WO2018110867A1 - High strength cold rolled steel plate having excellent yield strength, ductility, and hole expandability, hot dip galvanized steel plate, and method for producing same - Google Patents

High strength cold rolled steel plate having excellent yield strength, ductility, and hole expandability, hot dip galvanized steel plate, and method for producing same Download PDF

Info

Publication number
WO2018110867A1
WO2018110867A1 PCT/KR2017/013762 KR2017013762W WO2018110867A1 WO 2018110867 A1 WO2018110867 A1 WO 2018110867A1 KR 2017013762 W KR2017013762 W KR 2017013762W WO 2018110867 A1 WO2018110867 A1 WO 2018110867A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
rolled steel
hot
ductility
Prior art date
Application number
PCT/KR2017/013762
Other languages
French (fr)
Korean (ko)
Other versions
WO2018110867A8 (en
Inventor
곽재현
조항식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US16/468,162 priority Critical patent/US20200190612A1/en
Priority to EP17881067.7A priority patent/EP3556896B1/en
Priority to JP2019531765A priority patent/JP6846522B2/en
Priority to CN201780077454.0A priority patent/CN110073026B/en
Publication of WO2018110867A1 publication Critical patent/WO2018110867A1/en
Publication of WO2018110867A8 publication Critical patent/WO2018110867A8/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high strength steel sheet used in an automobile body, and more particularly, to a high strength cold rolled steel sheet, a hot dip galvanized steel sheet, and a method of manufacturing the same, which have high strength and excellent yield strength and formability. .
  • the metamorphic steel is classified into so-called DP (Dual Phase) steel, Transformation Induced Plasticity (TRIP) steel, and Complex Phase (CP) steel.
  • DP Dual Phase
  • TRIP Transformation Induced Plasticity
  • CP Complex Phase
  • Each of these steels has mechanical properties, that is, according to the type and fraction of the parent phase and the second phase.
  • the level of tensile strength and elongation is different, especially in the case of TRIP steel containing residual austenite, the balance of tensile strength and elongation (TS x El) shows the highest value.
  • CP steel of the metamorphic structure steel as described above is lower than the other steels, and is limited to simple processing such as roll forming, and high ductility DP steel and TRIP steel are applied to cold press forming.
  • Patent Document 2 discloses a method of forming residual austenite and martensite as a main structure (Quenching and Partitioning Process (Q & P)). According to a report using this (non-patent document 1), the carbon level is 0.2%. In the case of low, the yield strength has a disadvantage of low around 400MPa, and it can be confirmed that the elongation obtained in the final product is only similar to the existing TRIP steel.
  • the essence of the Q & P method is to secure ductility by quenching between the martensite transformation start temperature (Ms) and the finish temperature (Mf) and then reheating to stabilize the austenite by carbon diffusion at the martensite and austenite interface.
  • Ms martensite transformation start temperature
  • Mf finish temperature
  • fresh martensite (FM) is formed in the final cooling step, and the fresh martensite has a high carbon content and inhibits pore expansion (Patent Document 3).
  • Patent Document 4 there is a method of securing the ductility and hole expandability by heat-treating the martensite structure again in an abnormal region, but this is not economical by performing two heat treatments.
  • Patent Document 1 Korean Unexamined Patent Publication No. 1994-0002370
  • Patent Document 2 US Publication No. 2006-0011274
  • Patent Document 3 Japanese Patent Application JP2002-177278
  • Patent Document 4 Japanese Patent Publication JP2001-300503
  • Patent Document 5 Japanese Patent Publication JP2014-018431
  • Non-Patent Document 1 ISIJ International, Vol. 51, 2011, p. 137-144
  • the present invention has been made to solve the above-mentioned limitations of the prior art, and implements a lower alloy cost compared to the existing TWIP steel, compared to the case of applying the conventional TBF (Trip aided Bainitic Ferrite) Q & P (Quenching and Partitioning) heat treatment process. It is an object of the present invention to provide a cold rolled steel sheet of bainite columnar having better ductility and hole expandability, a hot-dip galvanized steel sheet produced using the same, an alloyed hot-dip galvanized steel sheet, and a method of manufacturing the same.
  • the microstructure yields 50% or more of bainite, 10% or more of tempered martensite (TM), 10% or less of fresh martensite (FM), 20% or less of residual austenite and 5% or less of ferrite. It relates to a high strength cold rolled steel sheet excellent in strength, ductility and hole expansion properties.
  • the TM / FM ratio is greater than two.
  • the present invention also relates to a hot-dip galvanized steel sheet hot-dip galvanized on the surface of the cold-rolled steel sheet, and an alloyed hot-dip galvanized steel sheet which has been alloyed hot-dip galvanized.
  • the steel sheet after the continuous Q & P continuous annealing has a microstructure of 50% or more of bainite, 10% or more of tempered martensite (TM), 10% or less of fresh martensite (FM), and 20% or less of residual austenite. And 5% or less of ferrite.
  • the TM / FM ratio is greater than two.
  • the present invention compared with the conventional high-ductile transformation tissue steel such as DP steel or TRIP steel and Q & P steel subjected to conventional Q & P (Quenching & Partitioning) heat treatment, it is possible to ensure accurate TM amount and bainite It can effectively provide high strength cold rolled steel sheet, hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet with yield strength and ductility and hole extension property excellent in tensile strength of 980MPa or more.
  • Figure 2 shows the low temperature transformation behavior of the TBF method and the present invention method.
  • Figure 3 is a photograph observing the microstructure of the inventive example (F) steel produced by the present invention.
  • nitrogen reduces the alloying efficiency of alloying elements by forming BN and TiN, it is preferable to limit it to 0.01% or less, which is usually in a controllable range.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • other conventional steelmaking processes undesired impurities from raw materials or the surrounding environment can be inevitably incorporated. Since these impurities are known to those skilled in the art of ordinary steel manufacturing, not all of them are specifically mentioned herein.
  • the cold rolled steel sheet of the present invention that satisfies the above-described microstructure has a tensile strength of 980 MPa or more, and has high yield strength and press formability, ductility, and hole expansion properties compared to steel sheets manufactured through conventional Q & P heat treatment. High strength steel sheet can be provided.
  • the reheating step is preferably carried out at 1000 ⁇ 1300 °C.
  • the reheated steel slab is hot rolled to produce a hot rolled steel sheet, wherein hot finish rolling is preferably performed at 800 to 950 ° C.
  • cold rolling is carried out to secure the thickness required by the customer, and there is no limitation on the reduction ratio, but cold rolling reduction is performed at 30% or more to suppress the formation of coarse ferrite grains during recrystallization in a subsequent annealing process. It is preferable.
  • the produced cold-rolled steel sheet is cracked for more than 30 seconds at a temperature of Ac3 or more, and then cooled to a quenching temperature (QT) ⁇ 10 ° C defined by the following relation 1 at a cooling rate of 5 to 20 ° C / sec. (See Figure 1).
  • QT quenching temperature
  • the ferrite unformed cooling rate of the present invention was designed to be 5 ⁇ 20 °C. There is no problem even if the cooling rate is higher than this, but the slower the cooling rate, the better the plate shape without distortion, and does not need to be increased.
  • the elements such as carbon and manganese are concentrated in the austenite remaining in the bainite transformation process, so that the FM does not remain austenite and is transformed during final cooling. This is because the strength is very high, and the interfacial separation occurs during the hole expansion, so that the cracks are easily broken, thereby greatly reducing the hole expandability.
  • the temperature at which bainite is formed fastest in the reheating and constant temperature holding at bainite temperature PT was determined by experiment. If the temperature is higher than this, the amount of bainite formation is small, the stabilization of residual austenite is insufficient and the FM formation is rather increased. Therefore, PT must be heated to PT ⁇ 10 °C.
  • Constant temperature maintenance has the advantage that it is easy to apply to a facility having a constant temperature furnace without a heating maintenance device because it only needs to cool after maintaining for more than 100 seconds within the temperature range of QT ⁇ or ⁇ QT-100 °C.
  • Q & P heat treatment produces steel containing 50% or more of bainite, 10% or more of tempered martensite (TM), 10% or less of fresh martensite (FM), 20% or less of residual austenite and 5% or less of ferrite.
  • TM tempered martensite
  • FM fresh martensite
  • the first and second annealing heat-treated cold rolled steel plate may be plated to produce a plated steel sheet.
  • the plating treatment is preferably carried out by a hot dip plating method or an alloyed hot dip plating method, and the plating layer formed from them is preferably zinc-based.
  • the hot dip galvanizing bath may be manufactured as a hot dip galvanized steel sheet, and in the case of the hot dip galvanizing method, an alloy may be manufactured by performing a conventional alloy hot dip plating process.
  • the molten metal having the composition shown in Table 1 was prepared in a 90 mm thick, 175 mm wide ingot through vacuum melting. Subsequently, it was reheated for 1 hour at 1200 ° C. for homogenization treatment, and hot-rolled and rolled at 900 ° C. or higher, which is a temperature of Ar 3 or higher, to prepare a hot rolled steel sheet. Thereafter, the hot rolled steel sheet was cooled, charged into a furnace preheated to 600 ° C., held for 1 hour, and then cold rolled to simulate hot rolled winding. The hot rolled sheet material as described above was cold rolled at a cold reduction rate of 50 to 60%, and then subjected to annealing heat treatment under the conditions of Table 2 to produce a final cold rolled steel sheet.
  • FIG. 3 is a photograph observing the microstructure of the inventive example (F) steel produced by the present invention.
  • inventive steel (F) steel has a bainite of 75%, a TM, FM of 14%, and 5% of TM / FM of more than 2, and F of less than 5% of bays. It can be seen that the night steel can be produced.
  • This is a technical feature of the present invention, but conventionally focused on making ferritic TRIP steel or tempered martensitic steel through Q & P heat treatment, but if the steel composition and QT, PT are specified, the bainite matrix structure Can be made easier than the TBF heat treatment method.
  • FIG. 4 is an APT observation of TM in the tissue of FIG. 3.
  • the transition carbide and coarse cementite are mixed to show tempered martensite.
  • Figure 5 is the same component as the structure of the steel (E), but the ferrite and FM are formed due to the annealing annealing and TBF heat treatment can be confirmed that the strength and HER is low.
  • the cold rolled steel sheet produced according to the present invention can secure a yield strength and excellent elongation and HER of 980MPa or more, the cold forming for applying to the structural member compared to the steel produced through the conventional Q & P heat treatment process There is an advantage that can be easily performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Provided are a high strength cold rolled steel plate having excellent yield strength, ductility, and hole expandability, a hot dip galvanized steel plate, and a method for producing the same. The cold rolled steel plate of the present invention comprises 0.06-0.2 wt% of carbon (C), 1.5-3.0 wt% of manganese (Mn), 0.3-2.5 wt% of silicon (Si), 0.01-0.2 wt% of aluminum (Al), 0.01-3.0 wt% of nickel (Ni), 0.2 wt% or less of molybdenum (Mo), 0.01-0.05 wt% of titanium (Ti), 0.02-0.05 wt% of antimony (Sb), 0.0005-0.003 wt% of boron (B), 0.01 wt% or less (but not 0%) of nitrogen (N), with the remainder comprising Fe and unavoidable impurities, and the microstructure thereof comprises, in terms of area fraction, 50% or more of bainite, 10% or more of tempered martensite (TM), 10% or less of fresh martensite (FM), 20% or less of residual austenite, and 5% or less of ferrite.

