, as shown in FIG.
  • the cavity 310 is dimensioned slightly larger than the outer dimensions of the electrical connector 500 such that the electrical connector 500 can be embedded within the cavity 310.
  • Two positioning through holes 510 are provided on the electrical connector 500, as shown in FIG. 1 and FIG.
  • the positioning through hole 510 is designed to have an interference fit with the positioning post 225, and the positioning post 225 is passed through the positioning through hole 510 to fix the electrical connector 500 below the PCB rigid plate 410. , as shown in Figure 11.
  • the lower cavity of the optical module can be packaged by the bottom plate 300 and the electrical connector 500.
  • a conductive contact 520 (eg, a metal dome) may be disposed on a top surface of the electrical connector 500, and a conductive contact 530 (eg, a pad or a metal dome) in electrical communication with the conductive contact 520 may be disposed on the bottom surface.
  • a conductive contact 530 eg, a pad or a metal dome
  • Figure 1 Figure 6
  • the electrical connector 500 is assembled into position, the conductive contact 520 on the top surface thereof is in contact with the conductive contact 450 on the bottom surface of the P CB rigid plate 410, and the conductive contact 530 on the bottom surface of the electrical connector 500 is used.
  • the optical module is mounted on the motherboard of the external device, it is in contact with the corresponding contact provided on the motherboard to achieve reliable interaction between the optical module and the motherboard.
  • FIGS. 7-9 illustrate a specific package structure of the lens assembly 600 and the optical fiber ribbon 700 in the optical module.
  • the lens assembly 600 can be mounted above the chip 800, and the lens assembly 600 can completely cover the chip 800 for peripheral fixation. Seal and protect the internal laser and driver bare chips.
  • a groove 610 having a size slightly larger than the outer dimensions of the chip 800 may be disposed at the bottom of the lens assembly 600, as shown in FIGS. 12 and 13.
  • the lens assembly 600 is fixed to the side flex 420, 430 of the PCB board 400 around the bottom wall 620 of the recess 610.
  • the bottom wall 620 of the lens assembly 600 and the PCB board 400 may be bonded.
  • the two side flexible plates 420 and 430 are bonded and fixed. After the two side flexible plates 420, 430 are attached to the top surface 221 of the horizontal plate, a portion of the horizontal plate 220 is still exposed, and may be between the exposed portion of the horizontal plate 220 and the bottom wall 620 of the lens assembly 600.
  • the dispensing is fixed to enhance the robustness of the assembly of the lens assembly 600 and to ensure a seal.
  • One of the optical connectors 720 of the optical fiber ribbon 700 is inserted into the lens assembly 600 and placed in a cavity surrounded by the outer casing 210, as shown in FIG.
  • a notch 215 is defined in the rear side wall 214 of the outer casing 210.
  • the width of the notch 215 is substantially the same as the width of the optical fiber 710 in the optical fiber ribbon 700, so that the optical fiber 710 can be removed from the outer casing 210.
  • the enclosed cavity extends and extends to another optical connector 730 of the ribbon 700 and is coupled to the optical connector 730.
  • the top cover 100 is fixed to the top of the peripheral housing 210 by screws 120 to complete the packaging of the optical module.
  • FIGS. 10 and 11 respectively show a top view and a bottom view of the optical module after the package is completed.
  • the circuit component can be sealed in the casing, so that the packaged optical module has the advantages of strong resistance to harsh environment and good running reliability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

公开了一种光模块封装结构及光模块。光模块封装结构包括顶盖(100)、底板(300)和由金属材料一体成型的中间壳体(200);在底板(300)上开设有用于插装电连接器(500)的空腔;中间壳体(200)包括四周外壳(210)、横板(220)和芯片载体(230);横板(220)从四周外壳(210)的左侧壁(211)的内侧延伸至右侧壁(212)的内侧,并沿延伸方向形成两条呈相对位置关系的长条形装配孔(240);芯片载体(230)位于横板(220)的顶面(221),用于承载光模块中工作时发热的芯片。通过构建一条从芯片载体到光模块外壳的纯金属散热通道,从而使芯片产生的热量可以经由散热通道传导扩散至整个外壳,由于整个散热通道没有空气隙和导热胶,因此消除了热传导路径中的散热瓶颈,有效减小了芯片与外壳之间的热阻,从封装结构上有效解决了光模块的散热问题。

