WO2018110867A1 - Tôle d'acier laminée à froid à haute résistance présentant une excellente limite d'élasticité, une excellente ductilité et une excellente capacité d'expansion de trou, tôle d'acier galvanisée par immersion à chaud et procédé de production associé - Google Patents

Tôle d'acier laminée à froid à haute résistance présentant une excellente limite d'élasticité, une excellente ductilité et une excellente capacité d'expansion de trou, tôle d'acier galvanisée par immersion à chaud et procédé de production associé Download PDF

Info

Publication number
WO2018110867A1
WO2018110867A1 PCT/KR2017/013762 KR2017013762W WO2018110867A1 WO 2018110867 A1 WO2018110867 A1 WO 2018110867A1 KR 2017013762 W KR2017013762 W KR 2017013762W WO 2018110867 A1 WO2018110867 A1 WO 2018110867A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
rolled steel
hot
ductility
Prior art date
Application number
PCT/KR2017/013762
Other languages
English (en)
Korean (ko)
Other versions
WO2018110867A8 (fr
Inventor
곽재현
조항식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP17881067.7A priority Critical patent/EP3556896B1/fr
Priority to JP2019531765A priority patent/JP6846522B2/ja
Priority to US16/468,162 priority patent/US20200190612A1/en
Priority to CN201780077454.0A priority patent/CN110073026B/zh
Publication of WO2018110867A1 publication Critical patent/WO2018110867A1/fr
Publication of WO2018110867A8 publication Critical patent/WO2018110867A8/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high strength steel sheet used in an automobile body, and more particularly, to a high strength cold rolled steel sheet, a hot dip galvanized steel sheet, and a method of manufacturing the same, which have high strength and excellent yield strength and formability. .
  • the metamorphic steel is classified into so-called DP (Dual Phase) steel, Transformation Induced Plasticity (TRIP) steel, and Complex Phase (CP) steel.
  • DP Dual Phase
  • TRIP Transformation Induced Plasticity
  • CP Complex Phase
  • Each of these steels has mechanical properties, that is, according to the type and fraction of the parent phase and the second phase.
  • the level of tensile strength and elongation is different, especially in the case of TRIP steel containing residual austenite, the balance of tensile strength and elongation (TS x El) shows the highest value.
  • CP steel of the metamorphic structure steel as described above is lower than the other steels, and is limited to simple processing such as roll forming, and high ductility DP steel and TRIP steel are applied to cold press forming.
  • Patent Document 2 discloses a method of forming residual austenite and martensite as a main structure (Quenching and Partitioning Process (Q & P)). According to a report using this (non-patent document 1), the carbon level is 0.2%. In the case of low, the yield strength has a disadvantage of low around 400MPa, and it can be confirmed that the elongation obtained in the final product is only similar to the existing TRIP steel.
  • the essence of the Q & P method is to secure ductility by quenching between the martensite transformation start temperature (Ms) and the finish temperature (Mf) and then reheating to stabilize the austenite by carbon diffusion at the martensite and austenite interface.
  • Ms martensite transformation start temperature
  • Mf finish temperature
  • fresh martensite (FM) is formed in the final cooling step, and the fresh martensite has a high carbon content and inhibits pore expansion (Patent Document 3).
  • Patent Document 4 there is a method of securing the ductility and hole expandability by heat-treating the martensite structure again in an abnormal region, but this is not economical by performing two heat treatments.
  • Patent Document 1 Korean Unexamined Patent Publication No. 1994-0002370
  • Patent Document 2 US Publication No. 2006-0011274
  • Patent Document 3 Japanese Patent Application JP2002-177278
  • Patent Document 4 Japanese Patent Publication JP2001-300503
  • Patent Document 5 Japanese Patent Publication JP2014-018431
