WO2018109803A1 - 原子間力顕微鏡 - Google Patents

原子間力顕微鏡 Download PDF

Info

Publication number
WO2018109803A1
WO2018109803A1 PCT/JP2016/086900 JP2016086900W WO2018109803A1 WO 2018109803 A1 WO2018109803 A1 WO 2018109803A1 JP 2016086900 W JP2016086900 W JP 2016086900W WO 2018109803 A1 WO2018109803 A1 WO 2018109803A1
Authority
WO
WIPO (PCT)
Prior art keywords
spot
scanning
cantilever
spot position
collimating lens
Prior art date
Application number
PCT/JP2016/086900
Other languages
English (en)
French (fr)
Inventor
由佳 香田
酒井 信明
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/086900 priority Critical patent/WO2018109803A1/ja
Publication of WO2018109803A1 publication Critical patent/WO2018109803A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/02Monitoring the movement or position of the probe by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders

Definitions

  • the present invention relates to an atomic force microscope, and more particularly to an atomic force microscope used for observation of a biological sample.
  • a scanning probe microscope is a scanning microscope that mechanically scans a mechanical probe to obtain information on the surface of a sample, and includes a scanning tunneling microscope (STM), an atomic force microscope (AFM), a scanning Generic name of scanning magnetic force microscope (MFM), scanning capacitance microscope (SCaM), scanning near-field light microscope (SNOM), etc.
  • STM scanning tunneling microscope
  • AFM atomic force microscope
  • MFM scanning Generic name of scanning magnetic force microscope
  • SCaM scanning capacitance microscope
  • SNOM scanning near-field light microscope
  • the scanning probe microscope can perform raster scanning of the mechanical probe and the sample in the XY directions relatively, obtain desired surface information of the sample via the mechanical probe, and display the mapping on the display. .
  • AFM atomic force microscope
  • a sensor a scanner that relatively scans the cantilever and the sample are provided.
  • an AFM for observation of biological moving images which can be mounted on an optical microscope and can observe the movement of a biological sample
  • a cantilever scan type probe scan type
  • Scanning mechanism scans a cantilever at high speed in three directions of XYZ without scanning the sample so as not to obstruct observation with an optical microscope. Scanning mechanism
  • Such a cantilever scan type scanning mechanism and an AFM including the same are disclosed in, for example, Japanese Patent Application Laid-Open No. 2012-185066.
  • a converging spot (hereinafter referred to as a spot) of detection light for detecting displacement of the cantilever follows the cantilever with high accuracy in the XY direction (in XY scanning). It is a detection light tracking type.
  • the cantilever is scanned not only in the XY direction but also in the Z direction.
  • the spot can follow the cantilever with high accuracy in scanning in the XY direction, but cannot follow in scanning in the Z direction. Therefore, when the cantilever is scanned in the Z direction, there is a problem in that the cantilever and the spot due to the Z scanning are misaligned and the AFM observation accuracy is lowered due to the influence. The greater the amount of scanning of the cantilever in the Z direction, the greater the effect.
  • An object of the present invention is to suppress the influence of the positional deviation between the cantilever and the spot caused by Z scanning in an AFM having a cantilever scan type scanning mechanism, in other words, an AFM having a detection light tracking type scanning mechanism. It is to provide an AFM that can be observed with high accuracy.
  • the present invention relates to an atomic force microscope that obtains physical information of a sample using a cantilever having a probe.
  • Atomic force microscope has an XY movable table, an XY scanner that scans the XY movable table in the plane parallel to the XY plane, a fixed end held by the XY movable table, a cantilever at the free end, and a cantilever
  • a Z scanner that performs Z scanning along the Z axis perpendicular to the XY plane and an optical displacement sensor that optically detects the displacement of the cantilever are provided.
  • the optical displacement sensor includes a condenser lens held on an XY movable base.
  • the condensing lens condenses incident detection light, generates detection light having a focused spot, and irradiates the cantilever with the generated detection light to generate an irradiation area on the cantilever.
  • the atomic force microscope includes a Z-scanning tracking system that suppresses movement along the cantilever of the position of the irradiation area caused by Z-scanning according to the Z-scanning.
  • an atomic force microscope in which the influence of positional deviation between a cantilever and a spot due to Z scanning is suppressed.
  • FIG. 1 schematically shows the configuration of an atomic force microscope according to the first embodiment.
  • FIG. 2 schematically shows the configuration of the spot scanning controller shown in FIG.
  • FIG. 3 shows the detection light emitted to the cantilever.
  • FIG. 4A shows a state in which the position along the Z-axis of the cantilever is moved by Z scanning.
  • FIG. 4B shows a state in which the position of the irradiation area of the detection light irradiated on the cantilever is moved by the movement of the cantilever along the Z axis by Z scanning.
  • FIG. 5 is a diagram showing the relationship between the amount of movement of the cantilever and the amount of movement of the position of the detection light irradiation area irradiated on the cantilever.
  • FIG. 6 shows how the spot position scanner of FIG. 1 changes the emission angle of the detection light emitted toward the condenser lens with respect to the condenser lens.
  • FIG. 7 is an optical path diagram for explaining the operating principle of the spot position scanner of FIG.
  • FIG. 8A shows a configuration example of the spot position scanner of FIG.
  • FIG. 8B shows another configuration example of the spot position scanner of FIG.
  • FIG. 8C shows another configuration example of the spot position scanner of FIG.
  • FIG. 9A shows a state in which the position of the irradiation area of the detection light irradiated on the cantilever is moved as the light source is displaced along the plane perpendicular to the optical axis of the collimating lens with respect to the collimating lens. Yes.
  • FIG. 8A shows a configuration example of the spot position scanner of FIG.
  • FIG. 8B shows another configuration example of the spot position scanner of FIG.
  • FIG. 8C shows another configuration example of the spot position scanner of FIG.
  • FIG. 9B shows a state in which the position of the detection light irradiation area irradiated on the cantilever is moved by the displacement of the light source shown in FIG. 9A.
  • FIG. 10 shows a Z-scan at a position where the detection light collected by the condenser lens is irradiated on the cantilever by displacing the light source with respect to the collimator lens along a plane perpendicular to the optical axis of the collimator lens. It is a figure for demonstrating that the movement along the resulting cantilever is suppressed.
  • FIG. 11 shows a configuration example of a spot position scanner according to a modification of the first embodiment.
  • FIG. 12 schematically shows a configuration of an atomic force microscope according to the second embodiment.
  • FIG. 13 schematically shows the configuration of the spot scanning controller shown in FIG.
  • FIG. 14A shows a state where the position along the Z-axis of the cantilever is moved by Z scanning.
  • FIG. 14B shows a state in which the diameter of the irradiation area is increased in addition to the position of the irradiation area of the detection light irradiated to the cantilever being moved by the movement of the cantilever along the Z axis by the Z scanning.
  • FIG. 15 shows how the spot position scanner of FIG. 12 changes the spread angle of the detection light emitted toward the condenser lens with respect to the condenser lens.
  • FIG. 16 is an optical path diagram for explaining the operation principle of the spot position scanner of FIG. FIG.
  • FIG. 17A shows a configuration example of the spot position scanner of FIG.
  • FIG. 17B shows another configuration example of the spot position scanner of FIG.
  • FIG. 18 shows a state in which the size of the irradiation area of the detection light irradiated on the cantilever is changed due to the light source being displaced along the optical axis of the collimating lens with respect to the collimating lens.
  • FIG. 19 shows that by displacing the light source with respect to the collimating lens along the optical axis of the collimating lens, the change due to the Z scanning of the size of the detection light irradiation area irradiated on the cantilever can be suppressed. It is a figure for demonstrating.
  • FIG. 19 shows that by displacing the light source with respect to the collimating lens along the optical axis of the collimating lens, the change due to the Z scanning of the size of the detection light irradiation area irradiated on the cantilever can be suppressed.
  • FIG. 20A shows a configuration example of a spot position scanner according to a first modification of the second embodiment.
  • FIG. 20B shows another configuration example of the spot position scanner according to the first modification of the second embodiment.
  • FIG. 21 shows a configuration example of a spot position scanner according to a second modification of the second embodiment.
  • FIG. 22 schematically shows a configuration of an atomic force microscope according to the third embodiment.
  • FIG. 23 schematically shows the configuration of the spot scanning controller shown in FIG.
  • FIG. 24A shows a configuration example of the spot position scanner of FIG.
  • FIG. 24B shows another configuration example of the spot position scanner of FIG.
  • FIG. 1 schematically shows a configuration of an atomic force microscope according to the present embodiment.
  • the atomic force microscope includes an XY movable table 13, an XY scanner 14 that causes the XY movable table 13 to perform XY scanning in a plane parallel to the XY plane, and a cantilever 17 that is perpendicular to the XY plane.
  • a Z scanner 15 that performs Z scanning along the axis, a main controller 20, and a host computer 21 are provided.
  • the XY movable table 13 is held at the free end of the XY scanner 14.
  • the fixed end of the XY scanner 14 is held in a casing (not shown), and expands and contracts in a plane parallel to the XY plane according to an XY scanning signal output from the main controller 20.
  • the XY movable table 13 is XY scanned by the XY scanner 14 in a plane parallel to the XY plane.
  • the XY scanner 14 includes an X scanner that expands and contracts along the X axis and a Y scanner that expands and contracts along the Y axis.
  • the XY movable table 13 is XY scanned in a plane parallel to the XY plane.
  • the fixed end of the Z scanner 15 is held by the XY movable base 13, and the cantilever 17 is held at the free end.
  • the cantilever 17 has a probe 17b at its free end and is held by the cantilever tip 17a.
  • the cantilever 17 is held at the free end of the Z scanner 15 via the cantilever chip 17 a and the holder 16.
  • the Z scanner 15 expands and contracts along the Z axis perpendicular to the XY plane in accordance with the Z scanning signal output from the Z controller 22 included in the main controller 20. Thereby, the cantilever 17 is Z-scanned by the Z scanner 15 along the Z-axis perpendicular to the XY plane.
  • the cantilever 17 Since the cantilever 17 is held by the Z scanner 15 and the Z scanner 15 is held by the XY movable base 13, the cantilever 17 is XY scanned in a plane parallel to the XY plane by the XY scanner 14. That is, the cantilever 17 is XY scanned by the XY scanner 14 and Z-scanned by the Z scanner 15.
  • the sample 30 placed on the sample table 31 is disposed at a position facing the cantilever 17.
  • the cantilever 17 is deformed by the interaction between the probe 17 b and the sample 30. That is, the cantilever 17 is displaced.
  • the atomic force microscope is also provided with an optical displacement sensor that optically detects the displacement of the cantilever 17.
  • the optical displacement sensor includes a detection light emitter 10 that generates and emits detection light 11, a condensing lens 12 that condenses the detection light 11 emitted from the detection light emitter 10 and irradiates the cantilever 17, It has a split photodetector 19 that receives the reflected light from the back surface of the cantilever 17 and detects the displacement of the cantilever 17.
  • the detection light emitter 10 generates substantially parallel detection light 11 and emits it toward the condenser lens 12.
  • the detection light emitter 10 is held in a housing (not shown).
  • the condenser lens 12 is held on the XY movable table 13.
  • the condenser lens 12 is XY-scanned by the XY scanner 14, but is not Z-scanned.
  • the condenser lens 12 includes at least one lens. That is, the condensing lens 12 may be composed of a single lens or may be composed of a plurality of lenses.
  • the condensing lens 12 collects the incident parallel detection light 11, generates a focused detection light 18, and irradiates the generated detection light onto the cantilever 17 to generate an irradiation area on the cantilever 17. To do.
  • the detection light 18 collected by the condenser lens 12 has a central axis 18a, a focused spot 18b, and a spot region 18c.
  • the spot region 18c indicates a region of depth of focus, and a spot 18b is present at the center along the central axis 18a.
  • the spot diameter and depth of focus of the spot 18b are determined by the wavelength of the detection light 11 and the performance of the condenser lens 12.
  • the spot diameter is W and the depth of focus is H.
  • the spot diameter W is, for example, about 1 ⁇ m to about 3 ⁇ m when the wavelength of the detection light 11 is 1 ⁇ m and the numerical aperture (NA) of the condenser lens 12 is 0.5.
  • the depth of focus H is about 2 ⁇ m to 4 ⁇ m, for example, when the wavelength of the detection light 11 is 1 ⁇ m and the numerical aperture (NA) of the condenser lens 12 is 0.5.
  • the region width is the same as the focal depth H, so that the beam diameter can be regarded as the spot diameter W. Therefore, the beam diameter of the spot region 18c is about 1 ⁇ m to 3 ⁇ m, and the region width of the spot region 18c is the same as the focal depth H and is about 2 ⁇ m to 4 ⁇ m.
  • the detection light 18 is irradiated onto the cantilever 17 from the condenser lens 12 as shown in FIG. Specifically, the irradiation is performed on the back surface of the cantilever 17 (the surface opposite to the side where the probe 17b is provided) so that the back surface of the cantilever 17 overlaps the spot region 18c. Desirably, the detection light 18 is irradiated so that the back surface of the cantilever 17 and the spot 18b coincide. At this time, the beam diameter irradiated on the back surface of the cantilever 17, that is, the irradiation area becomes substantially the same as the spot diameter W. That is, the condensing lens 12 condenses the incident detection light 11, generates detection light 18 having a condensed spot, and irradiates the generated detection light 18 to the cantilever 17. An irradiation area is generated.
  • the cantilever 17 is XY scanned by the XY scanner 14 and Z scanned by the Z scanner 15.
  • the focused spot 18b is XY-scanned by the XY scanner 14 similarly to the condenser lens 12, but is not Z-scanned. For this reason, the position along the Z-axis shifts the cantilever 17 with respect to the spot 18b by Z scanning. That is, a positional deviation between the cantilever 17 and the spot 18b due to Z scanning occurs.
  • the detection light 18 is reflected by the back surface of the cantilever 17, and this reflected light enters the split photodetector 19.
  • the split photodetector 19 receives the reflected light from the back surface of the cantilever 17 and detects the displacement of the cantilever 17.
  • the detected displacement of the cantilever 17 is output to the Z controller 22 included in the main controller 20 as a displacement signal of the cantilever.
  • the Z controller 22 generates a Z scanning signal that keeps the displacement signal of the cantilever 17 constant, for example.
  • the Z controller 22 controls the Z scanner 15 by a Z scanning signal.
  • the main controller 20 controls the XY scanner 14 by an XY scanning signal.
  • the main controller 20 further generates physical information of the sample 30 based on the Z scanning signal.
  • the host computer 21 is for controlling the main controller 20 and displays physical information of the sample 30 generated by the main controller 20.
  • the present embodiment constitutes an atomic force microscope equipped with a cantilever scan type (detection light tracking type) scanning mechanism.
  • a cantilever scan type detection light tracking type
  • Such an atomic force microscope can follow with high accuracy in scanning in the XY directions, but cannot follow up in scanning in the Z direction.
  • the atomic force microscope of this embodiment includes a Z-scanning tracking system including a spot position scanner 40 and a spot scanning controller 23.
  • This Z scanning follow-up system has a function of suppressing the influence of the positional deviation between the cantilever 17 and the spot 18b caused by the Z scanning.
  • the influence of the positional deviation between the cantilever 17 and the spot 18b caused by the Z scanning is “movement along the cantilever 17 caused by the Z scanning of the position of the irradiation area of the detection light 18 irradiated on the cantilever 17”.
  • this Z scanning follow-up system has a function of suppressing “movement along the cantilever 17 caused by Z scanning of the position of the irradiation area of the detection light 18 irradiated on the cantilever 17”.
  • the Z scanning follow-up system has a function of suppressing “movement of the position of the irradiation area due to the Z scanning along the cantilever 17” according to the Z scanning.
  • the position of the irradiation area refers to, for example, the center of gravity of the surface of the irradiation area.
  • the spot position scanner 40 is included in the detection light emitter 10.
  • the spot position scanner 40 is controlled by a spot scanning controller 23 included in the main controller 20.
  • the spot position scanner 40 operates to move the spot 18b with respect to the cantilever 17, that is, to displace the spot 18b with respect to the cantilever 17.
  • the operation of the spot position scanner 40 is performed based on a spot position control signal output from a spot scanning controller 23 included in the main controller 20.
  • the spot scanning controller 23 generates a spot position control signal corresponding to the Z scanning based on the Z scanning signal generated by the Z control controller 22. That is, the spot scanning controller 23 controls the spot position scanner 40 according to the Z scanning, and the spot position scanner 40 displaces the spot 18 b with respect to the cantilever 17.
  • the spot scanning controller 23 controls the spot position scanner 40 according to the Z scanning, and the spot position scanner 40 displaces the spot 18b with respect to the cantilever 17, thereby “irradiation caused by the Z scanning”.
  • the movement of the area position along the cantilever 17 can be suppressed according to the Z scan.
  • Calculation and control in the main controller 20, the scanning controller 23, and the Z controller 22 are performed by cooperation of an electronic circuit, a (hardware type) processor, memory, software, and the like.
  • the angle between the cantilever 17 and the X axis is ⁇ 1
  • the angle between the central axis 18a of the detection light 18 and the Z axis is ⁇ 2
  • the back surface of the cantilever 17 and the spot region 18c overlap each other in the initial state.
  • the position along the Z axis of the cantilever 17 at this time is defined as position A
  • the irradiation area of the detection light 18 irradiated on the back surface of the cantilever 17 at position A is defined as an irradiation area 50a as shown in FIG. 4B.
  • the diameter of the irradiation area 50a is substantially the same as the diameter of the spot 18b.
  • the scanning amount Z is smaller than the focal depth H, which is the region width of the spot region 18c, and the irradiation area of the detection light 18 irradiated on the back surface of the cantilever 17 at the position B is As shown in FIG. 4B, an irradiation area 50b is set.
  • the diameter of the irradiation area 50b is smaller than the focal depth H, which is the area width of the spot area 18c, and the back surface of the cantilever 17 and the spot area 18c overlap each other. It will be almost the same.
  • the diameter of the irradiation area 50a irradiated on the back surface of the cantilever 17 at the position A, the diameter of the irradiation area 50b irradiated on the back surface of the cantilever 17 at the position B, and the diameter of the spot 18b are substantially equal. Be the same. Therefore, when the scanning amount Z of the cantilever 17 is smaller than the focal depth H that is the region width of the spot region 18c, it can be considered that there is no change in the irradiation area diameter of the detection light 18 irradiated on the back surface of the cantilever 17.
  • the angle formed by the central axis 18a of the detection light 18 and the Z axis is not exactly zero, and can be regarded as
  • > that is, when the absolute value of the angle formed by the central axis 18a of the detection light 18 and the Z axis is greater than zero
  • the irradiation area moves by the distance S according to the equation (1).
  • the movement distance S of the irradiation area becomes larger as the absolute value of the angle formed by the central axis 18a of the detection light 18 and the Z axis is larger than zero and as the scanning amount Z is larger.
  • the angle ⁇ 1 formed by the cantilever 17 and the X axis is 5 degrees to 20 degrees, and the central axis 18a of the detection light 18 and the Z axis angle theta 2 formed by the, to the illumination area size to be irradiated on the back of the cantilever 17 to a minimum, it is often substantially equal to the angle theta 1 formed by the cantilevers 17 and the X-axis.
  • the expression (1) becomes the following expression (2).
  • the scanning amount Z is 1 ⁇ m, that is, when the wavelength of the detection light 11 is 1 ⁇ m and the numerical aperture (NA) of the condenser lens 12 is smaller than the focal depth H when the numerical aperture (NA) is 0.5, the irradiation area is moved.
  • the distance S is 0.09 ⁇ m to 0.34 ⁇ m.
  • the spot position scanner 40 displaces the spot 18b with respect to the cantilever 17 in accordance with the Z scanning of the Z scanner 15, so that the cantilever 17 at the position of the irradiation area caused by the Z scanning is applied.
  • the movement along is suppressed according to the Z scanning.
  • the spot position scanner 40 operates so as to change the emission angle of the detection light 11 emitted toward the condenser lens 12 with respect to the condenser lens 12. Thereby, the spot 18 b is displaced with respect to the cantilever 17.
  • the divergent light emitted from the light emission point EP is changed into parallel light by passing through the lens L1, and subsequently changed into focused light by passing through the lens L2, and the condensing point FP. Condensed to
  • the light emission point EP has moved by a movement amount m in the direction M along the plane perpendicular to the optical axis of the lens L1, that is, in the direction M orthogonal to the optical axis of the lens L1.