Description

항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법High strength cold rolled steel, hot dip galvanized steel with excellent yield strength, ductility and hole expansion, and method of manufacturing the same
본 발명은 자동차 차체에 사용되는 고강도 강판에 관한 것으로서, 보다 상세하게는 고강도이면서 동시에 항복강도와 성형성이 우수하여 프레스 성형성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법에 관한 것이다.The present invention relates to a high strength steel sheet used in an automobile body, and more particularly, to a high strength cold rolled steel sheet, a hot dip galvanized steel sheet, and a method of manufacturing the same, which have high strength and excellent yield strength and formability. .
건축자재, 자동차, 기차와 같은 운송수단의 구조부재로 적용되는 강판에 대한 두께를 낮추어 경량화를 이루기 위해, 기존 강재의 강도를 향상시키려는 시도가 많이 이루어지고 있다. 그러나 이와 같이 강도를 높이는 경우 상대적으로 항복강도가 낮고 연성과 구멍확장성이 저하되는 단점이 발견되었다.Many attempts have been made to improve the strength of existing steels in order to achieve a lighter weight by lowering the thickness of steel sheets applied as structural members of vehicles such as building materials, automobiles and trains. However, in the case of increasing the strength, it was found that the yield strength was relatively low and the ductility and hole expandability were lowered.
이에, 강도와 연성 간의 관계를 개선하기 위한 연구가 많이 이루어졌으며, 그 결과 저온조직인 마르텐사이트, 베이나이트와 더불어 잔류 오스테나이트 상을 활용하는 변태조직강이 개발되어 적용되고 있는 실정이다.Accordingly, many studies have been made to improve the relationship between strength and ductility, and as a result, transformation tissue steels utilizing residual austenite phases together with martensite and bainite, which are low-temperature structures, have been developed and applied.
변태조직강은 소위 DP(Dual Phase)강, TRIP(Transformation Induced Plasticity)강, CP(Complex Phase)강 등으로 구별되며, 이들 각각의 강은 모상과 제2상의 종류 및 분율에 따라 기계적 성질 즉, 인장 강도 및 연신율의 수준이 달라지며, 특히 잔류 오스테나이트를 함유하는 TRIP강의 경우에는 인장 강도와 연신율의 밸런스(TS×El)가 가장 높은 값을 나타낸다.The metamorphic steel is classified into so-called DP (Dual Phase) steel, Transformation Induced Plasticity (TRIP) steel, and Complex Phase (CP) steel. Each of these steels has mechanical properties, that is, according to the type and fraction of the parent phase and the second phase. The level of tensile strength and elongation is different, especially in the case of TRIP steel containing residual austenite, the balance of tensile strength and elongation (TS x El) shows the highest value.
상기와 같은 변태조직강 중 CP강은 다른 강들에 비해 연신율이 낮아 롤 포밍 등의 단순 가공에 국한되어 사용되고, 고연성의 DP강과 TRIP강은 냉간 프레스 성형 등에 적용된다.CP steel of the metamorphic structure steel as described above is lower than the other steels, and is limited to simple processing such as roll forming, and high ductility DP steel and TRIP steel are applied to cold press forming.
이에, 최근에는 상기 변태조직강인 DP강과 TRIP강 보다는 연성이 높고, 구멍확장 성능을 높여서 심가공성 및 프렌지부 크랙을 억제하고자 하는 기술이 제시되고 있다. 일 예로, 특허문헌 2에는 주조직으로 잔류 오스테나이트와 마르텐사이트를 형성시키는 방법(Quenching and Partitioning Process, Q&P)이 개시되어 있는데, 이를 활용한 보고(비특허문헌 1)에 의하면 탄소가 0.2% 수준으로 낮은 경우에는 항복강도가 400MPa 내외로 낮은 단점이 있으며, 또한 최종 제품에서 얻어지는 연신율이 기존 TRIP강과 유사한 수준만을 얻음을 확인할 수 있다. Q&P방법의 핵심은 마르텐사이트 변태 시작온도(Ms)와 마무리온도 (Mf)사이로 퀜칭한 다음 재가열 하여 마르텐사이트와 오스테나이트 계면에서 탄소확산이 일어나 오스테나이트를 안정화시키므로써 연성을 확보하는 것이다. 그러나 퀜칭 및 파티셔닝 온도에 따라 안정화되지 못하는 오스테나이트가 상당량 존재하여 프레쉬 마르텐사이트(FM)가 최종 냉각 단계에서 형성되는데, 프레쉬 마르텐사이트는 탄소함량이 높아 구멍확장성을 저해한다.(특허문헌 3)Therefore, in recent years, there has been proposed a technique for suppressing deep workability and flange crack by increasing ductility and improving hole expansion performance than the transformation steels DP steel and TRIP steel. For example, Patent Document 2 discloses a method of forming residual austenite and martensite as a main structure (Quenching and Partitioning Process (Q & P)). According to a report using this (non-patent document 1), the carbon level is 0.2%. In the case of low, the yield strength has a disadvantage of low around 400MPa, and it can be confirmed that the elongation obtained in the final product is only similar to the existing TRIP steel. The essence of the Q & P method is to secure ductility by quenching between the martensite transformation start temperature (Ms) and the finish temperature (Mf) and then reheating to stabilize the austenite by carbon diffusion at the martensite and austenite interface. However, due to the presence of a significant amount of austenite that cannot be stabilized by quenching and partitioning temperature, fresh martensite (FM) is formed in the final cooling step, and the fresh martensite has a high carbon content and inhibits pore expansion (Patent Document 3).
다른 방법으로 마르텐사이트 조직을 다시 열처리하여 이상역에서 열처리함으로써 연성과 구멍확장성을 확보하는 방법이 있으나, 이는 2번의 열처리를 실시함으로 경제적이지 않다(특허문헌 4)As another method, there is a method of securing the ductility and hole expandability by heat-treating the martensite structure again in an abnormal region, but this is not economical by performing two heat treatments (Patent Document 4).
마지막으로 통상의 소둔 방법으로 열처리하되 베이나이트 형성구간까지 급냉한 다음 장시간 항온 유지하여 베이나이트 조직을 얻는 방법이 개발되었으나, 항온 유지 시간이 매우 길고, 충분히 변태되지 않은 베이나이트는 최종 냉각시 마르텐사이트를 형성하므로 구멍 확장성이 우수하지 못하다.Finally, a method of obtaining a bainite structure by heat treatment by a conventional annealing method but rapidly cooling to bainite forming section and then keeping constant temperature for a long time has been developed. Since it forms a hole expansion is not excellent.
[선행기술문헌][Preceding technical literature]
{특허문헌}{Patent Literature}
(특허문헌 1) 한국 공개특허공보 제1994-0002370호(Patent Document 1) Korean Unexamined Patent Publication No. 1994-0002370
(특허문헌 2) 미국 공개공보 제2006-0011274호(Patent Document 2) US Publication No. 2006-0011274
(특허문헌 3) 일본 특허공부 JP2002-177278(Patent Document 3) Japanese Patent Application JP2002-177278
(특허문헌 4) 일본 특허공보 JP2001-300503(Patent Document 4) Japanese Patent Publication JP2001-300503
(특허문헌 5) 일본 특허공보 JP2014-018431(Patent Document 5) Japanese Patent Publication JP2014-018431
{비특허문헌}{Non Patent Literature}
(비특허문헌 1) ISIJ International, Vol.51, 2011, p.137-144(Non-Patent Document 1) ISIJ International, Vol. 51, 2011, p. 137-144
따라서 본 발명은 상술한 종래기술의 한계를 해결하기 위하여 안출된 것으로, 기존 TWIP강 대비 적은 합금원가를 구현하고, 기존 TBF (Trip aided Bainitic Ferrite) Q&P(Quenching and Partitioning) 열처리 공정을 적용한 경우에 비해 더 우수한 연성과 구멍확장성을 갖는 베이나이트 주상의 냉연강판, 이를 이용하여 제조한 용융아연도금강판, 합금화 용융아연도금강판 및 이들의 제조방법을 제공함에 그 목적이 있다. Therefore, the present invention has been made to solve the above-mentioned limitations of the prior art, and implements a lower alloy cost compared to the existing TWIP steel, compared to the case of applying the conventional TBF (Trip aided Bainitic Ferrite) Q & P (Quenching and Partitioning) heat treatment process. It is an object of the present invention to provide a cold rolled steel sheet of bainite columnar having better ductility and hole expandability, a hot-dip galvanized steel sheet produced using the same, an alloyed hot-dip galvanized steel sheet, and a method of manufacturing the same.
또한 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들에 한정되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. In addition, the technical problems to be achieved in the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned above are clearly understood by those skilled in the art from the following description. Could be.
상기 목적을 달성하기 위한 본 발명은, The present invention for achieving the above object,
중량%로, 탄소(C): 0.06~0.2%, 망간(Mn): 1.5~3.0%, 실리콘(Si): 0.3~2.5%, 알루미늄(Al): 0.01~0.2%, 니켈(Ni): 0.01~3.0%, 몰레브덴(Mo): 0.2%이하, 티타늄(Ti): 0.01~0.05, 안티몬(Sb): 0.02~0.05, 보론(B): 0.0005~0.003, 질소(N): 0.01% 이하(0%는 제외), 잔부 Fe 및 불가피한 불순물을 포함하고, By weight%, carbon (C): 0.06 to 0.2%, manganese (Mn): 1.5 to 3.0%, silicon (Si): 0.3 to 2.5%, aluminum (Al): 0.01 to 0.2%, nickel (Ni): 0.01 -3.0%, molybdenum (Mo): 0.2% or less, titanium (Ti): 0.01-0.05, antimony (Sb): 0.02-0.05, boron (B): 0.0005-0.003, nitrogen (N): 0.01% or less (Excluding 0%), balance Fe and inevitable impurities,
그 미세조직이, 면적분율로 베이나이트 50% 이상, 템퍼드 마르텐사이트(TM) 10%이상, 프레쉬마르텐사이트(FM) 10%이하, 잔류오스테나이트 20%이하 및 페라이트 5% 이하를 포함하는 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판에 관한 것이다. The microstructure yields 50% or more of bainite, 10% or more of tempered martensite (TM), 10% or less of fresh martensite (FM), 20% or less of residual austenite and 5% or less of ferrite. It relates to a high strength cold rolled steel sheet excellent in strength, ductility and hole expansion properties.
상기 TM/FM 비가 2를 초과하는 것이 바람직하다. Preferably, the TM / FM ratio is greater than two.
본 발명은 또한 상기 냉연강판 표면에 용융아연도금처리된 용융아연도금강판 과, 합금화 용융아연도금처리된 합금화 용융아연도금강판에 관한 것이다. The present invention also relates to a hot-dip galvanized steel sheet hot-dip galvanized on the surface of the cold-rolled steel sheet, and an alloyed hot-dip galvanized steel sheet which has been alloyed hot-dip galvanized.