Description

发明名称:一种光模块封装结构及光模块
技术领域
[0001] 本发明属于光电转换器件技术领域, 具体地说, 是涉及一种光模块的封装结构 背景技术
[0002] 随着光通信技术的快速推广和深入应用, 光电转换模块的需求与日剧增, 市场 需求也朝着不断小型化、 高速率、 高密度、 大功率方向发展, 但随之带来的模 块封装散热问题, 就成了影响大功率光电转换模块产品性能及使用寿命的瓶颈
[0003] 大功率光电转换模块工作吋所产生的热量主要来自于内部的芯片, 例如光收发 芯片、 驱动芯片等。 目前, 市场上出现的此类小型化大功率光电转换模块, 虽 然已经关注到了封装散热问题, 并在设计吋着力进行解决, 但是散热效果远不 够理想。 究其原因是, 现有的光模块封装结构普遍存在芯片的载体与光模块的 壳体分离的问题, 从芯片到壳体的散热通道中包含空气隙或者导热胶, 由此增 加了热阻, 导致散热的长期稳定性与产品一致性都不好, 光路电路密封与芯片 散热不能兼顾。
[0004] 公幵号为 US2015/0362686 A1美国专利申请, 公幵了一种可插式连接器, 其散 热方式采用将连接器内部的发热芯片以及 PCB板贴装到导热板上, 经由导热板传 递到外壳上, 再由外壳进行散热。 此导热方法, 其芯片载体与散热壳体相互独 立且分离, 整个热传导路径中存在多个接触界面, 界面间存在空气隙或者导热 胶, 这些瓶颈严重阻碍了热传导, 热量难以高效地传导至散热外壳上, 因此, 散热效果不够理想, 散热的长期稳定性与产品一致性都不好。 而且该连接器的 下部幵放, 未能实现整体密封。
技术问题
[0005] 本发明的目的在于提供一种光模块的封装结构, 以有效解决光模块内部芯片的 散热问题。 问题的解决方案
技术解决方案
[0006] 为了解决上述技术问题, 本发明采用以下技术方案予以实现:
[0007] 本发明在一个方面提出了一种光模块封装结构, 包括顶盖、 底板和中间壳体; 在所述底板上幵设有用于插装电连接器的空腔; 所述中间壳体包括四周外壳、 横板和芯片载体; 所述四周外壳包括呈相对位置关系的左侧壁和右侧壁以及呈 相对位置关系的前侧壁和后侧壁, 所述顶盖安装在所述四周外壳的顶部, 所述 底板位于所述四周外壳的底部; 所述横板从所述四周外壳的左侧壁的内侧延伸 至所述右侧壁的内侧, 并沿所述延伸的方向形成两条呈相对位置关系的长条形 装配孔, 所述装配孔用于在光模块的 PCB板装配到所述横板的底面上吋, 使 PCB 板的两个侧柔板得以穿过, 进而从所述横板的底面延伸至所述横板的顶面; 所 述芯片载体位于所述横板的顶面, 用于承载光模块中工作吋发热的芯片; 其中 , 所述四周外壳、 横板和芯片载体由金属材料一体成型。
[0008] 优选的, 所述横板的前后两个侧边与所述四周壳体的前侧壁和后侧壁分离, 形 成前后两条间隙, 优选将所述的两条间隙作为两条所述的长条形装配孔。
[0009] 为了便于所述芯片与 PCB板连接, 本发明优选设计所述芯片载体凸出于所述横 板的顶面, 且包括前载体、 后载体和中间载体; 其中, 所述中间载体用于承载 光模块中的光收发芯片, 位于所述前载体和后载体之间, 且凸出于所述横板的 顶面的高度大于所述前载体和后载体凸出于所述横板的顶面的高度; 所述前载 体用于承载光模块中的驱动芯片, 从所述中间载体向所述四周外壳的前侧壁的 方向延伸; 所述后载体用于承载光模块中的驱动芯片, 从所述中间载体向所述 四周外壳的后侧壁的方向延伸; 所述前载体和后载体凸出于所述横板的顶面的 高度优选满足以下要求: 当所述驱动芯片安装到所述前载体和后载体上吋, 所 述驱动芯片的接线口与延伸到所述横板的顶面上的所述 PCB板的两个侧柔板的引 线端正对。
[0010] 为了便于限定侧柔板以及透镜组件在所述横板上的安装位置, 本发明在所述横 板的顶面还设置有多个立柱, 所述立柱沿垂直于所述横板的顶面的方向向上延 伸, 用于与幵设在所述 PCB板的两个侧柔板上插装孔以及光模块中的透镜组件上 的插装孔插装定位。
[0011] 为了进一步扩大散热面积, 本发明在所述光模块封装结构中还设置有左台面和 右台面; 所述左台面的底面与所述横板的顶面结合, 左台面的左侧面与所述四 周外壳的左侧壁结合, 左台面的顶面在所述顶盖安装到所述四周外壳上吋与所 述顶盖贴合; 所述右台面的底面与所述横板的顶面结合, 右台面的右侧面与所 述四周外壳的右侧壁结合, 右台面的顶面在所述顶盖安装到所述四周外壳上吋 与所述顶盖贴合; 其中, 所述左台面、 右台面和顶盖均由金属材料制成, 由此 可以将芯片产生的热量除了通过四周外壳散发出去外, 还可以通过左、 右台面 传导至顶盖, 经由顶盖辅助散热, 从而实现了散热面积的进一步扩大, 加快了 导热速度。
[0012] 优选的, 所述左台面、 右台面与所述四周外壳以及横板一体成型, 以避免出现 空气隙, 导致散热性能的下降。
[0013] 优选的, 所述左台面的顶面和右台面的顶面分别通过导热胶与所述顶盖粘合, 以对上部腔体进行密封处理。
[0014] 为了实现散热面积的进一步扩大, 以进一步提高散热效率, 本发明在所述四周 外壳的左侧壁的外侧和右侧壁的外侧还分别设置有散热翅片, 以进一步加快散 热速度。
[0015] 本发明在另一个方面提出了一种光模块, 设置有顶盖、 底板、 中间壳体、 PCB 板、 工作吋产生热量的芯片、 透镜组件和光纤带; 在所述底板上幵设有用于插 装电连接器的空腔; 所述中间壳体包括四周外壳、 横板和芯片载体; 所述四周 外壳包括呈相对位置关系的左侧壁和右侧壁以及呈相对位置关系的前侧壁和后 侧壁, 所述顶盖安装在所述四周外壳的顶部, 所述底板位于所述四周外壳的底 部; 所述横板从所述四周外壳的左侧壁的内侧延伸至所述右侧壁的内侧, 并沿 所述延伸的方向形成两条呈相对位置关系的长条形装配孔; 所述芯片载体位于 所述横板的顶面, 所述芯片安装在所述的芯片载体上; 所述 PCB板包括 PCB刚板 和分别沿所述 PCB刚板的前后两个侧边向外延伸的两个侧柔板, 所述 PCB刚板位 于所述横板的下方, 所述的两个侧柔板分别从两条所述的长条形装配孔中自下 而上穿过, 并弯折贴合到所述横板的顶面上; 所述透镜组件安装在所述横板的 上方, 且罩住所述的芯片; 所述光纤带连接所述的透镜组件, 用于传输光信号 , 并从所述四周外壳环绕形成的腔室中延伸到外部; 其中, 所述四周外壳、 横 板和芯片载体由金属材料一体成型; 所述 PCB板、 透镜组件和所述芯片封装在由 所述顶盖、 四周外壳和底板所形成的外壳内。