  • the exit angle of the light emitted from the lens L1 changes with respect to the lens L2.
  • the condensing point FP is moved in the direction N along the plane perpendicular to the optical axis of the lens L2, that is, in the direction N orthogonal to the optical axis of the lens L2.
  • This direction N is opposite to the direction M.
  • the relationship between the movement amount m of the light emission point EP and the movement amount n of the condensing point FP is determined by the optical characteristics of the lens L1 and the lens L2.
  • the spot position scanner 40 changes the emission angle of the detection light 11 emitted toward the condenser lens 12 with respect to the condenser lens 12 according to the Z scan, thereby causing the Z scan.
  • the movement along the cantilever 17 of the position of the irradiation area to be performed is suppressed according to the Z scanning.
  • the spot position scanner 40 may be configured as a spot position scanner 40A shown in FIG. 8A.
  • the spot position scanner 40A includes at least a housing 48, a light source 41 such as a semiconductor LD, and a collimating lens 42 including at least one lens.
  • the collimating lens 42 has a function of changing light emitted from the light source 41 into parallel light.
  • the collimating lens 42 may be composed of a single lens or may be composed of a plurality of lenses.
  • the spot position scanner 40 may include optical elements such as “aperture” and “filter” (not shown).
  • the spot position scanner 40A further includes a displacement actuator 43 that is a first displacement actuator that displaces the light source 41 with respect to the collimating lens 42, and a displacement actuator that is a second displacement actuator that displaces the collimating lens 42 with respect to the light source 41. 44 of both.
  • the displacement actuator 43 has a fixed end held by the casing 48 and a light source 41 held by its free end.
  • the fixed end of the displacement actuator 44 is held by the casing 48 and the collimating lens 42 is held at the free end thereof.
  • the displacement actuator 43 displaces the light source 41
  • the displacement actuator 44 displaces the collimator lens 42 in the opposite directions along the plane perpendicular to the optical axis 42a of the collimator lens 42, respectively. It is possible to change the spot 18b with respect to the cantilever 17 by changing the emission angle of the detection light 11 emitted toward the condenser 12 with respect to the condenser lens 12.
  • a spot position control signal is supplied to the displacement actuator 43 that is the first displacement actuator, the displacement actuator 44 that is the second displacement actuator, or both.
  • the displacement actuator 43 and / or the displacement actuator 44 are controlled by the spot scanning controller 23 based on the spot position control signal to displace the light source 41 and / or the collimating lens 42, respectively.
  • the spot position scanner 40 can be modified like a spot position scanner 40B shown in FIG. 8B or a spot position scanner 40C shown in FIG. 8C.
  • the spot position scanner 40 ⁇ / b> B does not include the displacement actuator 44 that is the second displacement actuator, but only the displacement actuator 43 that is the first displacement actuator, and the collection of the detection light 11 emitted toward the condenser lens 12.
  • the emission angle with respect to the optical lens 12 is changed.
  • the spot position scanner 40C does not include the displacement actuator 43 that is the first displacement actuator, but only the displacement actuator 44 that is the second displacement actuator.
  • the emission angle with respect to the condenser lens 12 is changed.
  • the spot position scanner 40 includes at least a housing 48, a light source 41 such as a semiconductor LD, and a collimating lens 42 including at least one lens.
  • the spot position scanner 40 further includes a displacement actuator 43 that is a first displacement actuator that displaces the light source 41 with respect to the collimating lens 42 along a plane perpendicular to the optical axis of the collimating lens, and the collimating lens 42 with respect to the light source 41.
  • a displacement actuator 44 that is a second displacement actuator that is displaced along a plane perpendicular to the optical axis of the collimating lens.
  • the displacement actuator 43, which is the first displacement actuator, and the displacement actuator 44, which is the second displacement actuator, are each controlled by the spot scanning controller 23.
  • the spot position scanner 40 can displace the spot 18b with respect to the cantilever 17 by changing the emission angle of the detection light 11 emitted toward the condenser lens 12 with respect to the condenser lens 12.
  • the spot position scanner 40 In the spot position scanner 40, the spot position scanner 40A, the spot position scanner 40B, and the spot position scanner 40C can all displace the spot 18b, but only the spot position scanner 40A includes two displacement actuators. ing. For this reason, when it is desired to greatly displace the spot 18b, the configuration of the spot position scanner 40A is suitable.
  • the direction of displacement of the spot 18b with respect to the cantilever 17 the direction of displacement of the light source 41 by the displacement actuator 43, which is the first displacement actuator, and the displacement of the collimating lens 42 by the displacement actuator 44, which is the second displacement actuator.
  • the orientation relationship will be described with an example where the spot position scanner 40 is the spot position scanner 40B shown in FIG. 8B.
  • the light source 41 is in the direction R along the plane perpendicular to the optical axis 42a of the collimating lens 42 with respect to the collimating lens 42, that is, in the direction R perpendicular to the optical axis 42a of the collimating lens 42.
  • the displacement actuator 43 is a first displacement actuator.
  • the emission angle of the detection light 11 emitted from the collimator lens 42 with respect to the condenser lens 12 changes.
  • the spot 18b is displaced in the direction L along the plane perpendicular to the optical axis 12a of the condenser lens 12, that is, in the direction L orthogonal to the optical axis 12a of the condenser lens 12.
  • This direction L is opposite to the direction R.
  • the position of the irradiation area 50a irradiated on the back surface of the cantilever 17 is moved to the probe 17b side in the extending direction of the cantilever 17 as shown in FIG. 9B.
  • the displacement actuator 44 which is the second displacement actuator
  • the light source 41 is displaced in the direction opposite to the direction R, that is, in the direction of the direction L.
  • the displacement actuator 43 which is the first displacement actuator, has the light source 41 with respect to the collimating lens 42 in the direction of the solid arrow along the plane perpendicular to the optical axis 42 a of the collimating lens 42.
  • the spot 18 b extends in the direction L along the surface perpendicular to the optical axis 12 a of the condenser lens 12, that is, the irradiation area 50 a extends on the back surface of the cantilever 17.
  • the probe moves to the probe 17b side opposite to the direction base.
  • the position of the cantilever 17 along the Z axis moves in the direction D, which is the direction of the solid arrow, by the Z scanning of the Z scanner 15, the light source 41 is collimated with respect to the collimating lens 42 by the displacement actuator 43.
  • the lens 42 By displacing the lens 42 in the direction R which is the direction of the solid arrow along the surface perpendicular to the optical axis 42a, the Z-scan of the position of the detection light 18 irradiated on the cantilever 17 of the detection light 18 is performed. The resulting movement along the cantilever 17 can be suppressed.
  • the collimating lens 42 is moved from the light source 41 to the optical axis 42 a of the collimating lens 42 by the displacement actuator 44.
  • the displacement actuator 44 By displacing along the vertical plane in the direction R opposite to the direction L, the movement along the cantilever 17 at the position of the irradiation area caused by Z scanning can be suppressed.
  • the spot position scanner 40 An example will be described in which 40 is the spot position scanner 40B shown in FIG. 8B.
  • the amount of displacement of the spot 18b with respect to the amount of movement of the light source 41 that is, the amount of movement of the irradiation area 50a irradiated on the back surface of the cantilever 17 with respect to the amount of movement of the light source 41 is collimated, as in the principle described with reference to FIG. It is determined by the optical characteristics of the lens 42 and the condenser lens 12.
  • the focal length of the collimator lens 42 and the focal length of the condenser lens 12 are the same as the focal length f 1 of the lens L1 and the focal length f 2 of the lens L2 shown in FIG.
  • the relationship between the scanning amount Z and the movement amount m of the light source 41 is expressed by the following equation (4). ).
  • the spot scanning controller 23 includes a Z scanning amount calculation unit 23a, a parameter storage unit 23c, and a calculation unit 23b.
  • the parameter storage unit 23c stores information necessary for generating the spot position control signal.
  • the Z scanning amount calculation unit 23a calculates the Z scanning amount by calculating using the Z scanning signal and the information stored in the parameter storage unit 23c, and supplies the Z scanning amount to the calculation unit 23b.
  • the calculating unit 23b generates and outputs a spot position control signal by calculating using the Z scanning amount calculated by the Z scanning amount calculating unit 23a and the information stored in the parameter storage unit 23c.
  • information stored in the parameter storage unit 23c includes the amount of displacement per unit voltage of the Z scanner 15, the focal length of the collimating lens 42, the focal length of the condenser lens 12, the angle formed by the cantilever 17 and the X axis, and the detection light 18.
  • the angle formed by the central axis 18a and the Z axis, and the displacement amount per unit voltage of the displacement actuator 43 are included.
  • the displacement amount per unit voltage of the Z scanner 15 is P z [m / V]
  • the focal length of the collimating lens 42 is f 1 [m]
  • the focal length of the condenser lens 12 is f 2 [m]
  • the X axis is ⁇ 1 [deg]
  • the angle between the central axis 18a of the detection light 18 and the Z axis is ⁇ 2 [deg]
  • the displacement per unit voltage of the displacement actuator 43 is P m [m / V ]far.
  • the Z scanning amount Z [m] obtained by the Z scanning amount calculating unit 23a is calculated from the voltage V 0 [V] at the time t of the Z scanning signal and the displacement amount P z [m / V] per unit voltage of the Z scanner 15. it can.
  • the Z scanning amount calculation unit 23a receives Z scanning signal from Z [m], detects the voltage V 0 [V] of the Z scanning signal at time t, and detects the displacement amount P z [per unit voltage of the Z scanner 15 [Z]. m / V]. That is, the calculation formula in the Z scanning amount calculation unit 23a is the following formula (5).
  • equation (6) the amount of movement m of the light source 41 described in equation (4) can be expressed by the following equation (6).
  • the movement amount m of the light source 41 is expressed by the following equation (7) according to the displacement amount P m [m / V] per unit voltage of the displacement actuator 43 and the voltage V 1 [V] of the spot position control signal at time t. It can be expressed as
  • the calculation formula in the calculation unit 23b can be expressed by the following formula (8) from formula (6) and formula (7), with the voltage of the spot position control signal at time t of the spot position control signal being V 1 [V].
  • the calculation unit 23b generates and outputs a spot position control signal by the calculation shown in Expression (8).
  • the displacement actuator 44 is arranged to operate in the direction opposite to the displacement actuator 43, and the displacement amount per unit voltage of the displacement actuator 44 the 'When [m / V], arithmetic unit 23b of the spot scanning controller 23, the P m of formula (8) P m' P m performs calculation based on the expression obtained by replacing the.
  • the displacement actuator 44 is arranged so as to operate in the direction opposite to the displacement actuator 43, and the displacement per unit voltage of the displacement actuator 44 is changed. Assuming that the amount is P m ′ [m / V], the calculation unit 23 b of the spot scanning controller 23 performs a calculation based on an expression in which P m in Expression (8) is replaced with (P m + P m ′).
  • the spot position scanner 40 is the displacement actuator 43 that is the first displacement actuator and the second displacement actuator so as to suppress the movement along the cantilever 17 of the position of the irradiation area caused by the Z scanning. Detection by which at least one of the light source 41 and the collimating lens 42 is displaced along a plane perpendicular to the optical axis 42 a of the collimating lens 42 by at least one of the displacement actuators 44, thereby being emitted toward the condenser lens 12. The exit angle of the light 11 with respect to the condenser lens 12 is changed, and the spot 18b with respect to the cantilever 17 is displaced.
  • the spot position scanner 40 performs the above-described operation of displacing the spot 18b based on the spot position control signal.
  • This spot position control signal is generated based on the Z scanning signal input to the Z scanner 15.
  • the spot position scanner 40 is controlled by the spot scanning controller 23 based on the spot position control signal, that is, according to the Z scanning. Therefore, the spot position scanner 40 is controlled by the spot scanning controller 23 in accordance with the Z scanning, and the spot 18b is displaced with respect to the cantilever 17, so that the position of the irradiation area resulting from the Z scanning moves along the cantilever 17. Operates to suppress.
  • the collimating lens 42 has an example of a single lens, but the same function may be achieved by using two or more lenses.
  • FIG. 11 shows a spot position scanner 40D which is a modified example. 11, members denoted by the same reference numerals as those shown in FIG. 8 are the same members, and detailed description thereof is omitted.
  • the spot position scanner 40D operates so as to change the emission angle of the detection light 11 emitted toward the condenser lens 12 with respect to the condenser lens 12. As a result, the spot 18 b is displaced with respect to the cantilever 17. As a result, the movement along the cantilever 17 of the position of the irradiation area resulting from the Z scan can be suppressed according to the Z scan.
  • the spot position scanner 40D includes at least a housing 68, a light source 41 such as a semiconductor LD, and a collimating lens 42 including at least one lens.
  • the spot position scanner 40D further includes a mirror 62 that reflects the detection light 11 emitted from the collimating lens 42 toward the condenser lens 12, and a rotary actuator 63 that operates to change the angle of the mirror 62.
  • a spot position control signal is supplied to the rotary actuator 63.
  • the rotary actuator 63 is controlled by the spot scanning controller 23 that outputs a spot position control signal.
  • the rotary actuator 63 has a fixed end held by the casing 68, holds the mirror 62 rotatably around the rotation shaft 63a, and can rotate the mirror 62 around the rotation shaft 63a.
  • the spot position scanner 40D is controlled based on a spot position control signal from the spot scanning controller 23 corresponding to Z scanning.
  • the information stored in the parameter storage unit 23c and the calculation formula performed by the calculation unit 23b are different from those of the spot position scanner 40B.
  • information stored in the parameter storage unit 23c includes the amount of displacement per unit voltage of the Z scanner 15, the focal length of the condenser lens 12, the angle formed by the cantilever 17 and the X axis, the central axis 18a of the detection light 18 and the Z axis.
  • the rotation angle per unit voltage of the rotary actuator 63 is included.
  • the displacement amount per unit voltage of the Z scanner 15 is P z [m / V]
  • the focal length of the condenser lens 12 is f 2 [m]
  • the angle formed by the cantilever 17 and the X axis is ⁇ 1 [deg]
  • the angle between the central axis 18a of the detection light 18 and the Z axis is ⁇ 2 [deg]
  • the rotation angle per unit voltage of the rotary actuator 63 is ⁇ m [deg / V].
  • the calculation formula in the calculation unit 23b can be expressed by the following formula (9) from the formula (1) and the formula (5), where the voltage of the spot position control signal at the time t of the spot position control signal is V2 [V].
  • the calculation unit 23b generates and outputs a spot position control signal by the calculation shown in Expression (9).
  • the rotational displacement actuator 63 rotates the mirror 62 to change the reflection angle of the detection light 11, so that the detection light 11 emitted toward the condenser lens 12 is emitted to the condenser lens 12.
  • the spot 18 b is displaced with respect to the cantilever 17.
  • the atomic force microscope of this embodiment includes a Z-scanning tracking system including a spot position scanner 70 and a spot scanning controller 25, as shown in FIG.
  • This Z scanning follow-up system has a function of suppressing the influence of the positional deviation between the cantilever 17 and the spot 18b caused by the Z scanning.
  • the influence of the positional deviation between the cantilever 17 and the spot 18b due to the Z scanning in the present embodiment is “movement along the cantilever 17 due to the Z scanning of the position of the irradiation area of the detection light 18 irradiated to the cantilever 17”.
  • it means “change due to Z scanning of the size of the irradiation area of the detection light 18 irradiated to the cantilever 17”.
  • this Z scanning follow-up system has a function of suppressing “movement along the cantilever 17 due to Z scanning of the position of the irradiation area of the detection light 18 irradiated to the cantilever 17” and “detection light irradiated to the cantilever 17. It has both functions of suppressing the “change due to the Z scanning of the size of the 18 irradiation areas”.
  • the Z-scanning tracking system has a function of suppressing “movement of the position of the irradiation area caused by the Z scanning along the cantilever 17” according to the Z scanning, and “a change in the size of the irradiation area caused by the Z scanning”. "Is suppressed according to the Z scanning.
  • the spot position scanner 70 is included in the detection light emitter 10.
  • the spot position scanner 70 is controlled by a spot scanning controller 25 included in the main controller 24.
  • the spot position scanner 70 operates to move the spot 18b relative to the cantilever 17, that is, to displace the spot 18b relative to the cantilever 17.
  • the operation of the spot position scanner 70 is performed based on the first spot position control signal and the second spot position control signal output from the spot scanning controller 25 included in the main controller 24.
  • the spot scanning controller 25 generates a first spot position control signal and a second spot position control signal corresponding to the Z scanning based on the Z scanning signal generated by the Z controller 22. That is, the spot scanning controller 25 controls the spot position scanner 70 according to the Z scanning, and the spot position scanner 70 displaces the spot 18 b with respect to the cantilever 17.
  • the spot scanning controller 25 controls the spot position scanner 70 in accordance with the Z scanning, and the spot position scanner 70 displaces the spot 18b with respect to the cantilever 17, thereby “irradiation caused by Z scanning”. It is possible to suppress the “movement of the area position along the cantilever 17” and “change in the size of the irradiation area due to Z scanning”.
  • Calculation and control in the main controller 24, the scanning controller 25, and the Z controller 22 are performed by cooperation of an electronic circuit, a (hardware type) processor, memory, software, and the like.
  • the angle between the cantilever 17 and the X axis is ⁇ 1
  • the angle between the central axis 18a of the detection light 18 and the Z axis is ⁇ 2
  • the back surface of the cantilever 17 and the spot region 18c overlap each other in the initial state.
  • the position along the Z-axis of the cantilever 17 at this time is defined as position A
  • the irradiation area of the detection light 18 irradiated on the back surface of the cantilever 17 at position A is defined as an irradiation area 50a as shown in FIG. 14B.
  • the diameter of the irradiation area 50a is substantially the same as the diameter of the spot 18b.
  • the scanning amount Z ′ is larger than the focal depth H, which is the region width of the spot region 18c, and the irradiation area of the detection light 18 irradiated on the back surface of the cantilever 17 at the position C is set.
  • an irradiation area 50c is set.
  • the scanning amount Z ′ of the cantilever 17 is larger than the depth of focus H, which is the region width of the spot region 18c, and the cantilever 17 deviates from the spot region 18c.
  • the diameter or size of the irradiation area 50c is larger than the diameter or size of the irradiation area 50a.
  • the change in the irradiation area diameter that is, the change in the size of the irradiation area increases as the scanning amount Z ′ increases.
  • the detection light 18 does not fit in the cantilever 17, and as a result, the shape of the reflected light of the detection light 18 from the back surface of the cantilever 17 changes, and the divided photo detector The detection sensitivity of the displacement of the cantilever 17 by 19 is changed. Further, if the sample 30 is irradiated with a part of the detection light 18 and the sample 30 is a biological sample having phototoxicity, it will be affected.
  • the spot position scanner 70 operates so as to suppress the change in the size of the irradiation area caused by the Z scan, and thus is effective when the change in the size of the irradiation area caused by the Z scan is large. .
  • the movement of the distance S ′ from the irradiation area 50a to the irradiation area 50c moves along the cantilever, as described in the first embodiment. It is the movement along the cantilever 17 of the position of the irradiation area which originates. Therefore, in the atomic force microscope of this embodiment, not only the movement of the position of the irradiation area due to the Z scanning along the cantilever 17 but also the change in the size of the irradiation area due to the Z scanning is suppressed. You can also.
  • the spot position scanner 70 suppresses the change in the size of the irradiation area caused by the Z scanning, and the detection light 11 emitted toward the condenser lens 12 with respect to the condenser lens 12. Change the spread angle. That is, the spot position scanner 70 changes the divergence angle of the detection light 11 emitted toward the condenser lens 12 with respect to the condenser lens 12, thereby displacing the spot 18b with respect to the cantilever 17 and performing Z scanning. The change in the size of the irradiation area caused by this is suppressed.
  • the divergent light emitted from the light emission point EP is converted into parallel light by passing through the lens L1, and subsequently converted into focused light by passing through the lens L2, and the condensing point FP. Condensed to
  • the light emitting point EP has moved in the direction G along the optical axis of the lens L1.
  • the light emitted from the lens L1 spreads with respect to the lens L2 and changes its angle.
  • the condensing point FP is moved in the direction G ′ along the optical axis of the lens L2.
