WO2018110516A1 - 壁面移動ロボット - Google Patents

壁面移動ロボット Download PDF

Info

Publication number
WO2018110516A1
WO2018110516A1 PCT/JP2017/044427 JP2017044427W WO2018110516A1 WO 2018110516 A1 WO2018110516 A1 WO 2018110516A1 JP 2017044427 W JP2017044427 W JP 2017044427W WO 2018110516 A1 WO2018110516 A1 WO 2018110516A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall surface
gimbal
mobile robot
frame
angle
Prior art date
Application number
PCT/JP2017/044427
Other languages
English (en)
French (fr)
Inventor
清 五百井
Original Assignee
株式会社 iTest
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 iTest filed Critical 株式会社 iTest
Publication of WO2018110516A1 publication Critical patent/WO2018110516A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members

Definitions

  • the wall surface mobile robot further includes a body connected to the drive wheel and the gimbal mechanism, and the body drives the drive so that the gimbal mechanism can approach and separate from the wall surface.
  • a moving mechanism capable of changing the positional relationship between the wheel and the gimbal mechanism is included.
  • the control unit 500 causes each of the left driving wheel 110 and the right driving wheel 110 to rotate in opposite directions at the same speed.
  • the moving motor 120 is controlled.
  • the change control program is a control program describing a process of changing the attitude of the double reversing propeller 220 in order to change the wall surface to which the wall mobile robot P1 moves.
  • the conversion control program describes at least conversion processing.
  • the conversion process includes a first conversion process and a second conversion process.
  • the first conversion process includes a process of changing the wall surface to which the wall mobile robot P1 moves from the first type wall surface or the third type wall surface to the second type wall surface, and the target wall surface to which the wall surface mobile robot P1 moves. This is a process of changing from the type 2 wall surface to the type 1 wall surface or the type 3 wall surface.
  • the position of the double reversing propeller 220 in the standard front-rear direction (hereinafter referred to as “propeller front-rear position”) when the wall surface mobile robot P1 translates can be arbitrarily selected.
  • the propeller front-rear position can be divided into an advancing position and a non-advancing position.
  • the advancing side position is a position on the advancing direction side with respect to the drive wheel center axis CD in the standard longitudinal direction.
  • the counter-traveling position is a position on the opposite side of the traveling direction with respect to the drive wheel center axis CD in the standard front-rear direction.
  • the controller 500 selects the propeller front-rear position of the double reversing propeller 220 according to the received operation signal or the content of the automatic movement program.
  • each gimbal motor 213, 214 is a radio controlled servo motor.
  • the first gimbal motor 213 is supported by one third frame 13.
  • An output shaft (not shown) of the first gimbal motor 213 is connected to the shaft so as to be able to rotate integrally with the shaft constituting the first connecting portion 215.
  • the second gimbal motor 214 is supported on the second gimbal 212.
  • An output shaft (not shown) of the second gimbal motor 214 is connected to the shaft so as to be able to rotate integrally with the shaft constituting one of the second connecting portions 216.

Abstract

壁面移動ロボットは、駆動輪(110)と、駆動輪(110)にトルクを与える移動用モータ(120)と、駆動輪(110)を壁面に押し付ける力を発生する2重反転プロペラ(220)と、2以上の自由度を有し2重反転プロペラ(220)の回転中心軸の向きを任意に変更できるように2重反転プロペラ(220)をロータとして保持するジンバル機構(210)とを含む。

