WO2018110185A1 - 冷媒回路システムおよび冷媒回路システムの制御方法 - Google Patents

冷媒回路システムおよび冷媒回路システムの制御方法 Download PDF

Info

Publication number
WO2018110185A1
WO2018110185A1 PCT/JP2017/040965 JP2017040965W WO2018110185A1 WO 2018110185 A1 WO2018110185 A1 WO 2018110185A1 JP 2017040965 W JP2017040965 W JP 2017040965W WO 2018110185 A1 WO2018110185 A1 WO 2018110185A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
enthalpy
temperature
heat exchanger
gas
Prior art date
Application number
PCT/JP2017/040965
Other languages
English (en)
French (fr)
Inventor
道明 中西
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to EP17881376.2A priority Critical patent/EP3460357A4/en
Publication of WO2018110185A1 publication Critical patent/WO2018110185A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to a refrigerant circuit system including a gas-liquid heat exchanger and a method for controlling the refrigerant circuit system.
  • Patent Document 1 In order to suppress the temperature of the compressor to an allowable temperature, there is an example in which only a part of the low-pressure refrigerant that has passed through the evaporator is passed through the gas-liquid heat exchanger and the rest is bypassed (Patent Document 1). That is, the flow rate of the low-pressure refrigerant radiated from the high-pressure refrigerant is adjusted by bypass.
  • Patent Document 1 a bypass path and a bypass valve are provided on the outlet side of the evaporator, and low-pressure refrigerant is sucked into the compressor from the bypass path.
  • an object of the present invention is to provide a refrigerant circuit system and a refrigerant circuit system control method that can promote supercooling while appropriately controlling the temperature of the compressor.
  • the present invention is a refrigerant circuit system including a compressor, a condenser, a decompression unit, and an evaporator.
  • the refrigerant circuit system further includes a high-pressure refrigerant that has passed through the condenser and a low-pressure refrigerant that has passed through the evaporator.
  • a gas-liquid heat exchanger that exchanges heat, a bypass path that accepts at least a portion of the high-pressure refrigerant that goes from the condenser to the gas-liquid heat exchanger, and bypasses it upstream from the decompression section, and a high pressure that flows into the bypass path
  • a flow rate adjustment unit capable of adjusting the flow rate of the refrigerant
  • a control unit that gives a command according to the flow rate to the flow rate adjustment unit, the control unit corresponding to the detected temperature of the discharged refrigerant discharged from the compressor
  • the discharge enthalpy which is the enthalpy, is h1, the difference between the enthalpy corresponding to the detected temperature of the refrigerant at the inlet of the gas-liquid heat exchanger and the enthalpy corresponding to the detected temperature of the refrigerant at the outlet of the gas-liquid heat exchanger En Based on hv, h1 and ⁇ h, the target discharge enthalpy corresponding to the target discharge
  • the increase / decrease ratio from the current flow rate of the high-pressure refrigerant flowing into the bypass path is determined on the assumption that the difference in compatible enthalpy, which is the difference, is ⁇ h ′.
  • the target temperature range including the target temperature Tv and having the upper limit temperature and the lower limit temperature is set, and the control unit sets the upper limit discharge corresponding to the upper limit temperature from the lower limit discharge enthalpy corresponding to the lower limit temperature. It is preferable to obtain a suitable enthalpy difference ⁇ h ′ that can accommodate the target discharge enthalpy hv by the enthalpy.
  • the refrigerant circuit system of the present invention is an outdoor unit that functions as a condenser during cooling operation and functions as an evaporator during heating operation, by switching between cooling operation and heating operation by changing the direction of refrigerant flow.
  • the indoor heat exchanger Positioned between the heat exchanger, the indoor heat exchanger that functions as an evaporator during cooling operation, and functions as a condenser during heating operation, and the gas-liquid heat exchanger and evaporator during cooling operation, and functions as a decompression unit
  • the air conditioner includes a cooling decompression unit, and a heating decompression unit that is located between the gas-liquid heat exchanger and the evaporator during heating operation and functions as a decompression unit.
  • the present invention is also a control method for a refrigerant circuit system including a compressor, a condenser, a decompression unit, and an evaporator, wherein the refrigerant circuit system further passes through the high-pressure refrigerant that has passed through the condenser and the evaporator.
  • a gas-liquid heat exchanger for exchanging heat with the low-pressure refrigerant, a bypass path for accepting at least a part of the high-pressure refrigerant from the condenser to the gas-liquid heat exchanger, and bypassing upstream of the decompression unit, and a bypass path
  • a flow rate adjustment unit capable of adjusting the flow rate of the high-pressure refrigerant flowing into the compressor, and detecting the temperature of the refrigerant discharged from the compressor; and the temperature of the refrigerant at the inlet of the gas-liquid heat exchanger
  • the step of detecting, the step of detecting the temperature of the refrigerant at the outlet of the gas-liquid heat exchanger, and the discharge enthalpy corresponding to the detected temperature of the discharged refrigerant is h1, the detected temperature of the refrigerant at the inlet Assuming that the enthalpy difference that is the difference between the corresponding enthalpy and the enthalpy corresponding to the detected temperature of the refrigerant
  • the target temperature range including the target temperature Tv and having the upper limit temperature and the lower limit temperature is set, and in the step of obtaining ⁇ h ′, from the lower limit discharge enthalpy corresponding to the lower limit temperature It is preferable to obtain a suitable enthalpy difference ⁇ h ′ that can accommodate the target discharge enthalpy hv by the upper limit discharge enthalpy corresponding to the upper limit temperature.
  • the temperature of the discharged refrigerant is derived so as to be within the target temperature Tv ( ⁇ h ′).
  • the refrigerant flowing through the gas-liquid heat exchanger and the refrigerant flowing through the bypass path based on the present and future ratio ( ⁇ h ′ / ⁇ h) of the magnitude of the effect of the heat exchange amount by the gas-liquid heat exchanger.
  • a refrigerant circuit system 1 shown in FIG. 1 includes a refrigerant circuit through which refrigerant circulates.
  • the refrigerant circuit system 1 is an air conditioner that uses a refrigeration cycle, and exchanges heat between an outdoor unit (not shown) having an outdoor heat exchanger 11 that exchanges heat between outdoor air and refrigerant, and indoor air and refrigerant. And an indoor unit (not shown) having the indoor heat exchanger 12.
  • the refrigerant circuit system 1 includes a four-way valve 13 capable of switching the direction of the circulating refrigerant flow, and is configured to be switched between a cooling operation and a heating operation by operating the four-way valve 13.
  • the refrigerant flow during cooling is indicated by solid arrows.
  • the path B shown by a broken line is opened, so that the refrigerant flows in the direction opposite to that during cooling (broken arrow in FIG. 1).
  • the outdoor heat exchanger 11 functions as a condenser during the cooling operation, and functions as an evaporator during the heating operation.
  • the indoor heat exchanger 12 functions as an evaporator during cooling operation, and functions as a condenser during heating operation.
  • the refrigerant circuit system 1 includes a fan 11 ⁇ / b> F that blows air to the outdoor heat exchanger 11 and a fan 12 ⁇ / b> F that blows air toward the indoor heat exchanger 12.
  • the outdoor heat exchanger 11 and the indoor heat exchanger 12 shown in FIG. 1 are denoted as a condenser and an evaporator, respectively, as functions during cooling operation.
  • the outdoor heat exchanger 11 is referred to as a condenser 11 and the indoor heat exchanger 12 is referred to as an evaporator 12 on the basis of cooling.
  • the refrigerant circuit system 1 includes a compressor 14, a condenser 11, a decompression unit 15 (151, 152), and an evaporator 12 as basic elements.