  • This direction G ′ is the same as the direction G.
  • the relationship of the moving amount g ′ of the condensing point FP with respect to the moving amount g of the light emitting point EP is determined by the optical characteristics of the lenses L1 and L2.
  • the relationship between the moving amount g of the light emitting point EP and the moving amount g ′ of the condensing point FP is that the focal length of the lens L1 is f 1 , the focal length of the lens L2 is f 2, and the moving amount g of the light emitting point EP is the lens L1.
  • L2 can be approximated by the following equation (10) when sufficiently smaller than the focal lengths f 1 and f 2 .
  • the spot position scanner 70 changes the divergence angle of the detection light 11 emitted toward the condensing lens 12 with respect to the condensing lens 12 according to the Z scanning, and thereby the cantilever 17
  • the spot 18b is displaced to suppress a change in the size of the irradiation area caused by the Z scanning.
  • the spot position scanner 70 includes at least a housing 78, a light source 41 such as a semiconductor LD, and at least one lens, like the spot position scanner 70A shown in FIG. 17A and the spot position scanner 70B shown in FIG. 17B. And a collimating lens 42.
  • the spot position scanner 70 further includes a displacement actuator 73 that is a first displacement actuator that displaces one of the light source 41 and the collimating lens 42 in a direction along a plane perpendicular to the optical axis 42a of the collimating lens 42, and the light source 41 and the collimating lens.
  • a displacement actuator 74 that is a second displacement actuator that displaces the other of the lenses 42 in a direction along the optical axis 42 a of the collimating lens 42 is provided.
  • the spot position scanner 70A includes a displacement actuator 73, which is a first displacement actuator that displaces the collimating lens 42 in a direction along a plane perpendicular to the optical axis 42a of the collimating lens 42, and the light source 41 as a collimating lens. 42, a displacement actuator 74, which is a second displacement actuator that is displaced in a direction along the optical axis 42a of 42, is provided.
  • a displacement actuator 73 which is a first displacement actuator that displaces the collimating lens 42 in a direction along a plane perpendicular to the optical axis 42a of the collimating lens 42, and the light source 41 as a collimating lens.
  • a displacement actuator 74 which is a second displacement actuator that is displaced in a direction along the optical axis 42a of 42, is provided.
  • the spot position scanner 70B includes a displacement actuator 73, which is a first displacement actuator that displaces the light source 41 in a direction along a plane perpendicular to the optical axis 42a of the collimator lens 42, and the collimator lens 42 as light of the collimator lens 42.
  • a displacement actuator 74 which is a second displacement actuator that is displaced in the direction along the shaft 42a, is provided.
  • a first spot position control signal is supplied to the displacement actuator 73 that is the first displacement actuator, and a second spot position control signal is supplied to the displacement actuator 74 that is the second displacement actuator.
  • the displacement actuator 73 and the displacement actuator 74 are controlled by the spot scanning controller 25 based on the first spot position control signal and the second spot position control signal, respectively, and displace the light source 41 and the collimating lens 42.
  • the displacement actuator 73 and the displacement actuator 74 each have a fixed end and a free end that is displaced with respect to the fixed end.
  • the displacement actuator 73 has a fixed end held by a casing 78, a free end holding the collimating lens 42, and the collimating lens 42 perpendicular to the optical axis 42a of the collimating lens 42. Displace in a direction along a flat surface.
  • the displacement actuator 74 has a fixed end held by the casing 78, holds the light source 41 at the free end, and displaces the light source 41 in the direction along the optical axis 42 a of the collimating lens 42.
  • the displacement actuator 73 has a fixed end held by the casing 78, the light source 41 held by the free end, and the light source 41 perpendicular to the optical axis 42a of the collimating lens 42. Displace in the direction along The displacement actuator 74 has a fixed end held by the casing 78, holds the collimating lens 42 at the free end, and displaces the collimating lens 42 in a direction along the optical axis 42 a of the collimating lens 42.
  • the displacement actuator 73 displaces the collimating lens 42 in a direction along a plane perpendicular to the optical axis 42a of the collimating lens 42, and is emitted toward the condenser lens 12.
  • the spot 18 b can be displaced with respect to the cantilever 17 by changing the emission angle of the detection light 11 with respect to the condenser lens 12.
  • the displacement actuator 74 displaces the light source 41 along the optical axis 42a of the collimator lens 42, thereby changing the spread angle of the detection light 11 emitted toward the condenser lens 12 with respect to the condenser lens 12,
  • the spot 18b with respect to the cantilever 17 can be displaced.
  • the displacement actuator 73 emits the light source 41 toward the condenser lens 12 by displacing the light source 41 in a direction along a plane perpendicular to the optical axis 42a of the collimating lens 42. It is possible to displace the spot 18 b with respect to the cantilever 17 by changing the emission angle of the detection light 11 to the condenser lens 12.
  • the displacement actuator 74 displaces the collimating lens 42 along the optical axis 42 a of the collimating lens 42, thereby changing the divergence angle of the detection light 11 emitted toward the collecting lens 12 with respect to the collecting lens 12.
  • the spot 18b can be displaced with respect to the cantilever 17.
  • the spot position scanner 70 includes at least a housing 78, a light source 41 such as a semiconductor LD, a collimating lens 42 including at least one lens, and one of the light source 41 and the collimating lens 42 as an optical axis of the collimating lens 42.
  • a displacement actuator 73 that is a first displacement actuator that displaces in a direction along a plane perpendicular to 42a, and a second that displaces the other of the light source 41 and the collimating lens 42 in a direction along the optical axis 42a of the collimating lens 42.
  • a displacement actuator 74 which is a displacement actuator.
  • the displacement actuator 73 which is the first displacement actuator displaces one of the light source 41 and the collimating lens 42 in a direction along a plane perpendicular to the optical axis of the collimating lens, and is emitted toward the condenser lens 12. It is possible to displace the spot 18 b with respect to the cantilever 17 by changing the emission angle of the detection light 11 to the condenser lens 12.
  • the displacement actuator 74 which is the second displacement actuator, displaces the other of the light source 41 and the collimator lens 42 along the optical axis 42a of the collimator lens 42, thereby detecting the detection light 11 emitted toward the condenser lens 12. It is possible to displace the spot 18 b with respect to the cantilever 17 by changing the divergence angle with respect to the condenser lens 12.
  • the spot position scanner 70 is the spot position scanner 70A shown in FIG. 17A
  • the light source 41 is displaced with respect to the collimating lens 42 in a direction A along the optical axis 42a of the collimating lens 42 by a displacement actuator 74 that is a second displacement actuator.
  • the spread angle of the detection light 11 emitted from the collimator lens 42 with respect to the condenser lens 12 changes.
  • the spot 18 b is displaced in the direction ⁇ ′ along the optical axis 12 a of the condenser lens 12.
  • the direction A and the direction A ′ are the same direction.
  • the direction A ′ in which the spot 18b is displaced includes a component in the ⁇ Z direction along the Z axis.
  • the amount of displacement of the spot 18b with respect to the amount of movement of the light source 41 is mainly determined by the optical characteristics of the collimating lens 42 and the condenser lens 12.
  • focal length of the condenser lens 12 of the collimator lens 42 assumed to be the same as the focal length f 2 of the focal length f 1 and the lens L2 of the lens L1 shown in FIG. 16.
  • the movement amount g of the light source 41 and the displacement amount g ′ of the spot 18b have the relationship shown by the above-described equation (10).
  • the displacement actuator 74 as the second displacement actuator moves the collimating lens 42.
  • the light source 41 is displaced in the direction opposite to the direction ⁇ .
  • FIG. 5 when the displacement actuator 74 which is the second displacement actuator displaces the light source 41 with respect to the collimating lens 42 in the direction A which is the direction of the solid arrow along the optical axis 42a of the collimating lens 42, FIG. As shown in FIG. 5, the spot 18b is displaced in the direction A ′ along the optical axis 12a of the condenser lens 12.
  • the direction A ′ includes a component of the ⁇ Z direction along the Z axis.
  • the displacement amount g ′ at this time has the relationship shown by the equation (10).
  • the position of the cantilever 17 along the Z axis moves in the direction D, which is the direction of the solid arrow, by the Z scanning of the Z scanner 15, the light source 41 is collimated with respect to the collimating lens 42 by the displacement actuator 74.
  • the direction A which is the direction of the solid arrow along the optical axis 42a of the lens 42
  • the positional deviation along the Z-axis of the spot 18b with respect to the cantilever 17 is reduced.
  • the cantilever 17 and the spot 18b are not displaced. It is possible to suppress the influence of the positional deviation, that is, the change in the size of the irradiation area due to the Z scanning.
  • the spot position scanner 70 moves one of the light source 41 and the collimating lens 42 by the displacement actuator 74 that is the second displacement actuator so as to suppress the change in the size of the irradiation area caused by the Z scanning.
  • the collimating lens 42 is displaced along the optical axis 42 a, thereby changing the divergence angle of the detection light 11 emitted toward the condensing lens 12 with respect to the condensing lens 12 and displacing the spot 18 b with respect to the cantilever 17.
  • the spot position scanner 70 displaces the spot 18b with respect to the cantilever 17
  • the configuration and operation of the spot scanning controller 25 the spot position scanner An example in which 70 is the spot position scanner 70A shown in FIG. 17A will be described.
  • the displacement amount g ′ of the spot 18 b needs to be the same as the movement amount Q of the cantilever 17 with respect to the spot 18 b.
  • the amount of movement Q of the cantilever 17 with respect to the spot 18b is detected light 18 when the position of the cantilever 17 along the Z axis moves by Z [m] in the direction D indicated by the solid line arrow by Z scanning of the Z scanner 15.
  • the angle formed by the central axis 18a and the Z axis can be expressed by the following equation (11), where ⁇ 2 is ⁇ 2 .
  • the spot scanning controller 25 includes a Z scanning amount calculation unit 23a, a parameter storage unit 25c, a calculation unit 23b, and a calculation unit 25d.
  • the Z scanning amount calculation unit 23a and the calculation unit 23b are the same as those shown in FIG. 2 of the first embodiment.
  • the parameter storage unit 25c stores information necessary for generating the first spot position control signal and information necessary for generating the second spot position control signal.
  • the Z scanning amount calculation unit 23a calculates the Z scanning amount by calculating using the Z scanning signal and information stored in the parameter storage unit 23c, and supplies the Z scanning amount to the calculation unit 23b and the calculation unit 25d.
  • the calculation unit 23b performs calculation using the Z scanning amount calculated by the Z scanning amount calculation unit 23a and the information stored in the parameter storage unit 25c, thereby generating and outputting a first spot position control signal.
  • the first spot position control signal is for suppressing the movement along the cantilever 17 of the position of the irradiation area caused by Z scanning, and is the same as the spot position control signal in the first embodiment.
  • the calculation unit 25d generates and outputs a second spot position control signal by calculating using the Z scanning amount calculated by the Z scanning amount calculation unit 23a and the information stored in the parameter storage unit 25c. To do.
  • the second spot position control signal is for suppressing a change in the size of the irradiation area due to the Z scanning.
  • the generation of the second spot position control signal by the calculation unit 25d that is, the information stored in the parameter storage unit 25c and the calculation formula performed by the calculation unit 25d will be described below.
  • the information stored in the parameter storage unit 25c includes the amount of displacement per unit voltage of the Z scanner 15, the focal length of the collimating lens 42, the focal length of the condenser lens 12, the angle formed by the cantilever 17 and the X axis, and the detection light 18.
  • the angle formed by the central axis 18a and the Z axis, the displacement amount of the displacement actuator 73 per unit voltage, and the displacement amount of the displacement actuator 74 per unit voltage are included.
  • the displacement actuator 73 has the same displacement amount per unit voltage as the displacement actuator 44 shown in FIG. 8C of the first embodiment, and is used for generating the first spot position control signal by the calculation unit 23b.
  • information used in the calculation unit 25d includes the focal length of the collimating lens 42, the focal length of the condenser lens 12, and the angle formed by the central axis 18a of the detection light 18 and the Z axis.
  • the displacement amount per unit voltage of the displacement actuator 74 includes the focal length of the collimating lens 42, the focal length of the condenser lens 12, and the angle formed by the central axis 18a of the detection light 18 and the Z axis.
  • the focal length of the collimating lens 42 is f 1 [m]
  • the focal length of the condenser lens 12 is f 2 [m]
  • the angle between the central axis 18a of the detection light 18 and the Z axis is ⁇ 2 [deg]
  • the displacement amount per unit voltage of the displacement actuator 74 is set to Pg [m / V].
  • the Z scanning amount Z [m] obtained by the Z scanning amount calculation unit 23a is obtained by Expression (5).
  • the movement amount g of the light source 41 is expressed by the following formula (Pg [m / V] per unit voltage of the displacement actuator 74 and the voltage V 3 [V] of the second spot position control signal at time t: 14).
  • the calculation formula in the calculation unit 25d is expressed by the following formula based on the formula (13) and the formula (14), where the voltage of the second spot position control signal at the time t of the second spot position control signal is V 3 [V]. (15)
  • the calculating unit 25d generates and outputs a second spot position control signal by the calculation shown in Expression (15).
  • the spot position scanner 70 performs an operation of displacing the spot 18b based on the first spot position control signal and the second spot position control signal.
  • the displacement actuator 74 is arranged to operate in the opposite direction to the displacement actuator 74 of the spot position scanner 70A shown in FIG. 17A.
  • the calculation unit 25d of the spot scanning controller 25 performs calculation based on the same expression (15) as that of the spot position scanner 70A.
  • the second spot position control signal is generated so as to suppress a change in the size of the irradiation area caused by the Z scanning described in the present embodiment, and the first spot position control signal is described in the first embodiment. It is generated so as to suppress the movement along the cantilever 17 of the position of the irradiation area caused by the Z scanning.
  • the first spot position control signal is supplied to a displacement actuator 73 that is a first displacement actuator, and the displacement actuator 73 moves one of the light source 41 and the collimating lens 42 based on the first spot position control signal. .
  • the second spot position control signal is supplied to a displacement actuator 74 that is a second displacement actuator, and the displacement actuator 74 moves the other of the light source 41 or the collimating lens 42 based on the second spot position control signal. .
  • the spot position scanner 70 operates based on the first spot position control signal and the second spot position control signal, that is, according to the Z scan.
  • the spot position scanner 70 displaces the spot 18b with respect to the cantilever 17 based on the first spot position control signal and the second spot position control signal, that is, according to the Z scan, and thereby the Z scan.
  • the movement of the position of the irradiation area caused by the movement along the cantilever 17 and the change of the size of the irradiation area caused by the Z scanning are suppressed.
  • the spot position scanner 70 of the present embodiment has the same effect as that of the first embodiment, and operates to suppress a change due to the Z scan of the size of the irradiation area of the detection light 18 irradiated to the cantilever 17. Therefore, the present embodiment is also effective when the amount of Z scanning is large and the change due to the Z scanning of the size of the irradiation area of the detection light 18 irradiated to the cantilever 17 is large.
  • FIGS. 20A and 20B show a configuration example of a spot position scanner according to a first modification of the second embodiment.
  • FIG. 20B shows another configuration example of the spot position scanner according to the first modification of the second embodiment.
  • members denoted by the same reference numerals as those illustrated in FIG. 17 are similar members, and detailed description thereof is omitted.
  • the spot 18b is displaced with respect to the cantilever 17 in accordance with the Z scan, and thereby, the position of the irradiation area resulting from the Z scan is along the cantilever 17. It operates so as to suppress a change in the size of the irradiation area caused by the movement and the Z scanning.
  • the spot position scanner 70C further includes a displacement actuator 73, which is a first displacement actuator that displaces the light source 41 in a direction along a plane perpendicular to the optical axis 42a of the collimating lens 42, and the optical axis 42a of the collimating lens 42.
  • a displacement actuator 74 that is a second displacement actuator that is displaced in the direction along the axis is provided.
  • a first spot position control signal is supplied to the displacement actuator 73 that is the first displacement actuator, and a second spot position control signal is supplied to the displacement actuator 74 that is the second displacement actuator.
  • the first spot position control signal and the second spot position control signal of this modification are respectively the first spot position control signal and the second spot position control signal used in the spot position scanner 70A shown in FIG. 17A. Is the same.
  • the displacement actuator 73 and the displacement actuator 74 each have a fixed end and a free end that is displaced with respect to the fixed end.
  • the displacement actuator 73 has a fixed end held by a casing 78 and a displacement actuator 74 held at a free end.
  • the displacement actuator 74 has a fixed end held by the displacement actuator 73 and a light source 41 held at the free end.
  • the displacement actuator 73 displaces the light source 41 in a direction along a plane perpendicular to the optical axis 42 a of the collimating lens 42 via the displacement actuator 74.
  • the displacement actuator 74 displaces the light source 41 in the direction along the optical axis 42 a of the collimating lens 42.
  • the displacement actuator 73 operates based on the first spot position control signal.
  • the displacement actuator 74 operates based on the second spot position control signal.
  • the displacement actuator 73 displaces the light source 41 along a plane perpendicular to the optical axis 42 a of the collimator lens 42, thereby condensing the detection light 11 emitted toward the condenser lens 12. It operates so as to change the emission angle with respect to the lens 12. Thereby, the spot 18b can be displaced with respect to the cantilever 17, and the movement along the cantilever 17 of the position of the irradiation area caused by Z scanning can be suppressed.
  • the displacement actuator 74 displaces the light source 41 in the direction along the optical axis 42 a of the collimator lens 42, thereby changing the spread angle of the detection light 11 emitted toward the condenser lens 12 with respect to the condenser lens 12.
  • the spot 18b can be displaced with respect to the cantilever 17, and a change in the size of the irradiation area due to Z scanning can be suppressed.
  • the positional relationship between the displacement actuator 73 and the displacement actuator 74 may be reversed. That is, the fixed end of the displacement actuator 74 is held by the casing 78, the displacement actuator 73 is held at the free end, and the displacement actuator 73 is held at the fixed end by the displacement actuator 74 and holds the light source 41 at the free end. May be.
  • the spot position scanner 70D further includes a displacement actuator 73 that is a first displacement actuator that displaces the collimating lens 42 in a direction along a plane perpendicular to the optical axis 42a of the collimating lens 42, and the collimating lens 42 is light of the collimating lens 42.
  • a displacement actuator 74 which is a second displacement actuator that is displaced in the direction along the shaft 42a, is provided.
  • the displacement actuator 73 and the displacement actuator 74 each have a fixed end and a free end that is displaced with respect to the fixed end.
  • the displacement actuator 73 has a fixed end held by a casing 78 and a displacement actuator 74 held at a free end. Further, the fixed end of the displacement actuator 74 is held by the displacement actuator 74, and the collimating lens 42 is held at the free end.
  • the displacement actuator 73 displaces the collimating lens 42 in a direction along a plane perpendicular to the optical axis 42 a of the collimating lens 42 via the displacement actuator 73.
  • the displacement actuator 74 displaces the collimating lens 42 in a direction along the optical axis 42 a of the collimating lens 42.
  • the displacement actuator 73 operates based on the first spot position control signal.
  • the displacement actuator 74 operates based on the second spot position control signal.
  • the displacement actuator 73 displaces the collimating lens 42 along a plane perpendicular to the optical axis 42a of the collimating lens 42, thereby collecting the detection light 11 emitted toward the condenser lens 12. It operates so as to change the emission angle with respect to the optical lens 12. Thereby, the spot 18b can be displaced with respect to the cantilever 17, and the movement along the cantilever 17 of the position of the irradiation area caused by Z scanning can be suppressed.
  • the displacement actuator 74 changes the collimating lens 42 in the direction along the optical axis 42 a of the collimating lens 42, thereby changing the spread angle of the detection light 11 emitted toward the collecting lens 12 with respect to the collecting lens 12.
  • the spot 18b can be displaced with respect to the cantilever 17, and a change in the size of the irradiation area due to Z scanning can be suppressed.
  • the positional relationship between the displacement actuator 73 and the displacement actuator 74 may be reversed. That is, the fixed end of the displacement actuator 74 is held by the casing 78, the displacement actuator 73 is held at the free end, and the displacement actuator 73 is held at the fixed end by the displacement actuator 74 and holds the collimating lens 42 at the free end. May be.
  • the spot position scanner 70D of the first modification includes at least a housing 78, a light source 41 such as a semiconductor LD, and a collimating lens 42 including at least one lens.