Description

壁面移動ロボット
 本開示は壁面を移動する壁面移動ロボットに関する。
 重力に抗して建築物の壁面等を移動可能な壁面移動ロボットが知られている。特許文献1はその一例を開示している。特許文献1の壁面移動ロボットは磁力を利用して壁面上を移動する。
特開2001-12934号公報
 特許文献1の壁面移動ロボットが壁面を移動するためには、壁面に磁石、強磁性体、または、電磁石等のように壁面移動ロボットと磁力で結合可能な物体が設けられる必要がある。このため、より多様な環境で使用できる壁面移動ロボットが望まれる。
 (1)壁面移動ロボットは、駆動輪と、前記駆動輪にトルクを与える移動用モータと、前記駆動輪を壁面に押し付ける力を発生する2重反転プロペラと、2以上の自由度を有し、前記2重反転プロペラの回転中心軸の向きを任意に変更できるように前記2重反転プロペラをロータとして保持するジンバル機構とを含む。
 壁面移動ロボットはジンバル機構を含むため、2重反転プロペラの回転により発生する推力が駆動輪を壁面に押し付ける力(以下「押付力」という)として作用するように2重反転プロペラの回転中心軸の向きを設定できる。駆動輪に押付力が与えられた状態で駆動輪に移動用モータのトルクが与えられた場合、駆動輪が壁面を転がり、壁面移動ロボットが壁面を移動する。このように本開示に関する壁面移動ロボットは従来の壁面移動ロボットとは異なり、移動のために磁力を必要としないため、より多様な環境で使用できる。
 (2)好ましくは、壁面移動ロボットは前記駆動輪および前記ジンバル機構と連結されるボディをさらに含み、前記ボディは、前記ジンバル機構を前記壁面に対して接近および離間させることができるように前記駆動輪と前記ジンバル機構との位置関係を変更可能な移動機構を含む。
 このため、ジンバル機構を壁面に近づけ、2重反転プロペラの駆動部の出力に対する押付力の大きさを増加させることができる。
 (3)好ましくは、前記ボディは、前記駆動輪が連結される第1フレーム、および、前記第1フレームとの間に前記ジンバル機構を挟むように設けられる第2フレームを含む。
 ジンバル機構が第1フレームと第2フレームとにより挟まれているため、ジンバル機構が周囲の物体と接触しにくい。
 (4)好ましくは、前記第1フレームおよび前記第2フレームは、前記壁面移動ロボットの平面視において、前記第1フレームの長手方向に平行な方向と前記第2フレームの長手方向に平行な方向とが直交するように配置される。
 このため、第2フレームの端部、または、第2フレームの端部に設けられる別の部材を駆動輪に加えて壁面に接触させることにより、壁面移動ロボットが壁面上を移動する場合、または、壁面上で静止する場合の姿勢を安定させることができる。
 (5)好ましくは、壁面移動ロボットは前記第2フレームに設けられる補助輪をさらに含む。
 駆動輪および補助輪が壁面に接触した状態で壁面移動ロボットを移動させることにより、壁面移動ロボットが壁面上を移動する場合の抵抗を低減できる。
 (6)好ましくは、壁面移動ロボットは水平に対する前記ボディの姿勢角度を検出する姿勢検出センサをさらに含む。
 このため、壁面移動ロボットが走行している壁面に応じてボディの姿勢角度を変更することができる。
 (7)好ましくは、壁面移動ロボットは、前記駆動輪が連結される第1本体フレーム、および、前記ジンバル機構が連結される第2本体フレームを含むボディをさらに含む。前記ジンバル機構は、前記第2本体フレームに対して回転できるように前記第2本体フレームに連結される第1ジンバル、および、前記第1ジンバルに対して回転できるように前記第1ジンバルに連結される第2ジンバルを含む。前記第2ジンバルは前記2重反転プロペラを保持する。前記2重反転プロペラの中心軸が前記ボディの前後方向と平行となる前記第1ジンバルの回転位相において前記ボディを平面視した場合、前記ボディの前後方向において前記第1ジンバルが前記第1本体フレームの幅内に収まるように前記第1ジンバルが構成されている。
 第1ジンバルが回転したときに第1ジンバルと第1本体フレームとが干渉しないように、第1ジンバルと第1本体フレームとの間に所定の間隔を設ける必要がある。所定の間隔を決める要素の一つとして、ボディの前後方向における第1ジンバルの幅(以下「第1ジンバルの幅」)が挙げられる。第1ジンバルの幅が広いほど、所定の間隔を広く形成する必要があり、壁面移動ロボットの高さ方向の寸法が大きくなる。上記構成によれば、所定の間隔を狭くすることができ、壁面移動ロボットの高さ方向の寸法を小さくすることができる。
 好ましくは、前記第1本体フレームは前記移動用モータを収容する収容部を含む。
第1実施形態のロボット遠隔操作システムの構成を示すブロック図。 図1の壁面移動ロボットの側面図。 図1の壁面移動ロボットの正面図。 壁面移動ロボットの並進状態を示す図。 壁面移動ロボットの2面接地状態を示す図。 壁面移動ロボットの並進状態を示す図。 第2実施形態の壁面移動ロボットの側面図。 図7の壁面移動ロボットの正面図。 壁面移動ロボットの第1接地状態を示す図。 壁面移動ロボットの2面接地状態を示す図。 壁面移動ロボットの第3接地状態を示す図。 壁面移動ロボットの第2接地状態を示す図。 第3実施形態の壁面移動ロボットの正面側の斜視図。 図13の壁面移動ロボットの背面側の斜視図。 図13の壁面移動ロボットの正面図。 図13の壁面移動ロボットの平面図。 図13の壁面移動ロボットの構成を示すブロック図。 壁面移動ロボットの第1接地状態を示す図。 壁面移動ロボットの第2接地状態を示す図。 壁面移動ロボットの並進状態を示す図。
 以下の各実施形態に関する説明は、本開示に関する壁面移動ロボットが取り得る形態の例示であり、その形態を制限することを意図していない。本開示に関する壁面移動ロボットは各実施形態の変形例、および、相互に矛盾しない少なくとも2つの変形例が組み合わせられた形態等のように各実施形態とは異なる形態を取り得る。
 (第1実施形態)
 図1はロボット遠隔操作システムPを示す。ロボット遠隔操作システムPは壁面移動ロボットP1、リモートコントローラP2、および、外部受信装置P3を含む。壁面移動ロボットP1は壁面上を移動できるように構成されたロボットである。壁面移動ロボットP1の用途は任意に選択できる。第1例では、壁面移動ロボットP1は建築物の検査に用いられる。第2例では、壁面移動ロボットP1は屋外に設けられた構造物の検査に用いられる。構造物の例は舗装路、橋梁、および、法面である。第3例では、壁面移動ロボットP1は被災地に関する情報の収集、および、収集した情報の伝達に用いられる。壁面移動ロボットP1は情報の収集のために例えば地下道を移動できる。リモートコントローラP2は操作者が壁面移動ロボットP1を遠隔操作するために使用する機器である。外部受信装置P3は壁面移動ロボットP1から送信された信号を受信する装置である。
 図2に示されるように、壁面移動ロボットP1はボディ10、第1駆動部100、第2駆動部200、測定部400、制御部500、および、電源部300を備える。ボディ10は壁面移動ロボットP1の本体を構成するパートである。第1駆動部100は駆動輪110と壁面との間に生じる摩擦力により壁面移動ロボットP1を移動させるパートである。第2駆動部200は駆動輪110を壁面に押し付ける力(以下「押付力」という)を発生するパートである。測定部400は壁面移動ロボットP1の状態等を測定するパートである。制御部500は第1駆動部100および第2駆動部200を制御するパートである。電源部300は測定部400および制御部500に電力を供給するパートである。
 第1駆動部100はボディ10に支持される。第1駆動部100は1または複数の駆動輪110および1または複数の移動用モータ120を含む。一例では、第1駆動部100は複数の駆動輪110および複数の移動用モータ120を含む。複数の駆動輪110は同軸上に設けられた右側の駆動輪110および左側の駆動輪110を含む。
 複数の移動用モータ120は右側の駆動輪110にトルクを与える右側の移動用モータ120、および、左側の駆動輪110にトルクを与える左側の移動用モータ120を含む。各駆動輪110は対応する移動用モータ120からトルクが与えられた場合、同一の回転中心軸である駆動輪中心軸CDまわりでボディ10に対して回転する。
 壁面移動ロボットP1の側面視(図2参照)において、駆動輪中心軸CDと平行な方向を壁面移動ロボットP1の幅方向(以下「標準幅方向」という)と規定する。壁面移動ロボットP1の側面視(図2参照)において、標準幅方向と直交する方向を壁面移動ロボットP1の高さ方向(以下「標準高さ方向」という)と規定する。壁面移動ロボットP1の正面視(図3参照)において、壁面移動ロボットP1の高さ方向と直交する方向を壁面移動ロボットP1の前後方向(以下「標準前後方向」という)と規定する。
 第2駆動部200はボディ10に支持される。第2駆動部200はジンバル機構210および2重反転プロペラ220を含む。ジンバル機構210の構成は2以上の自由度を有する範囲において任意に選択できる。第1例では、ジンバル機構210の自由度は2である。第2例では、ジンバル機構210の自由度は3である。図2等では、自由度2のジンバル機構210を例示している。
 ジンバル機構210は第1ジンバル211、第2ジンバル212、第1ジンバルモータ213、第2ジンバルモータ214、第1連結部215、および、第2連結部216を含む。第1ジンバル211はボディ10と連結されている。第1連結部215は第1回転中心軸C1まわりで相対的に回転可能な状態でボディ10と第1ジンバル211とを連結している。第2ジンバル212は第1ジンバル211と連結されている。第2連結部216は第2回転中心軸C2まわりで相対的に回転可能な状態で第1ジンバル211と第2ジンバル212とを連結する。駆動輪中心軸CDと第1回転中心軸C1との関係は任意に選択できる。第1例では、第1回転中心軸C1は駆動輪中心軸CDと平行である。第2例では、第1回転中心軸C1は駆動輪中心軸CDと直交する。第3例では、第1回転中心軸C1は直交以外の状態で駆動輪中心軸CDと交差する。図2等では第1例を示している。第1回転中心軸C1と第2回転中心軸C2とは互いに直交する。第1ジンバルモータ213は第1ジンバル211にトルクを与えることができるように第1ジンバル211と連結されている。第2ジンバルモータ214は第2ジンバル212にトルクを与えることができるように第2ジンバル212と連結されている。
 2重反転プロペラ220はジンバル機構210のロータであり、第2ジンバル212に支持されている。2重反転プロペラ220は第1プロペラ221、第2プロペラ222、および、プロペラ駆動部230を含む。プロペラ駆動部230は各プロペラ221、222を回転させる1つまたは複数のモータ(図示略)を含む。各プロペラ221、222の回転中心軸であるプロペラ中心軸CPはジンバル機構210の動作に応じてボディ10に対して任意の向きを取り得る。プロペラ駆動部230はプロペラ中心軸CPと第2回転中心軸C2とが直交するように第2ジンバル212と連結されている。各プロペラ221、222の一方または両方が回転する場合、プロペラ中心軸CPが向く方向に推力が発生する。一例として、図3に示す状態では壁面移動ロボットP1を図中左側に進めるように作用する推力が発生する。各プロペラ221、222が互いに反対方向に回転する場合、カウンタートルクが相殺される。