또한 본 발명은, In addition, the present invention,
중량%로, 탄소(C): 0.06~0.2%, 망간(Mn): 1.5~3.0%, 실리콘(Si): 0.3~2.5%, 알루미늄(Al): 0.01~0.2%, 니켈(Ni): 0.01~3.0%, 몰레브덴(Mo): 0.2%이하, 티타늄(Ti): 0.01~0.05, 안티몬(Sb): 0.02~0.05, 보론(B): 0.0005~0.003, 질소(N): 0.01% 이하(0%는 제외), 잔부 Fe 및 불가피한 불순물을 포함하는 강슬라브를 재가열하고, 이어, 열간 압연한 후 권취하는 공정; 및 By weight%, carbon (C): 0.06 to 0.2%, manganese (Mn): 1.5 to 3.0%, silicon (Si): 0.3 to 2.5%, aluminum (Al): 0.01 to 0.2%, nickel (Ni): 0.01 -3.0%, molybdenum (Mo): 0.2% or less, titanium (Ti): 0.01-0.05, antimony (Sb): 0.02-0.05, boron (B): 0.0005-0.003, nitrogen (N): 0.01% or less (Excluding 0%), reheating the steel slab containing the remaining Fe and unavoidable impurities, followed by hot rolling and winding up; And
상기 권취된 열연강판을 냉간 압연 후, Q&P 연속 소둔하는 공정;을 포함하고,And cold rolling the wound hot rolled steel sheet, followed by Q & P continuous annealing.
상기 Q&P 연속 소둔하는 공정은, The Q & P continuous annealing process,
상기 제조된 냉연강판을 Ac3 이상의 온도로 30초 이상으로 균열하며, 이후 5~20℃/초의 냉각 속도로 하기 관계식 1에 의해 정의되는 퀜칭 온도(QT)±10℃까지 냉각하는 공정; Cracking the produced cold rolled steel sheet at a temperature of Ac 3 or more for 30 seconds or more, and then cooling to a quenching temperature (QT) ± 10 ° C. defined by the following Equation 1 at a cooling rate of 5 to 20 ° C./sec;
상기 냉각된 강판을 하기 관계식 2에 의해 정의된 베이나이트 온도(PT)±10℃로 재가열하고, 이어, QT≥ 또는 ≥ QT-100℃의 온도 범위 내에서 100초 이상 유지한 후, 냉각하는 공정;을 포함하는 것을 특징으로 하는 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판 제조방법에 관한 것이다. Reheating the cooled steel sheet to bainite temperature (PT) ± 10 ° C. as defined by the following relation 2, and then maintaining it for 100 seconds or more within a temperature range of QT ≧ or ≧ QT-100 ° C., followed by cooling It relates to a high strength cold rolled steel sheet manufacturing method excellent in yield strength, ductility and hole expansion characterized in that it comprises a.
[관계식 1][Relationship 1]
QT =493.497 + 36.2874×Al - 394.0×C - 45.0×Mn - 11.4332×Mo - 20.8772×Ni - 13.0438×Si - 12.8×CrQT = 493.497 + 36.2874 x Al-394.0 x C-45.0 x Mn-11.4332 x Mo-20.8772 x Ni-13.0438 x Si-12.8 x Cr
[관계식 2][Relationship 2]
PT= 599.088 + 11.5214×Al - 225.2×C - 35.0×Mn - 19.9474×Ni - 24.9385×Si - 56.718×Mo - 22.1×CrPT = 599.088 + 11.5214 x Al-225.2 x C-35.0 x Mn-19.9474 x Ni-24.9385 x Si-56.718 x Mo-22.1 x Cr
상기 Q&P 연속 소둔을 마친 강판은, 그 미세조직이, 면적분율로 베이나이트 50% 이상, 템퍼드 마르텐사이트(TM) 10%이상, 프레쉬마르텐사이트(FM) 10%이하, 잔류오스테나이트 20%이하 및 페라이트 5% 이하를 포함할 수 있다. The steel sheet after the continuous Q & P continuous annealing has a microstructure of 50% or more of bainite, 10% or more of tempered martensite (TM), 10% or less of fresh martensite (FM), and 20% or less of residual austenite. And 5% or less of ferrite.
상기 TM/FM 비가 2를 초과하는 것이 바람직하다. Preferably, the TM / FM ratio is greater than two.
본 발명은 또한 상기 Q&P 연속 소둔된 냉연강판 표면에 용융아연도금처리한 공정;을 추가로 포함하는 용융아연도금강판 제조방법과, 상기 Q&P 연속 소둔된 냉연강판 표면 합금화 용융아연도금처리하는 공정;을 추가로 포함하는 합금화 용융아연도금강판 제조방법에 관한 것이다. The present invention also includes a process of hot-dip galvanizing the surface of the cold-rolled steel sheet continuously annealed Q &P; and a process of hot-dip galvanizing of the surface of the cold-rolled steel sheet continuously annealed Q &P; It relates to a method for producing an alloyed hot-dip galvanized steel sheet further comprising.
상술한 구성의 본 발명에 의하면, 기존의 DP강 또는 TRIP강과 같은 고연성 변태조직강 및 종래의 Q&P(Quenching & Partitioning) 열처리를 거친 Q&P강에 비해, 정확한 TM량과 베이나이트를 확보할 수 있으므로 항복강도와 연성 및 구멍확장성이 우수한 인장강도 980MPa 이상의 고강도 냉연강판, 용융아연도금강판 및 합금화 용융아연도금강판을 효과적으로 제공할 수 있다.According to the present invention of the above-described configuration, compared with the conventional high-ductile transformation tissue steel such as DP steel or TRIP steel and Q & P steel subjected to conventional Q & P (Quenching & Partitioning) heat treatment, it is possible to ensure accurate TM amount and bainite It can effectively provide high strength cold rolled steel sheet, hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet with yield strength and ductility and hole extension property excellent in tensile strength of 980MPa or more.
따라서 본 발명의 냉연강판 등은 건축 부재, 자동차강판 등의 산업분야에서 활용가능성이 높은 이점이 있다.Therefore, the cold rolled steel sheet of the present invention has the advantage of high availability in the industrial field, such as building member, automotive steel sheet.
도 1은 본 발명에 따른 소둔 공정의 일 예를 나타낸 것이다(도 1에서 열처리선 중 점선은 용융합금화도금 시의 열이력을 나타낸 것이다).Figure 1 shows an example of the annealing process according to the present invention (in Fig. 1 the dotted line of the heat treatment line shows the thermal history during the molten alloy plating).
도 2는 TBF법과 본 발명법의 저온 변태거동을 나타낸 것이다.Figure 2 shows the low temperature transformation behavior of the TBF method and the present invention method.
도 3은 본 발명에 의해 제조된 발명예(F)강의 미세조직을 관찰한 사진이다.Figure 3 is a photograph observing the microstructure of the inventive example (F) steel produced by the present invention.
도 4는 본 발명에 의해 제조된 냉연강판의 템퍼드 마르텐사이트 중 탄화물을 관찰한 결과이다.Figure 4 is a result of observing the carbide in the tempered martensite of the cold rolled steel sheet produced by the present invention.
도 5는 비교예(E) 강의 미세조직을 관찰한 사진이다.5 is a photograph observing the microstructure of the steel of Comparative Example (E).
본 발명자들은 기존 Q&P(Quenching & Partitioning) 열처리를 통해 제조되는 고강도강의 낮은 연성을 개선하는 방안에 대하여 깊이 연구한 결과, Q&P 열처리 시 종래기술 보다 더 정교한 특정 온도 구간에서 베이나이트 변태가 촉진되어 FM이 현저히 감소하는 열처리 조건을 찾아냈다. 퀜칭에 의한 마르텐사이트 형성량과 베이나이트 변태 촉진 구간으로 QT와 PT를 제어함으로써 최종 Q&P 열처리 후 조직의 미세화 및 최종 제품의 물성 개선이 가능함을 확인하고, 본 발명을 제시하는 것이다. The present inventors have studied in depth how to improve the low ductility of high strength steel manufactured by conventional Q & P (Quenching & Partitioning) heat treatment, so that the bainite transformation is promoted in a specific temperature range more sophisticated than the prior art during Q & P heat treatment. A heat treatment condition was found to decrease significantly. By controlling the QT and PT in the amount of martensite formation and bainite transformation by quenching, it is confirmed that the microstructure of the tissue after the final Q & P heat treatment and the improvement of physical properties of the final product are possible, and the present invention is proposed.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
먼저, 본 발명에서 제공하는 냉연강판 등의 합금 성분조성 및 그 함량 제한사유를 상세히 설명한다. 이때, 각 성분들의 함량은 특별한 언급이 없는 한 중량%를 의미한다.First, the composition of the alloy components, such as the cold-rolled steel sheet provided by the present invention and the reason for the content limitation will be described in detail. At this time, the content of each component means weight% unless otherwise specified.
C: 0.06~0.2%, C: 0.06-0.2%,
탄소(C)는 강을 강화시키는데 유효한 원소로서, 본 발명에서는 잔류 오스테나이트의 안정화 및 강도 확보를 위해서 첨가되는 중요 원소이다. 상술한 효과를 얻기 위해서는 0.06% 이상으로 첨가되는 것이 바람직한데, 그 함량이 0.06% 미만이면 오스테나이트 단상 온도가 매우 높아져 고온 소둔이 불가피하고 강도 및 연성 확보가 어렵다. 또한 0.2%를 초과하게 되면 Ms가 저하되어 퀜칭 온도가 낮아져 정교한 열처리가 어렵다. 또한 용접성도 크게 저하되는 문제가 있다. 따라서 본 발명에서 C의 함량은 0.06~0.2%로 제한하는 것이 바람직하다.Carbon (C) is an effective element for reinforcing steel, and is an important element added in the present invention for stabilizing residual austenite and securing strength. In order to obtain the above-mentioned effect, it is preferable to add at 0.06% or more. If the content is less than 0.06%, the austenite single-phase temperature is very high, and high temperature annealing is inevitable and strength and ductility are difficult to secure. In addition, when the content exceeds 0.2%, Ms is lowered and the quenching temperature is lowered, so that precise heat treatment is difficult. In addition, there is a problem that the weldability is also greatly reduced. Therefore, the content of C in the present invention is preferably limited to 0.06 ~ 0.2%.
Mn: 1.5~3.0%Mn: 1.5 ~ 3.0%
망간(Mn)은 페라이트의 변태를 제어하면서, 잔류 오스테나이트의 형성 및 안정화시키는데 유효한 원소이다. 이러한 Mn의 함량이 1.5% 미만이면 페라이트 변태가 다량 발생하여 목표로 하는 강도의 확보가 어려워지는 문제가 있으며, 반면 3.0%를 초과하게 되면 본 발명의 2차 소둔 열처리 단계에서의 상변태가 너무 지연되어 마르텐사이트가 다량 형성됨에 따라, 의도하는 연성의 확보가 어려워지는 문제가 있다. 따라서 본 발명에서 Mn의 함량은 1.5~3.0%로 제한하는 것이 바람직하다.Manganese (Mn) is an element effective in forming and stabilizing residual austenite while controlling the transformation of ferrite. If the Mn content is less than 1.5%, a large amount of ferrite transformation occurs, thereby making it difficult to secure the target strength. On the other hand, when the Mn content exceeds 3.0%, the phase transformation in the second annealing heat treatment step of the present invention is too delayed. As a large amount of martensite is formed, there is a problem that it is difficult to secure the intended ductility. Therefore, the content of Mn in the present invention is preferably limited to 1.5 ~ 3.0%.