  • a decompression unit 15 As the decompression unit 15, two decompression units 151 for cooling operation and decompression unit 152 for heating operation are prepared.
  • the decompression unit 151 for cooling operation does not function during heating operation.
  • the decompression unit 152 for heating operation does not function during the cooling operation.
  • the refrigerant circuit system 1 includes a gas-liquid heat exchanger 20 that exchanges heat between the low-pressure refrigerant that has passed through the evaporator 12 and the high-pressure refrigerant that has passed through the condenser 11, and gas-liquid heat.
  • a bypass path 21 that bypasses part of the high-pressure refrigerant that goes to the exchanger 20 to the upstream side of the decompression unit 151, a bypass valve 22 that can adjust the flow rate of the high-pressure refrigerant that flows into the bypass path 21, and the bypass valve 22
  • a control unit 25 for giving an opening degree.
  • the gas-liquid heat exchanger 20 includes a high-pressure path 201 through which a high-pressure refrigerant flows and a low-pressure path 202 through which a low-pressure refrigerant flows.
  • the high-pressure refrigerant flowing through the high-pressure path 201 and the low-pressure refrigerant flowing through the low-pressure path 202 can exchange heat.
  • the bypass path 21 receives a part of the high-pressure refrigerant from the upstream side of the high-pressure path 201 and makes a bypass downstream of the high-pressure path 201 and upstream of the decompression unit 151.
  • the high-pressure refrigerant that has flowed into the gas-liquid heat exchanger 20 through the condenser 11 is supercooled by radiating heat to the low-pressure refrigerant, as indicated by 100 in FIG. 2, and the enthalpy is lowered. Thereafter, the pressure is reduced by the pressure reducing unit 151 and flows to the evaporator 12. While the high-pressure refrigerant is supercooled by the gas-liquid heat exchanger 20, the low-temperature and low-pressure refrigerant that has passed through the evaporator 12 absorbs heat from the high-pressure refrigerant and is overheated as indicated by 101 in FIG. If it does so, the temperature of the refrigerant
  • the predetermined target temperature Tv allowed for the compressor 14 is determined in consideration of the performance of the lubricating oil used for the sliding portion of the compressor 14 and the performance of the motor when the motor is built in the compressor 14. be able to.
  • a target temperature Tv that is the temperature of the refrigerant flowing through the discharge pipe that discharges the refrigerant compressed by the compressor 14 to the outside of the compressor 14 is determined.
  • a target temperature range including the target temperature Tv and including the upper limit temperature X and the lower limit temperature X- ⁇ is set.
  • the temperature of the compressor 14 is kept from the lower limit temperature X- ⁇ to the upper limit temperature X while obtaining the supercooling effect as much as possible by the gas-liquid heat exchanger 20.
  • 22 is used to adjust the flow rate of the high-pressure refrigerant flowing through the bypass path 21.
  • an opening degree command according to the flow rate is given from the control unit 25 to the bypass valve 22
  • the opening amount of the bypass valve 22 is changed according to the opening degree command, so that the flow rate of the refrigerant flowing through the bypass path 21 is adjusted.
  • the control unit 25 performs a calculation.
  • the refrigerant circuit system 1 of the present embodiment includes a condenser temperature sensor 11A, a discharge temperature sensor 14A, an inlet temperature sensor 20A, and an outlet temperature sensor 20B.
  • the condenser temperature sensor 11 ⁇ / b> A detects the temperature of the gas-liquid two-phase refrigerant flowing through the condenser 11.
  • the temperature detected by the condenser temperature sensor 11A is regarded as the temperature of the saturated vapor, and the pressure of the high-pressure refrigerant can be obtained as the corresponding saturated vapor pressure.
  • the outdoor unit is provided with a pressure gauge indicating the pressure of the high-pressure refrigerant
  • the value measured by the pressure gauge can be used as the pressure of the high-pressure refrigerant.
  • the refrigerant circuit system 1 is also provided with a temperature sensor 12A for detecting the temperature of the gas-liquid two-phase refrigerant flowing through the indoor heat exchanger 12 that functions as a condenser during the heating operation for control during the heating operation. Yes.
  • the pressure of the high-pressure refrigerant can be obtained using the temperature detected by the temperature sensor 12A.
  • the discharge temperature sensor 14 ⁇ / b> A detects the temperature of refrigerant (hereinafter referred to as discharge refrigerant) flowing through the discharge pipe of the compressor 14.
  • the inlet temperature sensor 20 ⁇ / b> A detects the temperature of the high-pressure refrigerant that flows into the inlet of the gas-liquid heat exchanger 20.
  • the outlet temperature sensor 20 ⁇ / b> B detects the temperature of the high-pressure refrigerant that flows out from the outlet of the gas-liquid heat exchanger 20.
  • the control unit 25 uses the pressure of the high-pressure refrigerant based on the measurement value by the condenser temperature sensor 11A or obtained by the pressure gauge and the temperature Td of the discharge refrigerant detected by the discharge temperature sensor 14A to Get h1 which is enthalpy. Further, the enthalpy h2 of the refrigerant at the inlet of the gas-liquid heat exchanger 20 is obtained using the temperature detected by the inlet temperature sensor 20A and the pressure of the high-pressure refrigerant, and further, the temperature and high pressure detected by the outlet temperature sensor 20B.
  • the refrigerant enthalpy h3 at the outlet of the gas-liquid heat exchanger 20 is acquired using the refrigerant pressure.
  • the enthalpy difference ⁇ h is obtained by the calculation of h2 ⁇ h3. This corresponds to the effect of supercooling of the high-pressure refrigerant by the gas-liquid heat exchanger 20, in other words, the effect of overheating of the low-pressure refrigerant.
  • the case where the high-pressure refrigerant does not flow through the gas-liquid heat exchanger 20 corresponds to the case where the opening degree of the bypass valve 22 is fully opened in the present embodiment.
  • ⁇ h ′ is a suitable enthalpy difference that matches the target discharge enthalpy hv.
  • the control unit 25 can calculate ⁇ h ′ by calculating hv ⁇ h1 ′. From the ratio between this ⁇ h ′ and the current enthalpy difference ⁇ h based on the detected temperature, the control unit 25 obtains a control amount of the refrigerant flow rate to be bypassed through the bypass path 21 and gives it to the bypass valve 22 as an opening degree.
  • the control unit 25 presents the current flow rate of the high-pressure refrigerant that flows into the bypass path 21 based on the current ratio ( ⁇ h ′ / ⁇ h). An opening / closing command corresponding to the flow rate multiplied by the increasing / decreasing ratio is given to the bypass valve 22.
  • the target discharge enthalpy hv is widened so that the temperature of the discharged refrigerant falls within a predetermined temperature range including the target temperature Tv, and ⁇ h ′ is calculated so as to fit from the upper limit to the lower limit of the enthalpy. It is preferable.
  • the operation by the control unit 25 has been described by taking the cooling operation as an example, but the same applies to the heating operation.
  • the switching operation of the four-way valve 13 causes the refrigerant to flow in the order of the compressor 14, the indoor heat exchanger 12 as a condenser, the decompression unit 152, the gas-liquid heat exchanger 20, and the outdoor heat exchanger 11 as an evaporator. Circulate. Since the inlet and outlet of the gas-liquid heat exchanger 20 are opposite to those during cooling operation, the enthalpy difference ⁇ h due to heat exchange in the gas-liquid heat exchanger 20 is determined from the enthalpy h3 corresponding to the temperature detected by the temperature sensor 20B.
  • h3-h2 obtained by subtracting enthalpy h2 corresponding to the temperature detected by sensor 20A. Except that the enthalpy difference ⁇ h corresponds to h3 ⁇ h2, and the discharge enthalpy h1 is obtained using the pressure of the high-pressure refrigerant corresponding to the condenser temperature detected by the temperature sensor 12A of the indoor heat exchanger 12. The same processing as in the cooling operation can be performed.