 電源部300は例えばボディ10に取り付けられる。電源部300は1次電池または2次電池と電源回路とを含む(いずれも図示略)。電源回路は測定部400および制御部500のそれぞれに1次電池または2次電池の電力を供給できるようにこれらのパートと電気的に接続される。測定部400および制御部500は電源部300から供給された電力により駆動する。制御部500は電源部300から供給された電力を各移動用モータ120、第1ジンバルモータ213、第2ジンバルモータ214、および、プロペラ駆動部230に供給できる。別の例では、電源部300は外部電源から電力を受ける。電源回路は測定部400および制御部500のそれぞれに外部電源の電力を供給できるようにこれらのパートと電気的に接続される。
 測定部400は例えばボディ10に取り付けられる。測定部400は1または複数の姿勢検出センサ410、1または複数の角度検出センサ420、および、1または複数の環境測定センサ430を含む。一例では、測定部400は1つの姿勢検出センサ410、複数の角度検出センサ420、および、1つの環境測定センサ430を含む。姿勢検出センサ410は水平に対するボディ10の姿勢角度、および、姿勢の変化速度を検出する。複数の角度検出センサ420は第1角度検出センサ421および第2角度検出センサ422を含む。ボディ10の姿勢角度は少なくともピッチ角およびロール角を含む。第1角度検出センサ421は第1回転中心軸C1まわりにおける第1ジンバル211の回転角度(以下「第1ジンバル角度θ1」という)を検出する。第2角度検出センサ422は第2回転中心軸C2まわりにおける第2ジンバル212の回転角度(以下「第2ジンバル角度θ2」という)を検出する。環境測定センサ430は壁面移動ロボットP1が移動する壁面の状態を検出する。
 ボディ10のピッチ角はボディ10の正面視(図3参照)においてボディ10の第1基準線と水平面とのなす角度である。ボディ10の第1基準線はボディ10の正面視において駆動輪中心軸CDと予め規定されたボディ10の任意の点とを通過する直線である。ボディ10の第1基準線および標準前後方向は同じ方向を向く。ボディ10のピッチ角が取り得る値は0度、180度、-180度、0度と180度との間の正の角度、および、0度と-180度との間の負の角度に区分される。0度はボディ10の第1基準線と水平面とのなす角度が0度の場合の角度である。正の角度はボディ10の第1基準線が水平面に対して上方を向く場合の角度である。180度はボディ10の第1基準線が正の角度を取るように水平面に対して回転し、ボディ10の第1基準線が0度の場合とは反対の方向を向く場合の角度である。負の角度はボディ10の第1基準線が水平面に対して下方を向く場合の角度である。-180度はボディ10の第1基準線が負の角度を取るように水平面に対して回転し、ボディ10の第1基準線が0度の場合とは反対の方向を向く場合の角度である。ピッチ角の180度および-180度は同一の角度である。
 ボディ10のロール角はボディ10の側面視(図2参照)においてボディ10の第2基準線と垂直面とのなす角度である。ボディ10の第2基準線はボディ10の側面視において駆動輪中心軸CDの中点と予め規定されたボディ10の任意の点とを通過する直線である。ボディ10の第2基準線および標準高さ方向は同じ方向を向く。ボディ10のロール角が取り得る値は0度、180度、-180度、0度と180度との間の正の角度、および、0度と-180度との間の負の角度に区分される。0度はボディ10の第2基準線と垂直面とのなす角度が0度の場合の角度である。正の角度はボディ10の第2基準線が垂直面に対して右方を向く場合の角度である。180度はボディ10の第2基準線が正の角度を取るように垂直面に対して回転し、ボディ10の第2基準線が0度の場合とは反対の方向を向く場合の角度である。負の角度はボディ10の第2基準線が垂直面に対して左方を向く場合の角度である。-180度はボディ10の第2基準線が負の角度を取るように垂直面に対して回転し、ボディ10の第2基準線が0度の場合とは反対の方向を向く場合の角度である。ロール角の180度および-180度は同一の角度である。
 一例では、2重反転プロペラ220の姿勢はプロペラ中心軸CPの向きにより規定される。プロペラ中心軸CPの向きは第1ジンバル角度θ1および第2ジンバル角度θ2を用いてボディ10の姿勢を基準に規定される。
 第1ジンバル角度θ1が取り得る値は0度、180度、-180度、0度と180度との間の正の角度、および、0度と-180度との間の負の角度に区分される。0度はボディ10の正面視(図3参照)においてプロペラ中心軸CPと標準前後方向とのなす角度が0度の場合の角度である。正の角度はプロペラ中心軸CPが標準前後方向に対して上方を向く場合の角度である。正の角度の一例は図6に示される。180度はプロペラ中心軸CPが正の角度を取るようにプロペラ中心軸CPが標準前後方向に対して回転し、プロペラ中心軸CPが0度の場合とは反対の方向を向く場合の角度である。負の角度はプロペラ中心軸CPが標準前後方向に対して下方を向く場合の角度である。負の角度の一例は図4に示される。-180度はプロペラ中心軸CPが負の角度を取るように標準前後方向に対して回転し、プロペラ中心軸CPが0度の場合とは反対の方向を向く場合の角度である。第1ジンバル角度θ1の180度および-180度は同一の角度である。
 第2ジンバル角度θ2が取り得る値は0度、180度、-180度、0度と180度との間の正の角度、および、0度と-180度との間の負の角度に区分される。0度はボディ10の側面視(図2参照)においてプロペラ中心軸CPと標準前後方向とのなす角度が0度の場合の角度である。正の角度はプロペラ中心軸CPが標準前後方向に対して右方を向く場合の角度である。180度はプロペラ中心軸CPが正の角度を取るようにプロペラ中心軸CPが標準前後方向に対して回転し、プロペラ中心軸CPが0度の場合とは反対の方向を向く場合の角度である。負の角度はプロペラ中心軸CPが標準前後方向に対して左方を向く場合の角度である。-180度はプロペラ中心軸CPが負の角度を取るように標準前後方向に対して回転し、プロペラ中心軸CPが0度の場合とは反対の方向を向く場合の角度である。第2ジンバル角度θ2の180度および-180度は同一の角度である。
 制御部500は例えばボディ10に取り付けられる。制御部500は移動用モータ120、第1ジンバルモータ213、第2ジンバルモータ214、および、プロペラ駆動部230を制御できるようにこれらの機器と通信可能に接続される。制御部500は測定部400の測定結果を受信できるように姿勢検出センサ410および環境測定センサ430と通信可能に接続されている。各通信可能な接続の形態は有線通信または無線通信である。制御部500はプロセッサ510および記憶装置520を含む。記憶装置520は壁面移動ロボットP1の動作に関する制御プログラム等を予め記憶している。制御プログラムは移動制御プログラムおよび転換制御プログラムを含む。プロセッサ510は制御プログラムに従い各移動用モータ120、第1ジンバルモータ213、第2ジンバルモータ214、および、プロペラ駆動部230のモータ(以下「各モータ」という)を制御する。
 一例では、制御部500は壁面移動ロボットP1を移動させるための2つの制御モードを含む。第1制御モードは壁面移動ロボットP1を自律的に移動させる制御モードである。第2制御モードはリモートコントローラP2(図1参照)から受信した操作信号に応じて壁面移動ロボットP1を移動させる制御モードである。制御部500はリモートコントローラP2から受信した操作信号に応じて第1制御モードおよび第2制御モードのいずれを実行するかを選択する。制御部500は第1制御モードを選択した場合、壁面移動ロボットP1が予め設定された要求に従い移動するように各モータを制御し、第2制御モードを選択した場合、リモートコントローラP2から受信した操作信号に応じて各モータを制御する。第1制御モードおよび第2制御モードのいずれが選択されている場合においても各モータの制御は移動制御プログラムに従い実行される。以下では、予め設定された要求および操作信号を要求情報と称する。
 移動制御プログラムは壁面上で壁面移動ロボットP1を移動させるための処理を記述したプログラムである。移動制御プログラムは少なくとも並進処理、転回処理、押付処理、および、回避処理を記述している。並進処理は壁面上で壁面移動ロボットP1を並進させるための処理である。転回処理は壁面移動ロボットP1の向きを変更するための処理である。押付処理は駆動輪110に押付力を与えるための処理である。回避処理は壁面移動ロボットP1が予定する移動経路上に障害物が存在する場合、壁面移動ロボットP1にその障害物を回避させる処理である。障害物の一例は壁面上に存在する人工物、廃棄物、および、自然物である。人工物の一例は車両、配管、看板、縁石、および、水路である。自然物の一例は木、岩、および、河川である。制御部500は要求情報に指定されるタイミングに従い並進処理、転回処理、および、押付処理を実行する。制御部500はさらに、要求情報に指定されるタイミングに従い、または、壁面移動ロボットP1が予定する移動経路上に障害物が存在することが検出された場合に回避処理を実行する。一例では、環境測定センサ430が障害物を検出する。
 並進処理では、要求情報に指定される方向に壁面移動ロボットP1が移動するように制御部500が各移動用モータ120を制御する。並進処理の一例では、各駆動輪110が駆動輪中心軸CDまわりで同じ方向に同じ回転速度で回転するように制御部500が各移動用モータ120を制御する。壁面移動ロボットP1の移動速度の変更が要求情報に指定される場合、並進処理では、壁面移動ロボットP1の移動速度が指定された移動速度に近づくように制御部500が各移動用モータ120を制御する。第1制御モードにおける壁面移動ロボットP1の移動速度は対象の壁面等に応じて決められる。対象の壁面が法面である場合、壁面移動ロボットP1の平均移動速度は例えば450mm/secである。
 転回処理では、要求情報に指定される方向に壁面移動ロボットP1の向きが変化するように制御部500が各移動用モータ120を制御する。転回処理の一例では、制御部500が第1~第3処理を実行する。第1処理では、壁面移動ロボットP1の右旋回が指定されている場合、左側の駆動輪110の回転速度が右側の駆動輪110の回転速度よりも高くなるように制御部500が各移動用モータ120を制御する。第2処理では、壁面移動ロボットP1の左旋回が指定されている場合、右側の駆動輪110の回転速度が左側の駆動輪110の回転速度よりも高くなるように制御部500が各移動用モータ120を制御する。第3処理では、標準前後方向における壁面移動ロボットP1の反転が指定されている場合、左側の駆動輪110と右側の駆動輪110が等速度で互いに反対方向に回転するように制御部500が各移動用モータ120を制御する。