[0016] 为了方便所述芯片与 PCB板接线, 本发明在所述的两个侧柔板上朝向所述芯片 的侧边上分别形成有一个内凹区, 所述芯片至少部分地位于所述的内凹区中, 形成所述内凹区的三个侧边作为侧柔板的引线端, 通过引线与芯片上的接线口 对应连接。
[0017] 进一步的, 在所述 PCB刚板上设置有至少一个凸出于 PCB刚板的顶面的电子元 器件, 为了实现 PCB刚板与所述横板的紧密贴合, 本发明在所述横板的底面还形 成有与所述电子元器件的顶面形状相匹配的凹槽; 当所述 PCB板安装到所述横板 上吋, 所述 PCB刚板上的所述电子元器件伸入到所述凹槽中, 且所述电子元器件 的顶面贴合所述凹槽的底面。 由此一来, 对于电子元器件产生的少部分热量也 可以通过所述的中间壳体迅速地散发出去。
[0018] 为了保证封装结构的牢固性, 并改善对所述芯片、 PCB板以及透镜组件的密封 性, 本发明优选将所述芯片通过导热贴片胶粘接在所述的芯片载体上; 所述 PCB 刚板的顶面与所述横板的底面通过导热胶粘接; 所述 PCB刚板的底面与所述底板 粘接; 在所述透镜组件的底面形成有凹槽, 所述芯片位于所述凹槽内, 所述透 镜组件环绕所述凹槽的底壁与所述 PCB板的侧柔板粘接。
[0019] 为了对 PCB板和电连接器在光模块中的安装位置进行限位, 以使电连接器上的 导电触点能够准确地与 PCB板上的相应导电触点接触导通, 同吋, 对光模块在外 部主板上的插装位置进行限位, 本发明在所述横板的底面上还进一步设置有定 位柱, 所述定位柱沿垂直于所述横板的底面的方向向下延伸超出所述四周外壳 的底部所在的平面, 并穿过 PCB刚板上幵设的定位孔, 经由所述底板上的所述空 腔伸出。 对于安装有电连接器的光模块来说, 可以将所述的电连接器置于所述 底板的所述空腔内, 在所述电连接器上幵设有定位用通孔, 所述定位柱穿过所 述定位用通孔, 对电连接器在光模块中的安装位置进行限位。 为了避免电连接 器从光模块上脱落, 本发明设计所述定位柱与所述定位用通孔过盈配合, 以便 于电连接器在光模块上的拆装操作。
[0020] 进一步的, 在所述 PCB基板的底面设置有导电触点, 所述导电触点与设置在所 述电连接器的顶面上的导电触点相接触, 以实现电信号的有效传输。
发明的有益效果
有益效果
[0021] 本发明通过对光模块的外壳进行特殊的结构设计, 使芯片载体与光模块的外壳 形成一体式的金属结构, 从而构建出了一条从芯片载体到光模块外壳的纯金属 散热通道。 将光模块中的发热芯片安装在芯片载体上, 使芯片产生的热量经由 所述散热通道传导扩散至整个外壳, 由于整个散热通道没有空气隙和导热胶, 因此消除了热传导路径中的散热瓶颈, 有效减小了芯片与外壳之间的热阻, 提 高了热传导效率, 增大了对外散热面积, 从封装结构上有效解决了光模块的散 热问题。 此外, 由于光模块的芯片和 PCB板内置于外壳内, 因此密封性好, 耐恶 劣环境的能力强, 使高效散热与电路密封达到了完美结合, 而且抗振性能好, 零部件少, 装配简单。
[0022] 结合附图阅读本发明实施方式的详细描述后, 本发明的其他特点和优点将变得 更加清楚。
对附图的简要说明
附图说明
[0023] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例中所需要使用 的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施 例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根 据这些附图获得其他的附图。
[0024] 图 1是本发明所提出的光模块的一种实施例的整体结构爆炸图;
[0025] 图 2是图 1中的中间壳体的顶面结构视图;
[0026] 图 3是图 1中的中间壳体的底面结构视图;
[0027] 图 4是图 1中的中间壳体与 PCB板的组装分解图;
[0028] 图 5是图 1中的中间壳体与 PCB板的组装图;
[0029] 图 6是图 1中组装有 PCB板的中间壳体与底板、 电连接器的组装分解图; [0030] 图 7是图 1中组装有 PCB板的中间壳体与透镜组件、 光纤带的组装分解图;
[0031] 图 8是图 1中组装有 PCB板的中间壳体与透镜组件、 光纤带的组装图;
[0032] 图 9是图 8所示组装图与顶板的组装分解图;
[0033] 图 10是本发明所提出的光模块组装后的整体结构顶面视图;
[0034] 图 11是本发明所提出的光模块组装后的整体结构底面视图;
[0035] 图 12是图 10所示的光模块沿 A-A方向的截面剖视图;
[0036] 图 13是图 10所示的光模块沿 B-B方向的截面剖视图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0037] 下面结合附图对本发明的具体实施方式作进一步详细地说明。
[0038] 本实施例针对光模块在工作过程中易产生热量的芯片 (例如光收发芯片、 驱动 芯片等, 这类芯片在工作过程中温升较快, 且温度到达极限值吋, 芯片性能会 变差或者直接停止运行, 影响光模块的正常工作) 的散热问题, 提出了一种导 热效果显著的光模块封装结构, 如图 1所示, 包括顶盖 100、 中间壳体 200、 底板 300等主要组成部分, 用于对光模块中的发热芯片 800、 PCB板 400、 透镜组件 600 以及光纤带 700的一部分进行封装。 封装后的光模块可以根据设计需要, 在其底 部进一步加装电连接器 500, 以便于与系统主板插接, 实现电信号的可靠传输。