  • ⁇ Gr corresponds to an increase / decrease magnification of the heat exchange amount by the gas-liquid heat exchanger 20.
  • the control unit 25 calculates according to the procedure shown in FIG. 3 and changes the opening degree of the bypass valve 22 based on the calculated ⁇ Gr. Under the restriction of the temperature of the compressor 14, it is preferable to promote supercooling by flowing a high-pressure refrigerant through the gas-liquid heat exchanger 20 as much as possible. In the present embodiment, the operation is started with the bypass valve 22 fully closed.
  • the cooling operation first, as described above, the pressure of the high-pressure refrigerant obtained by using the condenser temperature sensor 11A or the pressure gauge and the temperature Td of the discharged refrigerant detected by the discharge temperature sensor 14A are used. A discharge enthalpy h1 is acquired (step S1).
  • step S2 using the temperatures detected by the temperature sensors 20A and 20B, the enthalpy h2 of the refrigerant at the inlet of the gas-liquid heat exchanger 20 and the enthalpy h3 of the refrigerant at the outlet are acquired, and enthalpy by gas-liquid heat exchange is obtained.
  • the difference ⁇ h is calculated (step S2).
  • an enthalpy difference ⁇ h ′ corresponding to the heat exchange amount of the gas-liquid heat exchanger 20 necessary for keeping the temperature of the discharged refrigerant at the target temperature Tv is calculated (step S3).
  • the target temperature range is set using a threshold value.
  • This target temperature range includes the target temperature Tv, and has an upper limit temperature X and a lower limit temperature (X ⁇ ).
  • An enthalpy range including the target discharge enthalpy hv is set by the upper limit discharge enthalpy corresponding to the upper limit temperature X and the lower limit discharge enthalpy corresponding to the lower limit temperature (X ⁇ ).
  • the control unit 25 makes the target discharge enthalpy hv fall within the upper limit enthalpy corresponding to the temperature (X ⁇ ) and lower than the upper limit enthalpy corresponding to the temperature X. ⁇ h ′ allowed to be added to the discharge enthalpy h1 ′ is calculated.
  • the ratio ( ⁇ h ′ / ⁇ h) between ⁇ h ′ and ⁇ h is calculated as the increase / decrease magnification ⁇ Gr of the gas-liquid heat exchange amount (step S4). If ⁇ Gr is smaller than 1, it is necessary to reduce the flow rate of the high-pressure refrigerant flowing through the gas-liquid heat exchanger 20 in order to suppress the temperature of the discharged refrigerant. On the other hand, if ⁇ Gr is greater than 1, the temperature of the discharged refrigerant is lower than the allowable temperature of the compressor 14, so the flow rate of the high-pressure refrigerant flowing through the gas-liquid heat exchanger 20 is increased from the current level. There is room to promote liquefaction of
  • the opening degree of the bypass valve 22 can be changed according to the following procedure according to the calculated ⁇ Gr. For example, when ⁇ Gr is smaller than 1 (Y in step S5), the flow rate of the high-pressure refrigerant flowing through the gas-liquid heat exchanger 20 is reduced unless the opening degree of the bypass valve 22 is fully open (N in step S6). Then, an opening degree command for increasing the opening degree is given to the bypass valve 22 (step S7). Then, the bypass valve 22 is driven to an opening amount corresponding to the current (1 / ⁇ Gr) times based on the opening command. For example, the bypass valve 22 is driven by a driving pulse whose number of pulses per unit time is about (1 / ⁇ Gr) times the current time. For example, the minimum pulse number is set to 0.01 or the like so that the bypass valve 22 can be opened even if the current pulse number is 0 because the bypass valve 22 is fully closed.
  • step S8 When ⁇ Gr is greater than 1 (Y in step S8), the flow rate of the high-pressure refrigerant flowing through the gas-liquid heat exchanger 20 is increased unless the opening degree of the bypass valve 22 is fully closed (N in step S9). Therefore, an opening degree command for reducing the opening degree is given to the bypass valve 22 (step S10).
  • step S11 the heat exchange amount by the gas-liquid heat exchanger 20 is adapted to the target temperature Tv, so the opening degree of the bypass valve 22 is maintained as it is.
  • the temperature of the discharged refrigerant is determined from the relationship between the enthalpy difference ⁇ h corresponding to the effect of supercooling by the gas-liquid heat exchanger 20 and the discharge enthalpy h1 corresponding to the temperature Td of the discharged refrigerant. Is controlled to change the opening degree of the bypass valve 22 based on ⁇ Gr derived so as to be within the target temperature Tv, thereby suppressing the temperature of the discharged refrigerant and promoting supercooling to improve the performance of the air conditioner Can be achieved.
  • the evaporator 12 since the high-pressure refrigerant that has bypassed the bypass path 21 is caused to flow upstream from the decompression unit 151, unlike the case where the bypassed high-pressure refrigerant is caused to flow before the compressor 14, the evaporator 12.
  • the heat exchange performance of the evaporator 12 can be maintained without reducing the amount of refrigerant circulating to the evaporator.
  • the refrigerant flowing through the gas-liquid heat exchanger 20 and the bypass path 21 are changed.
  • the ratio of the flow rate to the flowing refrigerant an appropriate response of the compressor 14 can be obtained, and the temperature of the discharged refrigerant can be stabilized at the target temperature Tv at an early stage.
  • the alternate long and short dash line in FIG. 4 shows a case where the bypass flow rate is reduced by the bypass valve 22 at a time because the temperature of the discharged refrigerant exceeds the temperature Tv allowed for the compressor. In this case, overshoot and hunting are likely to occur due to excessive response of the temperature of the discharged refrigerant.
  • the broken line shown in FIG. 4 shows the case where the bypass flow rate is gradually reduced by the bypass valve 22 when the temperature of the discharged refrigerant exceeds the temperature Tv allowed for the compressor 14. In this case, there is a possibility that the bypass flow rate is insufficient and the discharge temperature cannot be lowered to the allowable temperature Tv. According to the control of the present embodiment, as shown by the thick solid line in FIG.
  • the temperature of the discharged refrigerant appropriately follows the change in the magnitude of the effect of gas-liquid heat exchange accompanying the change in ⁇ Gr.
  • the temperature of the refrigerant is quickly stabilized at the target temperature Tv. Since the bypassed refrigerant is allowed to flow upstream of the decompression unit 151 that is away from the compressor 14, it can be avoided that the temperature of the discharged refrigerant responds sensitively, which also contributes to the stability of the discharged temperature.
  • a flow rate adjusting unit 23 that can adjust the flow rate of the refrigerant flowing into the bypass path 21 can be used.
  • the flow rate adjustment unit 23 and the control unit 25 on the right side in FIG. 5 that function during the cooling operation and the left flow rate adjustment unit 23 and the control unit 25 in FIG. 5 that function during the heating operation are switched and used.
  • the flow rate adjusting unit 23 can cause the entire amount of the high-pressure refrigerant that passes through the condenser 11 and goes to the gas-liquid heat exchanger 20 to flow into the bypass path 21 as necessary.
  • the control unit 25 calculates the enthalpy difference ⁇ h ′ by the same method as in the above embodiment, and sends a command corresponding to the current ⁇ h ′ / ⁇ h times bypass flow rate to the flow rate adjusting unit. 23, the same effect as the above embodiment can be obtained.
  • the refrigerant circuit system of the present invention can be configured as a system exclusively for cooling operation or heating operation. In that case, the four-way valve 13 is not necessary and only one decompression unit 15 is sufficient. In addition, it is sufficient to prepare a condenser temperature sensor only for one of the two heat exchangers 11 and 12 that functions as a condenser.
  • the refrigerant circuit system of the present invention can be applied not only to an air conditioner but also to an appropriate device using a refrigeration cycle such as a freezer or a water heater.