Si: 0.3~2.5%Si: 0.3 ~ 2.5%
실리콘(Si)은 페라이트 내에서 탄화물의 석출을 억제하고, 페라이트 내 탄소가 오스테나이트로 확산하는 것을 조장하여, 결과적으로 베이나이트의 형성과 잔류 오스테나이트의 안정화에 기여하는 원소이다. 상술한 효과를 얻기 위해서는 0.3% 이상으로 첨가되는 것이 바람직하지만, 그 함량이 2.5%를 초과하는 경우에는 열간 및 냉간 압연성이 매우 나빠지며, 강 표면에 산화물을 형성하여 도금성을 저해하는 문제가 있다. 따라서 본 발명에서 Si의 함량은 0.3~2.5%로 제한하는 것이 바람직하다.Silicon (Si) is an element that suppresses the precipitation of carbides in ferrite and promotes diffusion of carbon in the ferrite into austenite and consequently contributes to the formation of bainite and stabilization of residual austenite. In order to obtain the above-mentioned effect, it is preferable to add 0.3% or more, but when the content exceeds 2.5%, hot and cold rolling properties are very poor, and there is a problem of inhibiting plating property by forming an oxide on the steel surface. have. Therefore, the content of Si in the present invention is preferably limited to 0.3 ~ 2.5%.
Al: 0.01~0.2%Al: 0.01 ~ 0.2%
알루미늄(Al)은 강 중 산소와 결합하여 탈산 작용을 하는 원소로서, 이를 위해서는 그 함량이 0.01% 이상을 유지하는 것이 바람직하다. 또한 Al은 상기 Si과 같이 페라이트 내에서 탄화물의 생성 억제를 통해 잔류 오스테나이트의 안정화에 기여하고 베이나이트 형성 온도를 높인다. 하지만 이러한 Al의 함량이 0.2%를 초과하게 되면 A3온도가 증가하게 되어 고온 소둔이 불가피할 뿐만 아니라 주조시 몰드 플러스와의 반응을 통해 건전한 슬라브 제조가 어려워지고, 아울러, 표면 산화물을 형성하여 도금성을 저해하는 문제가 있다. 따라서 본 발명에서 Al의 함량은 0.01~0.2%로 제한하는 것이 바람직하다. Aluminum (Al) is an element that deoxidizes by combining with oxygen in the steel, for this purpose it is preferable to maintain the content of 0.01% or more. In addition, Al contributes to stabilization of residual austenite and increases bainite formation temperature through suppression of carbide formation in ferrite as in Si. However, when the Al content exceeds 0.2%, the A3 temperature increases, so that high temperature annealing is inevitable, and it becomes difficult to manufacture a healthy slab through reaction with the mold plus during casting, and also form a surface oxide to form a plating property. There is a problem that inhibits. Therefore, the content of Al in the present invention is preferably limited to 0.01 ~ 0.2%.
니켈(Ni): 0.01~3.0% Nickel (Ni): 0.01 ~ 3.0%
니켈은 고용 강화에 의한 강도 확보와 오스테나이트를 안정화하는 원소로 0.01%이상 유지하는 것이 바람직하다. 그러나 베이나이트 변태를 지연시키는 효과가 커서 너무 많이 첨가하면 베이나이트 변태가 다 이루어지지 않아 FM이 형성되므로 상한을 3%로 제한함이 바람직하다. Nickel is preferably an element that stabilizes strength by solid solution strengthening and stabilizes austenite. However, since the effect of delaying bainite transformation is too large, the addition of too much bainite transformation is not achieved, so that the upper limit is preferably limited to 3%.
몰레브덴(Mo): 0.2%이하Molybdenum (Mo): 0.2% or less
Mo 역시 고용강화에 의해 강도를 강화하며 TiMo 탄화물을 형성하여 베이나이트 조직을 미세화하므로 첨가하지만, 합금철 가격이 높아 원가가 상승하는 문제로 상한을 0.2%로 제한함이 바람직하다.Mo is also added to strengthen the strength by strengthening the solid solution to form TiMo carbide to refine the bainite structure, but it is preferable to limit the upper limit to 0.2% due to the high cost of ferroalloy.
티타늄(Ti): 0.01~0.05Titanium (Ti): 0.01 ~ 0.05
티타늄은 TiN을 우선 형성하므로 고용 보론 첨가에 의한 소입성 향상을 위해서는 반드시 필요하다. 본 발명에서는 BN보다 우선하여 TiN이 형성될 수 있도록 하한을 0.01%로 하고, 너무 많게 되면 TiN이 정출하여 연주시 노즐 막힘을 야기하므로 그 상한을 0.05%로 제한함이 바람직하다.Since titanium forms TiN first, it is essential to improve the hardenability by addition of solid solution boron. In the present invention, it is preferable to limit the upper limit to 0.01% because the lower limit is 0.01% so that TiN can be formed in preference to BN, and if too much TiN is crystallized to cause nozzle clogging during playing.
안티몬(Sb): 0.02~0.05Antimony (Sb): 0.02-0.05
안티몬은 입계 편석물질로서 입계 산화물을 형성하므로 입계를 통한 탈탄 억제와 Mn, Si등의 표면 농화에 따른 아연 도금성 저하를 억제할 수단으로 0.02%이상 첨가하는 것이 바람직하다. 그러나 너무 많으면, 입계 편석이 증가하여 강의 취성을 야기하므로 상한을 0.05%로 제한하였다.Since antimony forms a grain boundary oxide as a grain boundary segregation material, it is preferable to add 0.02% or more as a means for suppressing decarburization through grain boundaries and a decrease in zinc plating property due to surface concentration of Mn and Si. However, if too much, the grain boundary segregation increases, causing brittleness of the steel, so the upper limit was limited to 0.05%.
보론(B): 0.0005~0.003Boron (B): 0.0005-0.003
보론은 소입에 따른 강도 확보가 용이한 저가의 합금원소로서 합금 총량을 줄이는 효과가 있고, 용접성이나 고온 취성 억제에 유리한 원소로 하한을 0.005%로 하였다. 그러나 너무 많게 되면 TiN보다 BN형성온도가 높아져 강의 고온 취성을 야기하므로 상한을 0.003%로 제한함이 바람직하다.Boron is an inexpensive alloy element that is easy to secure strength due to quenching, and has an effect of reducing the total amount of alloys, and has a lower limit of 0.005% as an element advantageous for suppressing weldability and high temperature brittleness. However, if too much, the BN forming temperature is higher than TiN, causing high temperature brittleness of the steel, so it is preferable to limit the upper limit to 0.003%.
질소(N): 0.01% 이하Nitrogen (N): 0.01% or less
질소는 BN, TiN형성으로 합금원소의 합금 효율을 저감하므로 통상 제어할 수 있는 범위인 0.01%이하로 제한함이 바람직하다.Since nitrogen reduces the alloying efficiency of alloying elements by forming BN and TiN, it is preferable to limit it to 0.01% or less, which is usually in a controllable range.
본 발명의 나머지 성분은 철(Fe)이다. 기타 통상의 철강제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있다. 이들 불순물들은 통상의 철강제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the present invention is iron (Fe). In other conventional steelmaking processes, undesired impurities from raw materials or the surrounding environment can be inevitably incorporated. Since these impurities are known to those skilled in the art of ordinary steel manufacturing, not all of them are specifically mentioned herein.
한편 상술한 강 조성 성분을 만족하는 본 발명의 냉연강판은, 면적 분율로 베이나이트 50% 이상, 템퍼드 마르텐사이트(TM) 10%이상, 프레쉬마르텐사이트(FM) 10%이하, 잔류오스테나이트 20%이하 및 페라이트 5% 이하를 포함하는 미세조직을 가진다. 여기에서, 상기 베이나이트는 마르텐사이트 다음으로 강도가 높고 페라이트와 마르텐사이트의 중간 특성을 지니며, 아울러 미세한 잔류 오스텐나이트를 베이나이트 상 내부에 분포시키면 강의 강도, 연성 발란스가 매우 높아진다. On the other hand, the cold-rolled steel sheet of the present invention that satisfies the above-mentioned steel composition components has an area fraction of 50% or more of bainite, 10% or more of tempered martensite (TM), 10% or less of fresh martensite (FM), and residual austenite 20 It has a microstructure comprising less than% and less than 5% ferrite. Herein, the bainite has the highest strength after martensite and has intermediate properties between ferrite and martensite, and when the fine residual austenite is distributed inside the bainite phase, the strength and ductility of the steel are very high.
상술한 미세조직을 만족하는 본 발명의 냉연강판은 인장강도가 980MPa 이상이고, 기존의 Q&P 열처리를 통해 제조된 강판에 비해 우수한 항복강도와 프레스 성형성, 연성 및 구멍확장성이 우수한 고성형 기가급 고강도 강판을 제공할 수 있다. The cold rolled steel sheet of the present invention that satisfies the above-described microstructure has a tensile strength of 980 MPa or more, and has high yield strength and press formability, ductility, and hole expansion properties compared to steel sheets manufactured through conventional Q & P heat treatment. High strength steel sheet can be provided.
본 발명은 또한 상기 냉연강판 표면에 용융아연도금처리한 용융아연도금강판 과, 그 용융아연도금강판을 합금화 열처리한 합금화 용융아연도금강판을 제공할 수도 있다. The present invention may also provide a hot dip galvanized steel sheet subjected to hot dip galvanizing on the surface of the cold rolled steel sheet, and an alloy hot dip galvanized steel sheet obtained by alloying and heat-treating the hot dip galvanized steel sheet.
다음으로, 본 발명의 냉연강판 등의 제조 방법에 대하여 상세히 설명한다.Next, the manufacturing method of the cold rolled steel plate etc. of this invention is demonstrated in detail.
본 발명에 따른 냉연강판은, 상술한 강 성분조성을 만족하는 강 슬라브를 재가열 - 열간압연 - 권취 - 냉간압연 - 소둔 공정을 거침으로써 제조될 수 있으며, 이를 상술하면 아래와 같다. The cold rolled steel sheet according to the present invention may be manufactured by reheating, hot rolling, winding, cold rolling, and annealing a steel slab satisfying the above-described steel composition, which will be described below.
(강 슬라브 재가열공정)Steel slab reheating process
본 발명에서는 열간압연을 행하기에 앞서 강 슬라브를 재가열하여 균질화 처리하는 공정을 거치는 것이 바람직하며, 이는 1000~1300℃의 온도범위에서 행하는 것이 보다 바람직하다.In the present invention, it is preferable to go through the process of re-heating and homogenizing the steel slab prior to performing the hot rolling, which is more preferably carried out in the temperature range of 1000 ~ 1300 ℃.
상기 재가열시 온도가 1000℃ 미만이면 압연하중이 급격히 증가하는 문제가 발생하며, 반면 그 온도가 1300℃를 초과하게 되면 에너지 비용이 증가할 뿐만 아니라, 표면 스케일의 양이 과다해지는 문제가 발생한다. 따라서 본 발명에서 재가열 공정은 1000~1300℃에서 실시하는 것이 바람직하다.If the temperature is less than 1000 ° C during reheating, the rolling load may increase rapidly. On the other hand, if the temperature exceeds 1300 ° C, not only energy costs increase, but the amount of surface scale may be excessive. Therefore, in the present invention, the reheating step is preferably carried out at 1000 ~ 1300 ℃.