 押付処理では、各プロペラ221、222の回転にともなうカウンタートルクが相殺され、各駆動輪110に押付力が与えられるように制御部500が第2駆動部200を制御する。押付処理の一例では、制御部500が第1処理および第2処理を並行して実行する。第1処理では、各プロペラ221、222が一定の回転速度で互いに反対の方向に回転するように制御部500がプロペラ駆動部230を制御する。第2処理では、第1ジンバル角度θ1が第1所定角度となり、第2ジンバル角度θ2が所定角度Aとなるように制御部500が各ジンバルモータ213、214を制御する。第1所定角度は0度と-180度との間の負の角度である。第1所定角度の好ましい一例は-45度である。第1ジンバル角度θ1が第1所定角度に設定されることにより、各プロペラ221、222の回転にともない発生する推力が各駆動輪110を壁面に押し付ける押付力として作用する。第1所定角度が0度超かつ-90度未満の範囲に含まれる場合、各プロペラ221、222の推力が押付力として作用する成分、および、ボディ10を進行方向に移動させる成分を含む。好ましい一例では、押付力は駆動輪110と壁面との間に所定範囲内の摩擦力を生じさせる大きさを有する。所定範囲は駆動輪110が壁面を転がるために必要な大きさ、かつ、駆動輪110に過度に大きな転がり抵抗が生じない大きさの摩擦力を規定する範囲である。所定角度Aの好ましい一例は0度である。第2ジンバル角度θ2が所定角度Aに設定されることにより、右側の駆動輪110および左側の駆動輪110に与えられる押付力のバランスが取れる。
 回避処理では、第1処理および第2処理を並行して実行する。第1処理では、各プロペラ221、222が一定の回転速度で互いに反対の方向に回転するようにプロペラ駆動部230を制御する。第2処理では、壁面移動ロボットP1が障害物を回避するために飛行できるように第1ジンバル角度θ1および第2ジンバル角度θ2が設定される。第2処理では、第1ジンバル角度θ1が第2所定角度、かつ、第2ジンバル角度θ2が所定角度Aとなるように各ジンバルモータ213、214を制御する。第2所定角度は壁面移動ロボットP1を飛行させる成分を含む0度超かつ180度未満の正の角度である。第2所定角度の好ましい一例は45度である。
 壁面移動ロボットP1が移動する経路に例えば第1種壁面、第2種壁面、および、第3種壁面が含まれることがある。第1種壁面は水平面に対して平行またはおおよそ平行な壁面であり、壁面移動ロボットP1を重力に抗して支持可能な壁面である。凹凸を含む壁面を代表する仮想の平面が水平面に対して平行またはおおよそ平行である場合、その壁面は第1種壁面に分類できる。第1種壁面の代表例は屋内の床面、屋外の舗装路、および、屋外の未舗装路である。第2種壁面は水平面に対して直交またはおおよそ直交する壁面である。凹凸を含む壁面を代表する仮想の平面が水平面に対して直交またはおおよそ直交する場合、その壁面は第2種壁面に分類できる。第2種壁面の代表例は、屋内の内壁の壁面、建築物の外壁の壁面、および、法面である。第1種壁面および第2種壁面は多様な組み合わせを取り得る。第1例では、第1種壁面は屋内の床面であり、第2種壁面はその床面に隣接する内壁の壁面である。第2例では、第1種壁面は舗装路であり、第2種壁面はその舗装路に隣接する建築物の外壁の壁面である。第3例では、第1種壁面は舗装路であり、第2種壁面はその舗装路に隣接する法面である。第3種壁面は水平面に対して平行またはおおよそ平行な壁面であり、壁面移動ロボットP1を重力に抗して支持不能な壁面である。第3種壁面の代表例は建築物の天井、および、屋外の構造物の壁面のうちの鉛直方向下方を向く壁面である。屋外の構造物の一例は橋脚である。
 転換制御プログラムは壁面移動ロボットP1が移動する対象の壁面を変更するために2重反転プロペラ220の姿勢を転換する処理を記述した制御プログラムである。転換制御プログラムは少なくとも転換処理を記述している。転換処理は第1転換処理および第2転換処理を含む。第1転換処理は、壁面移動ロボットP1が移動する対象の壁面を第1種壁面または第3種壁面から第2種壁面に変更する処理、および、壁面移動ロボットP1が移動する対象の壁面を第2種壁面から第1種壁面または第3種壁面に変更する処理である。第2転換処理は、壁面移動ロボットP1が移動する対象の壁面を第1種壁面から第3種壁面に変更する処理、および、第3種壁面から第1種壁面に変更する処理である。以下では、転換処理により変更される対象の壁面について、変更される前の対象の壁面を「変更前の対象の壁面」と称し、変更された後の対象の壁面を「変更後の対象の壁面」と称する。壁面移動ロボットP1が移動する対象の壁面が第1種壁面または第3種壁面から第2種壁面に変更される場合、変更前の対象の壁面は第1種壁面または第3種壁面であり、変更後の対象の壁面は第2種壁面である。壁面移動ロボットP1が移動する対象の壁面が第2種壁面から第1種壁面または第3種壁面に変更される場合、変更前の対象の壁面は第2種壁面であり、変更後の対象の壁面は第1種壁面または第3種壁面である。
 第1転換処理では、壁面移動ロボットP1の状態が並進状態から2面接地状態に移行したことを検出した場合、駆動輪110を変更後の対象の壁面に押し付ける押付力が駆動輪110に与えられるように制御部500が第2駆動部200を制御する。並進状態は壁面移動ロボットP1が第1~第3種壁面のいずれかを並進する状態である。図4は並進状態の一例を示している。2面接地状態は駆動輪110が第1種壁面または第3種壁面と第2種壁面との両方に接地した状態である。図5は2面接地状態の一例を示している。一例では、制御部500は駆動輪110の角速度が所定の角速度以上から所定の角速度未満に変化したことに基づいて2面接地状態を検出できる。
 第1転換処理の一例では、第1処理および第2処理を並行して実行する。第1処理では、各プロペラ221、222が一定の回転速度で互いに反対の方向に回転するように制御部500がプロペラ駆動部230を制御する。第2処理では、各プロペラ221、222の推力が押付力として作用する成分、および、ボディ10を進行方向に移動させる成分を含むように第1ジンバル角度θ1および第2ジンバル角度θ2が設定される。第2処理では、第1ジンバル角度θ1が第3所定角度、かつ、第2ジンバル角度θ2が所定角度Aとなるように各ジンバルモータ213、214を制御する。変更後の対象の壁面が第1種壁面である場合、第3所定角度は0度未満かつ-180度超の負の角度である。この場合、第3所定角度の好ましい一例は各プロペラ221、222の推力に壁面移動ロボットP1の進行方向の成分が含まれる-45度または-135度である。変更後の対象の壁面が第2種壁面である場合、第3所定角度は90度未満かつ-90度超の正または負の角度である。この場合、第3所定角度の好ましい一例は各プロペラ221、222の推力に壁面移動ロボットP1の進行方向の成分が含まれる45度または-45度である。変更後の対象の壁面が第3種壁面である場合、第3所定角度は0度超かつ180度未満の正の角度である。この場合、第3所定角度の好ましい一例は各プロペラ221、222の推力に壁面移動ロボットP1の進行方向の成分が含まれる45度または135度である。
 図6に例示されるように、第1ジンバル角度θ1が第3所定角度に設定されることにより、各プロペラ221、222の回転にともない発生する推力が各駆動輪110を壁面に押し付ける押付力として作用する。このため、各駆動輪110と変更後の対象の壁面である第2種壁面との間に生じる摩擦力が増加し、各駆動輪110が第2種壁面上を転がることにより壁面移動ロボットP1が重力に抗して第2種壁面上を移動する。
 第2転換処理の一例では、第1処理および第2処理を並行して実行する。第1処理では、各プロペラ221、222が一定の回転速度で互いに反対の方向に回転するように制御部500がプロペラ駆動部230を制御する。第2処理では、壁面移動ロボットP1が変更前の対象の壁面から変更後の対象の壁面に向けて飛行するように第1ジンバル角度θ1および第2ジンバル角度θ2が設定される。第2処理では、第1ジンバル角度θ1が第4所定角度、かつ、第2ジンバル角度θ2が所定角度Aとなるように各ジンバルモータ213、214を制御部500が制御する。変更前の対象の壁面が第1種壁面である場合、第4所定角度は0度超かつ180度未満の正の角度である。この場合、第4所定角度の好ましい一例は90度である。変更前の対象の壁面が第3種壁面である場合、第4所定角度は0度未満かつ-180度超の負の角度である。この場合、第4所定角度の好ましい一例は-90度である。第1ジンバル角度θ1が第4所定角度に設定されることにより、各プロペラ221、222の回転にともない発生する推力により壁面移動ロボットP1が変更前の対象の壁面から変更後の対象の壁面に向けて飛行する。各駆動輪110が変更後の対象の壁面に接地した場合、各プロペラ221、222の回転にともない発生する推力が各駆動輪110を壁面に押し付ける押付力として作用する。このため、各駆動輪110と変更後の対象の壁面との間に生じる摩擦力が増加し、各駆動輪110が変更後の対象の壁面上を転がることにより壁面移動ロボットP1がその壁面上を移動する。
 (第2実施形態)
 図7は第2実施形態の壁面移動ロボットP1を示す。第2実施形態の壁面移動ロボットP1は以下に示される点で第1実施形態の壁面移動ロボットP1と相違し、その他の点で第1実施形態の壁面移動ロボットP1と実質的に同一の構成を備えている。
 ボディ10は移動機構10Aを含む。移動機構10Aはジンバル機構210を壁面に対して接近および離間させることができるように駆動輪110とジンバル機構210との位置関係を変更する機構である。第1例では、移動機構10Aは、第1回転中心軸C1が駆動輪中心軸CDと平行となる位置でジンバル機構210を支持できるように構成されたボディ10の構造である。第2例(図示略)では、移動機構10Aは、第1回転中心軸C1が駆動輪中心軸CDと直交する位置でジンバル機構210を支持できるように構成されたボディ10の構造である。ボディ10が駆動輪中心軸CDまわりで回転した場合、回転の方向に応じてジンバル機構210が壁面に対して接近または離間する。移動機構10Aに関する第3例(図示略)では、移動機構10Aはジンバル機構210を駆動輪110に対して少なくとも標準高さ方向にスライドさせるスライド機構を含む。
 第1駆動部100は1または複数の補助輪130をさらに含む。一例では、第1駆動部100は複数の補助輪130を含む。図8に示されるように、複数の補助輪130は、標準前後方向において駆動輪中心軸CDに対して一方側に設けられる補助輪130、および、標準前後方向において駆動輪中心軸CDに対して他方側に設けられる補助輪130を含む。複数の補助輪130は従動輪である。各駆動輪110および補助輪130に関する接地状態(以下「駆動輪110等の接地状態」という)は第1~第3接地状態、2面接地状態、および、第1~第3接地状態と2面接地状態との組み合わせを含む。第1接地状態は各駆動輪110および一方の補助輪130が壁面に接地した状態である。第2接地状態は各駆動輪110および他方の補助輪130が壁面に接地した状態である。第3接地状態は各駆動輪110が壁面に接地し、各補助輪130が壁面に接地していない状態である。壁面移動ロボットP1はいずれの接地状態でも壁面上を移動できる。
 壁面移動ロボットP1が並進する場合における標準前後方向に関する2重反転プロペラ220の位置(以下「プロペラ前後位置」という)は任意に選択できる。一例では、プロペラ前後位置は進行側位置および反進行側位置に区分できる。進行側位置は標準前後方向において駆動輪中心軸CDに対して進行方向側の位置である。反進行側位置は標準前後方向において駆動輪中心軸CDに対して進行方向とは反対側の位置である。制御部500は受信した操作信号または自動移動プログラムの内容に応じて2重反転プロペラ220のプロペラ前後位置を選択する。