Abstract

圧縮機の温度を適切に制御しつつ過冷却も促進できる冷媒回路システムを提供する。冷媒回路システム(1)は、高圧冷媒と低圧冷媒とを熱交換させる気液熱交換器(20)と、高圧冷媒を減圧部(151)よりも上流へと迂回させるバイパス経路(21)と、流量を調整可能なバイパス弁(22)と、バイパス弁(22)に流量に応じた指令を与える制御部(25)とを備える。制御部(25)は、吐出冷媒の検知された温度に対応するエンタルピである吐出エンタルピがh1、気液熱交換器(20)の入口と出口との検知された冷媒温度に対応するエンタルピの差であるエンタルピ差がΔh、圧縮機(14)に許容される目標温度Tvに対応する目標吐出エンタルピがhv、h1およびΔhに基づいて目標吐出エンタルピhvに適合する適合エンタルピ差がΔh´であるとして、Δh´/Δhに基づいて、バイパス経路(21)に流入させる高圧冷媒の流量の現在からの増減比率を決定する。

Description

冷媒回路システムおよび冷媒回路システムの制御方法
 本発明は、気液熱交換器を備えた冷媒回路システムおよび冷媒回路システムの制御方法に関する。
 空気調和機等の冷媒回路システムの性能を上げるためには、冷媒の熱をいかに放熱させ、液化できるかが重要であり、その役割を凝縮器が担う。圧縮機により圧縮された高温高圧の冷媒ガスは、凝縮器にて空気との熱交換により、熱を放出してエンタルピを下げる。ここで、過冷却を促進してエンタルピを下げるほど、性能を高められるが、技術の進歩により、冷媒ガスの温度を空気温度に近い温度にまで放熱させている現状においては、さらなる過冷却の促進が困難になってきている。
 そこで、凝縮器により液化された高圧冷媒と、蒸発器を通過した後の低圧冷媒ガスとの間で熱交換する気液熱交換器(内部熱交換器、インタークーラとも)を使用すると、高圧冷媒をさらに液化してエンタルピを下げることができる。
 しかし、気液熱交換器における高圧冷媒から低圧冷媒への放熱により、圧縮機に吸入される低圧冷媒の温度が高くなるので、圧縮機の温度が上昇する。圧縮機の温度を許容される温度に抑えるため、蒸発器を通過した低圧冷媒の一部だけを気液熱交換器に流し、残りをバイパスさせている例がある(特許文献1)。つまり、バイパスにより、高圧冷媒から放熱される低圧冷媒の流量を調整している。特許文献1では、蒸発器の出口側に、バイパス経路とバイパス用の弁が設けられおり、バイパス経路から圧縮機へと低圧冷媒を吸入させている。
特開2000-346466号公報
 特許文献1のように、蒸発器を通過して気液熱交換器を流れる低圧冷媒の流量を調整しようとすると、その冷媒が低圧のガスであるために流量調整が難しい。しかも、バイパスさせた冷媒を圧縮機へと吸入させているため、バイパスさせる冷媒の流量を変化させると、その影響が圧縮機に直接的に作用し、圧縮機の温度が目標の温度に対してオーバーシュートしたりハンチングが生じ易い。
 以上より、本発明は、圧縮機の温度を適切に制御しつつ、過冷却も促進できる冷媒回路システムおよび冷媒回路システムの制御方法を提供することを目的とする。
 本発明は、圧縮機、凝縮器、減圧部、および蒸発器を備える冷媒回路システムであって、冷媒回路システムは、さらに、凝縮器を通過した高圧冷媒と、蒸発器を通過した低圧冷媒とを熱交換させる気液熱交換器と、凝縮器から気液熱交換器へと向かう高圧冷媒の少なくとも一部を受け入れて減圧部よりも上流へと迂回させるバイパス経路と、バイパス経路へと流入する高圧冷媒の流量を調整可能な流量調整部と、流量調整部に流量に応じた指令を与える制御部と、を備え、制御部は、圧縮機から吐出される吐出冷媒の検知された温度に対応するエンタルピである吐出エンタルピがh1、気液熱交換器の入口の冷媒の検知された温度に対応するエンタルピと気液熱交換器の出口の冷媒の検知された温度に対応するエンタルピとの差であるエンタルピ差がΔh、圧縮機に許容される目標温度Tvに対応する目標吐出エンタルピがhv、h1およびΔhに基づいて、目標吐出エンタルピhvに適合する気液熱交換器の入口と出口とのエンタルピの差である適合エンタルピ差がΔh´であるとして、(Δh´/Δh)に基づいて、バイパス経路に流入させる高圧冷媒の流量の現在からの増減比率を決定することを特徴とする。
 本発明の冷媒回路システムでは、目標温度Tvを含み、上限温度および下限温度を有する目標温度範囲が設定されており、制御部は、下限温度に対応する下限吐出エンタルピから上限温度に対応する上限吐出エンタルピまでに目標吐出エンタルピhvを収めることが可能な適合エンタルピ差Δh´を取得することが好ましい。
 本発明の冷媒回路システムは、冷媒の流れの向きを変更することで冷房運転と暖房運転とに切り替え可能な切替部と、冷房運転時に凝縮器として機能し、暖房運転時に蒸発器として機能する室外熱交換器と、冷房運転時に蒸発器として機能し、暖房運転時に凝縮器として機能する室内熱交換器と、冷房運転時に気液熱交換器と蒸発器との間に位置し、減圧部として機能する冷房時減圧部と、暖房運転時に気液熱交換器と蒸発器との間に位置し、減圧部として機能する暖房時減圧部と、を備えた空気調和機であることが好ましい。
 また、本発明は、圧縮機、凝縮器、減圧部、および蒸発器を備える冷媒回路システムの制御方法であって、冷媒回路システムは、さらに、凝縮器を通過した高圧冷媒と、蒸発器を通過した低圧冷媒とを熱交換させる気液熱交換器と、凝縮器から気液熱交換器へと向かう高圧冷媒の少なくとも一部を受け入れて減圧部よりも上流へと迂回させるバイパス経路と、バイパス経路へと流入する高圧冷媒の流量を調整可能な流量調整部と、を備えており、圧縮機から吐出される吐出冷媒の温度を検知するステップと、気液熱交換器の入口の冷媒の温度を検知するステップ、および気液熱交換器の出口の冷媒の温度を検知するステップと、吐出冷媒の検知された温度に対応するエンタルピである吐出エンタルピがh1、入口の冷媒の検知された温度に対応するエンタルピと出口の冷媒の検知された温度に対応するエンタルピとの差であるエンタルピ差がΔh、圧縮機に許容される目標温度Tvに対応する目標吐出エンタルピがhvであるとして、h1およびΔhに基づいて、目標吐出エンタルピhvに適合する気液熱交換器の入口と出口とのエンタルピの差である適合エンタルピ差Δh´を取得するステップと、(Δh´/Δh)に基づいて、バイパス経路に流入させる高圧冷媒の流量の現在からの増減比率を決定するステップと、を備えることを特徴とする。
 本発明の冷媒回路システムの制御方法では、目標温度Tvを含み、上限温度および下限温度を有する目標温度範囲が設定されており、Δh´を取得するステップでは、下限温度に対応する下限吐出エンタルピから上限温度に対応する上限吐出エンタルピまでに目標吐出エンタルピhvを収めることが可能な適合エンタルピ差Δh´を取得することが好ましい。
 気液熱交換器による過冷却の効果に相当するエンタルピ差Δhと、吐出冷媒の温度に対応する吐出エンタルピh1との関係から、吐出冷媒の温度が目標温度Tvに収まるように導いた(Δh´/Δh)に基づいて流量調整部によりバイパスさせる流量を変更する制御を行うことにより、吐出冷媒の温度を抑えつつ、過冷却を促進して性能向上を図ることができる。
 本発明によれば、気液熱交換器による熱交換量の効果の大きさの現在と将来の比(Δh´/Δh)に基づいて、気液熱交換器を流れる冷媒とバイパス経路を流れる冷媒との流量の比を変更することにより、圧縮機の適度な応答を得て、吐出冷媒の温度を目標温度Tvに早期に安定させることができる。
本発明の実施形態に係る冷媒回路システムの構成を示す図である。 気液熱交換器による過冷却の作用を示すp-h線図である。 バイパスさせる高圧冷媒の流量制御量を得るための制御のフローを示す図である。 吐出冷媒の温度に対する制御のイメージを表す図である。 本発明の変形例に係る冷媒回路システムの構成を示す図である。
 以下、添付図面を参照しながら、本発明の実施形態について説明する。
〔第1実施形態〕
 図1に示す冷媒回路システム1は、冷媒が循環する冷媒回路を備えている。冷媒回路システム1は、冷凍サイクルを利用する空気調和機であり、室外の空気と冷媒とを熱交換させる室外熱交換器11を有する図示しない室外ユニットと、室内の空気と冷媒とを熱交換させる室内熱交換器12を有する図示しない室内ユニットとを備えている。