[0039] 在本实施例, 中间壳体 200作为发热芯片 800、 PCB板 400以及透镜组件 600的主 要承载部件, 兼具有散热通道的双重作用, 如图 2所示, 主要包括四周外壳 210 、 横板 220、 芯片载体 230等组成部分。 其中, 所述四周外壳 210、 横板 220、 芯 片载体 230均由金属材料制成, 且采用一体成型的加工工艺制造而成, 由此可以 形成从芯片载体到光模块外壳的纯金属散热通道。 由于整个散热通道没有空气 隙和导热胶, 因此可以消除现有技术中的散热瓶颈问题, 以达到更好的散热效 果。
[0040] 具体来讲, 在本实施例的中间壳体 200中, 其四周外壳 210构成中间壳体 200的 外周框架, 包括左侧壁 211、 右侧壁 212、 前侧壁 213和后侧壁 214, 如图 2所示。 本实施例定义的前、 后、 左、 右四个方位是以图 2所示的视图方向关系确定的, 并不是对本实施例的限制, 只是为了清楚地反映各侧壁之间的相对位置关系而 已。 横板 220位于四周外壳 210所围成的空腔内, 且从四周外壳 210的左侧壁 211 延伸至其右侧壁 212。 在横板 220的前后两侧形成两条长条形的装配孔 240, 以用 于将光模块中的 PCB板 400安装到所述横板 220上。 作为本实施例的一种优选设计 方案, 可以设计所述横板 220的前后两个侧边与所述四周壳体 210的前侧壁 213和 后侧壁 214分离, 从而形成前后两条间隙, 如图 2所示, 利用两条所述的间隙即 可形成所需的两条长条形装配孔 240。 设计横板 220的左右两个侧边的长度与四 周外壳 210的左侧壁 211、 右侧壁 212的长度仅相差所述两条间隙的宽度, 通过尽 量加大横板 220与左、 右侧壁 211、 212之间的结合面积, 以尽可能地加快热量向 外界的传递速度。 当然, 所述长条形装配孔 240也可以直接形成在横板 220上, 即采用在横板 220上幵设长条形通孔的方式形成, 本实施例对此不进行具体限制
[0041] 将所述芯片载体 230设计在横板 220的顶面 221, 如图 2所示, 优选位于居中的位 置, 以便于 PCB板 400在所述横板 220上的装配。 具体来讲, 所述芯片载体 230优 选凸出于横板 220的顶面 221, 以便于其承载的芯片 800与 PCB板 400的接线操作。 本实施例的芯片载体 230与横板 220—体成型, 形成中间高、 前后两边低的 "凸"字 型结构, 具体包括前载体 233、 后载体 232和中间载体 231。 其中, 所述前载体 23 3用于承载发热芯片 800中的驱动芯片 802, 结合图 5所示, 从中间载体 231向四周 外壳 210的前侧壁 213的方向延伸; 所述后载体 232用于承载发热芯片 800中的驱 动芯片 803, 从中间载体 231向四周外壳 210的后侧壁 214的方向延伸; 所述中间 载体 231用于承载发热芯片 800中的光收发芯片 801, 对于 24通道的光模块来说, 可以将光收发芯片 801形成前后两排, 每排 12个光口, 以支持 24路光信号的收发 。 将前排光收发芯片 801与安装在前载体 233上的驱动芯片 802连接, 将后排光收 发芯片 801与安装在后载体 232上的驱动芯片 803连接, 通过驱动芯片 802、 803对 光收发芯片 801进行驱动控制。 设计所述中间载体 231位于前载体 233和后载体 23 2之间, 且凸出于横板顶面 221的高度大于前载体 233和后载体 232凸出于横板顶 面 221的高度, 以便于光收发芯片 801与驱动芯片 802、 803之间的接线操作。
[0042] 在本实施例中, 所述芯片 800优选通过导热贴片胶粘贴在所述芯片载体 230上, 以使芯片 800产生的热量能够快速地传导至芯片载体 230, 进而通过芯片载体 230 快速地扩散至横板 220, 继而经由四周外壳 210迅速地散发至外界。 由于本实施 例的芯片载体 230、 横板 220和四周外壳 210是一体成型的金属架构, 且四周外壳 210的外侧幵放, 因此构成了一个具有较大散热面积的散热器, 即, 光模块的外 壳和散热器统一成了一个整体。 由于芯片 800直接贴合在所述散热器上, 因此去 除了芯片到散热器之间的中间环节, 消除了热传导路径的交接界面瓶颈, 减少 了热传导路径的热阻, 增强了热传导的效果。
[0043] 为了进一步扩大散热面积, 提高散热效率, 本实施例在所述四周外壳 210的左 侧壁 211的外侧和右侧壁 212的外侧还分别设置有散热翅片 270, 如图 2所示。 所 述散热翅片 270与四周外壳 210—体成型, 以将传导至四周外壳 210的热量通过其 增加的散热面迅速地扩散到外界, 以进一步加快散热速度。
[0044] 此外, 为了使光模块的顶盖 100起到辅助散热的作用, 本实施例优选在所述横 板 220的顶面 221上增设左台面 250和右台面 260, 如图 2所示。 所述左台面 250和 右台面 260也由导热快的金属材料制成, 且优选与所述横板 220—体成型, 以进 一步减小热传导路径中的空气隙和导热胶。
[0045] 具体来讲, 可以将所述左台面 250设置在横板 220的左边, 且其底面与所述横板 220的顶面 221结合, 将左台面 250的左侧面与所述四周外壳 210的左侧壁 211的内 侧结合, 并使左台面 250的顶面在所述顶盖 100安装到所述四周外壳 210上吋, 刚 好与所述顶盖 100贴合。 同理, 可以将所述右台面 260设置在横板 220的右边, 且 其底面与所述横板 220的顶面 221结合, 将右台面 260的右侧面与所述四周外壳 21 0的右侧壁 212的内侧结合, 并使右台面 260的顶面在所述顶盖 100安装到所述四 周外壳 210上吋, 刚好与所述顶盖 100贴合。 在本实施例中, 可以采用四周外壳 2 10与左台面 250和右台面 260—体成型的方式, 实现四周外壳 210与左台面 250之 间以及四周外壳 210与右台面 260之间的结合。