 転換制御プログラムは第1実施形態に例示された第1転換処理および第2転換処理に加えて、次の第3転換処理をさらに記述している。転換制御プログラムの別の記述例では、第1転換処理および第3転換処理の一方と第2転換処理とを記述している。第3転換処理では、壁面移動ロボットP1の状態が第1接地状態から第1接地状態かつ2面接地状態に移行したことを検出した場合、駆動輪110等の接地状態が第1接地状態かつ2面接地状態から第2接地状態かつ2面接地状態に変化するように制御部500が第2駆動部200を制御する。図9は第1接地状態の一例を示している。図10は第1接地状態かつ2面接地状態の一例を示している。図12は第2接地状態かつ2面接地状態の一例を示している。第3転換処理の一例では、第1段階および第2段階の処理を順に実行する。
 第1段階の処理では、第1処理および第2処理を並行して実行する。第1処理では、各プロペラ221、222が一定の回転速度で互いに反対の方向に回転するように制御部500がプロペラ駆動部230を制御する。第2処理では、第1ジンバル角度θ1が第5所定角度、かつ、第2ジンバル角度θ2が所定角度Aとなるように制御部500が各ジンバルモータ213、214を制御する。第5所定角度の例の図示は省略する。なお、図に示される構成においては、第5所定角度は図10に示す状態と図11に示される状態との間に存在する。第5所定角度はボディ10を変更前の壁面から変更後の壁面に向けて移動させる際の初期(言い換えると一方の補助輪130が変更前の対象の壁面から一定距離だけ離れるまで)に生じる第1ジンバル角度θ1である。例えば図10に示される状態においては、第5所定角度は上向きの成分を含む推力を生じさせる。変更前の対象の壁面が第1種壁面であり、変更後の対象の壁面が第2種壁面である場合、第5所定角度は0度超かつ180度未満の正の角度である。変更前の対象の壁面が第3種壁面であり、変更後の対象の壁面が第2種壁面である場合、第5所定角度は0度未満かつ-180度超の負の角度である。変更前の対象の壁面が第2種壁面であり、変更後の対象の壁面が第1種壁面である場合、第5所定角度は90度超かつ-90度未満の正または負の角度である。変更前の対象の壁面が第2種壁面であり、変更後の対象の壁面が第3種壁面である場合、第5所定角度は90度超かつ-90度未満の正または負の角度である。これらの場合、第5所定角度の好ましい一例は各プロペラ221、222の推力に壁面移動ロボットP1の進行方向の成分が含まれる角度である。第1ジンバル角度θ1が第5所定角度に設定されることにより、各プロペラ221、222の回転にともない発生する推力によりボディ10が駆動輪中心軸CDまわりで変更前の対象の壁面側から変更後の対象の壁面側に回転し、第3接地状態かつ2面接地状態が形成される。図11は第3接地状態かつ2面接地状態の一例を示している。
 第2段階の処理では、第1処理および第2処理を並行して実行する。第1処理では、各プロペラ221、222が一定の回転速度で互いに反対の方向に回転するように制御部500が各ジンバルモータ213、214を制御する。第2処理では、他方の補助輪130が変更後の対象の壁面に近づくにつれて第1ジンバル角度θ1が第5所定角度から第6所定角度に近づくように、かつ、第2ジンバル角度θ2が所定角度Aとなるように制御部500が各ジンバルモータ213、214を制御する。第2処理ではさらに、一方の補助輪130が変更前の対象の壁面から一定距離だけ離れた場合に第1ジンバル角度θ1が第6所定角度となるように制御部500が第1ジンバルモータ213を制御する。
 変更後の対象の壁面が第1種壁面である場合、第6所定角度は0度未満かつ-180度超の正の角度である。この場合、第6所定角度の好ましい一例は各プロペラ221、222の推力に壁面移動ロボットP1の進行方向の成分が含まれる-45度または-135度である。変更後の対象の壁面が第2種壁面である場合、第6所定角度は90度未満かつ-90度超の正または負の角度である。この場合、第6所定角度の好ましい一例は各プロペラ221、222の推力に壁面移動ロボットP1の進行方向の成分が含まれる45度または-45度(図11参照)である。変更後の対象の壁面が第3種壁面である場合、第6所定角度は0度超かつ180度未満の正の角度である。この場合、第6所定角度の好ましい一例は各プロペラ221、222の推力に壁面移動ロボットP1の進行方向の成分が含まれる45度または135度である。
 第1ジンバル角度θ1が第5所定角度から第6所定角度に近づけられることにより、ボディ10を駆動輪中心軸CDまわりで変更前の対象の壁面側から変更後の対象の壁面側に回転させるトルクが弱められる。ただし、ボディ10は各プロペラ221、222の回転により発生する推力により引き続き駆動輪中心軸CDまわりで変更前の対象の壁面側から変更後の対象の壁面側に回転し、図12に例示されるように第2接地状態かつ2面接地状態が形成される。ボディ10を回転させるトルクが上記のように弱められているため、他方の補助輪130が変更後の対象の壁面に接地するときの衝撃が低減される。
 第2接地状態かつ2面接地状態が形成された場合、各プロペラ221、222の回転にともない発生する推力が各駆動輪110を変更後の対象の壁面に押し付ける押付力として作用する。このため、各駆動輪110と第2種壁面との間に生じる摩擦力が増加し、各駆動輪110が変更後の対象の壁面上を転がることにより壁面移動ロボットP1がその壁面上を移動する。また、例えば図示される構成においては、第6所定角度が0度超かつ90度未満の範囲に含まれる場合(図12参照)、各プロペラ221、222の推力が押付力として作用する成分、および、ボディ10を重力に抗して進行方向に移動させる成分を含む。このため、壁面移動ロボットP1が第2種壁面上を移動する場合の移動速度を増加できる、または、各移動用モータ120の負荷を軽減できる。
 第2実施形態の第1転換処理では、壁面移動ロボットP1の状態が第1接地状態から第1接地状態かつ2面接地状態に移行したことを検出した場合、第1実施形態の第1転換処理と同様に第1ジンバル角度θ1が第3所定角度に設定されるように制御部500が第2駆動部200を制御する。第1ジンバル角度θ1が第3所定角度に設定された場合、各プロペラ221、222の回転にともない発生する推力が各駆動輪110を壁面に押し付ける押付力として作用する。各駆動輪110に押付力が与えられることにより各駆動輪110と変更後の対象の壁面である第2種壁面との間に生じる摩擦力が増加する。このため、壁面移動ロボットP1の状態が第1接地状態を形成し、各駆動輪110が第2種壁面上を転がることにより壁面移動ロボットP1が重力に抗して第2種壁面上を移動する。
 (第3実施形態)
 第3実施形態では第2実施形態に示された壁面移動ロボットP1を図13~図16に示されるように具体化した一例を提示する。この壁面移動ロボットP1は、主に法面の移動を想定して構成されている。ボディ10、第1駆動部100、第2駆動部200、測定部400、制御部500、および、電源部300は、図2に示されるボディ10等の具体的な構成の一例である。
 ボディ10は、第1フレーム11(第1本体フレーム)、第2フレーム12、一対の第3フレーム13(第2本体フレーム)、および、複数の第4フレーム14を含む。第1フレーム11および第2フレーム12は、壁面移動ロボットP1の平面視において、第1フレーム11の長手方向に平行な方向と第2フレーム12の長手方向に平行な方向とが直交するように配置される。ジンバル機構210が各フレーム11~14により囲まれるため、ジンバル機構210が周囲の物体に触れにくい。ボディ10は軽量であることが好ましい。各フレーム11~14を構成する材料の一例は炭素繊維強化プラスチック(CFRP)である。第1フレーム11は壁面移動ロボットP1の幅方向に延び、中空構造を備える。第1フレーム11は2つの収容部11A(図16参照)を含む。収容部11Aは移動用モータ120を収容できるように構成された第1フレーム11の一部である。一方の収容部11Aは第1フレーム11の一方の端部11B寄りに設けられている。他方の収容部11Aは第1フレーム11の他方の端部11B寄りに設けられている。
 駆動輪110はホイール111およびタイヤ112を含む。ホイール111を構成する材料の一例は炭素繊維強化プラスチック(CFRP)である。タイヤ112を構成する材料の一例は天然ゴムである。タイヤ112はホイール111の外周に取り付けられている。一方の駆動輪110は第1フレーム11の一方の端部11Bの隣に配置されている。他方の駆動輪110は第1フレーム11の他方の端部11Bの隣に配置されている。
 移動用モータ120は本体121および出力軸122(共に図16参照)を含む。一方の移動用モータ120の本体121は一方の収容部11A内に配置されている。一方の移動用モータ120の出力軸122は一方のホイール111と連結されている。他方の移動用モータ120の本体121は他方の収容部11Aに配置されている。他方の移動用モータ120の出力軸122は他方のホイール111と連結されている。言い換えると、第1フレーム11は駆動輪110が連結されるフレームである。各出力軸122の回転中心軸が同軸上に位置するように各移動用モータ120が各収容部11Aに配置されている。各出力軸122の回転中心軸は駆動輪110の駆動輪中心軸CDである。補助輪130は取付座131および車輪132を含む。取付座131は車輪132が対象の壁面に接地できるように第2フレーム12に取り付けられている。一例では、取付座131は第2フレーム12の端部12Bに取り付けられている。
 第2フレーム12は壁面移動ロボットP1の高さ方向においてジンバル機構210に対して第1フレーム11とは反対側に設けられている。第1フレーム11および第2フレーム12は壁面移動ロボットP1の高さ方向においてジンバル機構210を挟んでいる。第2フレーム12は壁面移動ロボットP1の標準前後方向に延びている。第2フレーム12の長手方向の長さは駆動輪110の直径よりも長い。壁面移動ロボットP1の標準前後方向において第2フレーム12の長手方向の中心と駆動輪中心軸CDとが実質的に一致している。第2フレーム12の各端部12Bは壁面移動ロボットP1の標準前後方向において駆動輪110よりも標準前後方向の外方に位置している。
 第3フレーム13はジンバル機構210と連結されるフレームである。第3フレーム13は壁面移動ロボットP1の高さ方向に延びている。一方の第3フレーム13は第1フレーム11の一方の端部11Bに連結されている。他方の第3フレーム13は第1フレーム11の他方の端部11Bに連結されている。一方の第3フレーム13と他方の第3フレーム13とは壁面移動ロボットP1の幅方向においてジンバル機構210を挟んでいる。
 8本の第4フレーム14は第1グループに含まれる4本の第4フレーム14、および、第2グループに含まれる残りの4本の第4フレーム14に分類される。第1グループの第4フレーム14は第2フレーム12と第1フレーム11とを連結している。図示される例では、第1グループの第4フレーム14は第2フレーム12に取り付けられた取付座131と第1フレーム11とを連結している。第2グループの第4フレーム14は第2フレーム12と第3フレーム13とを連結している。