(열간 압연공정)(Hot rolling process)
상기 재가열된 강 슬라브를 열간 압연하여 열연강판으로 제조하고, 이때 열간 마무리 압연은 800~950℃에서 실시하는 것이 바람직하다.The reheated steel slab is hot rolled to produce a hot rolled steel sheet, wherein hot finish rolling is preferably performed at 800 to 950 ° C.
상기 열간 마무리 압연시 압연온도가 800℃ 미만이면 압연하중이 많이 증가하여 압연이 어려워지는 문제가 있으며, 반면 열간 마무리 압연온도가 950℃를 초과하게 되면 압연롤의 열피로가 많이 증가하여 수면단축의 원인이 된다. 따라서 본 발명에서는 열간 압연 시 열간 마무리 압연온도를 800~950℃로 제한하는 것이 바람직하다.If the rolling temperature is less than 800 ℃ during the hot finish rolling, there is a problem that the rolling load is increased to increase the difficulty of rolling, while if the hot finishing rolling temperature exceeds 950 ℃, the thermal fatigue of the rolling roll increases a lot of water shortening Cause. Therefore, in the present invention, it is preferable to limit the hot finish rolling temperature to 800 to 950 ° C during hot rolling.
(권취 공정)(Winding process)
이어, 상기에 따라 제조된 열연강판을 권취하는데, 이때 권취온도는 750℃ 이하인 것이 바람직하다.Subsequently, the hot rolled steel sheet manufactured according to the above is wound, wherein the winding temperature is preferably 750 ° C. or less.
권취 시 권취 온도가 너무 높으면 열연강판 표면에 스케일이 과다하게 발명하여 표면결함을 유발하고, 도금성을 열화시키는 원인이 된다. 따라서 권취공정은 750℃ 이하에서 실시하는 것이 바람직하다. 이때 권취온도의 하한은 특별히 한정하지 아니하나, 마르텐사이트의 형성에 의한 열연판 강도가 과도하게 높아짐에 따른 후속 냉간압연의 어려움을 고려하여 Ms(마르텐사이트 변태개시온도)~750℃에서 실시하는 것이 보다 바람직하다.If the winding temperature is too high during winding, the scale is invented excessively on the surface of the hot-rolled steel sheet, causing surface defects and deteriorating the plating property. Therefore, it is preferable to perform a winding process at 750 degreeC or less. At this time, the lower limit of the coiling temperature is not particularly limited, but considering the difficulty of subsequent cold rolling due to excessively high strength of the hot rolled sheet due to the formation of martensite, it is carried out at Ms (Martensite transformation start temperature) to 750 ° C. More preferred.
(냉간압연 공정)(Cold rolling process)
상기 권취된 열연강판을 산세 처리하여 산화층을 제거한 다음, 강판의 형상과 두께를 맞추기 위해 냉간압연을 실시하여 냉연강판을 제조한다. The wound hot rolled steel sheet is pickled to remove an oxide layer, and then cold rolled to produce a cold rolled steel sheet to match the shape and thickness of the steel sheet.
통상, 냉간압연은 고객이 요구하는 두께를 확보하기 위하여 실시하며, 이때 압하율의 제한은 없으나, 후속 소둔 공정에서의 재결정시 조대 페라이트 결정립의 생성을 억제하기 위하여 30% 이상의 냉간 압하율로 실시하는 것이 바람직하다.In general, cold rolling is carried out to secure the thickness required by the customer, and there is no limitation on the reduction ratio, but cold rolling reduction is performed at 30% or more to suppress the formation of coarse ferrite grains during recrystallization in a subsequent annealing process. It is preferable.
(Q&P 연속 소둔 공정)(Q & P Continuous Annealing Process)
본 발명에서 최종 미세조직이 베이나이트 50% 이상, 템퍼드 마르텐사이트(TM) 10%이상, 프레쉬마르텐사이트(FM) 10%이하, 잔류오스테나이트 20%이하 및 페라이트 5% 이하를 포함하는 냉연강판을 제조하기 위해서는 후속하는 소둔 공정의 제어가 중요하다. 특히, 본 발명에서는 소둔시 탄소, 망간 등의 원소들의 재분배(partitioning)로부터 목적하는 미세조직을 확보하기 위하여, 통상의 냉간압연 후 Q&P 연속 소둔 공정을 채택하되 후술하는 바와 같이 QT, PT를 합금원소에 따라 제어하는 것을 특징으로 한다.In the present invention, the final microstructure is 50% or more of bainite, 10% or more of tempered martensite (TM), 10% or less of fresh martensite (FM), 20% or less of residual austenite and 5% or less of ferrite In order to prepare the control of the subsequent annealing process is important. Particularly, in the present invention, in order to secure a desired microstructure from redistribution of elements such as carbon and manganese during annealing, conventional Q & P continuous annealing process is adopted after cold rolling, but QT and PT are alloy elements as described below. Control according to the.
균열 및 급냉Crack and quench
먼저, 상기 제조된 냉연강판을 Ac3 이상의 온도로 30초 이상으로 균열하며, 이후 5~20℃/초의 냉각 속도로 하기 관계식 1에 의해 정의되는 퀜칭 온도(QT)±10℃까지 냉각하는 것이 바람직하다(도 1 참조). First, the produced cold-rolled steel sheet is cracked for more than 30 seconds at a temperature of Ac3 or more, and then cooled to a quenching temperature (QT) ± 10 ° C defined by the following relation 1 at a cooling rate of 5 to 20 ° C / sec. (See Figure 1).
이는 구멍확장성에 불리한 페라이트 조직을 5% 이내로 얻기 위한 것으로서 본 발명의 페라이트 미형성 냉각 속도는 5~20℃가 되도록 설계하였다. 냉각 속도가 이보다 높아도 문제는 없지만, 냉각 속도가 느릴수록 뒤틀림 없이 판 형상이 우수하므로 보다 높일 필요는 없다. This is to obtain a ferrite structure that is detrimental to pore expandability within 5%, the ferrite unformed cooling rate of the present invention was designed to be 5 ~ 20 ℃. There is no problem even if the cooling rate is higher than this, but the slower the cooling rate, the better the plate shape without distortion, and does not need to be increased.
QT는 20~50%의 마르텐사이트가 형성되는 온도까지 냉각한다. Q&P에서 퀜칭 중 형성되는 마르텐사이트는 PT까지 재가열하고 파티셔닝 처리하면, 템퍼링을 일으켜 보다 강도가 저하할 뿐 아니라, 베이나이트 형성 촉진 역할을 한다. 도 2에 나타난 바와 같이, 같은 온도에서 파티셔닝 처리를 하여도, 베이나이트 역 온도까지 급냉하여 항온 유지하는 TBF는 600초가 지나도 베이나이트 석출이 완전히 이루어지지 않아 FM이 형성되는 반면, 충분히 마르텐 사이트를 형성시키면 짧은 시간에서도 베이나이트 변태가 완전히 이루어져 FM이 형성되지 않음을 알 수 있다. 이처럼 본 발명에서 FM을 극소화하고자 하는 것은 베이나이트 변태과정에서 남아있는 오스테나이트에 탄소, 망간과 같은 원소가 농화되므로 오스테나이트로 남지 못하고 최종 냉각 중에 변태되는 FM에는 합금 원소량이 매우 높은 마르텐사이트로 강도가 매우 높아, 구멍확장 중에 계면 분리를 일으켜 균열을 쉽게 하여 구멍확장성을 현저히 떨어트리기 때문이다. QT cools down to 20-50% martensite. Martensite formed during quenching at Q & P, when reheated and partitioned to PT, causes tempering and lowers strength, and promotes bainite formation. As shown in FIG. 2, even when partitioning is performed at the same temperature, the TBF rapidly cooled to the bainite reverse temperature and maintained at a constant temperature does not completely bainite precipitation after 600 seconds, whereas FM is formed, but sufficiently forms martensite. In this case, it can be seen that even in a short time, the bainite transformation is completely performed, and thus no FM is formed. Thus, to minimize the FM in the present invention, the elements such as carbon and manganese are concentrated in the austenite remaining in the bainite transformation process, so that the FM does not remain austenite and is transformed during final cooling. This is because the strength is very high, and the interfacial separation occurs during the hole expansion, so that the cracks are easily broken, thereby greatly reducing the hole expandability.
본 발명에서는 이러한 특성을 새롭게 발견하고, 이를 통해 베이나이트 주상을 갖는 고성형성 고강도강을 새롭게 개발하였으며, 베이나이트 형성 촉진과 베이나이트 면적율이 최대로 되는 QT를 아래와 같이 실험을 통해 구하였다.In the present invention, these properties are newly discovered and newly developed high-strength high-strength steel having bainite columnar, and the QT which promotes bainite formation and the bainite area ratio is obtained through experiments as follows.
[관계식 1][Relationship 1]
QT =493.497 + 36.2874×Al - 394.0×C - 45.0×Mn - 11.4332×Mo - 20.8772×Ni - 13.0438×Si - 12.8×CrQT = 493.497 + 36.2874 x Al-394.0 x C-45.0 x Mn-11.4332 x Mo-20.8772 x Ni-13.0438 x Si-12.8 x Cr
파티셔닝 열처리Partitioning Heat Treatment
이어, 본 발명에서는 상기 냉각된 강판을 하기 관계식 2에 의해 정의된 베이나이트 온도(PT)±10℃로 재가열하고, 이어, QT≥ 또는 ≥ QT-100℃의 온도 범위 내에서 100초 이상 유지한 후, 냉각한다. Subsequently, in the present invention, the cooled steel sheet is reheated to a bainite temperature (PT) ± 10 ° C. defined by Equation 2 below, and then maintained for 100 seconds or more within a temperature range of QT≥ or ≥ QT-100 ° C. After that, it is cooled.
상술한 퀜칭 이후, 베이나이트 온도(PT)로 재가열하고 항온유지 함에 있어서, 베이나이트가 가장 빨리 형성되는 온도를 실험에 의해 구하였다. 이보다 온도가 높으면 베이나이트 형성량이 적고, 잔류 오스테나이트의 안정화가 미흡하며 FM형성이 오히려 증가하므로 PT는 반드시 PT±10℃까지는 가열을 하여야 한다.After the above-mentioned quenching, the temperature at which bainite is formed fastest in the reheating and constant temperature holding at bainite temperature PT was determined by experiment. If the temperature is higher than this, the amount of bainite formation is small, the stabilization of residual austenite is insufficient and the FM formation is rather increased. Therefore, PT must be heated to PT ± 10 ℃.
[관계식 2][Relationship 2]
PT= 599.088 + 11.5214×Al - 225.2×C - 35.0×Mn - 19.9474×Ni - 24.9385×Si - 56.718×Mo - 22.1×CrPT = 599.088 + 11.5214 x Al-225.2 x C-35.0 x Mn-19.9474 x Ni-24.9385 x Si-56.718 x Mo-22.1 x Cr
종래의 기술과 달리 본 발명에서는 항온 유지를 일정한 온도로 유지할 필요는 없다. 항온유지는 QT≥ 또는 ≥ QT-100℃의 온도 범위 내에서 100초 이상 유지한 후, 냉각하면 되므로 가열 유지 장치가 없는 항온로를 가진 설비에 적용이 용이하다는 장점을 가진다.Unlike the prior art, the present invention does not need to maintain constant temperature at a constant temperature. Constant temperature maintenance has the advantage that it is easy to apply to a facility having a constant temperature furnace without a heating maintenance device because it only needs to cool after maintaining for more than 100 seconds within the temperature range of QT≥ or ≥ QT-100 ℃.