  • the spot position scanner 70 ⁇ / b> D further includes two displacement actuators for displacing a displacement target that is one of the light source 41 and the collimating lens 42.
  • One of the two displacement actuators is a first displacement actuator that displaces the object to be displaced in a direction along a plane perpendicular to the optical axis 42a of the collimating lens 42, and the other of the two displacement actuators is the light of the collimating lens 42.
  • the displacement object to be displaced in the direction along the axis 42a is the second displacement actuator.
  • the spot position scanner 70C and the spot position scanner 70D displace the spot 18b with respect to the cantilever 17 according to the Z scan, and thereby, along the cantilever 17 at the position of the irradiation area resulting from the Z scan. It operates so as to suppress the movement and the change in the size of the irradiation area caused by the Z scanning.
  • FIG. 21 shows a second modification of the second embodiment.
  • members denoted by the same reference numerals as those shown in FIG. 17 are similar members, and detailed description thereof is omitted.
  • the spot 18b is displaced with respect to the cantilever 17 in accordance with the Z scanning, and thereby, along the cantilever 17 at the position of the irradiation area resulting from the Z scanning. It operates so as to suppress a change in the size of the irradiation area caused by the movement and the Z scanning.
  • the spot position scanner 70E includes at least a housing 88, a light source 41 such as a semiconductor LD, and a collimating lens 42 including at least one lens.
  • the spot position scanner 70E further includes a mirror 82 that reflects the detection light 11 emitted from the collimating lens 42 toward the condenser lens 12, a rotary actuator 83 that operates to change the angle of the mirror 82, and a light source 41.
  • a displacement actuator 84 that displaces the collimator lens 42 in the direction along the optical axis 42a of the collimator lens 42 is provided.
  • the fixed end of the rotary actuator 83 is held by the casing 88, the mirror 82 is rotatably held around the rotary shaft 83a, and the mirror 82 is rotated around the rotary shaft 83a.
  • the rotational displacement actuator 83 rotates the mirror 82 to change the reflection angle of the detection light 11 so that the detection light 11 emitted toward the condensing lens 12 is emitted to the condensing lens 12. It works to change. Thereby, the spot 18b can be displaced with respect to the cantilever 17, and the movement along the cantilever 17 of the position of the irradiation area caused by Z scanning can be suppressed.
  • the displacement actuator 84 has its fixed end held by the casing 88, holds the light source 41 at its free end, and displaces the light source 41 in the direction along the optical axis 42a of the collimating lens 42 with respect to the collimating lens 42.
  • the spot position scanner 70E operates so as to change the spread angle of the detection light 11 emitted toward the condenser lens 12 with respect to the condenser lens 12. As a result, the spot 18b can be displaced with respect to the cantilever 17, and a change in the size of the irradiation area due to Z scanning can be suppressed.
  • the spot position scanner 70E may be operated using another displacement actuator that displaces the collimating lens 42 in the direction along the optical axis 42a of the collimating lens 42 with respect to the light source 41, instead of the displacement actuator 84.
  • the displacement actuator 84 operates based on the second spot position control signal.
  • the rotary actuator 83 operates based on the first spot position control signal.
  • the second spot position control signal of this modification is the same as the second spot position control signal used in the spot position scanner 70A shown in FIG. 17A. Further, the first spot position control signal is the same as the spot position control signal used in FIG. 11 of the first modification of the first embodiment.
  • the spot position scanner 70E changes the emission angle and the spread angle of the detection light 11 emitted toward the condenser lens 12 with respect to the condenser lens 12, thereby allowing the cantilever 17 to respond to Z scanning.
  • the spot 18b is displaced so that the movement of the position of the irradiation area due to the Z scanning along the cantilever 17 and the change in the size of the irradiation area due to the Z scanning are suppressed.
  • FIGS. 22 to 24 members having the same reference numerals as those shown in FIGS. 1, 2 and 20 are the same members, and the drawings used in the description of the first embodiment and Detailed descriptions of the members are omitted.
  • the atomic force microscope according to the present embodiment includes a Z-scanning tracking system including a spot position scanner 90 and a spot scanning controller 27 as shown in FIG.
  • This Z scanning follow-up system has a function of suppressing the influence of the positional deviation between the cantilever 17 and the spot 18b caused by the Z scanning. That is, this Z scanning follow-up system has a function of suppressing “movement along the cantilever 17 caused by Z scanning of the position of the irradiation area of the detection light 18 irradiated on the cantilever 17”. Further, the Z scanning follow-up system has a function of suppressing “change due to Z scanning of the size of the irradiation area of the detection light 18 irradiated to the cantilever 17”.
  • the Z-scanning tracking system has a function of suppressing “movement of the position of the irradiation area caused by the Z scanning along the cantilever 17” according to the Z scanning, and “a change in the size of the irradiation area caused by the Z scanning”. "Is suppressed according to the Z scanning.
  • the spot position scanner 90 is included in the detection light emitter 10.
  • the spot position scanner 90 is controlled by a spot scanning controller 27 included in the main controller 26.
  • the spot position scanner 90 operates to move the spot 18b with respect to the cantilever 17, that is, to displace the spot 18b with respect to the cantilever 17.
  • the operation of the spot position scanner 90 is performed based on a spot position control signal output from a spot scanning controller 27 included in the main controller 26.
  • the spot scanning controller 27 generates a spot position control signal corresponding to the Z scanning based on the Z scanning signal generated by the Z controller 22. That is, the spot scanning controller 27 controls the spot position scanner 90 according to the Z scanning, and the spot position scanner 90 displaces the spot 18 b with respect to the cantilever 17.
  • the spot scanning controller 27 controls the spot position scanner 90 in accordance with the Z scanning, and the spot position scanner 90 displaces the spot 18b with respect to the cantilever 17, whereby “irradiation caused by the Z scanning”. It is possible to suppress the “movement of the area position along the cantilever 17” and “change in the size of the irradiation area due to Z scanning”.
  • Calculation and control in the main controller 26, the scan controller 27, and the Z controller 22 are performed by cooperation of an electronic circuit, a (hardware type) processor, a memory, software, and the like.
  • a spot position scanner 90A shown in FIG. 24A includes two displacement actuators, a displacement actuator 73 that is a first displacement actuator and a displacement actuator 74 that is a second displacement actuator, provided in the spot position scanner 70C shown in FIG. 20A.
  • the displacement actuators 93 are replaced.
  • the spot position scanner 90A shown in FIG. 24A includes only the displacement actuator 93, which is the first displacement actuator, and the collimating the light source 41 with respect to the collimating lens 42 along the direction perpendicular to the optical axis 42a of the collimating lens 42.
  • the lens 42 can be displaced in the direction synthesized from both components in the direction along the optical axis 42a.
  • the direction synthesized from both the components along the plane perpendicular to the optical axis 42a of the collimator lens 42 and the direction along the optical axis 42a of the collimator lens 42 is, for example, the direction R shown in FIG.
  • the direction RA is combined with the direction A shown in FIG. 10 and the direction LF is combined with the direction L shown in FIG. 10 and the direction F shown in FIG.
  • the spot position scanner 90B shown in FIG. 24B includes two displacement actuators, ie, a displacement actuator 73 that is a first displacement actuator and a displacement actuator 74 that is a second displacement actuator provided in the spot position scanner 70D shown in FIG. 20B.
  • the displacement actuator 93 is replaced.
  • the spot position scanner 90B shown in FIG. 24B uses only the displacement actuator 93, which is the second displacement actuator, and the collimator lens 42 is aligned with the direction along the plane perpendicular to the optical axis 42a of the collimator lens 42 with respect to the light source 41.
  • the lens 42 can be displaced in the direction synthesized from both components in the direction along the optical axis 42a.
  • a spot position control signal is supplied to the displacement actuator 93.
  • the displacement actuator 93 is controlled by the spot scanning controller 27 based on the spot position control signal and displaces either the light source 41 or the collimating lens 42.
  • the spot position scanner 90 An example in which 90 is the spot position scanner 90A shown in FIG. 24A will be described.
  • the spot scanning controller 27 includes a Z scanning amount calculation unit 23a, a parameter storage unit 27c, and a calculation unit 27b.
  • the Z scanning amount calculation unit 23a is the same as that shown in FIG. 2 of the first embodiment.
  • the parameter storage unit 27c stores information necessary for generating the spot position control signal.
  • the Z scanning amount calculation unit 23a calculates the Z scanning amount by calculating using the Z scanning signal and the information stored in the parameter storage unit 27c, and supplies the Z scanning amount to the calculation unit 27b.
  • the calculating unit 27b generates and outputs a spot position control signal by calculating using the Z scanning amount calculated by the Z scanning amount calculating unit 23a and the information stored in the parameter storage unit 27c.
  • the generation of the spot position control signal by the calculation unit 27b that is, the information stored in the parameter storage unit 27c and the calculation formula performed by the calculation unit 27b will be described below.
  • information stored in the parameter storage unit 27c includes the amount of displacement per unit voltage of the Z scanner 15, the focal length of the collimating lens 42, the focal length of the condenser lens 12, the angle formed by the cantilever 17 and the X axis, and the detection light 18.
  • the angle formed by the central axis 18a and the Z axis, and the displacement amount per unit voltage of the displacement actuator 93 are included.
  • the displacement amount per unit voltage of the Z scanner 15 is P z [m / V]
  • the focal length of the collimating lens 42 is f 1 [m]
  • the focal length of the condenser lens 12 is f 2 [m]
  • the cantilever 17 is the cantilever 17.
  • the X axis is ⁇ 1 [deg]
  • the angle between the central axis 18a of the detection light 18 and the Z axis is ⁇ 2 [deg]
  • the displacement per unit voltage of the displacement actuator 93 is P mg [m / V ]far.