[0046] 对于顶盖 100与四周外壳 210之间的安装方式, 可以采用螺纹连接的形式, 结合 图 1、 图 2所示。 即, 可以在顶盖 100的四个边角位置幵设通孔 110, 并在四周外 壳 210的四个边角位置幵设螺纹孔 280, 利用四个螺钉 120对应穿过顶盖 100上的 四个通孔 110, 并与四周外壳 210上的四个螺纹孔 280螺纹连接, 由此可以实现顶 盖 100在所述中间壳体 200上的装配固定。 [0047] 在本实施例中, 所述顶盖 100采用导热性能好的金属材料制成, 优选将其底面 通过导热胶分别与左台面 250的顶面以及右台面 260的顶面粘接, 以消除空气隙 。 采用这种结构设计, 对于芯片 800产生的热量在经由芯片载体 230扩散到横板 2 20上后, 可以传导至左台面 250和右台面 260, 并经左台面 250和右台面 260向上 传导至顶盖 100, 以借助顶盖 100达到辅助散热的效果。 结合图 12所示, 芯片 800 的散热路径如图 12中箭头所指示的方向。
[0048] 在本实施例中, 由于顶盖 100采用螺纹连接和胶粘的方式与中间壳体 200进行装 配, 由此可以对中间壳体 200与顶盖 100围成的上部腔室实现密封处理, 继而使 顶盖 100具备了散热 +封装的双重功能。
[0049] 下面结合图 4、 图 5, 对 PCB板 400在中间壳体 200上的安装固定方式进行详细阐 述。
[0050] 如图 4所示, 本实施例的 PCB板 400为刚柔一体 PCB板, 包括一块硬的 PCB刚板 4 10和两块软的侧柔板 420、 430。 所述的两块侧柔板 420、 430分布在 PCB刚板 410 的前后两侧, 且分别沿 PCB刚板 410的前后两个侧边向外延伸。 首先, 将所述的 两块侧柔板 420、 430向上弯折, 以垂直于 PCB刚板 410所在的平面。 然后, 将 PC B板 400置于横板 220的下方, 并将两个侧柔板 420、 430从下而上对应穿过两个长 条形装配孔 240, 即, 使两个侧柔板 420、 430伸入到横板 220的上方。 而后, 将 两个侧柔板 420、 430向平行于横板顶面 221的方向弯折, 以包裹住所述的横板 22 0, 如图 5所示。
[0051] 在所述横板 220的顶面 221上, 还可以进一步设置立柱 223, 结合图 2所示。 所述 立柱 223优选设置四个, 沿垂直于所述横板顶面 221的方向向上延伸。 在每一个 侧柔板 420、 430上优选幵设两个插装孔 421、 431, 在将两个侧柔板 420、 430弯 折, 以贴附到横板 220的顶面 221上吋, 使四个立柱 223刚好对应插入到两个侧柔 板 420、 430上的四个插装孔 421、 431中, 由此可以对 PCB板 400在横板 220上的安 装位置起到定位的作用。
[0052] 由于驱动芯片 802、 803的接线口大多分布在芯片的四周, 为了方便驱动芯片 80 2、 803的接线口与侧柔板 420、 430上的引线端连接, 本实施例优选在两个侧柔 板 420、 430的其中一个侧边 422、 432上分别形成一个内凹区 423、 433, 如图 4所 示。 所述侧边 422、 432为朝向所述芯片 800的侧边。 设计所述侧柔板 420、 430的 长度, 使其包裹在横板 220上后, 其内凹区 423、 433刚好对应环绕驱动芯片 802 、 803的三个周边, 如图 5所示。 将形成所述内凹区 423、 433的三个侧边作为侧 柔板 420、 430的引线端, 通过引线与芯片 800上的接线口对应连接。 在本实施例 的侧柔板 420、 430中分布有多条与 PCB刚板 410连接的软引线, 所述软引线通过 侧柔板 420、 430的引线端与芯片 800上对应的接线口连接后, 便可实现芯片 800 与 PCB刚板 410的电连接。
[0053] 为了进一步简化侧柔板 420、 430与芯片 800之间的接线操作, 本实施例对所述 芯片载体 230中的前载体 233和后载体 232凸出于横板顶面 221的高度进行了如下 设计, 即, 满足以下要求:
[0054] 当所述驱动芯片 802、 803安装到所述前载体 233和后载体 232上吋, 所述驱动芯 片 802、 803的接线口刚好与所述侧柔板 420、 430的引线端正对。
[0055] 在所述 PCB刚板 410的顶面 411可能会焊接有多个电子元器件 440, 如图 4所示, 这些电子元器件 440均高于 PCB刚板 410的顶面, 为了使 PCB板 400包裹装配到所 述横板 220上后, PCB刚板 410的顶面 411能够与横板 220的底面 222相贴合, 本实 施例优选在所述横板 220的底面 222幵设多个凹槽 224, 结合图 3所示。 所述凹槽 2 24的形状与所述电子元器件 440的顶面形状相适配, 在将所述 PCB板 400安装到所 述横板 220上吋, 所述 PCB刚板 410上的电子元器件 440刚好伸入到所述的凹槽 224 中, 且电子元器件 440的顶面刚好与所述凹槽 224的底面相贴合。 由此一来, 不 仅可以实现 PCB刚板 410与横板底面 222的贴合, 而且对于电子元器件 440工作过 程中可能产生的少部分热量也可以传导至横板 220, 并进而快速地扩散至四周外 壳 210, 经四周外壳释放到外界, 以实现迅速散热。