  • Non-Patent Document 1 ISIJ International, Vol. 51, 2011, p. 137-144
  • the present invention has been made to solve the above-mentioned limitations of the prior art, and implements a lower alloy cost compared to the existing TWIP steel, compared to the case of applying the conventional TBF (Trip aided Bainitic Ferrite) Q & P (Quenching and Partitioning) heat treatment process. It is an object of the present invention to provide a cold rolled steel sheet of bainite columnar having better ductility and hole expandability, a hot-dip galvanized steel sheet produced using the same, an alloyed hot-dip galvanized steel sheet, and a method of manufacturing the same.
  • the microstructure yields 50% or more of bainite, 10% or more of tempered martensite (TM), 10% or less of fresh martensite (FM), 20% or less of residual austenite and 5% or less of ferrite. It relates to a high strength cold rolled steel sheet excellent in strength, ductility and hole expansion properties.
  • the TM / FM ratio is greater than two.
  • the present invention also relates to a hot-dip galvanized steel sheet hot-dip galvanized on the surface of the cold-rolled steel sheet, and an alloyed hot-dip galvanized steel sheet which has been alloyed hot-dip galvanized.
  • the steel sheet after the continuous Q & P continuous annealing has a microstructure of 50% or more of bainite, 10% or more of tempered martensite (TM), 10% or less of fresh martensite (FM), and 20% or less of residual austenite. And 5% or less of ferrite.
  • the TM / FM ratio is greater than two.
  • the present invention compared with the conventional high-ductile transformation tissue steel such as DP steel or TRIP steel and Q & P steel subjected to conventional Q & P (Quenching & Partitioning) heat treatment, it is possible to ensure accurate TM amount and bainite It can effectively provide high strength cold rolled steel sheet, hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet with yield strength and ductility and hole extension property excellent in tensile strength of 980MPa or more.
  • Figure 2 shows the low temperature transformation behavior of the TBF method and the present invention method.
  • Figure 3 is a photograph observing the microstructure of the inventive example (F) steel produced by the present invention.
  • nitrogen reduces the alloying efficiency of alloying elements by forming BN and TiN, it is preferable to limit it to 0.01% or less, which is usually in a controllable range.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • other conventional steelmaking processes undesired impurities from raw materials or the surrounding environment can be inevitably incorporated. Since these impurities are known to those skilled in the art of ordinary steel manufacturing, not all of them are specifically mentioned herein.
  • the cold rolled steel sheet of the present invention that satisfies the above-described microstructure has a tensile strength of 980 MPa or more, and has high yield strength and press formability, ductility, and hole expansion properties compared to steel sheets manufactured through conventional Q & P heat treatment. High strength steel sheet can be provided.
  • the reheating step is preferably carried out at 1000 ⁇ 1300 °C.
  • the reheated steel slab is hot rolled to produce a hot rolled steel sheet, wherein hot finish rolling is preferably performed at 800 to 950 ° C.
  • cold rolling is carried out to secure the thickness required by the customer, and there is no limitation on the reduction ratio, but cold rolling reduction is performed at 30% or more to suppress the formation of coarse ferrite grains during recrystallization in a subsequent annealing process. It is preferable.
  • the produced cold-rolled steel sheet is cracked for more than 30 seconds at a temperature of Ac3 or more, and then cooled to a quenching temperature (QT) ⁇ 10 ° C defined by the following relation 1 at a cooling rate of 5 to 20 ° C / sec. (See Figure 1).
  • QT quenching temperature