  • the amount of movement ⁇ of the light source 41 can be expressed by the following equation (16) from m obtained by equation (6) and g obtained by equation (13).
  • the light source 41 is synthesized from both components in the direction in which the light source 41 is displaced with respect to the collimating lens 42, that is, the direction along the plane perpendicular to the optical axis 42 a of the collimating lens 42 and the direction along the optical axis 42 a of the collimating lens 42.
  • the direction to be expressed is expressed as an angle with respect to the direction along the plane perpendicular to the optical axis 42a of the collimating lens 42, and the angle is ⁇ , and the following equation (17) is obtained.
  • the movement amount ⁇ of the light source 41 is expressed by the following equation (18) by the displacement amount P mg [m / V] per unit voltage of the displacement actuator 93 and the voltage V 4 [V] of the spot position control signal at time t. It can be expressed as
  • the calculation formula in the calculation unit 27b can be expressed by the following formula (19) from the formula (17) and the formula (18), where the voltage of the spot position control signal at the time t of the spot position control signal is V 4 [V].
  • the calculation unit 27b generates and outputs a spot position control signal by the calculation shown in Expression (19).
  • the spot position scanner 90 performs an operation of displacing the spot 18b based on the spot position control signal.
  • the displacement actuator 93 is arranged to operate in the direction opposite to the displacement actuator 93 of the spot position scanner 90A shown in FIG. 24A.
  • the calculation unit 27b of the spot scanning controller 27 performs calculation based on the same equation (19) as that of the spot position scanner 90A.
  • moving the displacement actuator 93 of the spot position scanner 90A shown in FIG. 24A in the direction RA shown in FIG. 24A is equivalent to moving the spot position scanner 90B shown in FIG. 24B in the direction LF shown in FIG. Further, it is equivalent to moving the displacement actuator 93 of the spot position scanner 90A shown in FIG. 24A in the direction LF shown in FIG. 24A and moving the spot position scanner 90B shown in FIG. 24B in the direction RA shown in FIG. 24B.
  • the spot position scanner 90 includes at least a housing 98, a light source 41 such as a semiconductor LD, and a collimating lens 42 including at least one lens.
  • the spot position scanner 90 detects either the light source 41 or the collimating lens 42 from components in both the direction along the plane perpendicular to the optical axis 42a of the collimating lens 42 and the direction along the optical axis 42a of the collimating lens 42.
  • a displacement actuator 93 is provided for displacement in the direction of synthesis.
  • the spot position scanner 90 changes the exit angle and the spread angle of the detection light 11 emitted toward the condenser lens 12 with respect to the condenser lens 12, thereby causing the spot 18 b to appear on the cantilever 17 in accordance with Z scanning. Accordingly, the movement of the position of the irradiation area caused by the Z scanning along the cantilever 17 and the change in the size of the irradiation area caused by the Z scanning are suppressed.
  • the angle formed by the central axis of the detection light and the Z axis is provided on the XZ plane, but the present invention is not limited to this.
  • the angle formed by the central axis of the detection light and the Z axis may be provided on the YZ plane, or may be provided on all planes along the Z axis.
  • the cantilever is XY scanned by the XY scanner and Z scanned by the Z scanner, but the condenser lens is XY scanned by the XY scanner, but not Z scanned.
  • the present invention is particularly effective when the cantilever length or width is 3 ⁇ m or less.
  • the effect is also great when the Z scanning amount is 2 ⁇ m or more.

Abstract

原子間力顕微鏡は、XY可動台(13)と、前記XY可動台をXY平面に平行な面内でXY走査させるXYスキャナ(14)と、前記XY可動台に固定端が保持され、自由端にカンチレバーを保持し、前記カンチレバー(17)を前記XY平面に垂直なZ軸に沿ってZ走査させるZスキャナ(15)と、前記カンチレバーの変位を光学的に検出する光学式変位センサを備えている。前記光学式変位センサは、前記XY可動台に保持された集光レンズ(12)を含んでいる。前記集光レンズは、入射する検出光を集光し、集束されたスポットを有する検出光を生成し、生成された検出光を前記カンチレバーに照射する。原子間力顕微鏡はさらに、Z走査に起因する前記照射エリアの位置の前記カンチレバーに沿った移動を、Z走査に応じて抑えるZ走査追従システムを備えている。

Description

原子間力顕微鏡
 本発明は、原子間力顕微鏡、特に生物試料の観察に用いられる原子間力顕微鏡に関する。
 走査型プローブ顕微鏡(SPM)は、機械的探針を機械的に走査して試料表面の情報を得る走査型顕微鏡であって、走査型トンネリング顕微鏡(STM)、原子間力顕微鏡(AFM)、走査型磁気力顕微鏡(MFM)、走査型電気容量顕微鏡(SCaM)、走査型近接場光顕微鏡(SNOM)などの総称である。
 走査型プローブ顕微鏡は、機械的探針と試料とを相対的にXY方向にラスター走査し、試料の所望とする表面情報を機械的探針を介して得てディスプレイ上にマッピング表示することができる。
 なかでも原子間力顕微鏡(以下、AFMと呼ぶ)は、最も広く使用されている装置であり、機械的探針(プローブ)をその自由端に持つカンチレバーと、カンチレバーの変位を検出する光学式変位センサと、カンチレバーと試料とを相対的に走査するスキャナを備えている。
 近年では、光学顕微鏡に搭載可能であり、生体試料の動く様子が観察できる光顕搭載型の生体動画観察用AFMが注目を集めている。この光顕搭載型の生体動画観察用AFMでは、光学顕微鏡による観察を妨げないように試料を走査させずに、試料に対してカンチレバーをXYZの3方向に高速に走査させるカンチレバースキャンタイプ(プローブスキャンタイプとも呼ぶ)の走査機構が求められる。
 このようなカンチレバースキャンタイプの走査機構、およびそれを備えるAFMは、例えば特開2012-185066号公報に示されている。
 この従来例の走査機構は、カンチレバーの変位を検出するための検出光が有する集光スポット(以下、スポットと呼ぶ)が、XY方向において(XY走査において)、カンチレバーに対して高精度に追従する検出光追従型となっている。
 従来例に係る検出光追従型の走査機構においては、カンチレバーは、XY方向だけでなく、Z方向にも走査される。
 しかしながら、従来例に係る検出光追従型の走査機構においては、スポットがカンチレバーに対して、XY方向の走査においては高精度に追従できるが、Z方向の走査においては追従自体ができない。そのために、カンチレバーがZ方向に走査されると、Z走査に起因するカンチレバーとスポットに位置ズレが生じ、その影響によりAFMの観察精度を落とすという問題がある。カンチレバーのZ方向の走査量が大きいほど、その影響は大きくなる。
 本発明の目的は、カンチレバースキャンタイプの走査機構を備えるAFMにおいて、言い換えれば検出光追従型の走査機構を備えるAFMにおいて、Z走査に起因するカンチレバーとスポットの位置ズレの影響が抑えられ、それにより高精度に観察可能であるAFMを提供することである。
 本発明は、探針を有するカンチレバーを用いて試料の物理情報を得る原子間力顕微鏡に関する。原子間力顕微鏡は、XY可動台と、XY可動台をXY平面に平行な面内でXY走査させるXYスキャナと、XY可動台に固定端が保持され、自由端にカンチレバーを保持し、カンチレバーをXY平面に垂直なZ軸に沿ってZ走査させるZスキャナと、カンチレバーの変位を光学的に検出する光学式変位センサを備えている。光学式変位センサは、XY可動台に保持された集光レンズを含んでいる。集光レンズは、入射する検出光を集光し、集束されたスポットを有する検出光を生成し、生成された前記検出光をカンチレバーに照射することで前記カンチレバー上に照射エリアを生成する。原子間力顕微鏡は、Z走査に起因する前記照射エリアの位置の前記カンチレバーに沿った移動を、Z走査に応じて抑えるZ走査追従システムを備えている。
 本発明によれば、Z走査に起因するカンチレバーとスポットの位置ズレの影響が抑えられた原子間力顕微鏡が提供される。
図1は、第一の実施形態による原子間力顕微鏡の構成を概略的に示している。 図2は、図1に示されたスポット走査コントローラの構成を概略的に示している。 図3は、カンチレバーに照射される検出光を示している。 図4Aは、Z走査によりカンチレバーのZ軸に沿った位置が移動された様子を示している。 図4Bは、Z走査によるカンチレバーのZ軸に沿った移動により、カンチレバーに照射される検出光の照射エリアの位置が移動された様子を示している。 図5は、カンチレバーの移動量とカンチレバーに照射される検出光の照射エリアの位置の移動量の関係を示す図である。 図6は、図1のスポット位置スキャナが、集光レンズに向けて出射される検出光の集光レンズに対する出射角度を変化させた様子を示している。 図7は、図6のスポット位置スキャナの動作原理を説明するための光路図である。 図8Aは、図6のスポット位置スキャナの構成例を示している。 図8Bは、図6のスポット位置スキャナの別の構成例を示している。 図8Cは、図6のスポット位置スキャナのまた別の構成例を示している。 図9Aは、光源がコリメートレンズに対して、コリメートレンズの光軸に垂直な面に沿って変位されたことにより、カンチレバーに照射される検出光の照射エリアの位置が移動された様子を示している。 図9Bは、図9Aに示された光源の変位により、カンチレバーに照射される検出光の照射エリアの位置が移動された様子を示している。 図10は、光源をコリメートレンズに対して、コリメートレンズの光軸に垂直な面に沿って変位させることにより、集光レンズにより集光された検出光のカンチレバーに照射される位置のZ走査に起因するカンチレバーに沿った移動が抑えられることを説明するための図である。 図11は、第一の実施形態の変形例によるスポット位置スキャナの構成例を示している。 図12は、第二の実施形態による原子間力顕微鏡の構成を概略的に示している。 図13は、図12に示されたスポット走査コントローラの構成を概略的に示している。 図14Aは、Z走査によりカンチレバーのZ軸に沿った位置が移動された様子を示している。 図14Bは、Z走査によるカンチレバーのZ軸に沿った移動により、カンチレバーに照射される検出光の照射エリアの位置が移動されたことに加えて、照射エリアの径が大きくなった様子を示している。 図15は、図12のスポット位置スキャナが、集光レンズに向けて出射される検出光の集光レンズに対する拡がり角度を変化させた様子を示している。 図16は、図15のスポット位置スキャナの動作原理を説明するための光路図である。 図17Aは、図15のスポット位置スキャナの構成例を示している。 図17Bは、図15のスポット位置スキャナの別の構成例を示している。 図18は、光源が、コリメートレンズに対して、コリメートレンズの光軸に沿って変位されたことにより、カンチレバーに照射される検出光の照射エリアの大きさが変化された様子を示している。 図19は、光源をコリメートレンズに対して、コリメートレンズの光軸に沿って変位させることにより、カンチレバーに照射される検出光の照射エリアの大きさのZ走査に起因する変化が抑えられることを説明するための図である。 図20Aは、第二の実施形態の第一の変形例によるスポット位置スキャナの構成例を示している。 図20Bは、第二の実施形態の第一の変形例によるスポット位置スキャナの別の構成例を示している。 図21は、第二の実施形態の第二の変形例によるスポット位置スキャナの構成例を示している。 図22は、第三の実施形態による原子間力顕微鏡の構成を概略的に示している。 図23は、図22に示されたスポット走査コントローラの構成を概略的に示している。 図24Aは、図22のスポット位置スキャナの構成例を示している。 図24Bは、図22のスポット位置スキャナの別の構成例を示している。
 <第一の実施形態>
 本発明の原子間力顕微鏡の第一の実施形態について、図1ないし図10を用いて以下に説明する。原子間力顕微鏡は、探針を有するカンチレバーを用いて試料の物理情報を得る装置である。図1は、本実施形態による原子間力顕微鏡の構成を概略的に示している。
 図1に示されるように、原子間力顕微鏡は、XY可動台13と、XY可動台13をXY平面に平行な面内でXY走査させるXYスキャナ14と、カンチレバー17をXY平面に垂直なZ軸に沿ってZ走査させるZスキャナ15と、メインコントローラ20と、ホストコンピュータ21とを備えている。
 XY可動台13は、XYスキャナ14の自由端に保持されている。XYスキャナ14は、その固定端が図示しない筐体に保持され、メインコントローラ20から出力されるXY走査信号に従ってXY平面に平行な面内で伸縮動作をする。これにより、XY可動台13は、XYスキャナ14によってXY平面に平行な面内でXY走査される。
 より詳しくは、XYスキャナ14は、X軸に沿って伸縮動作するXスキャナと、Y軸に沿って伸縮動作するYスキャナを含んでいる。XスキャナとYスキャナが独立して伸縮動作することによって、XY可動台13がXY平面に平行な面内でXY走査される。
 Zスキャナ15は、固定端がXY可動台13に保持され、自由端にカンチレバー17を保持している。カンチレバー17は、その自由端に探針17bを有し、カンチレバーチップ17aに保持されている。カンチレバー17は、カンチレバーチップ17aとホルダ16を介してZスキャナ15の自由端に保持される。
 Zスキャナ15は、メインコントローラ20に含まれるZ制御コントローラ22から出力されるZ走査信号に従って、XY平面に垂直なZ軸に沿って伸縮動作をする。これにより、カンチレバー17は、Zスキャナ15によりXY平面に垂直なZ軸に沿ってZ走査される。
 カンチレバー17はZスキャナ15に保持され、Zスキャナ15はXY可動台13に保持されているため、カンチレバー17はXYスキャナ14によりXY平面に平行な面内でXY走査される。すなわち、カンチレバー17は、XYスキャナ14によりXY走査され、Zスキャナ15によりZ走査される。
 カンチレバー17に対向する位置には、試料台31に載置された試料30が配置される。カンチレバー17は、探針17bと試料30との相互作用によって変形が生じる。すなわち、カンチレバー17が変位する。
 原子間力顕微鏡はまた、カンチレバー17の変位を光学的に検出する光学式変位センサを備えている。光学式変位センサは、検出光11を生成して出射する検出光出射器10と、検出光出射器10から出射される検出光11を集光してカンチレバー17に照射する集光レンズ12と、カンチレバー17の背面からの反射光を受光してカンチレバー17の変位を検出する分割フォトディテクタ19とを有している。
 検出光出射器10は、実質的に平行な検出光11を生成して集光レンズ12に向けて出射する。検出光出射器10は、図示しない筐体に保持されている。
 集光レンズ12は、XY可動台13に保持されている。集光レンズ12は、XYスキャナ14によりXY走査されるが、Z走査はされない。集光レンズ12は、少なくとも一つのレンズを含んでいる。すなわち、集光レンズ12は、一つのレンズで構成されてもよく、また、複数のレンズで構成されてもよい。集光レンズ12は、入射する平行光の検出光11を集光し、集束光の検出光18を生成し、生成された検出光をカンチレバー17に照射することでカンチレバー17上に照射エリアを生成する。
 集光レンズ12により集光された検出光18は、図3に示されるように、中心軸18aと、集束されたスポット18bと、スポット領域18cを有している。スポット領域18cは、焦点深度の領域を示し、その中心軸18aに沿った中心にスポット18bがある。
 スポット18bのスポット径と焦点深度は、検出光11の波長や集光レンズ12の性能などにより決まる。ここでスポット径をW、焦点深度をHとおく。スポット径Wは、例えば、検出光11の波長が1μm、集光レンズ12の開口数(N.A.)が0.5とすると、1μm程度から3μm程度となる。また焦点深度Hは、例えば、検出光11の波長が1μm、集光レンズ12の開口数(N.A.)が0.5とすると、2μm程度から4μm程度となる。スポット領域18cにおいては、その領域幅は焦点深度Hと同じであるため、そのビーム径は、ほぼスポット径Wとみなすことができる。従ってスポット領域18cの領域のビーム径は1μm程度から3μm程度となり、またスポット領域18cの領域幅は、焦点深度Hと同じで2μm程度から4μm程度となる。
 検出光18は、図1に示されるように、集光レンズ12からカンチレバー17上に照射される。詳しくは、カンチレバー17の背面上(探針17bが設けられている側と反対側の面)に、カンチレバー17の背面がスポット領域18cと重なるように照射される。望ましくは、検出光18は、カンチレバー17の背面とスポット18bが一致するように照射される。このとき、カンチレバー17の背面上に照射されるビーム径は、すなわち、照射エリアは、スポット径Wとほぼ同じになる。つまり、集光レンズ12は入射する検出光11を集光し、集光されたスポットを有する検出光18を生成し、生成された検出光18をカンチレバー17に照射することでカンチレバー17の背面上に照射エリアを生成する。
 カンチレバー17は、XYスキャナ14によりXY走査され、Zスキャナ15によりZ走査される。一方で、集束されたスポット18bは、集光レンズ12と同様に、XYスキャナ14によりXY走査されるが、Z走査はされない。このため、Z走査によって、スポット18bに対してカンチレバー17は、Z軸に沿った位置がズレる。すなわち、Z走査に起因するカンチレバー17とスポット18bの位置ズレが生じる。
 検出光18はカンチレバー17の背面により反射され、この反射光は、分割フォトディテクタ19に入射する。分割フォトディテクタ19は、カンチレバー17の背面からの反射光を受光し、カンチレバー17の変位を検出する。検出されたカンチレバー17の変位は、カンチレバーの変位信号としてメインコントローラ20に含まれるZ制御コントローラ22に出力される。
 Z制御コントローラ22は、例えばカンチレバー17の変位信号を一定に維持するようなZ走査信号を生成する。Z制御コントローラ22は、Z走査信号によりZスキャナ15を制御する。
 メインコントローラ20は、XY走査信号によりXYスキャナ14を制御する。メインコントローラ20は、さらに、Z走査信号に基づいて試料30の物理情報を生成する。
 ホストコンピュータ21は、メインコントローラ20を制御するためのものであり、メインコントローラ20により生成された試料30の物理情報を表示する。
 以上から分かるように、本実施形態は、カンチレバースキャンタイプ(検出光追従型)の走査機構を備えた原子間力顕微鏡を構成している。このような原子間力顕微鏡は、XY方向の走査においては高精度に追従できるが、Z方向の走査においては追従自体ができない。
 さらに本実施形態の原子間力顕微鏡は、スポット位置スキャナ40とスポット走査コントローラ23で構成されたZ走査追従システムを備えている。このZ走査追従システムは、Z走査に起因するカンチレバー17とスポット18bの位置ズレの影響を抑える機能を有している。Z走査に起因するカンチレバー17とスポット18bの位置ズレの影響とは、「カンチレバー17に照射される検出光18の照射エリアの位置のZ走査に起因するカンチレバー17に沿った移動」のことである。すなわち、このZ走査追従システムは、「カンチレバー17に照射される検出光18の照射エリアの位置のZ走査に起因するカンチレバー17に沿った移動」を抑える機能を有している。言い換えれば、Z走査追従システムは、「Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動」をZ走査に応じて抑える機能を有している。なお照射エリアの位置とは、例えば、照射エリアの面の重心位置をいう。
 スポット位置スキャナ40は、検出光出射器10に含まれている。スポット位置スキャナ40は、メインコントローラ20に含まれるスポット走査コントローラ23により制御される。スポット位置スキャナ40は、カンチレバー17に対してスポット18bを動かすように、すなわちカンチレバー17に対してスポット18bを変位させるように動作する。このスポット位置スキャナ40の動作は、メインコントローラ20に含まれるスポット走査コントローラ23から出力されるスポット位置制御信号に基づいて行われる。
 スポット走査コントローラ23は、Z制御コントローラ22により生成されたZ走査信号に基づいて、Z走査に応じたスポット位置制御信号を生成する。すなわち、スポット走査コントローラ23は、スポット位置スキャナ40をZ走査に応じて制御し、スポット位置スキャナ40は、カンチレバー17に対してスポット18bを変位させる。
 Z走査追従システムにおいては、スポット走査コントローラ23がスポット位置スキャナ40をZ走査に応じて制御し、スポット位置スキャナ40がカンチレバー17に対してスポット18bを変位させることにより、「Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動」をZ走査に応じて抑えることが可能になっている。
 メインコントローラ20、走査コントローラ23、Z制御コントローラ22における演算や制御は、電子回路や(ハードウェア型)プロセッサ、メモリ、ソフトウェア等の協働により行われる。