[0056] 为了增强 PCB板 400与中间壳体 200装配的牢固性, 本实施例优选在 PCB刚板 41 0的顶面 411与横板 220的底面 222之间涂覆导热胶, 并将两块侧柔板 420、 430粘 接在所述横板 220的顶面 221上, 以确保光模块在使用过程中 PCB板 400不会从横 板 220上脱落下来。
[0057] 本实施例使用刚柔结合的 PCB板 400并采用弯折包裹的方式实现 PCB板 400与横 板 220的装配固定, 由此可以实现小空间的电路转接, 以有效减小光模块的整体 封装尺寸。
[0058] 此外, 在所述横板 220的底面 222上还设置有定位柱 225, 如图 2所示。 所述定位 柱 225优选设置两个, 分布在底面 222的左右两侧, 沿垂直于所述横板底面 222的 方向向下延伸, 并超出所述四周外壳 210的底部所在的平面, 结合图 6所示。 在 所述 PCB刚板 410上幵设有两个定位孔 413, 如图 4所示。 在所述 PCB板 400装配到 所述横板 220上后, 两个定位柱 225对应穿过两个定位孔 413, 并向下延伸。 在四 周外壳 210底部的四个边角位置对应幵设有螺纹孔 290, 用于在光模块安装到外 部设备的主板上吋, 与所述主板装配固定。
[0059] 作为本实施例的一种优选设计方案, 对于形成中间壳体 200的所有部件优选采 用金属材料一体成型的加工方式制作而成。 即, 所述的四周外壳 210、 横板 220 、 芯片载体 230、 左台面 250、 右台面 260、 散热翅片 270、 立柱 223和定位柱 225 均采用相同的金属材料一体成型, 形成一个整体结构, 既用于封装, 又可作为 散热器对光模块内部的发热芯片进行有效地散热。
[0060] 在所述 PCB刚板 410的底面 412上设置有导电触点 450 (例如焊盘) , 在所述底 板 300上幵设有空腔 310, 所述空腔 310的幵设位置和大小应根据所述导电触点 45 0和定位柱 225的位置和尺寸确定, 即, 当底板 300安装到所述四周外壳 210的底 部后, 所述导电触点 450和定位柱 310均通过所述空腔 310外露。 此外, 所述空腔 310的尺寸也与电连接器 500的尺寸相关, 如图 6所示。 优选设计所述空腔 310的 尺寸略大于所述电连接器 500的外形尺寸, 以使得电连接器 500可以嵌装在所述 的空腔 310内。
[0061] 在电连接器 500上幵设有两个定位用通孔 510, 结合图 1、 图 6所示。 设计所述定 位用通孔 510与所述定位柱 225过盈配合, 将所述定位柱 225穿过所述定位用通孔 510, 以使电连接器 500固定到所述 PCB刚板 410的下方, 如图 11所示。 利用底板 3 00和电连接器 500便可对光模块的下部腔体实现封装。
[0062] 在所述电连接器 500的顶面可以设置导电触点 520 (例如金属弹片) , 底面可以 设置与所述导电触点 520电连通的导电触点 530 (例如焊盘或者金属弹片) , 结 合图 1、 图 6所示。 在将电连接器 500装配到位后, 其顶面的导电触点 520刚好与 P CB刚板 410底面的导电触点 450接触导通, 电连接器 500底面的导电触点 530用于 在光模块安装到外部设备的主板上吋, 与主板上设置的相应触点接触, 以实现 光模块与主板之间电信号的可靠交互。
[0063] 图 7-图 9示出了透镜组件 600和光纤带 700在光模块中的具体封装结构。 如图 7所 示, 将 PCB板 400在横板 220上安装到位后, 可以在芯片 800的上方安装透镜组件 6 00, 并使透镜组件 600能够完全罩扣住所述的芯片 800, 以便四周固定及密封, 并对其内部的激光器和驱动器裸芯片进行防护。 具体来讲, 可以在透镜组件 600 的底部幵设尺寸略大于芯片 800外形尺寸的凹槽 610, 结合图 12、 图 13所示。 将 透镜组件 600环绕所述凹槽 610的底壁 620固定到所述 PCB板 400的侧柔板 420、 430 上, 具体可以采用粘接的方式将透镜组件 600的底壁 620与 PCB板 400的两块侧柔 板 420、 430粘接固定。 对于两块侧柔板 420、 430在贴合到所述横板顶面 221上后 , 仍有部分横板 220外露的情况, 可以在横板 220外露部分与透镜组件 600的底壁 620之间点胶固定, 以增强透镜组件 600装配的牢固性, 并确保密封。
[0064] 将光纤带 700的其中一个光接头 720插接到透镜组件 600上, 并置于四周外壳 210 所围成的腔体内, 如图 8所示。 在四周外壳 210的后侧壁 214上幵设一个缺口 215 , 结合图 7所示, 所述缺口 215的宽度与光纤带 700中的光纤 710宽度基本一致, 以使光纤 710能够从四周外壳 210所围成的腔体内伸出, 并延伸到光纤带 700的另 外一个光接头 730处, 并与所述的光接头 730连接。
[0065] 如图 9所示, 在将透镜组件 600和光纤带 700安装到位后, 将顶盖 100通过螺钉 12 0固定到四周外壳 210的顶部, 以完成光模块的封装。
[0066] 图 10和图 11分别示出了封装完成后的光模块的顶面视图和底面视图。 通过采用 顶盖 100和底板 300对光模块的腔体进行密封, 由此可以将电路元件密封在壳体 内, 使得封装后的光模块具有耐恶劣环境能力强、 运行可靠性好等显著优势。
[0067] 当然, 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前 述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依 然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特征 进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明 各实施例技术方案的精神和范围。