  • the ferrite unformed cooling rate of the present invention was designed to be 5 ⁇ 20 °C. There is no problem even if the cooling rate is higher than this, but the slower the cooling rate, the better the plate shape without distortion, and does not need to be increased.
  • the elements such as carbon and manganese are concentrated in the austenite remaining in the bainite transformation process, so that the FM does not remain austenite and is transformed during final cooling. This is because the strength is very high, and the interfacial separation occurs during the hole expansion, so that the cracks are easily broken, thereby greatly reducing the hole expandability.
  • the temperature at which bainite is formed fastest in the reheating and constant temperature holding at bainite temperature PT was determined by experiment. If the temperature is higher than this, the amount of bainite formation is small, the stabilization of residual austenite is insufficient and the FM formation is rather increased. Therefore, PT must be heated to PT ⁇ 10 °C.
  • Constant temperature maintenance has the advantage that it is easy to apply to a facility having a constant temperature furnace without a heating maintenance device because it only needs to cool after maintaining for more than 100 seconds within the temperature range of QT ⁇ or ⁇ QT-100 °C.
  • Q & P heat treatment produces steel containing 50% or more of bainite, 10% or more of tempered martensite (TM), 10% or less of fresh martensite (FM), 20% or less of residual austenite and 5% or less of ferrite.
  • TM tempered martensite
  • FM fresh martensite
  • the first and second annealing heat-treated cold rolled steel plate may be plated to produce a plated steel sheet.
  • the plating treatment is preferably carried out by a hot dip plating method or an alloyed hot dip plating method, and the plating layer formed from them is preferably zinc-based.
  • the hot dip galvanizing bath may be manufactured as a hot dip galvanized steel sheet, and in the case of the hot dip galvanizing method, an alloy may be manufactured by performing a conventional alloy hot dip plating process.
  • the molten metal having the composition shown in Table 1 was prepared in a 90 mm thick, 175 mm wide ingot through vacuum melting. Subsequently, it was reheated for 1 hour at 1200 ° C. for homogenization treatment, and hot-rolled and rolled at 900 ° C. or higher, which is a temperature of Ar 3 or higher, to prepare a hot rolled steel sheet. Thereafter, the hot rolled steel sheet was cooled, charged into a furnace preheated to 600 ° C., held for 1 hour, and then cold rolled to simulate hot rolled winding. The hot rolled sheet material as described above was cold rolled at a cold reduction rate of 50 to 60%, and then subjected to annealing heat treatment under the conditions of Table 2 to produce a final cold rolled steel sheet.
  • FIG. 3 is a photograph observing the microstructure of the inventive example (F) steel produced by the present invention.
  • inventive steel (F) steel has a bainite of 75%, a TM, FM of 14%, and 5% of TM / FM of more than 2, and F of less than 5% of bays. It can be seen that the night steel can be produced.
  • This is a technical feature of the present invention, but conventionally focused on making ferritic TRIP steel or tempered martensitic steel through Q & P heat treatment, but if the steel composition and QT, PT are specified, the bainite matrix structure Can be made easier than the TBF heat treatment method.
  • FIG. 4 is an APT observation of TM in the tissue of FIG. 3.
  • the transition carbide and coarse cementite are mixed to show tempered martensite.
  • Figure 5 is the same component as the structure of the steel (E), but the ferrite and FM are formed due to the annealing annealing and TBF heat treatment can be confirmed that the strength and HER is low.
  • the cold rolled steel sheet produced according to the present invention can secure a yield strength and excellent elongation and HER of 980MPa or more, the cold forming for applying to the structural member compared to the steel produced through the conventional Q & P heat treatment process There is an advantage that can be easily performed.