 ここで、「Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動」について、図4Aと図4Bを用いて説明する。
 図4Aにおいて、カンチレバー17とX軸の成す角度をθ、検出光18の中心軸18aとZ軸の成す角度をθとし、カンチレバー17の背面とスポット領域18cが重なっている状態を初期状態とする。このときのカンチレバー17のZ軸に沿った位置を位置Aとし、位置Aでのカンチレバー17の背面上に照射される検出光18の照射エリアを、図4Bに示すように照射エリア50aとする。このとき照射エリア50aの径は、スポット18bの径とほぼ同じになる。
 そしてカンチレバー17のZ軸に沿った位置が、Zスキャナ15のZ走査によって位置Aから位置Bまで距離Zだけ移動したとする。この走査量Zは、本実施形態においては、スポット領域18cの領域幅である焦点深度Hよりも小さいものとし、位置Bでのカンチレバー17の背面上に照射される検出光18の照射エリアを、図4Bに示すように照射エリア50bとする。この照射エリア50bの径は、カンチレバー17の走査量Zがスポット領域18cの領域幅である焦点深度Hよりも小さく、カンチレバー17の背面とスポット領域18cが重なっているため、照射エリア50aの径とほぼ同じになる。すなわち、位置Aでのカンチレバー17の背面上に照射される照射エリア50aの径と、位置Bでのカンチレバー17の背面上に照射される照射エリア50bの径と、スポット18bの径が実質的に同じになる。従って、カンチレバー17の走査量Zがスポット領域18cの領域幅である焦点深度Hよりも小さい場合は、カンチレバー17の背面上に照射される検出光18の照射エリア径に変化は無いとみなせる。
 しかしながら、カンチレバー17の背面上に照射される検出光18の照射エリアの位置は、照射エリア50aから照射エリア50bに距離Sだけ移動してしまう。この移動距離Sは、図5より次式(1)で表せる。
Figure JPOXMLDOC01-appb-M000001
 この式(1)より、この照射エリアの移動距離Sは、理論的には、θ=0のとき、すなわち検出光18の中心軸18aとZ軸の成す角度がゼロのとき、S=0となる。しかしながら実際には(実際の装置では)、ほとんどの場合、検出光18の中心軸18aとZ軸の成す角度がちょうどゼロになることはなく、|θ|>0とみなせる。そして|θ|>0のとき、すなわち検出光18の中心軸18aとZ軸の成す角度の絶対値がゼロよりも大きいときは、照射エリアは式(1)に従って距離Sだけ移動する。照射エリアの移動距離Sは、検出光18の中心軸18aとZ軸の成す角度の絶対値がゼロよりも大きいほど、さらに走査量Zが大きいほど、大きくなる。
 カンチレバー17の背面上に照射される検出光18の照射エリアの位置が、照射エリア50aから照射エリア50bに距離Sだけ移動することを、「Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動」という。この「Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動」は、Z走査に起因するスポット18bに対するカンチレバー17の位置ズレが引き起こしているため、「Z走査に起因するスポット18bに対するカンチレバー17の位置ズレによって生じる、カンチレバー17の背面に照射される検出光18の照射エリアの位置の、カンチレバー17に沿った移動」と言い換えることもできる。これは、AFMの観察精度を落とす原因になる。
 例えば、本発明の原子間力顕微鏡に限らず、一般的なAFMにおいては、カンチレバー17とX軸の成す角度θは、5度ないし20度であり、検出光18の中心軸18aとZ軸の成す角度θは、カンチレバー17の背面上に照射される照射エリア径を最小にするために、カンチレバー17とX軸の成す角度θとほぼ同じにすることが多い。この場合、式(1)は、次式(2)となる。
Figure JPOXMLDOC01-appb-M000002
 走査量Zが1μmのとき、つまり、検出光11の波長が1μmかつ集光レンズ12の開口数(N.A.)が0.5のときの焦点深度Hよりも小さいとき、照射エリアの移動距離Sは、0.09μmないし0.34μmとなる。ナノメートルの分解能が要求されるAFMにおいて、カンチレバー17の背面上に照射される照射エリアの位置が数百ナノメートルも移動することは大きな問題となる。
 この問題を解決するために、スポット位置スキャナ40が、Zスキャナ15のZ走査に応じて、カンチレバー17に対してスポット18bを変位させることで、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動をZ走査に応じて抑える。
 このスポット位置スキャナ40において、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動をZ走査に応じて抑える動作について、図6ないし図10を用いて説明する。
 まず、図6に示すように、スポット位置スキャナ40は、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させるように動作する。それにより、カンチレバー17に対してスポット18bを変位させる。
 このスポット位置スキャナ40の動作原理について、図7に示す光路図で簡単に説明する。
 図7の左側においては、発光点EPから出た発散光は、レンズL1を通過することにより平行光に変えられ、続いて、レンズL2を通過することにより集束光に変えられ、集光点FPに集光する。
 ここで図7の右側に示すように、発光点EPが、レンズL1の光軸に垂直な面に沿った方向Mに、すなわちレンズL1の光軸に直交する方向Mに移動量mだけ移動したとする。このとき、レンズL1から出た光は、レンズL2に対して出射角度が変わる。その結果、集光点FPは、レンズL2の光軸に垂直な面に沿った方向Nに、すなわちレンズL2の光軸に直交する方向Nに移動される。この方向Nは、方向Mに対して逆向きとなる。発光点EPの移動量mと集光点FPの移動量nの関係は、レンズL1とレンズL2の光学特性により決まる。
 発光点EPの移動量mと集光点FPの移動量nの関係式は、レンズL1の焦点距離をf、レンズL2の焦点距離をfとした場合、次式(3)で表せる。
Figure JPOXMLDOC01-appb-M000003
 スポット位置スキャナ40は、この関係式に基づいて、Z走査に応じて、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させ、それによりZ走査に起因する照射エリアの位置のカンチレバー17に沿った移動をZ走査に応じて抑える。
 スポット位置スキャナ40は、図8Aに示すスポット位置スキャナ40Aのように構成されてよい。スポット位置スキャナ40Aは、少なくとも、筐体48と、例えば半導体LDなどの光源41と、少なくとも一つのレンズを含むコリメートレンズ42を備えている。コリメートレンズ42は、光源41からの出射光を平行光に変える機能を有している。コリメートレンズ42は、一つのレンズで構成されてもよく、また、複数のレンズで構成されてもよい。またこのスポット位置スキャナ40は、図示しない「絞り」や「フィルター」等の光学素子を備えていてもよい。
 スポット位置スキャナ40Aはさらに、光源41をコリメートレンズ42に対して変位させる第一の変位アクチュエータである変位アクチュエータ43と、コリメートレンズ42を光源41に対して変位させる第二の変位アクチュエータである変位アクチュエータ44の両方を備えている。変位アクチュエータ43は、その固定端が筐体48に保持され、その自由端に光源41を保持している。変位アクチュエータ44は、その固定端が筐体48に保持され、その自由端にコリメートレンズ42を保持している。
 このスポット位置スキャナ40Aは、変位アクチュエータ43が光源41を、変位アクチュエータ44がコリメートレンズ42を、コリメートレンズ42の光軸42aと垂直な面に沿ってそれぞれ逆向きに変位させることで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させ、カンチレバー17に対するスポット18bを変位させることが可能になっている。
 第一の変位アクチュエータである変位アクチュエータ43、または第二の変位アクチュエータである変位アクチュエータ44、あるいはそれら両方には、スポット位置制御信号が供給される。変位アクチュエータ43、または変位アクチュエータ44、あるいはそれら両方は、スポット位置制御信号に基づいて、スポット走査コントローラ23により制御され、光源41、またはコリメートレンズ42、あるいはそれら両方をそれぞれ変位させる。
 スポット位置スキャナ40は、図8Bに示すスポット位置スキャナ40Bや図8Cに示すスポット位置スキャナ40Cのように変形が可能である。スポット位置スキャナ40Bは、第二の変位アクチュエータである変位アクチュエータ44を備えておらず、第一の変位アクチュエータである変位アクチュエータ43だけで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させる。またスポット位置スキャナ40Cは、第一の変位アクチュエータである変位アクチュエータ43を備えておらず、第二の変位アクチュエータである変位アクチュエータ44だけで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させる。
 すなわち、スポット位置スキャナ40は、少なくとも、筐体48と、例えば半導体LDなどの光源41と、少なくとも一つのレンズを含むコリメートレンズ42を備えている。スポット位置スキャナ40はさらに、光源41をコリメートレンズ42に対してコリメートレンズの光軸と垂直な面に沿って変位させる第一の変位アクチュエータである変位アクチュエータ43と、コリメートレンズ42を光源41に対してコリメートレンズの光軸と垂直な面に沿って変位させる第二の変位アクチュエータである変位アクチュエータ44との少なくとも一方を備えている。第一の変位アクチュエータである変位アクチュエータ43および第二の変位アクチュエータである変位アクチュエータ44は、それぞれ、スポット走査コントローラ23によって制御される。スポット位置スキャナ40は、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させることで、カンチレバー17に対するスポット18bを変位させることが可能になっている。
 スポット位置スキャナ40においては、スポット位置スキャナ40A、スポット位置スキャナ40B、スポット位置スキャナ40Cは、すべてスポット18bを変位させることが可能になっているが、スポット位置スキャナ40Aだけが変位アクチュエータを二つ備えている。このため、スポット18bを大きく変位させたい場合は、スポット位置スキャナ40Aの構成が適している。
 次に、カンチレバー17に対するスポット18bの変位の向きと、第一の変位アクチュエータである変位アクチュエータ43による光源41の変位の向き、および第二の変位アクチュエータである変位アクチュエータ44によるコリメートレンズ42の変位の向きの関係を、スポット位置スキャナ40が図8Bに示すスポット位置スキャナ40Bの場合を例に説明する。
 図9Aに示すように、光源41が、コリメートレンズ42に対して、コリメートレンズ42の光軸42aに垂直な面に沿った方向Rに、すなわちコリメートレンズ42の光軸42aに直交する方向Rに第一の変位アクチュエータである変位アクチュエータ43により変位されたとする。このとき、コリメートレンズ42から出た検出光11の集光レンズ12に対する出射角度が変わる。その結果、スポット18bは、集光レンズ12の光軸12aに垂直な面に沿った方向Lに、すなわち集光レンズ12の光軸12aに直交する方向Lに変位する。この方向Lは、方向Rに対して逆向きとなる。ことのきカンチレバー17の背面上に照射される照射エリア50aの位置は、図9Bに示すように、カンチレバー17の伸長方向の探針17b側へ移動される。
 図8Cに示すスポット位置スキャナ40Cにおいては、スポット位置スキャナ40Bの場合と同じ方向Lの向きにスポット18bを変位させたい場合は、第二の変位アクチュエータである変位アクチュエータ44は、コリメートレンズ42を、光源41に対して、方向Rに対して逆向きに、すなわち方向Lの向きに変位させる。
 次に、スポット位置スキャナ40が、カンチレバー17に対してスポット18bを変位させる向きと、Zスキャナ15のZ走査の関係について、スポット位置スキャナ40が図8Bに示すスポット位置スキャナ40Bの場合を例に説明する。
 図10において、カンチレバー17のZ軸に沿った位置がZスキャナ15のZ走査によって実線の矢印の向きである方向Dに移動する場合は、図4に示したように、カンチレバー17の背面上に照射される照射エリアの位置が、照射エリア50aから照射エリア50bに距離Sだけ、カンチレバー17の背面上を伸長方向の根元側へ移動してしまう。
 一方、図10において、第一の変位アクチュエータである変位アクチュエータ43が、光源41をコリメートレンズ42に対して、コリメートレンズ42の光軸42aに垂直な面に沿って実線の矢印の向きである方向Rに変位させると、図9に示したように、スポット18bは、集光レンズ12の光軸12aに垂直な面に沿った方向Lに、すなわち、照射エリア50aがカンチレバー17の背面上を伸長方向の根元側とは逆の探針17b側へ移動する。
 従って、カンチレバー17のZ軸に沿った位置がZスキャナ15のZ走査によって実線の矢印の向きである方向Dに移動する場合は、変位アクチュエータ43によって、光源41をコリメートレンズ42に対して、コリメートレンズ42の光軸42aに垂直な面に沿って実線の矢印の向きである方向Rに変位させることで、検出光18のカンチレバー17に照射される検出光18の照射エリアの位置のZ走査に起因するカンチレバー17に沿った移動を抑えることができる。
 また、図10において、カンチレバー17のZ軸に沿った位置がZスキャナ15のZ走査によって点線の矢印の向きである方向Uに移動する場合には、変位アクチュエータ43によって、コリメートレンズ42を光源41に対して、コリメートレンズ42の光軸42aに垂直な面に沿って点線の矢印の向きである方向Lに変位させことで、カンチレバー17に照射される検出光18の照射エリアの位置のZ走査に起因するカンチレバー17に沿った移動を抑えることができる。
 なお、図8Cに示すスポット位置スキャナ40Cにおいては、カンチレバー17のZ軸に沿った位置がZスキャナ15のZ走査によって方向Dに移動する場合は、変位アクチュエータ44によって、コリメートレンズ42を光源41に対して、コリメートレンズ42の光軸42aに垂直な面に沿って、方向Rに対して逆向きの方向Lの向きに変位させることで、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動を抑えることができる。
 また、カンチレバー17のZ軸に沿った位置がZスキャナ15のZ走査によって方向Uに移動する場合は、変位アクチュエータ44によって、コリメートレンズ42を光源41に対して、コリメートレンズ42の光軸42aに垂直な面に沿って、方向Lに対して逆向きの方向Rの向きに変位させることで、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動を抑えるこができる。
 次に、スポット位置スキャナ40がカンチレバー17に対してスポット18bを変位させるときの光源41の移動量とZスキャナ15のZ走査量の関係と、スポット走査コントローラ23の構成と動作について、スポット位置スキャナ40が図8Bに示すスポット位置スキャナ40Bの場合を例に説明する。
 光源41の移動量に対するスポット18bの変位量は、すなわち光源41の移動量に対するカンチレバー17の背面上に照射される照射エリア50aの移動量は、図7を用いて説明した原理と同様に、コリメートレンズ42と集光レンズ12の光学特性により決まる。
 例えば、コリメートレンズ42の焦点距離と集光レンズ12の焦点距離が、それぞれ、図7で示したレンズL1の焦点距離fとレンズL2の焦点距離fと同じであるとする。このとき、前述した式(1)で示した移動量Sは、式(3)で示した移動量nに相当するため、走査量Zと光源41の移動量mの関係は、次式(4)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 スポット走査コントローラ23は、図2に示すように、Z走査量算出部23aと、パラメータ格納部23cと、演算部23bを備えている。パラメータ格納部23cは、スポット位置制御信号の生成に必要な情報を格納している。Z走査量算出部23aは、Z走査信号と、パラメータ格納部23cに格納された情報を用いて演算することで、Z走査量を算出し、演算部23bに供給する。演算部23bは、Z走査量算出部23aにて算出されたZ走査量と、パラメータ格納部23cに格納された情報を用いて演算することで、スポット位置制御信号を生成し、出力する。
 Z走査量算出部23aでの算出式と、パラメータ格納部23cに格納された情報と、演算部23bで行われる演算式について、以下に説明する。
 まず、パラメータ格納部23cに格納された情報は、Zスキャナ15の単位電圧当たり変位量、コリメートレンズ42の焦点距離、集光レンズ12の焦点距離、カンチレバー17とX軸の成す角度、検出光18の中心軸18aとZ軸の成す角度、変位アクチュエータ43の単位電圧当たりの変位量を含んでいる。ここで、Zスキャナ15の単位電圧当たり変位量をP[m/V]、コリメートレンズ42の焦点距離をf[m]、集光レンズ12の焦点距離をf[m]、カンチレバー17とX軸の成す角度をθ[deg]、検出光18の中心軸18aとZ軸の成す角度をθ[deg]、変位アクチュエータ43の単位電圧当たりの変位量をP[m/V]とおく。
 Z走査量算出部23aで求めるZ走査量Z[m]は、Z走査信号の時間tにおける電圧V[V]と、Zスキャナ15の単位電圧当たり変位量P[m/V]から算出できる。Z走査量算出部23aは、Z[m]を、Z走査信号を受けて、時間tにおけるZ走査信号の電圧V[V]を検出し、Zスキャナ15の単位電圧当たり変位量P[m/V]を掛けて求める。つまり、Z走査量算出部23aでの算出式は次式(5)になる。
Figure JPOXMLDOC01-appb-M000005
 式(5)により、式(4)に記載した光源41の移動量mは次式(6)で表せる。
Figure JPOXMLDOC01-appb-M000006
 一方、光源41の移動量mは、変位アクチュエータ43の単位電圧当たりの変位量P[m/V]と、時間tにおけるスポット位置制御信号の電圧V[V]により、次式(7)で表せる。
Figure JPOXMLDOC01-appb-M000007
 そして演算部23bにおける演算式は、スポット位置制御信号の時間tにおけるスポット位置制御信号の電圧をV[V]として、式(6)と式(7)より、次式(8)に表せる。
Figure JPOXMLDOC01-appb-M000008
 演算部23bでは、式(8)に示す演算により、スポット位置制御信号を生成し、出力する。
 スポット位置スキャナ40が図8Cに示すスポット位置スキャナ40Cの場合については、変位アクチュエータ44が、変位アクチュエータ43とは逆向きに動作するように配置されており、変位アクチュエータ44の単位電圧当たりの変位量をP’[m/V]とすると、スポット走査コントローラ23の演算部23bは、式(8)のPをP’に置き換えた式に基づいて演算を行う。
 またスポット位置スキャナ40が図8Aに示すスポット位置スキャナ40Aの場合については、変位アクチュエータ44が、変位アクチュエータ43とは逆向きに動作するように配置されており、変位アクチュエータ44の単位電圧当たりの変位量をP’[m/V]とすると、スポット走査コントローラ23の演算部23bは、式(8)のPを(P+P’)に置き換えた式に基づいて演算を行う。
 以上のように、スポット位置スキャナ40は、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動を抑えるように、第一の変位アクチュエータである変位アクチュエータ43と第二の変位アクチュエータである変位アクチュエータ44の少なくとも一方によって、光源41とコリメートレンズ42の少なくとも一方を、コリメートレンズ42の光軸42aと垂直な面に沿って変位させ、それにより、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させ、カンチレバー17に対するスポット18bを変位させる。
 スポット位置スキャナ40は、上述したスポット18bを変位させる動作を、スポット位置制御信号に基づいて行う。このスポット位置制御信号は、Zスキャナ15に入力されるZ走査信号に基づいて生成される。このようにスポット位置スキャナ40は、スポット位置制御信号に基づいて、すなわちZ走査に応じて、スポット走査コントローラ23により制御される。従ってスポット位置スキャナ40は、Z走査に応じて、スポット走査コントローラ23により制御され、カンチレバー17に対してスポット18bを変位させることで、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動を抑えるように動作する。
 本実施形態では、コリメートレンズ42は1枚のレンズからなる例を示したが、2枚以上のレンズを用いて同じ機能を果たしてもよい。
 <変形例>
 第一の実施形態のスポット位置スキャナ40においては、次の変形が可能である。図11は、変形例であるスポット位置スキャナ40Dを示している。図11において、図8に示した部材と同一の参照符号を付した部材は同様の部材であり、その詳しい説明は省略する。
 スポット位置スキャナ40Dは、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させるように動作する。それにより、カンチレバー17に対してスポット18bが変位する。その結果、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動をZ走査に応じて抑えることができる。
 スポット位置スキャナ40Dは、少なくとも、筐体68と、例えば半導体LDなどの光源41と、少なくとも一つのレンズを含むコリメートレンズ42を備えている。
 スポット位置スキャナ40Dはさらに、コリメートレンズ42から出射される検出光11を集光レンズ12に向けて反射するミラー62と、ミラー62の角度を変化させるように動作する回転アクチュエータ63を備えている。回転アクチュエータ63には、スポット位置制御信号が供給される。回転アクチュエータ63は、スポット位置制御信号を出力するスポット走査コントローラ23により制御される。回転アクチュエータ63は、その固定端が筐体68に保持され、その回転軸63aの周りにミラー62を回転可能に保持し、ミラー62を、回転軸63aを中心に回転動作をさせることができる。
 このスポット位置スキャナ40Dは、すなわちZ走査に応じたスポット走査コントローラ23からのスポット位置制御信号に基づいて制御される。スポット走査コントローラ23においては、スポット位置スキャナ40Bと比べて、パラメータ格納部23cに格納された情報と、演算部23bで行われる演算式が異なる。
 まず、パラメータ格納部23cに格納された情報は、Zスキャナ15の単位電圧当たり変位量、集光レンズ12の焦点距離、カンチレバー17とX軸の成す角度、検出光18の中心軸18aとZ軸の成す角度、回転アクチュエータ63の単位電圧当たりの回転角を含んでいる。ここで、Zスキャナ15の単位電圧当たり変位量をP[m/V]、集光レンズ12の焦点距離をf[m]、カンチレバー17とX軸の成す角度をθ[deg]、検出光18の中心軸18aとZ軸の成す角度をθ[deg]、回転アクチュエータ63の単位電圧当たりの回転角をθ[deg/V]とおく。
 このとき、演算部23bにおける演算式は、スポット位置制御信号の時間tにおけるスポット位置制御信号の電圧をV2[V]として、式(1)と式(5)より次式(9)で表せる。
Figure JPOXMLDOC01-appb-M000009
 演算部23bは、式(9)に示す演算により、スポット位置制御信号を生成し、出力する。
 スポット位置スキャナ40Dにおいては、回転変位アクチュエータ63がミラー62を回転させ、検出光11の反射角を変化させることで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させ、それにより、カンチレバー17に対してスポット18bが変位する。その結果、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動をZ走査に応じて抑えることができる。
 この変形例においては、ミラー62を使用することで光学的なリレーが可能になり、第一の実施形態で示した図7の構成と比べて、スポット位置スキャナ40の形状や配置について、設計の自由度が高くなる。
 <第二の実施形態>
 以下、第二の実施形態について、図12ないし図19を用いて説明する。図12ないし図19において、図1ないし図10それぞれに示した部材と同一の参照符号を付した部材は同様の部材であり、また、第一の実施形態の説明で用いた図および部材については、その詳しい説明は省略する。
 本実施形態の原子間力顕微鏡は、図12に示されるように、スポット位置スキャナ70とスポット走査コントローラ25で構成されたZ走査追従システムを備えている。このZ走査追従システムは、Z走査に起因するカンチレバー17とスポット18bの位置ズレの影響を抑える機能を有している。本実施形態におけるZ走査に起因するカンチレバー17とスポット18bの位置ズレの影響とは、「カンチレバー17に照射される検出光18の照射エリアの位置のZ走査に起因するカンチレバー17に沿った移動」に加え、「カンチレバー17に照射される検出光18の照射エリアの大きさのZ走査に起因する変化」のことである。すなわち、このZ走査追従システムは、「カンチレバー17に照射される検出光18の照射エリアの位置のZ走査に起因するカンチレバー17に沿った移動」を抑える機能と「カンチレバー17に照射される検出光18の照射エリアの大きさのZ走査に起因する変化」を抑える機能の両方を有している。言い換えれば、Z走査追従システムは、「Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動」をZ走査に応じて抑える機能と、「Z走査に起因する照射エリアの大きさの変化」をZ走査に応じて抑える機能の両方を有している。