이와 같이 Q&P 열처리하면, 베이나이트 50% 이상, 템퍼드 마르텐사이트(TM) 10%이상, 프레쉬마르텐사이트(FM) 10%이하, 잔류오스테나이트 20%이하 및 페라이트 5% 이하를 포함하는 강을 제조할 수 있으며, 강도 차이가 큰 페라이트와 FM을 극소화하여 기존의 Q&P 열처리를 통해 제조된 강판에 비해 우수한 항복강도, 연성 및 구멍확장성이 우수한 고성형 기가급 고강도 강판을 제조할 수 있다.In this way, Q & P heat treatment produces steel containing 50% or more of bainite, 10% or more of tempered martensite (TM), 10% or less of fresh martensite (FM), 20% or less of residual austenite and 5% or less of ferrite. By minimizing ferrite and FM with a large difference in strength, it is possible to manufacture a high-strength giga-grade high-strength steel sheet having excellent yield strength, ductility, and hole expansion properties compared to steel sheets manufactured through conventional Q & P heat treatment.
(도금)(Plated)
상기 1차 및 2차 소둔 열처리된 냉연강판을 도금처리하여 도금강판을 제조할 수 있다. 이때, 도금처리는 용융도금법 또는 합금화 용융도금법으로 실시하는 것이 바람직하며, 이들로부터 형성된 도금층은 아연계인 것이 바람직하다.The first and second annealing heat-treated cold rolled steel plate may be plated to produce a plated steel sheet. At this time, the plating treatment is preferably carried out by a hot dip plating method or an alloyed hot dip plating method, and the plating layer formed from them is preferably zinc-based.
상기 용융도금법을 이용하는 경우에는 아연도금욕에 침지하여 용융도금강판으로 제조할 수 있으며, 합금화 용융도금법의 경우에도 통상의 합금화 용융도금처리를 수행함으로써 합금화 용융도금강판을 제조할 수 있다.When the hot dip plating method is used, the hot dip galvanizing bath may be manufactured as a hot dip galvanized steel sheet, and in the case of the hot dip galvanizing method, an alloy may be manufactured by performing a conventional alloy hot dip plating process.
이하, 실시예를 통하여 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail through examples.
(실시예)(Example)
하기 표 1에 나타낸 성분조성을 갖는 용융금속을 진공용해를 통해 두께 90mm, 폭 175mm의 잉곳으로 제조하였다. 이어, 이를 1200℃에서 1시간 동안 재가열하여 균질화 처리한 후, Ar3 이상의 온도인 900℃ 이상에서 열간 마무리 압연하여 열연강판을 제조하였다. 이후, 상기 열연강판을 냉각한 후 600℃로 미리 가열된 로에 장입하여 1시간 유지한 후 로냉시킴으로써 열연 권취를 모사하였다. 이와 같이 열간 압연된 판재를 50~60%의 냉간압하율로 냉간압연 한 후, 하기 표 2의 조건으로 소둔 열처리를 행하여 최종 냉연강판을 제조하였다. The molten metal having the composition shown in Table 1 was prepared in a 90 mm thick, 175 mm wide ingot through vacuum melting. Subsequently, it was reheated for 1 hour at 1200 ° C. for homogenization treatment, and hot-rolled and rolled at 900 ° C. or higher, which is a temperature of Ar 3 or higher, to prepare a hot rolled steel sheet. Thereafter, the hot rolled steel sheet was cooled, charged into a furnace preheated to 600 ° C., held for 1 hour, and then cold rolled to simulate hot rolled winding. The hot rolled sheet material as described above was cold rolled at a cold reduction rate of 50 to 60%, and then subjected to annealing heat treatment under the conditions of Table 2 to produce a final cold rolled steel sheet.
상기와 같이 제조된 각각의 냉연강판에 대하여 조직 분율, 항복강도, 인장강도, 연신율 및 HER을 측정하였으며, 그 결과를 또한 하기 표 2에 나타내었다.For each cold rolled steel sheet prepared as described above, the tissue fraction, yield strength, tensile strength, elongation, and HER were measured, and the results are also shown in Table 2 below.
CC MnMn SiSi AlAl CrCr NiNi MoMo TiTi SbSb BB NN
발명강AInventive Steel A 0.10.1 2.22.2 1.41.4 0.020.02 0.60.6 0.020.02 0.040.04 0.0170.017 0.0270.027 0.00210.0021 0.0050.005
발명강BInventive Steel B 0.140.14 1.91.9 1.41.4 0.030.03 0.50.5 0.020.02 0.040.04 0.0210.021 0.040.04 0.00170.0017 0.0030.003
발명강CInventive Steel C 0.180.18 2.52.5 0.60.6 0.020.02 1.11.1 0.020.02 0.050.05 0.0140.014 0.0210.021 0.00120.0012 0.0040.004
발명강DInventive Steel D 0.160.16 2.12.1 1.91.9 0.040.04 0.30.3 0.020.02 0.050.05 0.0220.022 0.0350.035 0.00230.0023 0.0060.006
발명강EInventive Steel E 0.090.09 2.22.2 1.41.4 0.150.15 0.60.6 0.020.02 0.060.06 0.0310.031 0.0270.027 0.00180.0018 0.0050.005
발명강FInventive Steel F 0.130.13 1.81.8 1.31.3 0.020.02 0.40.4 22 0.020.02 0.0270.027 0.0320.032 0.00170.0017 0.0040.004
발명강GInvention Steel G 0.080.08 2.52.5 1.31.3 0.060.06 0.30.3 0.030.03 0.180.18 0.0190.019 0.0410.041 0.00240.0024 0.0050.005
비교강HComparative Steel H 0.050.05 2.12.1 1.61.6 0.020.02 0.450.45 0.060.06 0.050.05 0.0150.015 0.030.03 0.00170.0017 0.0030.003
비교강IComparative Steel I 0.180.18 1.81.8 0.210.21 0.020.02 0.280.28 0.020.02 0.040.04  -- 0.040.04 -- 0.0050.005
비교강JComparative Steel J 0.080.08 1One 1.31.3 0.040.04 0.90.9 0.020.02 0.020.02 0.0120.012 0.020.02 0.00110.0011 0.0040.004
비교강KComparative Steel K 0.170.17 2.22.2 1.31.3 0.250.25 0.30.3 0.020.02 0.050.05 0.0270.027 0.040.04 0.00180.0018 0.0040.004
비교강LComparative Steel L 0.180.18 1.61.6 1.51.5 0.020.02 1.61.6 3.53.5 0.050.05 0.0320.032 0.0210.021 0.00130.0013 0.0050.005
Figure PCTKR2017013762-appb-T000001
Figure PCTKR2017013762-appb-T000001
*상기 표 2에서 B는 베이나이트, TM은 템퍼드마르텐사이트, FM은 프레쉬마르텐사이트, A는 잔류 오스테나이트, F는 페라이트를 나타낸다. In Table 2, B represents bainite, TM represents tempered martensite, FM represents fresh martensite, A represents residual austenite, and F represents ferrite.
상기 표 1에 나타난 바와 같이, 강 조성성분뿐만 아니라 제조공정이 본 발명의 범위를 만족하는 발명예(A-G)은 모두 우수한 항복강도, 연성 및 구멍확장성을 보임을 알 수 있다. As shown in Table 1, it can be seen that not only the steel composition but also the production process satisfying the scope of the present invention (A-G) all show excellent yield strength, ductility and hole expandability.
도 3은 본 발명에 의해 제조된 발명예(F) 강의 미세조직을 관찰한 사진이다. 표 2에 나타난 바와 같이, 발명예(F)강은 베이나이트가 75%로 주상이며, TM, FM이 각각 14%, 5%로 TM/FM이 2를 초과하며, F가 5% 미만의 베이나이트 강을 제조할 수 있음을 알 수 있다. 이점이 본 발명의 기술적 특징으로 기존에는 Q&P열처리를 통해서 페라이트 기지의 TRIP강을 제조하거나 템퍼드 마르텐사이트 강을 만드는데 주력했으나, 본 발명과 같이 강 조성성분 및 QT, PT 를 특정하면 베이나이트 기지 조직을 TBF 열처리 방법보다 용이하게 만들 수 있다.Figure 3 is a photograph observing the microstructure of the inventive example (F) steel produced by the present invention. As shown in Table 2, inventive steel (F) steel has a bainite of 75%, a TM, FM of 14%, and 5% of TM / FM of more than 2, and F of less than 5% of bays. It can be seen that the night steel can be produced. This is a technical feature of the present invention, but conventionally focused on making ferritic TRIP steel or tempered martensitic steel through Q & P heat treatment, but if the steel composition and QT, PT are specified, the bainite matrix structure Can be made easier than the TBF heat treatment method.
한편 도 4는 도 3의 조직 중 TM을 APT로 관찰한 것이다. 천이 탄화물과 조대한 시멘타이트가 섞여 있어서 템퍼드 마르텐사이트 임을 알 수 있다.Meanwhile, FIG. 4 is an APT observation of TM in the tissue of FIG. 3. The transition carbide and coarse cementite are mixed to show tempered martensite.
이에 반하여, 강 조성성분이나 제조공정이 본 발명의 범위를 벗어나는 비교예(H-L, B,E,G)는 모두 본 발명예 대비 모두 항복강도, 연성 및 구멍확장성이 좋지 않음을 알 수 있다. On the contrary, it can be seen that the comparative examples (H-L, B, E, G) in which the steel composition or the manufacturing process are out of the scope of the present invention are all poor in yield strength, ductility, and hole expandability compared to the present invention.
특히, 상기 표 2에 나타낸 바와 같이, 강 조성성분이 본 발명의 범위를 만족하나 제조공정이 본 발명에 의하지 아니하는 비교예(B,E,G)는 모두 원하는 물성이 얻어지지 않음을 알 수 있다. In particular, as shown in Table 2, Comparative Examples (B, E, G) in which the steel composition component satisfies the scope of the present invention but the manufacturing process does not depend on the present invention can be seen that the desired physical properties are not obtained. have.
도 5는 비교예(E) 강의 조직으로 동일한 성분이지만, 이상역 소둔과 TBF 열처리로 인하여 페라이트와 FM이 형성되어 강도와 HER이 낮음을 확인할 수 있다. Figure 5 is the same component as the structure of the steel (E), but the ferrite and FM are formed due to the annealing annealing and TBF heat treatment can be confirmed that the strength and HER is low.
상기 결과로 볼 때, 본 발명에 따라 제조되는 냉연강판은 980MPa 이상의 항복강도 및 우수한 연신율과 HER을 확보할 수 있어서, 기존의 Q&P 열처리 공정을 통해 제조된 강재에 비해 구조부재에 적용하기 위한 냉간성형을 용이하게 행할 수 있는 장점이 있다.As a result, the cold rolled steel sheet produced according to the present invention can secure a yield strength and excellent elongation and HER of 980MPa or more, the cold forming for applying to the structural member compared to the steel produced through the conventional Q & P heat treatment process There is an advantage that can be easily performed.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.As described above, in the detailed description of the present invention has been described with respect to preferred embodiments of the present invention, those skilled in the art to which the present invention pertains various modifications without departing from the scope of the present invention Of course this is possible. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the equivalents as well as the claims to be described later.