 冷媒回路システム1は、循環する冷媒の流れの向きを切り替え可能な四方弁13を備えており、四方弁13を操作することで冷房運転と暖房運転とに切り替え可能に構成されている。図1には、冷房時の冷媒の流れを実線の矢印で示している。暖房時には、四方弁13に示したAの経路が閉じる代わりに、破線で示したBの経路が開くことで、冷房時とは逆の向きに冷媒が流れる(図1の破線の矢印)。
 室外熱交換器11は、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する。室内熱交換器12は、冷房運転時には蒸発器として機能し、暖房運転時には凝縮器として機能する。室外熱交換器11に送風するファン11Fと、室内熱交換器12に向けて送風するファン12Fが、冷媒回路システム1に備わっている。
 図1に示した室外熱交換器11および室内熱交換器12には、冷房運転時の機能として、それぞれ、凝縮器、蒸発器と付記している。
 以下、冷房時を基準として、室外熱交換器11のことを凝縮器11と称し、室内熱交換器12のことを蒸発器12と称する。
 冷媒回路システム1は、基本的な要素として、圧縮機14と、凝縮器11と、減圧部15(151,152)と、蒸発器12とを備えている。減圧部15として、冷房運転用の減圧部151と、暖房運転用の減圧部152との2つが用意されている。冷房運転用の減圧部151は暖房運転時には機能しない。同様に、暖房運転用の減圧部152は冷房運転時には機能しない。
 冷媒回路システム1は、上記の基本的な要素に加えて、蒸発器12を通過した低圧冷媒と、凝縮器11を通過した高圧冷媒とを熱交換させる気液熱交換器20と、気液熱交換器20へと向かう高圧冷媒の一部を減圧部151よりも上流へと迂回させるバイパス経路21と、バイパス経路21へと流入する高圧冷媒の流量を調整可能なバイパス弁22と、バイパス弁22に開度を与える制御部25とを備えている。
 気液熱交換器20は、高圧冷媒が流れる高圧経路201と、低圧冷媒が流れる低圧経路202とを備え、高圧経路201を流れる高圧冷媒と低圧経路202を流れる低圧冷媒とが熱交換可能に構成されている。
 バイパス経路21は、高圧経路201よりも上流から高圧冷媒の一部を受け入れ、高圧経路201よりも下流でかつ減圧部151よりも上流へと迂回させる。
 凝縮器11を通過して気液熱交換器20内へと流入した高圧冷媒は、図2に100で示すように、低圧冷媒へと放熱されることで過冷却され、エンタルピが下がる。その後、減圧部151により減圧され、蒸発器12へと流れる。
 気液熱交換器20により高圧冷媒が過冷却される一方で、図2に101で示すように、蒸発器12を経た低温低圧の冷媒が高圧冷媒から吸熱して過熱される。そうすると、圧縮機14へと吸入される冷媒の温度が上昇することとなる。
 圧縮機14の摺動部に用いられる潤滑油の性能や、圧縮機14に電動機が内蔵されている場合は電動機の性能も考慮して、圧縮機14に許容される所定の目標温度Tvを定めることができる。
 本実施形態では、圧縮機14により圧縮された冷媒を圧縮機14の外部へと吐出する吐出管を流れている冷媒の温度である目標温度Tvを定めている。この目標温度Tvを含み、上限温度Xおよび下限温度X-αを含む目標温度範囲が設定されている。
 本実施形態は、気液熱交換器20により、可能な限り過冷却の効果を得つつ、圧縮機14の温度を下限温度X-αから上限温度Xまでに収めるため、バイパス経路21およびバイパス弁22を使用し、バイパス経路21を流れる高圧冷媒の流量を調整する。制御部25からバイパス弁22へと流量に応じた開度指令を与えると、開度指令に応じてバイパス弁22の開度量が変更されることで、バイパス経路21を流れる冷媒の流量が調整される。
 凝縮器11を経た高圧冷媒は、液相が優位であるため、冷媒ガスの流量を調整する場合に比べて容易にかつ確実に流量を調整できる。
 バイパス経路21へと流入する冷媒流量を調整するため、高圧冷媒の圧力および温度と、気液熱交換器20の入口の冷媒温度と、気液熱交換器20の出口の冷媒温度とを用いてそれぞれ導いたエンタルピについて、制御部25は演算を行う。
 エンタルピを導くため、本実施形態の冷媒回路システム1には、凝縮器温度センサ11Aと、吐出温度センサ14Aと、入口温度センサ20Aと、出口温度センサ20Bとが備えられている。
 凝縮器温度センサ11Aは、凝縮器11を流れる気液二相の冷媒の温度を検知する。この凝縮器温度センサ11Aにより検知された温度を飽和蒸気の温度とみなし、それに対応する飽和蒸気圧として、高圧冷媒の圧力を得ることができる。
 室外ユニットに、高圧冷媒の圧力を示す圧力計が備えられている場合は、その圧力計により計測された値を高圧冷媒の圧力として用いることができる。
 なお、冷媒回路システム1には、暖房運転時における制御のため、暖房運転時に凝縮器として機能する室内熱交換器12を流れる気液二相の冷媒の温度を検知する温度センサ12Aも備えられている。暖房運転時には、この温度センサ12Aにより検知された温度を用いて、高圧冷媒の圧力を得ることができる。
 吐出温度センサ14Aは、圧縮機14の吐出管を流れる冷媒(以下、吐出冷媒)の温度を検知する。
 入口温度センサ20Aは、気液熱交換器20の入口に流入する高圧冷媒の温度を検知する。
 出口温度センサ20Bは、気液熱交換器20の出口から流出する高圧冷媒の温度を検知する。
 制御部25による処理の一例を説明する。
 制御部25は、凝縮器温度センサ11Aによる計測値に基づく、あるいは圧力計により得られた高圧冷媒の圧力と、吐出温度センサ14Aにより検知された吐出冷媒の温度Tdとを用いて、吐出冷媒のエンタルピであるh1を取得する。
 また、入口温度センサ20Aにより検知された温度と高圧冷媒の圧力を用いて、気液熱交換器20の入口における冷媒のエンタルピh2を取得し、さらに、出口温度センサ20Bにより検知された温度と高圧冷媒の圧力を用いて、気液熱交換器20の出口における冷媒のエンタルピh3を取得する。
 こうして取得した入口のエンタルピh2と出口のエンタルピh3を用いて、h2-h3の演算より、エンタルピ差Δhを取得する。これは、気液熱交換器20による高圧冷媒の過冷却の効果に相当し、換言すれば、低圧冷媒の過熱の効果に相当する。
 バイパス経路21へと高圧冷媒を迂回させると、迂回させた流量の比の分だけ、気液熱交換器20による過冷却および過熱の効果が減少するので、気液熱交換器20において高圧冷媒から放熱されることに伴う低圧冷媒の温度上昇が抑制される。すると、圧縮機14へと吸入される低圧冷媒の温度が低下するので、圧縮機14の内部の温度を抑えることが可能となる。
 検知されたエンタルピ差Δhは、現在、気液熱交換器20が低圧冷媒の温度を上昇させている効果を示している。そうすると、気液熱交換器20を高圧冷媒が流れない場合に検知されるであろう吐出冷媒の温度と高圧冷媒の圧力に対応する吐出エンタルピをh1´と置くと、現在の吐出エンタルピh1は、下記の式(1)で表せる。
 h1=h1´+Δh  ・・・(1)
 なお、気液熱交換器20を高圧冷媒が流れない場合というのは、本実施形態では、バイパス弁22の開度を全開にした場合に相当する。
 高圧冷媒の圧力が安定していると、エンタルピ差ΔhがΔh´へと変更されたならば、それに倣って吐出エンタルピh1が変化する。
 したがって、圧縮機14に許容される吐出冷媒の目標温度Tvに対応する目標吐出エンタルピhvは、気液熱交換によるエンタルピ差をΔh´と置いて、下記の式(2)で表せる。
 hv=h1´+Δh´  ・・・(2)
 上記の式(2)より、Δh´は、目標吐出エンタルピhvに適合する適合エンタルピ差である。制御部25により、hv-h1´を演算してΔh´を割り出すことができる。
 このΔh´と、検知された温度に基づく現在のエンタルピ差Δhとの比から、制御部25は、バイパス経路21を通じてバイパスさせる冷媒流量の制御量を得て、バイパス弁22に開度として与える。
 つまり、目標吐出エンタルピhvに適合する適合エンタルピ差Δh´を実現するため、制御部25は、現在の(Δh´/Δh)の比に基づいて、バイパス経路21に流入させる高圧冷媒の流量の現在からの増減比率を決定し、増減比率を乗じた流量に対応する開度指令をバイパス弁22に与える。
 後述するように、目標温度Tvを含む所定温度範囲内に吐出冷媒の温度が収まるように、目標吐出エンタルピhvに幅を持たせ、そのエンタルピの上限から下限までに適合するようにΔh´を割り出すことが好ましい。
 制御部25による作用について、冷房運転時を例にとり説明したが、暖房運転時も同様である。
 暖房運転時には、四方弁13の切り替え操作により、圧縮機14、凝縮器としての室内熱交換器12、減圧部152、気液熱交換器20、蒸発器としての室外熱交換器11の順に冷媒が循環する。