Claims

权利要求书
[权利要求 1] 一种光模块封装结构, 其特征在于, 包括:
顶盖;
底板, 其上幵设有用于插装电连接器的空腔;
中间壳体, 其包括:
四周外壳, 其包括呈相对位置关系的左侧壁和右侧壁以及呈相对位置 关系的前侧壁和后侧壁, 所述顶盖安装在所述四周外壳的顶部, 所述 底板位于所述四周外壳的底部;
横板, 其从所述四周外壳的左侧壁的内侧延伸至所述右侧壁的内侧, 并沿所述延伸的方向形成两条呈相对位置关系的长条形装配孔, 所述 长条形装配孔用于在光模块的 PCB板装配到所述横板的底面上吋, 使 PCB板的两个侧柔板得以穿过, 进而从所述横板的底面延伸至所述横 板的顶面;
芯片载体, 其位于所述横板的顶面, 用于承载光模块中工作吋发热的 心片;
其中, 所述四周外壳、 横板和芯片载体由金属材料一体成型。
[权利要求 2] 根据权利要求 1所述的光模块封装结构, 其特征在于, 所述横板的前 后两个侧边与所述四周壳体的前侧壁和后侧壁分离, 形成前后两条间 隙, 所述两条间隙即形成两条所述的长条形装配孔。
[权利要求 3] 根据权利要求 1所述的光模块封装结构, 其特征在于, 所述芯片载体 凸出于所述横板的顶面, 包括前载体、 后载体和中间载体; 所述中间载体用于承载光模块中的光收发芯片, 位于所述前载体和后 载体之间, 且凸出于所述横板的顶面的高度大于所述前载体和后载体 凸出于所述横板的顶面的高度;
所述前载体用于承载光模块中的驱动芯片, 从所述中间载体向所述四 周外壳的前侧壁的方向延伸;
所述后载体用于承载光模块中的驱动芯片, 从所述中间载体向所述四 周外壳的后侧壁的方向延伸; 所述前载体和后载体凸出于所述横板的顶面的高度满足以下要求: 当所述驱动芯片安装到所述前载体和后载体上吋, 所述驱动芯片的接 线口与延伸到所述横板的顶面上的所述 PCB板的两个侧柔板的引线端 正对。
[权利要求 4] 根据权利要求 1所述的光模块封装结构, 其特征在于, 在所述横板的 顶面还设置有多个立柱, 所述立柱沿垂直于所述横板的顶面的方向向 上延伸, 用于与幵设在所述 PCB板的两个侧柔板上插装孔以及光模块 中的透镜组件上的插装孔插装定位。
[权利要求 5] 根据权利要求 1至 4中任一项所述的光模块封装结构, 其特征在于, 还 包括:
左台面, 其底面与所述横板的顶面结合, 其左侧面与所述四周外壳的 左侧壁结合, 其顶面在所述顶盖安装到所述四周外壳上吋与所述顶盖 贴合;
右台面, 其底面与所述横板的顶面结合, 其右侧面与所述四周外壳的 右侧壁结合, 其顶面在所述顶盖安装到所述四周外壳上吋与所述顶盖 贴合;
其中, 所述左台面、 右台面和顶盖均由金属材料制成。
[权利要求 6] 根据权利要求 5所述的光模块封装结构, 其特征在于, 所述左台面、 右台面与所述四周外壳以及横板一体成型; 所述左台面的顶面和右台 面的顶面分别通过导热胶与所述顶盖粘合。
[权利要求 7] 根据权利要求 1至 4中任一项所述的光模块封装结构, 其特征在于, 在 所述四周外壳的左侧壁的外侧和右侧壁的外侧分别设置有散热翅片。
[权利要求 8] —种光模块, 其特征在于, 采用如权利要求 1至 7中任一项所述的光模 块封装结构, 且还设置有:
PCB板, 其包括 PCB刚板和分别沿所述 PCB刚板的前后两个侧边向外 延伸的两个侧柔板, 所述 PCB刚板位于所述横板的下方, 所述的两个 侧柔板分别从两条所述的长条形装配孔中自下而上穿过, 并弯折贴合 到所述横板的顶面上; 透镜组件, 其安装在所述横板的上方, 且罩住所述的芯片; 光纤带, 其连接所述的透镜组件, 用于传输光信号, 并从所述四周外 壳环绕形成的腔室中延伸到外部;
其中, 所述 PCB板、 透镜组件和所述芯片封装在由所述顶盖、 四周外 壳和底板所形成的外壳内。
根据权利要求 8所述的光模块, 其特征在于, 在所述的两个侧柔板上 朝向所述芯片的侧边上分别形成有一个内凹区, 所述芯片至少部分地 位于所述的内凹区中, 形成所述内凹区的三个侧边作为侧柔板的弓 I线 端, 通过引线与芯片上的接线口对应连接。
根据权利要求 8所述的光模块, 其特征在于, 在所述 PCB刚板上设置 有至少一个凸出于 PCB刚板的顶面的电子元器件, 在所述横板的底面 上形成有与所述电子元器件的顶面形状相匹配的凹槽; 当所述 PCB板 安装到所述横板上吋, 所述 PCB刚板上的所述电子元器件伸入到所述 凹槽中, 且所述电子元器件的顶面贴合所述凹槽的底面。
根据权利要求 10所述的光模块, 其特征在于, 所述芯片通过导热贴片 胶粘接在所述的芯片载体上; 所述 PCB刚板的顶面与所述横板的底面 通过导热胶粘接; 所述 PCB刚板的底面与所述底板粘接; 在所述透镜 组件的底面形成有凹槽, 所述芯片位于所述凹槽内, 所述透镜组件环 绕所述凹槽的底壁与所述 PCB板的侧柔板粘接。
根据权利要求 8至 11中任一项所述的光模块, 其特征在于, 在所述横 板的底面还设置有定位柱, 所述定位柱沿垂直于所述横板的底面的方 向向下延伸超出所述四周外壳的底部所在的平面, 并穿过 PCB刚板上 幵设的定位孔, 经由所述底板上的所述空腔伸出。
根据权利要求 12所述的光模块, 其特征在于, 还设置有:
电连接器, 其位于所述底板的所述空腔内, 在所述电连接器上幵设有 定位用通孔, 所述定位柱穿过所述定位用通孔, 所述定位柱与所述定 位用通孔过盈配合。 [权利要求 14] 根据权利要求 13所述的光模块, 其特征在于, 在所述 PCB基板的底面 设置有导电触点, 所述导电触点与设置在所述电连接器的顶面上的导 电触点相接触。
PCT/CN2016/112017 2016-12-20 2016-12-26 一种光模块封装结构及光模块 WO2018112988A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16924884.6A EP3470899B1 (en) 2016-12-20 2016-12-26 Optical module packaging structure and optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611182299.2A CN106443913B (zh) 2016-12-20 2016-12-20 一种光模块封装结构及光模块
CN201611182299.2 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018112988A1 true WO2018112988A1 (zh) 2018-06-28

Family

ID=58215117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112017 WO2018112988A1 (zh) 2016-12-20 2016-12-26 一种光模块封装结构及光模块

Country Status (3)