Abstract

L'invention concerne une tôle d'acier laminée à froid à haute résistance présentant une excellente limite d'élasticité, une excellente ductilité et une excellente capacité d'expansion de trou, une tôle d'acier galvanisée par immersion à chaud et un procédé de production associé. La tôle d'acier laminée à froid de la présente invention comprend 0,06 à 0,2 % en poids de carbone (C), 1,5 à 3,0 % en poids de manganèse (Mn), 0,3 à 2,5 % en poids de silicium (Si), 0,01 à 0,2 % en poids d'aluminium (Al), 0,01 à 3,0 % en poids de nickel (Ni), 0,2 % en poids ou moins de molybdène (Mo), 0,01 à 0,05 % en poids de titane (Ti), 0,02 à 0,05 % en poids d'antimoine (Sb), 0,0005 à 0,003 % en poids de bore (B), 0,01 % en poids ou moins (0 % étant exclu) d'azote (N), le reste comprenant du Fe et des impuretés inévitables, et sa microstructure comprenant, en termes de fraction de surface, 50 % ou plus de bainite, 10 % ou plus de martensite revenue (TM), 10 % ou moins de martensite fraîche (FM), 20 % ou moins d'austénite résiduelle, et 5 % ou moins de ferrite.
PCT/KR2017/013762 2016-12-16 2017-11-29 Tôle d'acier laminée à froid à haute résistance présentant une excellente limite d'élasticité, une excellente ductilité et une excellente capacité d'expansion de trou, tôle d'acier galvanisée par immersion à chaud et procédé de production associé WO2018110867A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17881067.7A EP3556896B1 (fr) 2016-12-16 2017-11-29 Tôle d'acier laminée à froid à haute résistance présentant une excellente limite d'élasticité, une excellente ductilité et une excellente capacité d'expansion de trou, et tôle d'acier galvanisée par immersion à chaud
JP2019531765A JP6846522B2 (ja) 2016-12-16 2017-11-29 降伏強度、延性、及び穴拡げ性に優れた高強度冷延鋼板、溶融亜鉛めっき鋼板、及びこれらの製造方法
US16/468,162 US20200190612A1 (en) 2016-12-16 2017-11-29 High strength cold-rolled steel sheet having excellent yield strength, ductility, and hole expandability, hot-dip galvanized steel sheet, and method for producing same
CN201780077454.0A CN110073026B (zh) 2016-12-16 2017-11-29 屈服强度、延展性和扩孔性优异的高强度冷轧钢板、热浸镀锌钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0173006 2016-12-16
KR1020160173006A KR101858852B1 (ko) 2016-12-16 2016-12-16 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법

Publications (2)

Publication Number Publication Date
WO2018110867A1 true WO2018110867A1 (fr) 2018-06-21
WO2018110867A8 WO2018110867A8 (fr) 2019-01-31

Family

ID=62558805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013762 WO2018110867A1 (fr) 2016-12-16 2017-11-29 Tôle d'acier laminée à froid à haute résistance présentant une excellente limite d'élasticité, une excellente ductilité et une excellente capacité d'expansion de trou, tôle d'acier galvanisée par immersion à chaud et procédé de production associé

Country Status (6)

Country Link
US (1) US20200190612A1 (fr)
EP (1) EP3556896B1 (fr)
JP (1) JP6846522B2 (fr)
KR (1) KR101858852B1 (fr)
CN (1) CN110073026B (fr)
WO (1) WO2018110867A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114746562A (zh) * 2019-12-17 2022-07-12 安赛乐米塔尔公司 经热轧的钢板及其制造方法
CN115181895A (zh) * 2021-04-02 2022-10-14 宝山钢铁股份有限公司 1180MPa级别低碳低合金热镀锌Q&P钢及快速热处理热镀锌制造方法
EP3988679A4 (fr) * 2019-08-20 2022-11-02 JFE Steel Corporation Tôle d'acier haute résistance laminée à froid et son procédé de fabrication