 気液熱交換器20の入口と出口は冷房運転時とは逆になるため、気液熱交換器20における熱交換によるエンタルピ差Δhは、温度センサ20Bによる検知温度に対応するエンタルピh3から、温度センサ20Aによる検知温度に対応するエンタルピh2を引いた、h3-h2に相当する。
 エンタルピ差Δhがh3-h2に相当すること、そして、室内熱交換器12の温度センサ12Aにより検知された凝縮器温度に対応する高圧冷媒の圧力を用いて吐出エンタルピh1を取得することを除いて、冷房運転時と同様の処理を行うことができる。
 以下、図3を参照し、制御部25により行われる制御の手順の例について説明する。以下では、(Δh´/Δh)のことをΔGrと称する。ΔGrは、気液熱交換器20による熱交換量の増減倍率に相当する。
 冷媒回路システム1の冷房運転あるいは暖房運転が行われる間に亘り、制御部25は、図3に示す手順で演算し、算出したΔGrに基づいてバイパス弁22の開度を変更する。
 圧縮機14の温度の制約の下、可能な限り気液熱交換器20に高圧冷媒を流して過冷却を促進させることが好ましい。本実施形態では、バイパス弁22を全閉にした状態で運転を開始する。
 冷房運転時には、まず、上述したように、凝縮器温度センサ11Aを使用しあるいは圧力計により得られた高圧冷媒の圧力と、吐出温度センサ14Aにより検知された吐出冷媒の温度Tdとを用いて、吐出エンタルピh1を取得する(ステップS1)。
 次に、温度センサ20A,20Bによりそれぞれ検知される温度を用いて、気液熱交換器20の入口の冷媒のエンタルピh2と、出口の冷媒のエンタルピh3とを取得し、気液熱交換によるエンタルピ差Δhを算出する(ステップS2)。
 次に、吐出冷媒の温度を目標温度Tvに収めるために必要な気液熱交換器20の熱交換量に相当するエンタルピ差Δh´を算出する(ステップS3)。
 ここでは、閾値を使用して目標温度範囲を設定する。この目標温度範囲は、目標温度Tvを含み、上限温度Xと、下限温度(X-α)とを有している。上限温度Xに対応する上限吐出エンタルピと、下限温度(X-α)に対応する下限吐出エンタルピとにより、目標吐出エンタルピhvを含むエンタルピ範囲も設定される。
 制御部25は、温度(X-α)に対応する下限エンタルピ以上、温度Xに対応する上限エンタルピ以下に目標吐出エンタルピhvが収まるように、気液熱交換器20を高圧冷媒が流れない場合の吐出エンタルピh1´に加えることが許容されるΔh´を算出する。
 Δh´を算出したならば、Δh´と、Δhとの比(Δh´/Δh)を気液熱交換量の増減倍率ΔGrとして算出する(ステップS4)。
 ΔGrが1よりも小さければ、吐出冷媒の温度を抑制するため、気液熱交換器20を流れる高圧冷媒の流量を現在よりも減らす必要がある。逆に、ΔGrが1よりも大きければ、圧縮機14の許容温度に対して吐出冷媒の温度が下回っているため、気液熱交換器20を流れる高圧冷媒の流量を現在よりも増やし、高圧冷媒の液化を促進する余地がある。
 したがって、算出されたΔGrに応じて、下記の手順によりバイパス弁22の開度を変更することができる。
 例えば、ΔGrが1よりも小さい場合は(ステップS5でY)、バイパス弁22の開度が全開でない限りは(ステップS6でN)、気液熱交換器20を流れる高圧冷媒の流量を減らすため、バイパス弁22に開度を大きくする開度指令を与える(ステップS7)。すると、開度指令に基づいて、現在の(1/ΔGr)倍に相当する開度量にバイパス弁22が駆動される。例えば、単位時間あたりのパルス数が現在の約(1/ΔGr)倍である駆動パルスによりバイパス弁22が駆動される。
 なお、現在バイパス弁22が全閉されているため現在のパルス数が0であってもバイパス弁22を開くことができるように、例えば、最小のパルス数を0.01等と定めておく。
 また、ΔGrが1よりも大きい場合は(ステップS8でY)、バイパス弁22の開度が全閉でない限りは(ステップS9でN)、気液熱交換器20を流れる高圧冷媒の流量を増やすため、バイパス弁22に開度を小さくする開度指令を与える(ステップS10)。
 そして、ΔGr=1である場合は(ステップS11)、気液熱交換器20による熱交換量が目標温度Tvに適合しているため、バイパス弁22の開度を現在のまま維持する。
 以上で説明した本実施形態によれば、気液熱交換器20による過冷却の効果に相当するエンタルピ差Δhと、吐出冷媒の温度Tdに対応する吐出エンタルピh1との関係から、吐出冷媒の温度が目標温度Tvに収まるように導いたΔGrに基づいて、バイパス弁22の開度を変更させる制御を行うことにより、吐出冷媒の温度を抑えつつ、過冷却を促進して空気調和機の性能向上を図ることができる。
 加えて、バイパス経路21へと迂回した高圧冷媒を減圧部151よりも上流へと流入させているため、バイパスさせた高圧冷媒を圧縮機14の前へと流入させる場合とは違って蒸発器12への冷媒循環量が減少することもなく、蒸発器12の熱交換性能を維持することができる。
 本実施形態では、気液熱交換器20による熱交換量の効果の大きさの現在と将来の比(Δh´/Δh)に基づいて、気液熱交換器20を流れる冷媒とバイパス経路21を流れる冷媒との流量の比を変更することにより、圧縮機14の適度な応答を得て、吐出冷媒の温度を目標温度Tvに早期に安定させることができる。
 図4に示す一点鎖線は、吐出冷媒の温度が圧縮機に許容される温度Tvを超過したためバイパス弁22によりバイパス流量を一度に下げた場合を示している。この場合、吐出冷媒の温度が過度に応答してオーバーシュートやハンチングが生じ易い。
 図4に示す破線は、吐出冷媒の温度が圧縮機14に許容される温度Tvを超過した際に、バイパス弁22によりバイパス流量を徐々に下げた場合を示している。この場合、バイパス流量が不足して吐出温度を許容温度Tvに下げることができない可能性がある。
 本実施形態の制御によれば、図4に太い実線で示すように、ΔGrの変更に伴う気液熱交換の効果の大きさの変化に対して吐出冷媒の温度が適度に追従するので、吐出冷媒の温度が目標温度Tvに早期に安定する。バイパスさせた冷媒を圧縮機14から離れている減圧部151の上流へと流入させているため、吐出冷媒の温度が過敏に応答するのを避けられることも、吐出温度の安定に寄与する。
 本実施形態のバイパス弁22に代えて、図5に示すように、バイパス経路21へと流入する冷媒の流量を調整可能な流量調整部23を用いることもできる。
 冷房運転時に機能する図5の右側の流量調整部23および制御部25と、暖房運転時に機能する図5の左側の流量調整部23および制御部25とが切り替えて用いられる。
 流量調整部23は、必要によっては、凝縮器11を通過して気液熱交換器20へと向かう高圧冷媒の全量をバイパス経路21へと流入させることが可能である。高圧冷媒の全量がバイパス経路21へ流入すれば、高圧冷媒が気液熱交換器20を全く流れないため、高圧冷媒から低圧冷媒へと放熱させないで、低圧冷媒が吸入される圧縮機14の温度を抑えることができる。
 流量調整部23を用いる場合であっても、上記実施形態と同様の方法でエンタルピ差Δh´を制御部25により算出し、現在のΔh´/Δh倍のバイパス流量に対応する指令を流量調整部23に与えることにより、上記実施形態と同様の効果を得ることができる。
 上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
 本発明の冷媒回路システムは、冷房運転専用あるいは暖房運転専用のシステムとして構成することもできる。その場合は、四方弁13が必要なく、減圧部15は一つで足りる。また、凝縮器温度センサも、2つの熱交換器11,12のうち凝縮器として機能する一方にのみ用意すれば足りる。
 本発明の冷媒回路システムは、空気調和機の他、冷凍庫や給湯器等、冷凍サイクルを利用する適宜な機器に適用することができる。
1    冷媒回路システム
11   室外熱交換器(凝縮器/蒸発器)
11A  凝縮器温度センサ
12   室内熱交換器(蒸発器/凝縮器)
12A  温度センサ
13   四方弁
14   圧縮機
14A  吐出温度センサ
15   減圧部
151  減圧部(冷房時減圧部)
152  減圧部(暖房時減圧部)
20   気液熱交換器
20A,20B   温度センサ
21   バイパス経路
22   バイパス弁(流量調整部)
23   流量調整部
25   制御部
201  高圧経路
202  低圧経路
Td   温度
ΔGr  増減倍率