Claims (9)

  1. 중량%로, 탄소(C): 0.06~0.2%, 망간(Mn): 1.5~3.0%, 실리콘(Si): 0.3~2.5%, 알루미늄(Al): 0.01~0.2%, 니켈(Ni): 0.01~3.0%, 몰레브덴(Mo): 0.2%이하, 티타늄(Ti): 0.01~0.05, 안티몬(Sb): 0.02~0.05, 보론(B): 0.0005~0.003, 질소(N): 0.01% 이하(0%는 제외), 잔부 Fe 및 불가피한 불순물을 포함하고, By weight%, carbon (C): 0.06 to 0.2%, manganese (Mn): 1.5 to 3.0%, silicon (Si): 0.3 to 2.5%, aluminum (Al): 0.01 to 0.2%, nickel (Ni): 0.01 -3.0%, molybdenum (Mo): 0.2% or less, titanium (Ti): 0.01-0.05, antimony (Sb): 0.02-0.05, boron (B): 0.0005-0.003, nitrogen (N): 0.01% or less (Excluding 0%), balance Fe and inevitable impurities,
    그 미세조직이, 면적분율로 베이나이트 50% 이상, 템퍼드 마르텐사이트(TM) 10%이상, 프레쉬마르텐사이트(FM) 10%이하, 잔류오스테나이트 20%이하 및 페라이트 5% 이하를 포함하는 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판. The microstructure yields 50% or more of bainite, 10% or more of tempered martensite (TM), 10% or less of fresh martensite (FM), 20% or less of residual austenite and 5% or less of ferrite. High strength cold rolled steel with excellent strength, ductility and hole expansion.
  2. 제 1항에 있어서, 상기 TM/FM 비가 2를 초과하는 것을 특징으로 하는 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판. The high strength cold rolled steel sheet having excellent yield strength, ductility, and hole expansion property according to claim 1, wherein the TM / FM ratio exceeds 2.
  3. 제 1항의 냉연강판 표면에 용융아연도금처리된 용융아연도금강판. Hot-dip galvanized steel sheet is hot-dip galvanized on the surface of the cold-rolled steel sheet of claim 1.
  4. 제 1항의 냉연강판 표면에 합금화 용융아연도금처리된 합금화 용융아연도금강판.An alloyed hot-dip galvanized steel sheet obtained by alloying hot-dip galvanized on the surface of the cold-rolled steel sheet of claim 1.
  5. 중량%로, 탄소(C): 0.06~0.2%, 망간(Mn): 1.5~3.0%, 실리콘(Si): 0.3~2.5%, 알루미늄(Al): 0.01~0.2%, 니켈(Ni): 0.01~3.0%, 몰레브덴(Mo): 0.2%이하, 티타늄(Ti): 0.01~0.05, 안티몬(Sb): 0.02~0.05, 보론(B): 0.0005~0.003, 질소(N): 0.01% 이하(0%는 제외), 잔부 Fe 및 불가피한 불순물을 포함하는 강슬라브를 재가열하고, 이어, 열간 압연한 후 권취하는 공정; 및 By weight%, carbon (C): 0.06 to 0.2%, manganese (Mn): 1.5 to 3.0%, silicon (Si): 0.3 to 2.5%, aluminum (Al): 0.01 to 0.2%, nickel (Ni): 0.01 -3.0%, molybdenum (Mo): 0.2% or less, titanium (Ti): 0.01-0.05, antimony (Sb): 0.02-0.05, boron (B): 0.0005-0.003, nitrogen (N): 0.01% or less (Excluding 0%), reheating the steel slab containing the remaining Fe and unavoidable impurities, followed by hot rolling and winding up; And
    상기 권취된 열연강판을 냉간 압연 후, Q&P 연속 소둔하는 공정;을 포함하고,And cold rolling the wound hot rolled steel sheet, followed by Q & P continuous annealing.
    상기 Q&P 연속 소둔하는 공정은, The Q & P continuous annealing process,
    상기 제조된 냉연강판을 Ac3 이상의 온도로 30초 이상으로 균열하며, 이후 5~20℃/초의 냉각 속도로 하기 관계식 1에 의해 정의되는 퀜칭 온도(QT)±10℃까지 냉각하는 공정; Cracking the produced cold rolled steel sheet at a temperature of Ac 3 or more for 30 seconds or more, and then cooling to a quenching temperature (QT) ± 10 ° C. defined by the following Equation 1 at a cooling rate of 5 to 20 ° C./sec;
    상기 냉각된 강판을 하기 관계식 2에 의해 정의된 베이나이트 온도(PT)±10℃로 재가열하고, 이어, QT≥ 또는 ≥ QT-100℃의 온도 범위 내에서 100초 이상 유지한 후, 냉각하는 공정;을 포함하는 것을 특징으로 하는 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판 제조방법. Reheating the cooled steel sheet to bainite temperature (PT) ± 10 ° C. as defined by the following relation 2, and then maintaining it for 100 seconds or more within a temperature range of QT ≧ or ≧ QT-100 ° C., followed by cooling Yield strength, ductility and hole expansion properties excellent cold rolled steel sheet manufacturing method comprising a.
    [관계식 1][Relationship 1]
    QT =493.497 + 36.2874×Al - 394.0×C - 45.0×Mn - 11.4332×Mo - 20.8772×Ni - 13.0438×Si - 12.8×CrQT = 493.497 + 36.2874 x Al-394.0 x C-45.0 x Mn-11.4332 x Mo-20.8772 x Ni-13.0438 x Si-12.8 x Cr
    [관계식 2][Relationship 2]
    PT= 599.088 + 11.5214×Al - 225.2×C - 35.0×Mn - 19.9474×Ni - 24.9385×Si - 56.718×Mo - 22.1×CrPT = 599.088 + 11.5214 x Al-225.2 x C-35.0 x Mn-19.9474 x Ni-24.9385 x Si-56.718 x Mo-22.1 x Cr
  6. 제 5항에 있어서, 상기 Q&P 연속 소둔을 마친 강판은, 그 미세조직이, 면적분율로 베이나이트 50% 이상, 템퍼드 마르텐사이트(TM) 10%이상, 프레쉬마르텐사이트(FM) 10%이하, 잔류오스테나이트 20%이하 및 페라이트 5% 이하를 포함하는 것을 특징으로 하는 항복강도, 연성 및 구멍확장성이 우수한 냉연강판 제조방법. According to claim 5, The Q & P continuous annealing steel sheet, the microstructure of the area fraction 50% or more bainite, 10% or more tempered martensite (TM), 10% or less fresh martensite (FM), A method for producing cold rolled steel sheet having excellent yield strength, ductility, and hole expandability, comprising 20% or less of residual austenite and 5% or less of ferrite.
  7. 제 6항에 있어서, 상기 TM/FM 비가 2를 초과하는 것을 특징으로 하는 항복강도, 연성 및 구멍확장성이 우수한 냉연강판 제조방법.7. The method of claim 6, wherein the TM / FM ratio is greater than two.
  8. 제 5항의 Q&P 연속 소둔된 냉연강판 표면에 용융아연도금처리한 공정;을 추가로 포함하는 항복강도, 연성 및 구멍확장성이 우수한 용융아연 도금강판의 제조방법.A method of manufacturing a hot-dip galvanized steel sheet excellent in yield strength, ductility, and hole expandability, further comprising the step of hot-dip galvanizing the surface of the Q & P continuous annealed cold-rolled steel sheet of claim 5.
  9. 제 5항의 Q&P 연속 소둔된 냉연강판 표면에 합금화 용융아연도금처리한 공정;을 추가로 포함하는 항복강도, 연성 및 구멍확장성이 우수한 합금화 용융아연 도금강판의 제조방법.A method of manufacturing an alloyed hot-dip galvanized steel sheet excellent in yield strength, ductility and hole expansion, comprising: a step of alloying hot-dip galvanized on the surface of the Q & P continuous annealed cold-rolled steel sheet of claim 5.
PCT/KR2017/013762 2016-12-16 2017-11-29 High strength cold rolled steel plate having excellent yield strength, ductility, and hole expandability, hot dip galvanized steel plate, and method for producing same WO2018110867A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/468,162 US20200190612A1 (en) 2016-12-16 2017-11-29 High strength cold-rolled steel sheet having excellent yield strength, ductility, and hole expandability, hot-dip galvanized steel sheet, and method for producing same
EP17881067.7A EP3556896B1 (en) 2016-12-16 2017-11-29 High strength cold rolled steel plate having excellent yield strength, ductility and hole expandability, and hot dip galvanized steel plate
JP2019531765A JP6846522B2 (en) 2016-12-16 2017-11-29 High-strength cold-rolled steel sheets with excellent yield strength, ductility, and hole expansion properties, hot-dip galvanized steel sheets, and methods for manufacturing these.
CN201780077454.0A CN110073026B (en) 2016-12-16 2017-11-29 High-strength cold-rolled steel sheet and hot-dip galvanized steel sheet having excellent yield strength, ductility and hole expansibility, and methods for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0173006 2016-12-16
KR1020160173006A KR101858852B1 (en) 2016-12-16 2016-12-16 Cold-rolled steel sheet and galvanized steel sheet having excelent elonggation, hole expansion ration and yield strength and method for manufacturing thereof