 スポット位置スキャナ70は、検出光出射器10に含まれている。スポット位置スキャナ70は、メインコントローラ24に含まれるスポット走査コントローラ25により制御される。スポット位置スキャナ70は、カンチレバー17に対してスポット18bを動かすように、すなわちカンチレバー17に対してスポット18bを変位させるように動作する。このスポット位置スキャナ70の動作は、メインコントローラ24に含まれるスポット走査コントローラ25から出力される第一のスポット位置制御信号と第二のスポット位置制御信号に基づいて行われる。
 スポット走査コントローラ25は、Z制御コントローラ22により生成されたZ走査信号に基づいて、Z走査に応じた第一のスポット位置制御信号と第二のスポット位置制御信号を生成する。すなわち、スポット走査コントローラ25は、スポット位置スキャナ70をZ走査に応じて制御し、スポット位置スキャナ70は、カンチレバー17に対してスポット18bを変位させる。
 Z走査追従システムにおいては、スポット走査コントローラ25がスポット位置スキャナ70をZ走査に応じて制御し、スポット位置スキャナ70がカンチレバー17に対してスポット18bを変位させることにより、「Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動」と、「Z走査に起因する照射エリアの大きさの変化」を抑えることが可能になっている。
 メインコントローラ24、走査コントローラ25、Z制御コントローラ22における演算や制御は、電子回路や(ハードウェア型)プロセッサ、メモリ、ソフトウェア等の協働により行われる。
 ここで、Z走査に起因する照射エリアの大きさの変化について、図14Aと図14Bを用いて説明する。
 図14Aにおいて、カンチレバー17とX軸の成す角度をθ、検出光18の中心軸18aとZ軸の成す角度をθとし、カンチレバー17の背面とスポット領域18cが重なっている状態を初期状態とする。このときのカンチレバー17のZ軸に沿った位置を位置Aとし、位置Aでのカンチレバー17の背面上に照射される検出光18の照射エリアを、図14Bに示すように照射エリア50aとする。このとき照射エリア50aの径は、スポット18bの径とほぼ同じになる。
 そしてカンチレバー17のZ軸に沿った位置が、Zスキャナ15のZ走査によって位置Aから位置Cまで距離Z’だけ移動したとする。この走査量Z’は、本実施形態においては、スポット領域18cの領域幅である焦点深度Hよりも大きいものとし、位置Cでのカンチレバー17の背面上に照射される検出光18の照射エリアを、図14Bに示すように照射エリア50cとする。
 このとき、カンチレバー17の走査量Z’がスポット領域18cの領域幅である焦点深度Hよりも大きく、カンチレバー17がスポット領域18cから外れてしまうために、カンチレバー17の背面上に照射される検出光18の照射エリアの位置が照射エリア50aから照射エリア50cに距離S’だけ移動することに加え、照射エリア50cの径すなわち大きさが照射エリア50aの径すなわち大きさよりも大きくなる。
 この照射エリア径の変化、すなわち、照射エリアの大きさの変化は、走査量Z’が大きいほど、大きくなる。
 Z走査に起因する照射エリアの大きさの変化が大きい場合は、検出光18がカンチレバー17に納まらなくなり、その結果、検出光18のカンチレバー17の背面からの反射光の形状が変化し、分割フォトディテクタ19によるカンチレバー17の変位の検出感度を変化させる。また、検出光18の一部が試料30に照射され、試料30が光毒性を有する生体試料であれば、それに影響を与えてしまう。
 本実施形態のスポット位置スキャナ70においては、Z走査に起因する照射エリアの大きさの変化を抑えるように動作するため、Z走査に起因する照射エリアの大きさの変化が大きい場合に効果がある。
 照射エリア50aから照射エリア50cへの距離S’の移動、すなわち検出光18のカンチレバーに照射される位置がカンチレバーに沿って移動することは、第一の実施形態で説明したように、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動のことである。従って、本実施形態の原子間力顕微鏡においては、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動を抑えるだけでなく、Z走査に起因する照射エリアの大きさの変化を抑えることもできる。
 このスポット位置スキャナ70において、Z走査に起因する照射エリアの大きさの変化を抑える動作について、図15ないし図19を用いて説明する。
 このスポット位置スキャナ70は、図15に示すように、Z走査に起因する照射エリアの大きさの変化を抑えるために、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する拡がり角度を変化させる。すなわち、スポット位置スキャナ70は、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する拡がり角度を変化させ、それにより、カンチレバー17に対してスポット18bを変位させ、Z走査に起因する照射エリアの大きさの変化を抑える。
 このスポット位置スキャナ70の動作原理について、図16に示す光路図で簡単に説明する。
 図16の左側においては、発光点EPから出た発散光は、レンズL1を通過することにより平行光に変えられ、続いて、レンズL2を通過することにより集束光に変えられ、集光点FPに集光する。
 ここで図16の右側に示すように、発光点EPが、レンズL1の光軸に沿った方向Gに移動したとする。このとき、レンズL1から出た光は、レンズL2に対して拡がり角度が変わる。その結果、集光点FPは、レンズL2の光軸に沿った方向G’に移動される。この方向G’は、方向Gと同じ向きとなる。発光点EPの移動量gに対する集光点FPの移動量g’の関係は、レンズL1とレンズL2の光学特性により決まる。
 発光点EPの移動量gと集光点FPの移動量g’の関係は、レンズL1の焦点距離をf、レンズL2の焦点距離をfとし、発光点EPの移動量gがレンズL1、L2の焦点距離f、fよりも十分に小さい場合、次式(10)で近似できる。
Figure JPOXMLDOC01-appb-M000010
 スポット位置スキャナ70は、この関係式に基づいて、Z走査に応じて、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する拡がり角度を変化させ、それによりカンチレバー17に対してスポット18bを変位させ、Z走査に起因する照射エリアの大きさの変化を抑える。
 スポット位置スキャナ70は、図17Aに示すスポット位置スキャナ70Aや、図17Bに示すスポット位置スキャナ70Bのように、少なくとも、筐体78と、例えば半導体LDなどの光源41と、少なくとも一つのレンズを含むコリメートレンズ42とを備えている。
 スポット位置スキャナ70はさらに、光源41とコリメートレンズ42の一方をコリメートレンズ42の光軸42aと垂直な面に沿った方向に変位させる第一の変位アクチュエータである変位アクチュエータ73と、光源41とコリメートレンズ42の他方をコリメートレンズ42の光軸42aに沿った方向に変位させる第二の変位アクチュエータである変位アクチュエータ74を備えている。
 具体的には、スポット位置スキャナ70Aは、コリメートレンズ42をコリメートレンズ42の光軸42aと垂直な面に沿った方向に変位させる第一の変位アクチュエータである変位アクチュエータ73と、光源41をコリメートレンズ42の光軸42aに沿った方向に変位させる第二の変位アクチュエータである変位アクチュエータ74を備えている。
 一方、スポット位置スキャナ70Bは、光源41をコリメートレンズ42の光軸42aに垂直な面に沿った方向に変位させる第一の変位アクチュエータである変位アクチュエータ73と、コリメートレンズ42をコリメートレンズ42の光軸42aに沿った方向に変位させる第二の変位アクチュエータである変位アクチュエータ74を備えている。
 第一の変位アクチュエータである変位アクチュエータ73には、第一のスポット位置制御信号が供給され、第二の変位アクチュエータである変位アクチュエータ74には、第二のスポット位置制御信号が供給される。変位アクチュエータ73と変位アクチュエータ74は、それぞれ、第一のスポット位置制御信号と第二のスポット位置制御信号に基づいて、スポット走査コントローラ25により制御され、光源41とコリメートレンズ42を変位させる。
 変位アクチュエータ73と変位アクチュエータ74は、それぞれ、固定端と、その固定端に対して変位する自由端を有している。
 図17Aに示すスポット位置スキャナ70Aにおいては、変位アクチュエータ73は、その固定端が筐体78に保持され、自由端にコリメートレンズ42を保持し、コリメートレンズ42をコリメートレンズ42の光軸42aと垂直な面に沿った方向に変位させる。また、変位アクチュエータ74は、その固定端が筐体78に保持され、自由端に光源41を保持し、光源41をコリメートレンズ42の光軸42aに沿った方向に変位させる。
 図17Bに示すスポット位置スキャナ70Bにおいては、変位アクチュエータ73は、その固定端が筐体78に保持され、自由端に光源41を保持し、光源41をコリメートレンズ42の光軸42aと垂直な面に沿った方向に変位させる。また、変位アクチュエータ74は、その固定端が筐体78に保持され、自由端にコリメートレンズ42を保持し、コリメートレンズ42をコリメートレンズ42の光軸42aに沿った方向に変位させる。
 図17Aに示すスポット位置スキャナ70Aは、変位アクチュエータ73がコリメートレンズ42を、コリメートレンズ42の光軸42aと垂直な面に沿った方向に変位させることで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させ、カンチレバー17に対してスポット18bを変位させることが可能になっている。
 さらに、変位アクチュエータ74が光源41を、コリメートレンズ42の光軸42aに沿って変位させることで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する拡がり角度を変化させ、カンチレバー17に対するスポット18bを変位させることが可能になっている。
 また、図17Bに示すスポット位置スキャナ70Bは、変位アクチュエータ73が光源41を、コリメートレンズ42の光軸42aと垂直な面に沿った方向に変位させることで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させ、カンチレバー17に対してスポット18bを変位させることが可能になっている。
 さらに、変位アクチュエータ74がコリメートレンズ42を、コリメートレンズ42の光軸42aに沿って変位させることで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する拡がり角度を変化させ、カンチレバー17に対してスポット18bを変位させることが可能になっている。
 すなわち、スポット位置スキャナ70は、少なくとも、筐体78と、例えば半導体LDなどの光源41と、少なくとも一つのレンズを含むコリメートレンズ42と、光源41とコリメートレンズ42の一方をコリメートレンズ42の光軸42aと垂直な面に沿った方向に変位させる第一の変位アクチュエータである変位アクチュエータ73と、光源41とコリメートレンズ42の他方をコリメートレンズ42の光軸42aに沿った方向に変位させる第二の変位アクチュエータである変位アクチュエータ74とを備えている。
 そして第一の変位アクチュエータである変位アクチュエータ73が、光源41とコリメートレンズ42の一方をコリメートレンズの光軸と垂直な面に沿った方向に変位させることで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させ、カンチレバー17に対してスポット18bを変位させることが可能になっている。
 さらに第二の変位アクチュエータである変位アクチュエータ74が、光源41とコリメートレンズ42の他方をコリメートレンズ42の光軸42aに沿って変位させることで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する拡がり角度を変化させ、カンチレバー17に対してスポット18bを変位させることが可能になっている。
 次に、スポット位置スキャナ70が図17Aに示すスポット位置スキャナ70Aの場合を例に、カンチレバー17に対するスポット18bの変位の向きと、第二の変位アクチュエータである変位アクチュエータ74による光源41の移動の向きの関係を説明する。
 なお、カンチレバー17に対するスポット18bの変位の向きと、第一の変位アクチュエータである変位アクチュエータ73によるコリメートレンズ42の移動の向きの関係は、第一の実施形態と同じであるため、ここでは説明を省略する。
 図18に示すように、光源41を、コリメートレンズ42に対して、コリメートレンズ42の光軸42aに沿った方向Aに、第二の変位アクチュエータである変位アクチュエータ74により変位させたとする。このとき、コリメートレンズ42から出た検出光11の集光レンズ12に対する拡がり角度が変わる。その結果、スポット18bは、集光レンズ12の光軸12aに沿った方向А’に変位する。方向Aと方向A’は同じ向きである。スポット18bが変位する方向A’は、Z軸に沿った-Zの向きの成分を含んでいる。光源41の移動量に対するスポット18bの変位量は、主にコリメートレンズ42と集光レンズ12の光学特性により決まる。
 例えば、コリメートレンズ42の焦点距離と集光レンズ12の焦点距離が、それぞれ、図16で示したレンズL1の焦点距離fとレンズL2の焦点距離fと同じであるとする。このとき、光源41の移動量gとスポット18bの変位量g’は、前述した式(10)で示した関係になる。
 図17Bに示すスポット位置スキャナ70Bにおいては、スポット位置スキャナ70Aの場合と同じ方向A’の向きにスポット18bを変位させたい場合は、第二の変位アクチュエータである変位アクチュエータ74は、コリメートレンズ42を、光源41に対して、方向Аと逆向きに変位させる。
 次に、スポット位置スキャナ70が、カンチレバー17に対してスポット18bを変位させる向きと、Zスキャナ15のZ走査の関係について、スポット位置スキャナ70が図17Aに示すスポット位置スキャナ70Aの場合を例に説明する。
 図19において、カンチレバー17のZ軸に沿った位置がZスキャナ15のZ走査によって実線の矢印の向きである方向Dに移動する場合は、カンチレバー17が、スポット18bに対し、Z軸に沿った-Zの向きの成分を含んだ向きに移動する。
 一方、第二の変位アクチュエータである変位アクチュエータ74が、光源41をコリメートレンズ42に対して、コリメートレンズ42の光軸42aに沿って実線の矢印の向きである方向Aに変位させると、図18に示したように、スポット18bは、集光レンズ12の光軸12aに沿った方向A’に変位する。方向A’は、Z軸に沿った-Zの向きの成分を含んでいる。このときの変位量g’は、式(10)で示した関係になる。
 従って、カンチレバー17のZ軸に沿った位置がZスキャナ15のZ走査によって実線の矢印の向きである方向Dに移動する場合は、変位アクチュエータ74によって、光源41をコリメートレンズ42に対して、コリメートレンズ42の光軸42aに沿って実線の矢印の向きである方向Aに変位させることで、カンチレバー17に対するスポット18bのZ軸に沿った位置ズレが低減され、その結果、カンチレバー17とスポット18bの位置ズレの影響、すなわちZ走査に起因する照射エリアの大きさの変化を抑えることができる。
 また、図18において、カンチレバー17のZ軸に沿った位置がZスキャナ15のZ走査によって点線の矢印の向きである方向Uに移動する場合には、変位アクチュエータ74によって、光源41をコリメートレンズ42に対して、コリメートレンズ42の光軸42aに沿って点線の矢印の向きである方向Fに変位させることで、Z走査に起因する照射エリアの大きさの変化を抑えることができる。
 以上のように、スポット位置スキャナ70は、Z走査に起因する照射エリアの大きさの変化を抑えるように、第二の変位アクチュエータである変位アクチュエータ74によって、光源41とコリメートレンズ42の一方を、コリメートレンズ42の光軸42aに沿って変位させ、それにより、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する拡がり角度を変化させ、カンチレバー17に対するスポット18bを変位させる。
 次に、スポット位置スキャナ70がカンチレバー17に対してスポット18bを変位させるときの光源41の移動量とZスキャナ15のZ走査量の関係と、スポット走査コントローラ25の構成と動作について、スポット位置スキャナ70が図17Aに示すスポット位置スキャナ70Aの場合を例に説明する。
 Z走査に起因する照射エリアの大きさの変化を抑えるためには、スポット18bの変位量g’を、カンチレバー17のスポット18bに対する移動量Qと同じにする必要がある。
 カンチレバー17のスポット18bに対する移動量Qは、カンチレバー17のZ軸に沿った位置がZスキャナ15のZ走査によって実線の矢印の向きである方向DにZ〔m〕だけ移動するとき、検出光18の中心軸18aとZ軸の成す角度をθとして、次式(11)で表すことができる。
Figure JPOXMLDOC01-appb-M000011
 従って、カンチレバー17に対してスポット18bを変位させるときの光源41の移動量gとZスキャナ15のZ走査量の関係式は、式(10)と式(11)から、次式(12)で表すことができる。
Figure JPOXMLDOC01-appb-M000012
 スポット走査コントローラ25は、図13に示すように、Z走査量算出部23aと、パラメータ格納部25cと、演算部23bと、演算部25dを備えている。
 Z走査量算出部23aと演算部23bは、第一の実施形態の図2で示したものと同じものである。
 パラメータ格納部25cは、第一のスポット位置制御信号の生成に必要な情報と、第二のスポット位置制御信号の生成に必要な情報を格納している。Z走査量算出部23aは、Z走査信号と、パラメータ格納部23cに格納された情報を用いて演算することで、Z走査量を算出し、演算部23bと演算部25dに供給する。
 演算部23bは、Z走査量算出部23aにて算出されたZ走査量と、パラメータ格納部25cに格納された情報を用いて演算することで、第一のスポット位置制御信号を生成し、出力する。第一のスポット位置制御信号は、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動を抑えるためのものであり、第一の実施形態におけるスポット位置制御信号と同じである。
 演算部25dは、Z走査量算出部23aにて算出されたZ走査量と、パラメータ格納部25cに格納された情報を用いて演算することで、第二のスポット位置制御信号を生成し、出力する。第二のスポット位置制御信号は、Z走査に起因する照射エリアの大きさの変化を抑えるためのものである。
 演算部23bによる第一のスポット位置制御信号を生成については、第一の実施形態と同様であるため、ここでは説明を省略する。
 ここでは、演算部25dによる第二のスポット位置制御信号の生成について、すなわち、パラメータ格納部25cに格納された情報と、演算部25dで行われる演算式について、以下に説明する。
 まず、パラメータ格納部25cに格納された情報は、Zスキャナ15の単位電圧当たり変位量、コリメートレンズ42の焦点距離、集光レンズ12の焦点距離、カンチレバー17とX軸の成す角度、検出光18の中心軸18aとZ軸の成す角度、変位アクチュエータ73の単位電圧当たりの変位量、変位アクチュエータ74の単位電圧当たりの変位量を含んでいる。
 なお、変位アクチュエータ73は、第一の実施形態の図8Cに示した変位アクチュエータ44と同じ単位電圧当たりの変位量であるものとし、演算部23bによる第一のスポット位置制御信号の生成に使用される。
 パラメータ格納部25cに格納された情報の中で、演算部25dで使用する情報は、コリメートレンズ42の焦点距離、集光レンズ12の焦点距離、検出光18の中心軸18aとZ軸の成す角度、変位アクチュエータ74の単位電圧当たりの変位量である。
 ここで、コリメートレンズ42の焦点距離をf[m]、集光レンズ12の焦点距離をf[m]、検出光18の中心軸18aとZ軸の成す角度をθ[deg]、変位アクチュエータ74の単位電圧当たりの変位量をPg[m/V]とおく。
 Z走査量算出部23aで求めるZ走査量Z[m]は、式(5)で求められる。
 式(5)により、式(12)に記載した光源41の移動量gは次式(13)で表せる。
Figure JPOXMLDOC01-appb-M000013
 一方、光源41の移動量gは、変位アクチュエータ74の単位電圧当たりの変位量Pg[m/V]と、時間tにおける第二のスポット位置制御信号の電圧V[V]により、次式(14)で表せる。
Figure JPOXMLDOC01-appb-M000014
 そして演算部25dにおける演算式は、第二のスポット位置制御信号の時間tにおける第二のスポット位置制御信号の電圧をV[V]として、式(13)と式(14)より、次式(15)で表せる。
Figure JPOXMLDOC01-appb-M000015
 演算部25dは、式(15)に示す演算により、第二のスポット位置制御信号を生成し、出力する。
 スポット位置スキャナ70は、スポット18bを変位させる動作を、第一のスポット位置制御信号と第二のスポット位置制御信号に基づいて行う。
 スポット位置スキャナ70が図17Bに示すスポット位置スキャナ70Bの場合については、変位アクチュエータ74が、図17Aに示すスポット位置スキャナ70Aの変位アクチュエータ74とは逆向きに動作するように配置されているため、スポット走査コントローラ25の演算部25dは、スポット位置スキャナ70Aと同じ式(15)に基づいて演算を行う。
 第二のスポット位置制御信号は、本実施形態で説明したZ走査に起因する照射エリアの大きさの変化を抑えるように生成され、第一のスポット位置制御信号は、第一の実施形態で説明した、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動を抑えるように生成される。
 第一のスポット位置制御信号は、第一の変位アクチュエータである変位アクチュエータ73に供給され、変位アクチュエータ73は、第一のスポット位置制御信号に基づいて、光源41またはコリメートレンズ42の一方を移動させる。
 第二のスポット位置制御信号は、第二の変位アクチュエータである変位アクチュエータ74に供給され、変位アクチュエータ74は、第二のスポット位置制御信号に基づいて、光源41またはコリメートレンズ42の他方を移動させる。
 このようにスポット位置スキャナ70は、第一のスポット位置制御信号と第二のスポット位置制御信号に基づいて、すなわちZ走査に応じて、動作する。
 従って、スポット位置スキャナ70は、第一のスポット位置制御信号と第二のスポット位置制御信号に基づいて、すなわちZ走査に応じて、カンチレバー17に対してスポット18bを変位させ、それにより、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動と、Z走査に起因する照射エリアの大きさの変化を抑えるように動作する。
 本実施形態のスポット位置スキャナ70においては、第一の実施形態と同じ効果を有するとともに、カンチレバー17に照射される検出光18の照射エリアの大きさのZ走査に起因する変化を抑えるように動作するため、Z走査量が大きく、カンチレバー17に照射される検出光18の照射エリアの大きさのZ走査に起因する変化が大きい場合にも効果がある。
 <第一の変形例>
 第二の実施形態のスポット位置スキャナ70は、図20Aと図20Bに示す変形が可能である。図20Aは、第二の実施形態の第一の変形例によるスポット位置スキャナの構成例を示している。図20Bは、第二の実施形態の第一の変形例によるスポット位置スキャナの別の構成例を示している。図20Aと図20Bにおいて、図17に示した部材と同一の参照符号を付した部材は同様の部材であり、その詳しい説明は省略する。
 以下に示すスポット位置スキャナ70の第一の変形例は、Z走査に応じて、カンチレバー17に対してスポット18bを変位させ、それにより、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動と、Z走査に起因する照射エリアの大きさの変化を抑えるように動作する。
 図20Aに示すスポット位置スキャナ70Cは、少なくとも、筐体78と、例えば半導体LDなどの光源41と、少なくとも一つのレンズを含むコリメートレンズ42とを備えている。スポット位置スキャナ70Cはさらに、光源41をコリメートレンズ42の光軸42aと垂直な面に沿った方向に変位させる第一の変位アクチュエータである変位アクチュエータ73と、光源41をコリメートレンズ42の光軸42aに沿った方向に変位させる第二の変位アクチュエータである変位アクチュエータ74を備えている。
 第一の変位アクチュエータである変位アクチュエータ73には、第一のスポット位置制御信号が供給され、第二の変位アクチュエータである変位アクチュエータ74には、第二のスポット位置制御信号が供給される。
 本変形例の第一のスポット位置制御信号と第二のスポット位置制御信号は、それぞれ、図17Aで示したスポット位置スキャナ70Aで使用する第一のスポット位置制御信号と第二のスポット位置制御信号と同じものである。
 変位アクチュエータ73と変位アクチュエータ74は、それぞれ、固定端と、その固定端に対して変位する自由端を有している。変位アクチュエータ73は、その固定端が筐体78に保持され、自由端に変位アクチュエータ74を保持している。また、変位アクチュエータ74は、その固定端が変位アクチュエータ73に保持され、自由端に光源41を保持している。変位アクチュエータ73は、変位アクチュエータ74を介して光源41をコリメートレンズ42の光軸42aと垂直な面に沿った方向に変位させる。変位アクチュエータ74は、光源41をコリメートレンズ42の光軸42aに沿った方向に変位させる。
 変位アクチュエータ73は、第一のスポット位置制御信号に基づいて動作する。また変位アクチュエータ74は、第二のスポット位置制御信号に基づいて動作する。
 従って、スポット位置スキャナ70Cは、変位アクチュエータ73が光源41をコリメートレンズ42の光軸42aと垂直な面に沿って変位させることで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させるように動作する。それにより、カンチレバー17に対してスポット18bを変位させることが可能になり、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動を抑えることができる。