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11753693B2 (en) 2018-09-28 2023-09-12 Posco Co., Ltd High-strength cold rolled steel sheet having high hole expansion ratio, highstrength hot-dip galvanized steel sheet, and manufacturing methods therefor
CN109576579A (zh) 2018-11-29 2019-04-05 宝山钢铁股份有限公司 一种具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法
CN110964969B (zh) * 2019-11-27 2021-09-21 本钢板材股份有限公司 一种高强度热镀锌淬火配分钢及其生产方法
CN115161541B (zh) * 2021-04-02 2023-08-11 宝山钢铁股份有限公司 780MPa级别高成形性热镀锌双相钢及快速热处理热镀锌制造方法
CN113186459B (zh) * 2021-04-08 2022-09-13 山东钢铁股份有限公司 一种屈服强度355MPa级冷轧低合金钢带及其制备方法
KR20230073569A (ko) * 2021-11-19 2023-05-26 주식회사 포스코 우수한 강도 및 성형성을 갖는 냉연강판 및 그 제조방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002370A (ko) 1992-07-24 1994-02-17 정명식 성형성, 강도 및 용접성이 우수한 오스테나이트계 고 망간강과 그 제조방법
JP2001300503A (ja) 2000-04-27 2001-10-30 Calsonic Kansei Corp 樹脂成形品のインサート金具分離方法および分離装置
JP2002177278A (ja) 2000-12-15 2002-06-25 Hitachi Medical Corp 超音波診断装置
US20060011274A1 (en) 2002-09-04 2006-01-19 Colorado School Of Mines Method for producing steel with retained austenite
JP2011140686A (ja) * 2010-01-06 2011-07-21 Sumitomo Metal Ind Ltd 冷延鋼板の製造方法
JP2014018431A (ja) 2012-07-18 2014-02-03 Toppan Printing Co Ltd マイクロニードル刺し込み量規制器具
JP2014034716A (ja) * 2012-08-09 2014-02-24 Nippon Steel & Sumitomo Metal 鋼板およびその製造方法
KR20150130612A (ko) * 2014-05-13 2015-11-24 주식회사 포스코 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
KR20160060729A (ko) * 2013-09-27 2016-05-30 가부시키가이샤 고베 세이코쇼 가공성 및 저온 인성이 우수한 고강도 강판, 및 그의 제조 방법
KR20160132926A (ko) * 2014-03-17 2016-11-21 가부시키가이샤 고베 세이코쇼 연성 및 굽힘성이 우수한 고강도 냉연 강판 및 고강도 용융 아연도금 강판, 및 그들의 제조 방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002370B1 (ko) 1991-05-16 1994-03-23 주식회사 금성사 전자레인지의 요리시간 설정제어장치 및 그 방법
US7090731B2 (en) * 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
JP4729850B2 (ja) * 2003-02-10 2011-07-20 Jfeスチール株式会社 めっき密着性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
KR100928788B1 (ko) * 2007-12-28 2009-11-25 주식회사 포스코 용접성이 우수한 고강도 박강판과 그 제조방법
JP5418047B2 (ja) * 2008-09-10 2014-02-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR20100076409A (ko) * 2008-12-26 2010-07-06 주식회사 포스코 고항복비형 고강도 강판 및 그 제조 방법
EP2765212B1 (fr) * 2011-10-04 2017-05-17 JFE Steel Corporation Tôle d'acier à haute résistance et procédé de fabrication associé
WO2013144376A1 (fr) * 2012-03-30 2013-10-03 Voestalpine Stahl Gmbh Tôle d'acier laminée à froid de haute résistance et procédé de fabrication d'une telle tôle d'acier
KR101299896B1 (ko) * 2013-05-30 2013-08-23 주식회사 포스코 인장강도 1.5GPa급의 초고강도 강판의 제조방법
WO2015088523A1 (fr) * 2013-12-11 2015-06-18 ArcelorMittal Investigación y Desarrollo, S.L. Tôle en acier laminée à froid et recuite
KR101912512B1 (ko) * 2014-01-29 2018-10-26 제이에프이 스틸 가부시키가이샤 고강도 냉연 강판 및 그 제조 방법
WO2016001700A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Procédé de production d'une tôle d'acier à haute résistance présentant une résistance, une ductilité et une aptitude au formage améliorées
WO2016020714A1 (fr) * 2014-08-07 2016-02-11 Arcelormittal Procédé permettant de produire une tôle d'acier revêtue présentant une meilleure résistance, une meilleure ductilité et une meilleure aptitude au formage
KR101913530B1 (ko) * 2014-12-22 2018-10-30 제이에프이 스틸 가부시키가이샤 고강도 용융 아연 도금 강판 및 그 제조 방법
CN107109572B (zh) * 2015-01-16 2019-09-10 杰富意钢铁株式会社 高强度钢板及其制造方法
JP6112261B2 (ja) * 2015-03-25 2017-04-12 Jfeスチール株式会社 冷延鋼板およびその製造方法
JP6586776B2 (ja) * 2015-05-26 2019-10-09 日本製鉄株式会社 成形性に優れた高強度鋼板及びその製造方法
US10745775B2 (en) * 2015-06-11 2020-08-18 Nippon Steel Corporation Galvannealed steel sheet and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002370A (ko) 1992-07-24 1994-02-17 정명식 성형성, 강도 및 용접성이 우수한 오스테나이트계 고 망간강과 그 제조방법
JP2001300503A (ja) 2000-04-27 2001-10-30 Calsonic Kansei Corp 樹脂成形品のインサート金具分離方法および分離装置
JP2002177278A (ja) 2000-12-15 2002-06-25 Hitachi Medical Corp 超音波診断装置
US20060011274A1 (en) 2002-09-04 2006-01-19 Colorado School Of Mines Method for producing steel with retained austenite
JP2011140686A (ja) * 2010-01-06 2011-07-21 Sumitomo Metal Ind Ltd 冷延鋼板の製造方法
JP2014018431A (ja) 2012-07-18 2014-02-03 Toppan Printing Co Ltd マイクロニードル刺し込み量規制器具
JP2014034716A (ja) * 2012-08-09 2014-02-24 Nippon Steel & Sumitomo Metal 鋼板およびその製造方法
KR20160060729A (ko) * 2013-09-27 2016-05-30 가부시키가이샤 고베 세이코쇼 가공성 및 저온 인성이 우수한 고강도 강판, 및 그의 제조 방법
KR20160132926A (ko) * 2014-03-17 2016-11-21 가부시키가이샤 고베 세이코쇼 연성 및 굽힘성이 우수한 고강도 냉연 강판 및 고강도 용융 아연도금 강판, 및 그들의 제조 방법
KR20150130612A (ko) * 2014-05-13 2015-11-24 주식회사 포스코 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISIJ INTERNATIONAL, vol. 51, 2011, pages 137 - 144