 各ジンバル211、212はフレームである。各ジンバル211、212を構成する材料の一例は炭素繊維強化プラスチック(CFRP)である。各ジンバル211、212は任意の形状を選択できる。各ジンバル211、212の形状の一例は楕円形および多角形である。図13および図14では、多角形の一例である8角形の第1ジンバル211、および、多角形の一例である4角形の第2ジンバル212を示している。第1連結部215の一例は、第1ジンバル211に設けられる軸と第3フレーム13に設けられる軸受とのコンビネーションである。第1連結部215の一例によれば、第1ジンバル211は第3フレーム13に対して回転できるように第3フレーム13に連結される。第2連結部216の一例は、第2ジンバル212に設けられる軸と第1ジンバル211に設けられる軸受とのコンビネーションである。第2連結部216の一例によれば、第2ジンバル212は第1ジンバル211に対して回転できるように第1ジンバル211に連結される。第2ジンバル212は2重反転プロペラ220を保持している。図15及び図16に示すように、2重反転プロペラ220の回転中心軸がボディ10の前後方向と平行となる第1ジンバル211の回転位相においてボディ10を平面視した場合、ボディ10の前後方向において第1ジンバル211が第1フレーム11の幅内に収まるように第1ジンバル211が構成されている。
 各ジンバルモータ213、214の一例はラジコンサーボモータである。第1ジンバルモータ213は一方の第3フレーム13に支持されている。第1ジンバルモータ213の出力軸(図示略)は、一方の第1連結部215を構成する軸と一体的に回転できるようにその軸と連結されている。第2ジンバルモータ214は、第2ジンバル212に支持されている。第2ジンバルモータ214の出力軸(図示略)は、一方の第2連結部216を構成する軸と一体的に回転できるようにその軸と連結されている。
 プロペラ駆動部230は例えば次の第1形態および第2形態を取り得る。図13および図14では第1形態のプロペラ駆動部230を示している。第1形態のプロペラ駆動部230は第1回転軸231、第2回転軸232、第1プロペラモータ233、および、第2プロペラモータ234を含む。第1プロペラ221は複数のブレード221Aを含む。第1プロペラ221は第1回転軸231と一体的に回転できるように第1回転軸231と連結されている。第2プロペラ222は複数のブレード222Aを含む。第2プロペラ222は第2回転軸232と一体的に回転できるように第2回転軸232と連結されている。第2回転軸232は中空軸である。第1回転軸231は第2回転軸232と同軸となるように第2回転軸232に挿入されている。第1プロペラモータ233の出力部(図示略)は第1回転軸231と連結されている。第2プロペラモータ234の出力部(図示略)は第2回転軸232と連結されている。制御部500は各プロペラ221、222が互いに反対方向に回転するように各プロペラモータ233、234を制御する。
 第2形態のプロペラ駆動部230は各プロペラモータ233、234に代わる1つのプロペラモータ、および、伝達部を含む(いずれも図示略)。伝達部は、各回転軸231、232が互いに反対方向に回転するようにプロペラモータの出力部(図示略)の回転を各回転軸231、232に伝達する複数のギアを含む。一例では、プロペラモータの出力軸の回転速度と第1回転軸231の回転速度との比率と、プロペラモータの出力軸の回転速度と第2回転軸232の回転速度との比率とが一致するように構成される。複数のギアの構成は任意に選択できる。第1例では、複数のギアはプロペラモータの出力軸の回転速度を減速して各回転軸231、232に伝達する。第2例では、複数のギアはプロペラモータの出力軸の回転速度を増速して各回転軸231、232に伝達する。第3例では、複数のギアはプロペラモータの出力軸の回転速度を減速および増速することなく各回転軸231、232に伝達する。
 測定部400は1つの姿勢検出センサ410、複数の角度検出センサ420(図17参照)、および、複数の環境測定センサ430を含む。姿勢検出センサ410の構成は任意に選択できる。第1例では、姿勢検出センサ410は3Dモーションセンサである。第2例では、姿勢検出センサ410は3軸加速度センサ、3軸角速度センサ、および、3軸地磁気センサの組である。角度検出センサ420はロータリエンコーダである。複数の環境測定センサ430は超音波センサ431およびGPS(Global Positioning System)レシーバー432を含む。超音波センサ431は、超音波スピーカ、超音波マイクロフォン、および、計測装置を含む。超音波スピーカは壁面に向かって超音波を送信できるようにハウジング540に取り付けられている。超音波マイクロフォンは、壁面に反射された超音波を受信できるようにハウジング540に取り付けられている。計測装置は、制御部500から送信された指令信号に応じて超音波スピーカに超音波を出力させ、超音波マイクロフォンが受信した超音波の情報から対象物の一例である法面との距離および法面の存在の有無等を計算する。GPSレシーバー432は壁面の形状を計測するために用いられる。
 電源部300は、ハウジング310および電池320を含む。第2フレーム12はハウジング310を配置可能な収容部12Aを含む。収容部12Aは第2フレーム12に設けられた凹部である。ハウジング310を構成する材料は任意に選択できる。ハウジング310を構成する材料の一例は炭素繊維強化プラスチック(CFRP)である。ハウジング310は収容部12Aに取り付けられている。ハウジング310を第2フレーム12に結合する手段は例えばボルトである。電池320はハウジング310内に収容されている。電池320は1次電池または2次電池である。
 制御部500は、制御基板530およびハウジング540をさらに含む。制御基板530は移動用モータ120、第1ジンバルモータ213、第2ジンバルモータ214、および、プロペラ駆動部230を制御できるようにこれらの機器と通信可能に接続される。制御基板530は測定部400の測定結果を受信できるように姿勢検出センサ410および環境測定センサ430と通信可能に接続されている。制御基板530はリモートコントローラP2(図17参照)と通信可能に接続されている。制御部500は受信した操作信号または自動移動プログラムの内容に応じて2重反転プロペラ220のプロペラ前後位置を選択する。
 ハウジング540は第1フレーム11に取り付けられている。一例では、ハウジング540は第1フレーム11に対してジンバル機構210とは反対側に配置されている。ハウジング540を第1フレーム11に結合する手段は例えばボルトである。ハウジング540は扁平形状を有する箱である。制御基板530はハウジング540内に配置されている。プロセッサ510および記憶装置520は制御基板530に実装されている。一例では、測定部400もハウジング540内に配置されている。超音波スピーカは出力する超音波がハウジング540に反射されないように配置される。超音波マイクロフォンは壁面に反射された超音波を受信できるように配置される。
 転換制御プログラムは第2実施形態に例示された第3転換処理を記述している。第3転換処理では、壁面移動ロボットP1の状態が第1接地状態(図18参照)から第1接地状態かつ2面接地状態(図19参照)に移行したことを検出した場合、駆動輪110等の接地状態が第1接地状態かつ2面接地状態(図19参照)から第2接地状態かつ2面接地状態(図20参照)に変化するように制御部500が第2駆動部200を制御する。転換処理の一例では、第1段階および第2段階の処理を順に実行する。
 第1段階の処理では、第1処理および第2処理を並行して実行する。第1処理では、各プロペラ221、222が一定の回転速度で互いに反対の方向に回転するように制御部500がプロペラ駆動部230を制御する。第2処理では、第1ジンバル角度θ1が第5所定角度、かつ、第2ジンバル角度θ2が所定角度Aとなるように制御部500が各ジンバルモータ213、214を制御する。第5所定角度が取り得る範囲、および、第5所定角度の好ましい一例は、第2実施形態に例示された内容と同様である。第1ジンバル角度θ1が第5所定角度に設定されることにより、各プロペラ221、222の回転にともない発生する推力によりボディ10が駆動輪中心軸CDまわりで変更前の対象の壁面側から変更後の対象の壁面側に回転し、第3接地状態かつ2面接地状態が形成される。
 第2段階の処理では、第1処理および第2処理を並行して実行する。第1処理では、各プロペラ221、222が一定の回転速度で互いに反対の方向に回転するように制御部500が各ジンバルモータ213、214を制御する。第2処理では、他方の補助輪130が変更後の対象の壁面に近づくにつれて第1ジンバル角度θ1が第5所定角度から第6所定角度に近づくように、かつ、第2ジンバル角度θ2が所定角度Aとなるように制御部500が各ジンバルモータ213、214を制御する。第2処理ではさらに、一方の補助輪130が変更前の対象の壁面から一定距離だけ離れた場合に第1ジンバル角度θ1が第6所定角度となるように制御部500が第1ジンバルモータ213を制御する。第6所定角度が取り得る範囲、および、第6所定角度の好ましい一例は、第2実施形態に例示された内容と同様である。
 第1ジンバル角度θ1が第5所定角度から第6所定角度に近づけられることにより、ボディ10を駆動輪中心軸CDまわりで変更前の対象の壁面側から変更後の対象の壁面側に回転させるトルクが弱められる。ただし、ボディ10は各プロペラ221、222の回転により発生する推力により引き続き駆動輪中心軸CDまわりで変更前の対象の壁面側から変更後の対象の壁面側に回転し、図20に例示されるように第2接地状態かつ2面接地状態が形成される。ボディ10を回転させるトルクが上記のように弱められているため、他方の補助輪130が変更後の対象の壁面に接地するときの衝撃が低減される。
 第2接地状態かつ2面接地状態が形成された場合、各プロペラ221、222の回転にともない発生する推力が各駆動輪110を変更後の対象の壁面に押し付ける押付力として作用する。このため、各駆動輪110と変更後の対象の壁面との間に生じる摩擦力が増加し、各駆動輪110が変更後の対象の壁面上を転がることにより壁面移動ロボットP1がその壁面上を移動する。第3転換処理が実行された後に形成される壁面移動ロボットP1の動作は、例えば次の第1状態および第2状態を含む。第1状態では、壁面移動ロボットP1が変更後の対象の壁面である第2種壁面を鉛直方向上方に移動する。第2状態では、壁面移動ロボットP1が変更後の対象の壁面である第2種壁面を鉛直方向下方に移動する。第1状態において第6所定角度が0度超かつ90度未満の範囲に含まれるとき、各プロペラ221、222の推力が押付力として作用する成分、および、ボディ10を重力に抗して進行方向に移動させる成分を含む。第2状態において第6所定角度が0度未満かつ-90度超の範囲に含まれるとき、各プロペラ221、222の推力が押付力として作用する成分、および、ボディ10を進行方向に移動させる成分を含む。このため、壁面移動ロボットP1が変更後の対象の壁面上を移動する場合の移動速度を増加できる、または、各移動用モータ120の負荷を軽減できる。