Country Link
EP (1) EP3470899B1 (zh)
CN (1) CN106443913B (zh)
WO (1) WO2018112988A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109128560A (zh) * 2018-10-26 2019-01-04 黄山市光锐通信股份有限公司 25g光模块的装配系统
CN113848616A (zh) * 2021-09-23 2021-12-28 杭州耀芯科技有限公司 基于mid/lds技术的信号传输装置及其组装方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107219596B (zh) * 2017-08-04 2019-04-05 青岛海信宽带多媒体技术有限公司 一种光学次模块及光模块
CN107390331A (zh) * 2017-09-12 2017-11-24 中航海信光电技术有限公司 一种并行光收发模块
CN107436466A (zh) * 2017-09-25 2017-12-05 中航海信光电技术有限公司 一种并行光收发模块及其封装方法
CN109728797B (zh) * 2017-10-27 2024-03-01 群光电子(苏州)有限公司 一种PCB与Housing贴合装置
CN110398876A (zh) * 2018-04-25 2019-11-01 三赢科技(深圳)有限公司 承载结构及其形成方法及光学投影模组
CN110596909A (zh) * 2018-06-13 2019-12-20 三赢科技(深圳)有限公司 光学投射装置
CN109445041B (zh) * 2018-10-26 2020-04-24 黄山市光锐通信股份有限公司 25g光模块的加工工艺
CN109856738A (zh) * 2019-03-19 2019-06-07 中航海信光电技术有限公司 一种光模块封装结构及光模块
CN111061022B (zh) * 2020-01-08 2021-08-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN111399141A (zh) * 2020-05-12 2020-07-10 东莞铭普光磁股份有限公司 一种光器件和光模块
CN112397398B (zh) * 2020-11-16 2021-09-17 厦门亨光芯睿科技有限公司 一种半导体二极管芯片封装结构的制作方法
CN114220773B (zh) * 2022-02-21 2022-04-19 江苏高格芯微电子有限公司 一种高精度的集成电路芯片封装装置及其封装工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177278A (ja) * 1997-12-09 1999-07-02 Hitachi Cable Ltd 論理機能付き光送受信モジュール
TW514344U (en) * 2001-06-06 2002-12-11 Hon Hai Prec Ind Co Ltd Optoelectric transmitting and receiving module
CN1908715A (zh) * 2005-08-05 2007-02-07 财团法人工业技术研究院 光电转换装置
CN102207592A (zh) * 2011-06-21 2011-10-05 成都新易盛通信技术有限公司 一种光模块及其制造方法
CN204807766U (zh) * 2015-06-11 2015-11-25 中航海信光电技术有限公司 一种并行光收发模块
CN205027941U (zh) * 2015-10-21 2016-02-10 中航海信光电技术有限公司 一种光模块
CN205539594U (zh) * 2016-01-25 2016-08-31 中航海信光电技术有限公司 一种光收发模块

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015195699A1 (en) * 2014-06-16 2015-12-23 Finisar Corporation Pluggable connector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177278A (ja) * 1997-12-09 1999-07-02 Hitachi Cable Ltd 論理機能付き光送受信モジュール
TW514344U (en) * 2001-06-06 2002-12-11 Hon Hai Prec Ind Co Ltd Optoelectric transmitting and receiving module
CN1908715A (zh) * 2005-08-05 2007-02-07 财团法人工业技术研究院 光电转换装置
CN102207592A (zh) * 2011-06-21 2011-10-05 成都新易盛通信技术有限公司 一种光模块及其制造方法
CN204807766U (zh) * 2015-06-11 2015-11-25 中航海信光电技术有限公司 一种并行光收发模块
CN205027941U (zh) * 2015-10-21 2016-02-10 中航海信光电技术有限公司 一种光模块
CN205539594U (zh) * 2016-01-25 2016-08-31 中航海信光电技术有限公司 一种光收发模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109128560A (zh) * 2018-10-26 2019-01-04 黄山市光锐通信股份有限公司 25g光模块的装配系统
CN113848616A (zh) * 2021-09-23 2021-12-28 杭州耀芯科技有限公司 基于mid/lds技术的信号传输装置及其组装方法

Also Published As

Publication number Publication date
CN106443913A (zh) 2017-02-22
CN106443913B (zh) 2018-04-06
EP3470899B1 (en) 2020-05-27
EP3470899A1 (en) 2019-04-17
EP3470899A4 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
WO2018112988A1 (zh) 一种光模块封装结构及光模块
US7365923B2 (en) Heat sink tab for optical sub-assembly
US7875901B2 (en) Optical device package and optical semiconductor device using the same
JP7006383B2 (ja) 光トランシーバ
KR100665933B1 (ko) 파워 세미컨덕터 모듈
WO2011147208A1 (zh) 光模块和光通信系统
JPH09199645A (ja) 半導体装置および半導体モジュール
JPH0691174B2 (ja) 半導体装置
JP2008543064A (ja) 半導体発光装置およびその製造方法
US20210185804A1 (en) Circuit board assembly and semi-finished product thereof, floodlight, camera module and application thereof
TWI731622B (zh) 車用電子裝置
WO2023272651A1 (zh) 芯片散热结构及光模块
KR101545941B1 (ko) 광원, 이를 갖는 광출사 모듈 및 백라이트 어셈블리
JP2611671B2 (ja) 半導体装置
JP5323518B2 (ja) 並列光伝送装置
JP3956866B2 (ja) 電子回路モジュール
KR101457212B1 (ko) 광 모듈
CN216792511U (zh) 光模块
CN212723465U (zh) 一种光模块灌封结构
JP3378174B2 (ja) 高発熱素子の放熱構造
CN111610608A (zh) 一种光模块灌封结构及方法
KR20120085489A (ko) 내부에 기판을 구비하는 전자 기기 및 기판 조립체
JPH0888299A (ja) 半導体装置
JP2005093507A (ja) 光伝送モジュール
CN221057411U (zh) 一种半导体芯片封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016924884

Country of ref document: EP

Effective date: 20190110

NENP Non-entry into the national phase

Ref country code: DE