Claims (5)

  1.  圧縮機、凝縮器、減圧部、および蒸発器を備える冷媒回路システムであって、
     前記冷媒回路システムは、さらに、
     前記凝縮器を通過した高圧冷媒と、前記蒸発器を通過した低圧冷媒とを熱交換させる気液熱交換器と、
     前記凝縮器から前記気液熱交換器へと向かう前記高圧冷媒の少なくとも一部を受け入れて前記減圧部よりも上流へと迂回させるバイパス経路と、
     前記バイパス経路へと流入する前記高圧冷媒の流量を調整可能な流量調整部と、
     前記流量調整部に流量に応じた指令を与える制御部と、を備え、
     前記制御部は、
     前記圧縮機から吐出される吐出冷媒の検知された温度に対応するエンタルピである吐出エンタルピがh1、
     前記気液熱交換器の入口の冷媒の検知された温度に対応するエンタルピと前記気液熱交換器の出口の冷媒の検知された温度に対応するエンタルピとの差であるエンタルピ差がΔh、
     前記圧縮機に許容される目標温度Tvに対応する目標吐出エンタルピがhv、
     h1およびΔhに基づいて、前記目標吐出エンタルピhvに適合する前記気液熱交換器の入口と出口とのエンタルピの差である適合エンタルピ差がΔh´であるとして、
     (Δh´/Δh)に基づいて、前記バイパス経路に流入させる前記高圧冷媒の流量の現在からの増減比率を決定する、
    ことを特徴とする冷媒回路システム。
  2.  前記目標温度Tvを含み、上限温度および下限温度を有する目標温度範囲が設定されており、
     前記制御部は、前記下限温度に対応する下限吐出エンタルピから前記上限温度に対応する上限吐出エンタルピまでに前記目標吐出エンタルピhvを収めることが可能な前記適合エンタルピ差Δh´を取得する、
    請求項1に記載の冷媒回路システム。
  3.  冷媒の流れの向きを変更することで冷房運転と暖房運転とに切り替え可能な切替部と、
     前記冷房運転時に前記凝縮器として機能し、前記暖房運転時に前記蒸発器として機能する室外熱交換器と、
     前記冷房運転時に前記蒸発器として機能し、前記暖房運転時に前記凝縮器として機能する室内熱交換器と、
     前記冷房運転時に前記気液熱交換器と前記蒸発器との間に位置し、前記減圧部として機能する冷房時減圧部と、
     前記暖房運転時に前記気液熱交換器と前記蒸発器との間に位置し、前記減圧部として機能する暖房時減圧部と、を備えた空気調和機である、
    請求項1または2に記載の冷媒回路システム。
  4.  圧縮機、凝縮器、減圧部、および蒸発器を備える冷媒回路システムの制御方法であって、
     前記冷媒回路システムは、さらに、
     前記凝縮器を通過した高圧冷媒と、前記蒸発器を通過した低圧冷媒とを熱交換させる気液熱交換器と、
     前記凝縮器から前記気液熱交換器へと向かう前記高圧冷媒の少なくとも一部を受け入れて前記減圧部よりも上流へと迂回させるバイパス経路と、
     前記バイパス経路へと流入する前記高圧冷媒の流量を調整可能な流量調整部と、を備えており、
     前記圧縮機から吐出される吐出冷媒の温度を検知するステップと、
     前記気液熱交換器の入口の冷媒の温度を検知するステップ、および前記気液熱交換器の出口の冷媒の温度を検知するステップと、
     前記吐出冷媒の検知された温度に対応するエンタルピである吐出エンタルピがh1、前記入口の冷媒の検知された温度に対応するエンタルピと前記出口の冷媒の検知された温度に対応するエンタルピとの差であるエンタルピ差がΔh、前記圧縮機に許容される目標温度Tvに対応する目標吐出エンタルピがhvであるとして、h1およびΔhに基づいて、前記目標吐出エンタルピhvに適合する前記気液熱交換器の入口と出口とのエンタルピの差である適合エンタルピ差Δh´を取得するステップと、
     (Δh´/Δh)に基づいて、前記バイパス経路に流入させる前記高圧冷媒の流量の現在からの増減比率を決定するステップと、を備える、
        ことを特徴とする冷媒回路システムの制御方法。
  5.  前記目標温度Tvを含み、上限温度および下限温度を有する目標温度範囲が設定されており、
     Δh´を取得する前記ステップでは、
     前記下限温度に対応する下限吐出エンタルピから前記上限温度に対応する上限吐出エンタルピまでに前記目標吐出エンタルピhvを収めることが可能な前記適合エンタルピ差Δh´を取得する、
    請求項4に記載の冷媒回路システムの制御方法。
PCT/JP2017/040965 2016-12-14 2017-11-14 冷媒回路システムおよび冷媒回路システムの制御方法 WO2018110185A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17881376.2A EP3460357A4 (en) 2016-12-14 2017-11-14 REFRIGERANT CIRCUIT SYSTEM AND METHOD FOR CONTROLLING A COOLANT CIRCULAR RUNNING SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-242022 2016-12-14
JP2016242022A JP6781034B2 (ja) 2016-12-14 2016-12-14 冷媒回路システムおよび冷媒回路システムの制御方法