Claims (8)

  1.  駆動輪と、
     前記駆動輪にトルクを与える移動用モータと、
     前記駆動輪を壁面に押し付ける力を発生する2重反転プロペラと、
     2以上の自由度を有し、前記2重反転プロペラの回転中心軸の向きを任意に変更できるように前記2重反転プロペラをロータとして保持するジンバル機構とを備える
     壁面移動ロボット。
  2.  前記駆動輪および前記ジンバル機構と連結されるボディをさらに備え、
     前記ボディは、前記ジンバル機構を前記壁面に対して接近および離間させることができるように前記駆動輪と前記ジンバル機構との位置関係を変更可能な移動機構を含む
     請求項1に記載の壁面移動ロボット。
  3.  前記ボディは、前記駆動輪が連結される第1フレーム、および、前記第1フレームとの間に前記ジンバル機構を挟むように設けられる第2フレームを含む
     請求項2に記載の壁面移動ロボット。
  4.  前記第1フレームおよび前記第2フレームは、前記壁面移動ロボットの平面視において、前記第1フレームの長手方向に平行な方向と前記第2フレームの長手方向に平行な方向とが直交するように配置される
     請求項3に記載の壁面移動ロボット。
  5.  前記第2フレームに設けられる補助輪をさらに備える
     請求項4に記載の壁面移動ロボット。
  6.  水平に対する前記ボディの姿勢角度を検出する姿勢検出センサをさらに備える
     請求項2~5のいずれか一項に記載の壁面移動ロボット。
  7.  前記駆動輪が連結される第1本体フレーム、および、前記ジンバル機構が連結される第2本体フレームを含むボディをさらに備え、
     前記ジンバル機構は、前記第2本体フレームに対して回転できるように前記第2本体フレームに連結される第1ジンバル、および、前記第1ジンバルに対して回転できるように前記第1ジンバルに連結される第2ジンバルを含み、
     前記第2ジンバルは前記2重反転プロペラを保持し、
     前記2重反転プロペラの中心軸が前記ボディの前後方向と平行となる前記第1ジンバルの回転位相において前記ボディを平面視した場合、前記ボディの前後方向において前記第1ジンバルが前記第1本体フレームの幅内に収まるように前記第1ジンバルが構成されている
     請求項1に記載の壁面移動ロボット。
  8.  前記第1本体フレームは前記移動用モータを収容する収容部を備える
     請求項7に記載の壁面移動ロボット。
PCT/JP2017/044427 2016-12-13 2017-12-11 壁面移動ロボット WO2018110516A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016241498A JP2018095077A (ja) 2016-12-13 2016-12-13 壁面移動ロボット
JP2016-241498 2016-12-13