Publications (2)

Publication Number Publication Date
WO2018110867A1 true WO2018110867A1 (en) 2018-06-21
WO2018110867A8 WO2018110867A8 (en) 2019-01-31

Family

ID=62558805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013762 WO2018110867A1 (en) 2016-12-16 2017-11-29 High strength cold rolled steel plate having excellent yield strength, ductility, and hole expandability, hot dip galvanized steel plate, and method for producing same

Country Status (6)

Country Link
US (1) US20200190612A1 (en)
EP (1) EP3556896B1 (en)
JP (1) JP6846522B2 (en)
KR (1) KR101858852B1 (en)
CN (1) CN110073026B (en)
WO (1) WO2018110867A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114746562A (en) * 2019-12-17 2022-07-12 安赛乐米塔尔公司 Hot-rolled steel sheet and method for producing same
CN115181895A (en) * 2021-04-02 2022-10-14 宝山钢铁股份有限公司 1180 MPa-grade low-carbon low-alloy hot-dip galvanized Q & P steel and rapid heat treatment hot-dip galvanizing manufacturing method
EP3988679A4 (en) * 2019-08-20 2022-11-02 JFE Steel Corporation High-strenth cold rolled steel sheet and method for manufacturing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410936B2 (en) * 2018-09-28 2024-01-10 ポスコ カンパニー リミテッド High-strength cold-rolled steel sheet with high hole expandability, high-strength hot-dip galvanized steel sheet, and manufacturing method thereof
CN109576579A (en) 2018-11-29 2019-04-05 宝山钢铁股份有限公司 It is a kind of with high hole expansibility and compared with the 980MPa grade cold-rolled steel sheet and its manufacturing method of high-elongation
CN110964969B (en) * 2019-11-27 2021-09-21 本钢板材股份有限公司 High-strength hot-dip galvanized quenching distribution steel and production method thereof
CN115161541B (en) * 2021-04-02 2023-08-11 宝山钢铁股份有限公司 780 MPa-level high-formability hot dip galvanized dual phase steel and rapid heat treatment hot dip galvanizing manufacturing method
CN113186459B (en) * 2021-04-08 2022-09-13 山东钢铁股份有限公司 Cold-rolled low-alloy steel strip with yield strength of 355MPa and preparation method thereof
KR20230073569A (en) * 2021-11-19 2023-05-26 주식회사 포스코 Cold rolled steel sheet having excellent strength and formability and method of manufacturing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002370A (en) 1992-07-24 1994-02-17 정명식 Austenitic high manganese steel with excellent formability, strength and weldability, and its manufacturing method
JP2001300503A (en) 2000-04-27 2001-10-30 Calsonic Kansei Corp Method for separating insert fitting of resin molded goods and device for separating the same
JP2002177278A (en) 2000-12-15 2002-06-25 Hitachi Medical Corp Ultrasonic diagnostic device
US20060011274A1 (en) 2002-09-04 2006-01-19 Colorado School Of Mines Method for producing steel with retained austenite
JP2011140686A (en) * 2010-01-06 2011-07-21 Sumitomo Metal Ind Ltd Method of producing cold-rolled steel sheet
JP2014018431A (en) 2012-07-18 2014-02-03 Toppan Printing Co Ltd Microneedle thrust amount regulating instrument
JP2014034716A (en) * 2012-08-09 2014-02-24 Nippon Steel & Sumitomo Metal Steel sheet and method of producing the same
KR20150130612A (en) * 2014-05-13 2015-11-24 주식회사 포스코 Cold-rolled steel sheet and galvanized steel sheet having excellent ductility and method for manufacturing thereof
KR20160060729A (en) * 2013-09-27 2016-05-30 가부시키가이샤 고베 세이코쇼 High-strength steel sheet having excellent processability and low-temperature toughness, and method for producing same
KR20160132926A (en) * 2014-03-17 2016-11-21 가부시키가이샤 고베 세이코쇼 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002370B1 (en) 1991-05-16 1994-03-23 주식회사 금성사 Cooking time control apparatus and method of microwave oven
US7090731B2 (en) * 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
JP4729850B2 (en) * 2003-02-10 2011-07-20 Jfeスチール株式会社 Alloyed hot-dip galvanized steel sheet with excellent plating adhesion and method for producing the same
KR100928788B1 (en) * 2007-12-28 2009-11-25 주식회사 포스코 High strength steel sheet with excellent weldability and manufacturing method
JP5418047B2 (en) * 2008-09-10 2014-02-19 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
KR20100076409A (en) * 2008-12-26 2010-07-06 주식회사 포스코 A high strength steel sheet having high yield ratio and a method for producting the same
JP5454745B2 (en) * 2011-10-04 2014-03-26 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
WO2013144376A1 (en) * 2012-03-30 2013-10-03 Voestalpine Stahl Gmbh High strength cold rolled steel sheet and method of producing such steel sheet
KR101299896B1 (en) * 2013-05-30 2013-08-23 주식회사 포스코 METHOD FOR MANUFACTURING TENSILE STRENGTH 1.5GPa CLASS STEEL SHEET
WO2015088523A1 (en) * 2013-12-11 2015-06-18 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled and annealed steel sheet
JP6172298B2 (en) * 2014-01-29 2017-08-02 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
WO2016001700A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength, ductility and formability
WO2016020714A1 (en) * 2014-08-07 2016-02-11 Arcelormittal Method for producing a coated steel sheet having improved strength, ductility and formability
WO2016103535A1 (en) * 2014-12-22 2016-06-30 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
CN107109572B (en) * 2015-01-16 2019-09-10 杰富意钢铁株式会社 High-strength steel sheet and its manufacturing method
CN107429349B (en) * 2015-03-25 2019-04-23 杰富意钢铁株式会社 Cold-rolled steel sheet and its manufacturing method
JP6586776B2 (en) * 2015-05-26 2019-10-09 日本製鉄株式会社 High strength steel plate with excellent formability and method for producing the same
KR102081361B1 (en) * 2015-06-11 2020-02-25 닛폰세이테츠 가부시키가이샤 Alloyed hot dip galvanized steel sheet and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002370A (en) 1992-07-24 1994-02-17 정명식 Austenitic high manganese steel with excellent formability, strength and weldability, and its manufacturing method
JP2001300503A (en) 2000-04-27 2001-10-30 Calsonic Kansei Corp Method for separating insert fitting of resin molded goods and device for separating the same
JP2002177278A (en) 2000-12-15 2002-06-25 Hitachi Medical Corp Ultrasonic diagnostic device
US20060011274A1 (en) 2002-09-04 2006-01-19 Colorado School Of Mines Method for producing steel with retained austenite
JP2011140686A (en) * 2010-01-06 2011-07-21 Sumitomo Metal Ind Ltd Method of producing cold-rolled steel sheet
JP2014018431A (en) 2012-07-18 2014-02-03 Toppan Printing Co Ltd Microneedle thrust amount regulating instrument
JP2014034716A (en) * 2012-08-09 2014-02-24 Nippon Steel & Sumitomo Metal Steel sheet and method of producing the same
KR20160060729A (en) * 2013-09-27 2016-05-30 가부시키가이샤 고베 세이코쇼 High-strength steel sheet having excellent processability and low-temperature toughness, and method for producing same
KR20160132926A (en) * 2014-03-17 2016-11-21 가부시키가이샤 고베 세이코쇼 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same
KR20150130612A (en) * 2014-05-13 2015-11-24 주식회사 포스코 Cold-rolled steel sheet and galvanized steel sheet having excellent ductility and method for manufacturing thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISIJ INTERNATIONAL, vol. 51, 2011, pages 137 - 144

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988679A4 (en) * 2019-08-20 2022-11-02 JFE Steel Corporation High-strenth cold rolled steel sheet and method for manufacturing same
US11926881B2 (en) 2019-08-20 2024-03-12 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same
CN114746562A (en) * 2019-12-17 2022-07-12 安赛乐米塔尔公司 Hot-rolled steel sheet and method for producing same
CN114746562B (en) * 2019-12-17 2023-12-29 安赛乐米塔尔公司 Hot rolled steel sheet and method for producing same
CN115181895A (en) * 2021-04-02 2022-10-14 宝山钢铁股份有限公司 1180 MPa-grade low-carbon low-alloy hot-dip galvanized Q & P steel and rapid heat treatment hot-dip galvanizing manufacturing method
CN115181895B (en) * 2021-04-02 2023-09-12 宝山钢铁股份有限公司 1180 MPa-level low-carbon low-alloy hot dip galvanized Q & P steel and rapid heat treatment hot dip galvanizing manufacturing method

Also Published As

Publication number Publication date
KR101858852B1 (en) 2018-06-28
CN110073026A (en) 2019-07-30
JP2020509177A (en) 2020-03-26
US20200190612A1 (en) 2020-06-18
EP3556896A1 (en) 2019-10-23
WO2018110867A8 (en) 2019-01-31
EP3556896B1 (en) 2021-11-10
EP3556896A4 (en) 2019-10-23
CN110073026B (en) 2021-09-07
JP6846522B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2018110867A1 (en) High strength cold rolled steel plate having excellent yield strength, ductility, and hole expandability, hot dip galvanized steel plate, and method for producing same
WO2015174605A1 (en) High-strength cold rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet and method for manufacturing same
WO2016098964A1 (en) High-strength cold rolled steel sheet with low material non-uniformity and excellent formability, hot dipped galvanized steel sheet, and manufacturing method therefor
WO2013069937A1 (en) Steel sheet for hot press forming, hot press forming member, and manufacturing method thereof
WO2017222189A1 (en) Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor
WO2017171366A1 (en) High-strength cold rolled steel sheet with excellent yield strength and ductility, coated steel plate, and method for manufacturing same
WO2016104881A1 (en) Hot press-formed (hpf) member having excellent bending characteristics and method for manufacturing same
WO2018117501A1 (en) Ultra-high strength steel sheet having excellent bendability and manufacturing method therefor
WO2016098963A1 (en) Hot dipped galvanized steel sheet with excellent hole expansibility, hot dipped galvannealed steel sheet, and manufacturing method therefor
WO2020050573A1 (en) Ultra high strength and high ductility steel sheet having excellent yield ratio and manufacturing method for same
WO2020067752A1 (en) High-strength cold rolled steel sheet having high hole expansion ratio, high-strength hot-dip galvanized steel sheet, and manufacturing methods therefor
WO2017111524A1 (en) Ultra high-strength steel sheet having excellent hole expandability and manufacturing method therefor
WO2018105904A1 (en) Hot-dip galvanized steel plate with excellent bake hardenability and anti-aging property at room temperature and manufacturing method therefor
WO2018117470A1 (en) High-strength steel plate having excellent burring workability in low temperature range and manufacturing method therefor
WO2017051998A1 (en) Plated steel plate and manufacturing method thereof
WO2021117989A1 (en) Cold rolled steel sheet with ultra-high strength, and manufacturing method therefor
WO2013154254A1 (en) High carbon hot rolled steel sheet having excellent uniformity and method for manufacturing same
WO2016093513A2 (en) Dual-phase steel sheet with excellent formability and manufacturing method therefor
WO2022139400A1 (en) Ultra high strength cold rolled steel sheet having excellent spot weldability and formability, ultra high strength plated steel sheet and manufacturing method therefor
WO2022124609A1 (en) High-strength hot-dip galvanized steel sheet with high ductility and excellent formability, and manufacturing method for same
WO2018117500A1 (en) High tensile strength steel having excellent bendability and stretch-flangeability and manufacturing method thereof
WO2021112488A1 (en) Thick composite-phase steel having excellent durability and manufacturing method therefor
WO2021020789A1 (en) High-strength steel sheet and manufacturing method thereof
WO2021020787A1 (en) High-strength steel sheet and manufacturing method therefor
WO2019093650A1 (en) Ultrahigh-strength and high-ductility steel sheet having excellent cold formability, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019531765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017881067

Country of ref document: EP

Effective date: 20190716