Publications (1)

Publication Number Publication Date
WO2018110185A1 true WO2018110185A1 (ja) 2018-06-21

Family

ID=62558523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040965 WO2018110185A1 (ja) 2016-12-14 2017-11-14 冷媒回路システムおよび冷媒回路システムの制御方法

Country Status (3)

Country Link
EP (1) EP3460357A4 (ja)
JP (1) JP6781034B2 (ja)
WO (1) WO2018110185A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111750574A (zh) * 2019-03-28 2020-10-09 东普雷股份有限公司 冷冻装置及冷冻装置的运转方法
CN114738934A (zh) * 2022-03-29 2022-07-12 青岛海尔空调电子有限公司 一种空调器故障检测方法、检测装置及空调器
WO2023040384A1 (zh) * 2021-09-18 2023-03-23 青岛海尔空调电子有限公司 空调器
CN114738934B (zh) * 2022-03-29 2024-05-14 青岛海尔空调电子有限公司 一种空调器故障检测方法、检测装置及空调器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195925A (zh) * 2019-05-31 2019-09-03 宁波奥克斯电气股份有限公司 一种低温空气源热泵喷焓阀的控制方法及空调器
CN110486917B (zh) * 2019-08-23 2021-06-22 广东美的暖通设备有限公司 运行控制装置及方法、空调器和计算机可读存储介质
CN113091205B (zh) * 2020-08-19 2022-03-08 广州松下空调器有限公司 一种空调器异常检测方法及装置
WO2023100233A1 (ja) * 2021-11-30 2023-06-08 三菱電機株式会社 空気調和装置
CN115289604A (zh) * 2022-08-12 2022-11-04 珠海格力电器股份有限公司 制热过负荷保护方法和装置、空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105560A (ja) * 1995-08-04 1997-04-22 Mitsubishi Electric Corp 冷凍装置
JPH1068553A (ja) * 1996-08-27 1998-03-10 Daikin Ind Ltd 空気調和機
JP2002349977A (ja) * 2001-05-24 2002-12-04 Denso Corp ヒートポンプサイクル
JP2003214713A (ja) * 2002-01-23 2003-07-30 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2008121977A (ja) * 2006-11-13 2008-05-29 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2010002109A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 冷凍空調装置
JP2011043273A (ja) * 2009-08-20 2011-03-03 Panasonic Corp ヒートポンプ式加熱液体システム
JP2015152262A (ja) * 2014-02-17 2015-08-24 東芝キヤリア株式会社 冷凍サイクル装置
DE102014222849A1 (de) * 2014-11-10 2016-05-12 BSH Hausgeräte GmbH Haushaltskältegerät und Kältemaschine dafür

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130481A (ja) * 2001-10-24 2003-05-08 Mitsubishi Heavy Ind Ltd 自動車用空調装置の蒸気圧縮式冷凍サイクル
JP5968519B2 (ja) * 2013-03-12 2016-08-10 三菱電機株式会社 空気調和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105560A (ja) * 1995-08-04 1997-04-22 Mitsubishi Electric Corp 冷凍装置
JPH1068553A (ja) * 1996-08-27 1998-03-10 Daikin Ind Ltd 空気調和機
JP2002349977A (ja) * 2001-05-24 2002-12-04 Denso Corp ヒートポンプサイクル
JP2003214713A (ja) * 2002-01-23 2003-07-30 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2008121977A (ja) * 2006-11-13 2008-05-29 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2010002109A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 冷凍空調装置
JP2011043273A (ja) * 2009-08-20 2011-03-03 Panasonic Corp ヒートポンプ式加熱液体システム
JP2015152262A (ja) * 2014-02-17 2015-08-24 東芝キヤリア株式会社 冷凍サイクル装置
DE102014222849A1 (de) * 2014-11-10 2016-05-12 BSH Hausgeräte GmbH Haushaltskältegerät und Kältemaschine dafür

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460357A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111750574A (zh) * 2019-03-28 2020-10-09 东普雷股份有限公司 冷冻装置及冷冻装置的运转方法
CN111750574B (zh) * 2019-03-28 2023-09-15 东普雷股份有限公司 冷冻装置及冷冻装置的运转方法
WO2023040384A1 (zh) * 2021-09-18 2023-03-23 青岛海尔空调电子有限公司 空调器
CN114738934A (zh) * 2022-03-29 2022-07-12 青岛海尔空调电子有限公司 一种空调器故障检测方法、检测装置及空调器
CN114738934B (zh) * 2022-03-29 2024-05-14 青岛海尔空调电子有限公司 一种空调器故障检测方法、检测装置及空调器

Also Published As

Publication number Publication date
JP6781034B2 (ja) 2020-11-04
EP3460357A1 (en) 2019-03-27
JP2018096621A (ja) 2018-06-21
EP3460357A4 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
WO2018110185A1 (ja) 冷媒回路システムおよび冷媒回路システムの制御方法
CN108139120B (zh) 空调装置
JP3864980B2 (ja) 空気調和機
US20100023166A1 (en) Free-cooling limitation control for air conditioning systems
US20150338135A1 (en) Refrigeration device for container
CN106662364A (zh) 用于变速驱动器的制冷剂冷却
JP2017044454A (ja) 冷凍サイクル装置及び冷凍サイクル装置の制御方法
JP6545252B2 (ja) 冷凍サイクル装置
CN109869941B (zh) 热泵系统、吸气过热度及气液分离器积液蒸发控制方法
WO2017183588A1 (ja) 車両用空調装置及びそれを備える車両
JP2006300371A (ja) 空気調和機
JP2007225140A (ja) ターボ冷凍機およびその制御装置ならびにターボ冷凍機の制御方法
WO2017086343A1 (ja) 車両用空調装置の冷凍サイクル及びこれを搭載した車両
CN109341125B (zh) 一种制冷系统和控制方法
JP2017062065A (ja) 熱交換システム
JP2006284034A (ja) 空気調和装置およびその膨張弁制御方法
WO2017135223A1 (ja) 車両用空調装置、それを備える車両及び車両用グリル装置の制御方法
EP2672205A2 (en) Heat exchanger system
US11585578B2 (en) Refrigeration cycle apparatus
JP2017137012A (ja) 車両用空調装置、それを備える車両及び車両用空調装置の制御方法
JP4298388B2 (ja) 空気調和装置及び空気調和装置の制御方法
CN112513542B (zh) 用于基于预估流量来控制蒸气压缩系统的方法
JP7055239B2 (ja) 空気調和装置
JP2008032285A (ja) 冷凍機及び温度調整装置、もしくはこれらの制御方法
CN109341126A (zh) 一种制冷系统和控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017881376

Country of ref document: EP

Effective date: 20181218

NENP Non-entry into the national phase

Ref country code: DE