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988679A4 (fr) * 2019-08-20 2022-11-02 JFE Steel Corporation Tôle d'acier haute résistance laminée à froid et son procédé de fabrication
US11926881B2 (en) 2019-08-20 2024-03-12 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same
CN114746562A (zh) * 2019-12-17 2022-07-12 安赛乐米塔尔公司 经热轧的钢板及其制造方法
CN114746562B (zh) * 2019-12-17 2023-12-29 安赛乐米塔尔公司 经热轧的钢板及其制造方法
CN115181895A (zh) * 2021-04-02 2022-10-14 宝山钢铁股份有限公司 1180MPa级别低碳低合金热镀锌Q&P钢及快速热处理热镀锌制造方法
CN115181895B (zh) * 2021-04-02 2023-09-12 宝山钢铁股份有限公司 1180MPa级别低碳低合金热镀锌Q&P钢及快速热处理热镀锌制造方法

Also Published As

Publication number Publication date
CN110073026B (zh) 2021-09-07
JP6846522B2 (ja) 2021-03-24
US20200190612A1 (en) 2020-06-18
CN110073026A (zh) 2019-07-30
JP2020509177A (ja) 2020-03-26
EP3556896B1 (fr) 2021-11-10
WO2018110867A8 (fr) 2019-01-31
KR101858852B1 (ko) 2018-06-28
EP3556896A4 (fr) 2019-10-23
EP3556896A1 (fr) 2019-10-23