Publications (1)

Publication Number Publication Date
WO2018110516A1 true WO2018110516A1 (ja) 2018-06-21

Family

ID=62558617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044427 WO2018110516A1 (ja) 2016-12-13 2017-12-11 壁面移動ロボット

Country Status (2)

Country Link
JP (1) JP2018095077A (ja)
WO (1) WO2018110516A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113460185A (zh) * 2021-08-05 2021-10-01 北京理工大学 一种轮腿式车辆触地检测装置及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101994947B1 (ko) * 2018-07-09 2019-07-01 정승환 로봇의 자세제어 장치 및 이를 구비한 로봇
WO2019083197A1 (ko) * 2017-10-25 2019-05-02 정승환 로봇의 자세제어 장치 및 이를 구비한 로봇
JP7315158B2 (ja) * 2018-11-13 2023-07-26 オリエンタル白石株式会社 構造物点検システム及び飛行ロボット
JP7197088B2 (ja) * 2018-11-14 2022-12-27 オリエンタル白石株式会社 壁面移動ロボット
JP2020111217A (ja) * 2019-01-15 2020-07-27 常幸 小柳 粒状物散布用浮力体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068095A (ja) * 2000-09-05 2002-03-08 Mutsuro Bunto 飛行船形の宇宙船
JP2015209021A (ja) * 2014-04-24 2015-11-24 公立大学法人大阪市立大学 移動ロボット

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3064098B2 (ja) * 1992-04-03 2000-07-12 三菱重工業株式会社 不整地用走行車
JP4155081B2 (ja) * 2003-04-02 2008-09-24 トヨタ自動車株式会社 垂直離着陸装置
JP5622078B2 (ja) * 2010-03-17 2014-11-12 独立行政法人産業技術総合研究所 壁面走行ロボット
JP6344791B2 (ja) * 2013-01-23 2018-06-20 国立大学法人 名古屋工業大学 陸上(および可能な場合は水上を)走行可能なプロテクトフレーム付き飛行体および自動充電装置
JP6693650B2 (ja) * 2014-06-26 2020-05-13 国立大学法人 名古屋工業大学 プロテクトフレーム軸の傾きと独立に飛行体本体を水平にできる陸上走行可能な飛行体
JP2016052819A (ja) * 2014-09-03 2016-04-14 株式会社Jvcケンウッド 壁面走行車

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068095A (ja) * 2000-09-05 2002-03-08 Mutsuro Bunto 飛行船形の宇宙船
JP2015209021A (ja) * 2014-04-24 2015-11-24 公立大学法人大阪市立大学 移動ロボット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
101, KIYOSHI ET AL.: "Experiments and Simulations of Wall Running and Transferring of A Climbing Robot", 2015 INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA) PROCEED, U S, 2 September 2015 (2015-09-02), 2018.02.01, pages 419 - 425, XP033218136, Retrieved from the Internet <URL:http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7276782> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113460185A (zh) * 2021-08-05 2021-10-01 北京理工大学 一种轮腿式车辆触地检测装置及方法

Also Published As

Publication number Publication date
JP2018095077A (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2018110516A1 (ja) 壁面移動ロボット
CN210038147U (zh) 扫描角度调整装置、激光雷达系统及载具
Kim et al. FAMPER: A fully autonomous mobile robot for pipeline exploration
JP5846516B2 (ja) 移動ロボット
EP2734343B1 (en) Movable platform
US9487254B2 (en) Vehicle and method for the independent inspection of hard-to-reach inner spaces
JP6521971B2 (ja) モジュール式移動検査ビークル
Ferrière et al. ROLLMOBS, a new universal wheel concept
JP6448071B2 (ja) ドローン
CN108710376A (zh) 基于多传感器融合的slam与避障的移动底盘
Yoon et al. Spherical robot with new type of two-pendulum driving mechanism
US20200159241A1 (en) Automated vehicle
CN114080301A (zh) 独立平移的同轴机器人臂和感知壳体
JP6719183B2 (ja) 自律走行装置
US11630025B2 (en) Robotic inspection device
JP2020118641A (ja) マルチコプター
CN106864617A (zh) 一种自平衡机器人系统
Ghariblu et al. Structure and dynamic modelling of a spherical robot
US10926402B2 (en) Robotic arm assemblies with unidirectional drive actuators
Piemngam et al. Development of autonomous mobile robot platform with mecanum wheels
JP3809698B2 (ja) 搬送装置
KR20130074143A (ko) 옴니인 휠을 구비한 라이더 로봇
Wu et al. Research on the design of educational robot with four-wheel omni-direction chassis
CN110277643B (zh) 无人机天线系统、无人机和无人机系统
WO2015035095A1 (en) Three-wheeled mobile robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881960

Country of ref document: EP

Kind code of ref document: A1