Similar Documents

Publication Publication Date Title
WO2018110867A1 (fr) Tôle d'acier laminée à froid à haute résistance présentant une excellente limite d'élasticité, une excellente ductilité et une excellente capacité d'expansion de trou, tôle d'acier galvanisée par immersion à chaud et procédé de production associé
WO2015174605A1 (fr) Feuille d'acier laminé à froid de résistance élévée présentant une excellente ductilité, feuille d'acier galvanisé zingué au feu et son procédé de fabrication
WO2016098964A1 (fr) Tôle d'acier à haute résistance laminée à froid ayant une faible non-uniformité de matériau et une excellente aptitude au formage, tôle d'acier galvanisée par immersion à chaud et procédé de fabrication associé
WO2013069937A1 (fr) Tôle d'acier pour un formage par pressage à chaud, élément de formage par pressage à chaud et procédé de fabrication associé
WO2014181907A1 (fr) Produit d'estampage à chaud présentant une ténacité accrue et son procédé de fabrication
WO2017222189A1 (fr) Tôle d'acier à ductilité élevée et très haute résistance ayant une excellente limite élastique et procédé pour la fabriquer
WO2018117501A1 (fr) Tôle d'acier de résistance ultra-élevée présentant une excellente pliabilité et son procédé de fabrication
WO2016104881A1 (fr) Élément de moulage de formage à haute pression à excellentes excellentes caractéristiques de flexion et son procédé de fabrication
WO2016098963A1 (fr) Tôle d'acier galvanisée par immersion à chaud présentant une excellente expansibilité des trous, tôle d'acier recuite par galvanisation par immersion à chaud et son procédé de fabrication
WO2020050573A1 (fr) Tôle d'acier à résistance et ductilité ultra élevées possédant un excellent rapport de rendement et son procédé de fabrication
WO2017171366A1 (fr) Tôle d'acier laminée à froid à résistance élevée ayant d'excellentes limite d'élasticité et ductilité, plaque d'acier revêtue et son procédé de fabrication
WO2020067752A1 (fr) Tôle d'acier laminée à froid à haute résistance ayant un rapport d'expansion de trou élevé, tôle d'acier galvanisée à chaud par trempe à haute résistance, et procédés de fabrication associés
WO2017111524A1 (fr) Tôle d'acier à très haute résistance ayant une excellente capacité d'expansion de trou et son procédé de fabrication.
WO2017188654A1 (fr) Tôle d'acier à très haute résistance et à haute ductilité ayant un excellent rapport d'élasticité et son procédé de fabrication
WO2018105904A1 (fr) Plaque d'acier galvanisée à chaud ayant une excellente aptitude au durcissement à la cuisson et d'excellentes propriétés anti-vieillissement à température ambiante et procédé de fabrication associé
WO2018117470A1 (fr) Tôle d'acier haute résistance ayant une excellente aptitude au soyage à basse température et son procédé de fabrication
WO2018117711A1 (fr) Tôle d'acier laminée à froid ayant une excellente aptitude au pliage et une excellente aptitude d'expansion des trous et sont procédé de fabrication
WO2017051998A1 (fr) Tôle d'acier plaquée et procédé de fabrication associé
WO2021117989A1 (fr) Tôle d'acier laminée à froid à résistance ultra-élevée et son procédé de fabrication
WO2018084685A1 (fr) Tôle d'acier à ultra-haute résistance ayant un excellent rapport d'élasticité et son procédé de fabrication
WO2013154254A1 (fr) Tôle d'acier laminée à chaud à teneur élevée en carbone présentant une excellente uniformité et son procédé de fabrication
WO2016093513A2 (fr) Tôle d'acier biphasé ayant une excellente formabilité et son procédé de fabrication
WO2019088552A1 (fr) Tôle d'acier laminée à froid à ultra-haute résistance présentant une excellente aptitude au laminage à froid et son procédé de fabrication
WO2022139400A1 (fr) Feuille d'acier laminée à froid ultra haute résistance présentant une excellente soudabilité par points et une excellente formabilité, feuille d'acier plaquée ultra haute résistance et son procédé de fabrication
WO2022124609A1 (fr) Tôle d'acier galvanisée par immersion à chaud à haute résistance présentant une ductilité élevée et une excellente formabilité, et son procédé de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019531765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017881067

Country of ref document: EP

Effective date: 20190716