 さらに、変位アクチュエータ74が光源41をコリメートレンズ42の光軸42aに沿った方向に変位させることで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する拡がり角度を変化させるように動作する。それにより、カンチレバー17に対してスポット18bを変位させることが可能になり、Z走査に起因する照射エリアの大きさの変化を抑えることができる。
 ここで、変位アクチュエータ73と変位アクチュエータ74の位置関係は、逆になってもよい。すなわち、変位アクチュエータ74の固定端が筐体78に保持され、自由端に変位アクチュエータ73を保持し、変位アクチュエータ73は、その固定端が変位アクチュエータ74に保持され、自由端に光源41を保持してもよい。
 また、図20Bに示すスポット位置スキャナ70Dは、少なくとも、筐体78と、例えば半導体LDなどの光源41と、少なくとも一つのレンズを含むコリメートレンズ42とを備えている。スポット位置スキャナ70Dはさらに、コリメートレンズ42をコリメートレンズ42の光軸42aと垂直な面に沿った方向に変位させる第一の変位アクチュエータである変位アクチュエータ73と、コリメートレンズ42をコリメートレンズ42の光軸42aに沿った方向に変位させる第二の変位アクチュエータである変位アクチュエータ74を備えている。
 変位アクチュエータ73と変位アクチュエータ74は、それぞれ固定端と、その固定端に対して変位する自由端を有している。変位アクチュエータ73は、その固定端が筐体78に保持され、自由端に変位アクチュエータ74を保持している。また、変位アクチュエータ74は、その固定端が変位アクチュエータ74に保持され、自由端にコリメートレンズ42を保持している。変位アクチュエータ73は、変位アクチュエータ73を介してコリメートレンズ42をコリメートレンズ42の光軸42aと垂直な面に沿った方向に変位させる。変位アクチュエータ74は、コリメートレンズ42をコリメートレンズ42の光軸42aに沿った方向に変位させる。
 変位アクチュエータ73は、第一のスポット位置制御信号に基づいて動作する。また変位アクチュエータ74は、第二のスポット位置制御信号に基づいて動作する。
 従って、スポット位置スキャナ70Dは、変位アクチュエータ73がコリメートレンズ42をコリメートレンズ42の光軸42aと垂直な面に沿って変位させることで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させるように動作する。それにより、カンチレバー17に対してスポット18bを変位させることが可能になり、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動を抑えることができる。
 さらに、変位アクチュエータ74がコリメートレンズ42をコリメートレンズ42の光軸42aに沿った方向に変位させることで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する拡がり角度を変化させるように動作する。それにより、カンチレバー17に対してスポット18bを変位させることが可能になり、Z走査に起因する照射エリアの大きさの変化を抑えることができる。
 ここで、変位アクチュエータ73と変位アクチュエータ74の位置関係は、逆になってもよい。すなわち、変位アクチュエータ74の固定端が筐体78に保持され、自由端に変位アクチュエータ73を保持し、変位アクチュエータ73は、その固定端が変位アクチュエータ74に保持され、自由端にコリメートレンズ42を保持してもよい。
 すなわち、第一の変形例のスポット位置スキャナ70Dは、少なくとも、筐体78と、例えば半導体LDなどの光源41と、少なくとも一つのレンズを含むコリメートレンズ42とを備えている。スポット位置スキャナ70Dはさらに、光源41とコリメートレンズ42のどちらか一方である変位対象を変位させる二つの変位アクチュエータを備えている。二つの変位アクチュエータの一方は、コリメートレンズ42の光軸42aと垂直な面に沿った方向に変位対象を変位させる第一の変位アクチュエータであり、二つの変位アクチュエータの他方は、コリメートレンズ42の光軸42aに沿った方向に変位させる変位対象を第二の変位アクチュエータである。
 以上のように、スポット位置スキャナ70Cおよびスポット位置スキャナ70Dは、Z走査に応じて、カンチレバー17に対してスポット18bを変位させ、それにより、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動と、Z走査に起因する照射エリアの大きさの変化を抑えるように動作する。
 この第一の変形例においては、第二の実施形態で示した図17の構成と比べて、二つの変位アクチュエータが変位させる対象物が共通になり、一つになるため、設計および製造の自由度が高い。
 <第二の変形例>
 第二の実施形態のスポット位置スキャナ70は、さらに図21に示す変形が可能である。図21は、第二の実施形態の第二の変形例を示している。図21において、図17に示した部材と同一の参照符号を付した部材は同様の部材であり、その詳しい説明は省略する。
 以下に示すスポット位置スキャナ70の第二の変形例は、Z走査に応じて、カンチレバー17に対してスポット18bを変位させ、それにより、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動と、Z走査に起因する照射エリアの大きさの変化を抑えるように動作する。
 スポット位置スキャナ70Eは、少なくとも、筐体88と、例えば半導体LDなどの光源41と、少なくとも一つのレンズを含むコリメートレンズ42とを備えている。スポット位置スキャナ70Eはさらに、コリメートレンズ42から出射される検出光11を集光レンズ12に向けて反射するミラー82と、ミラー82の角度を変化させるように動作する回転アクチュエータ83と、光源41をコリメートレンズ42に対してコリメートレンズ42の光軸42aに沿った方向に変位させる変位アクチュエータ84を備えている。
 回転アクチュエータ83は、その固定端が筐体88に保持され、その回転軸83aの周りにミラー82を回転可能に保持し、ミラー82を、回転軸83aを中心に回転動作をさせる。
 スポット位置スキャナ70Eは、回転変位アクチュエータ83がミラー82を回転させ、検出光11の反射角を変化させることで、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度を変化させるように動作する。それにより、カンチレバー17に対してスポット18bを変位させることが可能になり、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動を抑えることができる。
 変位アクチュエータ84は、その固定端が筐体88に保持され、自由端に光源41を保持し、光源41をコリメートレンズ42に対してコリメートレンズ42の光軸42aに沿った方向に変位させる。
 スポット位置スキャナ70Eは、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する拡がり角度を変化させるように動作する。それにより、カンチレバー17に対してスポット18bを変位させることが可能になり、Z走査に起因する照射エリアの大きさの変化を抑えることができる。
 スポット位置スキャナ70Eは、変位アクチュエータ84ではなく、コリメートレンズ42を光源41に対してコリメートレンズ42の光軸42aに沿った方向に変位させる別の変位アクチュエータを用いて動作させてもよい。
 変位アクチュエータ84は、第二のスポット位置制御信号に基づいて動作する。また回転アクチュエータ83は、第一のスポット位置制御信号に基づいて動作する。
 本変形例の第二のスポット位置制御信号は、図17Aで示したスポット位置スキャナ70Aで使用する第二のスポット位置制御信号と同じものである。また、第一のスポット位置制御信号は、第一の実施形態の第一の変形例の図11で使用したスポット位置制御信号と同じものである。
 以上のように、スポット位置スキャナ70Eは、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度と拡がり角度を変化させることで、Z走査に応じて、カンチレバー17に対してスポット18bを変位させ、それにより、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動と、Z走査に起因する照射エリアの大きさの変化を抑えるように動作する。
 この第二の変形例においては、図17Aに示した第二の実施形態と同じ効果が得られる。
 <第三の実施形態>
 以下、第三の実施形態について、図22ないし図24を用いて説明する。図22ないし図24において、図1と図2と図20それぞれに示した部材と同一の参照符号を付した部材は同様の部材であり、また、第一の実施形態の説明で用いた図および部材については、その詳しい説明は省略する。
 本実施形態の原子間力顕微鏡は、図22に示されるように、スポット位置スキャナ90とスポット走査コントローラ27で構成されたZ走査追従システムを備えている。このZ走査追従システムは、Z走査に起因するカンチレバー17とスポット18bの位置ズレの影響を抑える機能を有している。すなわち、このZ走査追従システムは、「カンチレバー17に照射される検出光18の照射エリアの位置のZ走査に起因するカンチレバー17に沿った移動」を抑える機能を有している。さらにZ走査追従システムは、「カンチレバー17に照射される検出光18の照射エリアの大きさのZ走査に起因する変化」を抑える機能を有している。言い換えれば、Z走査追従システムは、「Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動」をZ走査に応じて抑える機能と、「Z走査に起因する照射エリアの大きさの変化」をZ走査に応じて抑える機能の両方を有している。
 スポット位置スキャナ90は、検出光出射器10に含まれている。スポット位置スキャナ90は、メインコントローラ26に含まれるスポット走査コントローラ27により制御される。スポット位置スキャナ90は、カンチレバー17に対してスポット18bを動かすように、すなわちカンチレバー17に対してスポット18bを変位させるように動作する。このスポット位置スキャナ90の動作は、メインコントローラ26に含まれるスポット走査コントローラ27から出力されるスポット位置制御信号に基づいて行われる。
 スポット走査コントローラ27は、Z制御コントローラ22により生成されたZ走査信号に基づいて、Z走査に応じたスポット位置制御信号を生成する。すなわちスポット走査コントローラ27は、スポット位置スキャナ90をZ走査に応じて制御し、スポット位置スキャナ90は、カンチレバー17に対してスポット18bを変位させる。
 Z走査追従システムにおいては、スポット走査コントローラ27がスポット位置スキャナ90をZ走査に応じて制御し、スポット位置スキャナ90がカンチレバー17に対してスポット18bを変位させることにより、「Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動」と、「Z走査に起因する照射エリアの大きさの変化」を抑えることが可能になっている。
 メインコントローラ26、走査コントローラ27、Z制御コントローラ22における演算や制御は、電子回路や(ハードウェア型)プロセッサ、メモリ、ソフトウェア等の協働により行われる。
 図24Aに示すスポット位置スキャナ90Aは、図20Aに示したスポット位置スキャナ70Cが備える第一の変位アクチュエータである変位アクチュエータ73と第二の変位アクチュエータである変位アクチュエータ74の二つの変位アクチュエータを、一つの変位アクチュエータ93に置き換えたものである。
 つまり図24Aに示すスポット位置スキャナ90Aは、第一の変位アクチュエータである変位アクチュエータ93のみで、光源41をコリメートレンズ42に対してコリメートレンズ42の光軸42aと垂直な面に沿った方向とコリメートレンズ42の光軸42aに沿った方向の両方の成分から合成される方向に変位させることができる。
 コリメートレンズ42の光軸42aと垂直な面に沿った方向とコリメートレンズ42の光軸42aに沿った方向の両方の成分から合成される方向とは、例えば、図10に示す方向Rと図19に示す方向Aで合成される方向RAであり、また図10に示す方向Lと図19に示す方向Fで合成される方向LFである。
 また図24Bに示すスポット位置スキャナ90Bは、図20Bに示したスポット位置スキャナ70Dが備える第一の変位アクチュエータである変位アクチュエータ73と第二の変位アクチュエータである変位アクチュエータ74の二つの変位アクチュエータを、一つの変位アクチュエータ93に置き換えたものである。
 つまり図24Bに示すスポット位置スキャナ90Bは、第二の変位アクチュエータである変位アクチュエータ93のみで、コリメートレンズ42を光源41に対してコリメートレンズ42の光軸42aと垂直な面に沿った方向とコリメートレンズ42の光軸42aに沿った方向の両方の成分から合成される方向に変位させることができる。
 変位アクチュエータ93には、スポット位置制御信号が供給される。
 変位アクチュエータ93は、スポット位置制御信号に基づいて、スポット走査コントローラ27により制御され、光源41とコリメートレンズ42のどちらか一方を変位させる。
 次に、スポット位置スキャナ90がカンチレバー17に対してスポット18bを変位させるときの光源41の移動量とZスキャナ15のZ走査量の関係と、スポット走査コントローラ27の構成と動作について、スポット位置スキャナ90が図24Aに示すスポット位置スキャナ90Aの場合を例に説明する。
 スポット走査コントローラ27は、図23に示すように、Z走査量算出部23aと、パラメータ格納部27cと、演算部27bを備えている。
 Z走査量算出部23aは、第一の実施形態の図2で示したものと同じものである。
 パラメータ格納部27cは、スポット位置制御信号の生成に必要な情報を格納している。Z走査量算出部23aは、Z走査信号と、パラメータ格納部27cに格納された情報を用いて演算することで、Z走査量を算出し、演算部27bに供給する。
 演算部27bは、Z走査量算出部23aにて算出されたZ走査量と、パラメータ格納部27cに格納された情報を用いて演算することで、スポット位置制御信号を生成し、出力する。
 ここでは、演算部27bによるスポット位置制御信号の生成について、すなわち、パラメータ格納部27cに格納された情報と、演算部27bで行われる演算式について、以下に説明する。
 まず、パラメータ格納部27cに格納された情報は、Zスキャナ15の単位電圧当たり変位量、コリメートレンズ42の焦点距離、集光レンズ12の焦点距離、カンチレバー17とX軸の成す角度、検出光18の中心軸18aとZ軸の成す角度、変位アクチュエータ93の単位電圧当たりの変位量を含んでいる。
 ここで、Zスキャナ15の単位電圧当たり変位量をP[m/V]、コリメートレンズ42の焦点距離をf[m]、集光レンズ12の焦点距離をf[m]、カンチレバー17とX軸の成す角度をθ[deg]、検出光18の中心軸18aとZ軸の成す角度をθ[deg]、変位アクチュエータ93の単位電圧当たりの変位量をPmg[m/V]とおく。
 光源41の移動量αは、式(6)で求めるmと、式(13)で求めるgから、次式(16)で表せる。
Figure JPOXMLDOC01-appb-M000016
 また、光源41をコリメートレンズ42に対して変位させる方向、すなわち、コリメートレンズ42の光軸42aと垂直な面に沿った方向とコリメートレンズ42の光軸42aに沿った方向の両方の成分から合成される方向を、コリメートレンズ42の光軸42aと垂直な面に沿った方向に対する角度で表すと、角度をφとして次式(17)となる。
Figure JPOXMLDOC01-appb-M000017
 一方、光源41の移動量αは、変位アクチュエータ93の単位電圧当たりの変位量Pmg[m/V]と、時間tにおけるスポット位置制御信号の電圧V[V]により、次式(18)で表せる。
Figure JPOXMLDOC01-appb-M000018
 そして演算部27bにおける演算式は、スポット位置制御信号の時間tにおけるスポット位置制御信号の電圧をV[V]として、式(17)と式(18)より、次式(19)で表せる。
Figure JPOXMLDOC01-appb-M000019
 演算部27bでは、式(19)に示す演算により、スポット位置制御信号を生成し、出力する。
 スポット位置スキャナ90は、スポット18bを変位させる動作を、スポット位置制御信号に基づいて行う。
 スポット位置スキャナ90が図24Bに示すスポット位置スキャナ90Bの場合については、変位アクチュエータ93が、図24Aに示すスポット位置スキャナ90Aの変位アクチュエータ93とは逆向きに動作するように配置されているため、スポット走査コントローラ27の演算部27bでは、スポット位置スキャナ90Aと同じ式(19)に基づいて演算を行う。
 詳しくは、図24Aに示すスポット位置スキャナ90Aの変位アクチュエータ93を図24Aに示す方向RAに動かすことと、図24Bに示すスポット位置スキャナ90Bを図24Bに示す方向LFに動かすことが等価であり、また、図24Aに示すスポット位置スキャナ90Aの変位アクチュエータ93を図24Aに示す方向LFに動かすことと、図24Bに示すスポット位置スキャナ90Bを図24Bに示す方向RAに動かすことが等価である。
 以上より、スポット位置スキャナ90は、少なくとも、筐体98と、例えば半導体LDなどの光源41と、少なくとも一つのレンズを含むコリメートレンズ42を備えている。スポット位置スキャナ90はさらに、光源41とコリメートレンズ42のどちらか一方をコリメートレンズ42の光軸42aと垂直な面に沿った方向とコリメートレンズ42の光軸42aに沿った方向の両方の成分から合成される方向に変位させる変位アクチュエータ93を備えている。スポット位置スキャナ90は、集光レンズ12に向けて出射される検出光11の集光レンズ12に対する出射角度と拡がり角度を変化させることで、Z走査に応じて、カンチレバー17に対してスポット18bを変位させ、それにより、Z走査に起因する照射エリアの位置のカンチレバー17に沿った移動と、Z走査に起因する照射エリアの大きさの変化を抑えるように動作する。
 本実施形態においては、第二の実施形態と比較して、変位アクチュエータの数を減らすことができるため、設計および製造の自由度がより高い。
 本発明においては、検出光の中心軸とZ軸の成す角度をXZ平面上に設けたが、これに限らない。例えば、検出光の中心軸とZ軸の成す角度をYZ平面上に設けてもよいし、Z軸に沿ったすべての平面上に設けてもよい。
 さらに本発明においては、カンチレバーは、XYスキャナによりXY走査され、ZスキャナによりZ走査されるが、集光レンズは、XYスキャナによりXY走査されるが、Z走査はされない。
 従って、本発明の原子間力顕微鏡においては、集光レンズをZスキャナによりZ走査していないため、高速なZ走査が可能になっている。その結果、試料に対してカンチレバーをXYZの3方向に高速に走査させるカンチレバースキャンタイプの原子間力顕微鏡が提供できる。
 加えて本発明においては、カンチレバーの長さまたは幅が3μm以下のときに特に効果がある。Z走査量が2μm以上の場合も効果が大きい。

Claims (23)

  1.  探針を有するカンチレバーを用いて試料の物理情報を得る原子間力顕微鏡であって、
     XY可動台と、
     前記XY可動台をXY平面に平行な面内でXY走査させるXYスキャナと、
     前記XY可動台に固定端が保持され、自由端に前記カンチレバーを保持し、前記カンチレバーを前記XY平面に垂直なZ軸に沿ってZ走査させるZスキャナと、
     前記カンチレバーの変位を光学的に検出する光学式変位センサを備えており、前記光学式変位センサは、前記XY可動台に保持された集光レンズを含んでおり、前記集光レンズは、入射する検出光を集光し、集束されたスポットを有する検出光を生成し、生成された前記検出光を前記カンチレバーに照射することで前記カンチレバー上に照射エリアを生成し、さらに、
     Z走査に起因する前記照射エリアの位置の前記カンチレバーに沿った移動を、Z走査に応じて抑えるZ走査追従システムを備えている原子間力顕微鏡。
  2.  前記Z走査追従システムは、スポット位置スキャナとスポット走査コントローラを備えており、
     前記スポット位置スキャナは、Z走査に起因する前記照射エリアの位置の前記カンチレバーに沿った移動を抑えるように動作し、
     前記スポット走査コントローラは、前記スポット位置スキャナをZ走査に応じて制御する、請求項1に記載の原子間力顕微鏡。
  3.  前記集光レンズに入射する前記検出光を生成し、生成された前記検出光を前記集光レンズに向けて出射する検出光出射器を備えており、
     前記スポット位置スキャナは、前記検出光出射器に含まれており、
     前記スポット位置スキャナは、前記カンチレバーに対して前記スポットを変位させるように動作し、
     前記Z走査追従システムは、Z走査に起因する前記照射エリアの位置の前記カンチレバーに沿った移動を、Z走査に応じて抑える、請求項2に記載の原子間力顕微鏡。
  4.  前記スポット位置スキャナは、前記集光レンズに向けて出射される前記検出光の前記集光レンズに対する出射角度を変化させることで、前記カンチレバーに対して前記スポットを変位させる、請求項3に記載の原子間力顕微鏡。
  5.  前記スポット位置スキャナは、光源とコリメートレンズとを備えており、
     前記スポット位置スキャナはさらに、前記光源を前記コリメートレンズに対して前記コリメートレンズの光軸と垂直な面に沿って変位させる第一の変位アクチュエータと、前記コリメートレンズを前記光源に対して前記コリメートレンズの光軸と垂直な面に沿って変位させる第二の変位アクチュエータとの少なくとも一方を備えており、
     前記第一の変位アクチュエータと前記第二の変位アクチュエータは共に、前記スポット走査コントローラによって制御される、請求項4に記載の原子間力顕微鏡。
  6.  前記スポット位置スキャナは、光源とコリメートレンズとを備え、
     前記スポット位置スキャナはさらに、前記検出光出射器から出射される前記検出光を前記集光レンズに向けて反射するミラーと、前記ミラーの角度を変化させる回転アクチュエータを備え、
     前記回転アクチュエータは、前記スポット走査コントローラによって制御される、請求項4に記載の原子間力顕微鏡。
  7.  前記Z走査追従システムは、さらに、Z走査に起因する前記照射エリアの大きさの変化を抑える、請求項1に記載の原子間力顕微鏡。
  8.  前記Z走査追従システムは、スポット位置スキャナとスポット走査コントローラを備え、
     前記スポット位置スキャナは、Z走査に起因する前記照射エリアの位置の前記カンチレバーに沿った移動と、Z走査に起因する前記照射エリアの大きさの変化の両方を抑えるように動作し、
     前記スポット走査コントローラは、前記スポット位置スキャナをZ走査に応じて制御する、請求項7に記載の原子間力顕微鏡。
  9.  前記集光レンズに入射する前記検出光を生成し、生成された前記検出光を前記集光レンズに向けて出射する検出光出射器を備えており、
     前記スポット位置スキャナは、前記検出光出射器に含まれており、
     前記スポット位置スキャナは、前記カンチレバーに対して前記スポットを変位させるように動作し、
     前記Z走査追従システムは、Z走査に起因する前記照射エリアの位置の前記カンチレバーに沿った移動と、Z走査に起因する前記照射エリアの大きさの変化の両方を抑える、請求項8に記載の原子間力顕微鏡。
  10.  前記スポット位置スキャナは、前記集光レンズに向けて出射される前記検出光の前記集光レンズに対する出射角度を変化させ、さらに、前記集光レンズに向けて出射される前記検出光の拡がり角度を変化させることで、前記カンチレバーに対して前記スポットを変位させる、請求項9に記載の原子間力顕微鏡。
  11.  前記スポット位置スキャナは、光源とコリメートレンズとを備えており、
     前記スポット位置スキャナはさらに、前記光源と前記コリメートレンズの一方を前記コリメートレンズの光軸と垂直な面に沿った方向に変位させる第一の変位アクチュエータと、前記光源と前記コリメートレンズの他方を前記コリメートレンズの光軸に沿った方向に変位させる第二の変位アクチュエータとを備えており、
     前記第一の変位アクチュエータと前記第二の変位アクチュエータは共に、前記スポット走査コントローラによって制御される、請求項10に記載の原子間力顕微鏡。
  12.  前記スポット位置スキャナは、光源とコリメートレンズとを備えており、
     前記スポット位置スキャナはさらに、前記光源と前記コリメートレンズのどちらか一方である変位対象を変位させる二つの変位アクチュエータを備えており、前記二つの変位アクチュエータの一方は、前記コリメートレンズの光軸と垂直な面に沿った方向に前記変位対象を変位させる第一の変位アクチュエータであり、前記二つの変位アクチュエータの他方は、前記コリメートレンズの光軸に沿った方向に前記変位対象を変位させる第二の変位アクチュエータであり、
     前記第一の変位アクチュエータと前記第二の変位アクチュエータは共に、前記スポット走査コントローラによって制御される、請求項10に記載の原子間力顕微鏡。
  13.  前記スポット位置スキャナは、光源とコリメートレンズとを備えており、
     前記スポット位置スキャナはさらに、前記検出光出射器から出射される前記検出光を前記集光レンズに向けて反射するミラーと、前記ミラーの角度を変化させる回転アクチュエータと、前記光源と前記コリメートレンズの一方を前記コリメートレンズの光軸に沿った方向に変位させる変位アクチュエータを備え、
     前記回転アクチュエータと前記変位アクチュエータは共に、前記スポット走査コントローラによって制御される、請求項10に記載の原子間力顕微鏡。
  14.  前記スポット位置スキャナは、光源とコリメートレンズとを備えており、
     前記スポット位置スキャナはさらに、前記光源と前記コリメートレンズのどちらか一方を前記コリメートレンズの光軸と垂直な面に沿った方向と前記コリメートレンズの光軸に沿った方向の両方の成分から合成される方向に変位させる変位アクチュエータを備えており、
     前記変位アクチュエータは、前記スポット走査コントローラによって制御される、請求項10に記載の原子間力顕微鏡。
  15.  探針を有するカンチレバーを用いて試料の物理情報を得る原子間力顕微鏡であって、
     XY可動台と、
     前記XY可動台をXY平面に平行な面内でXY走査させるXYスキャナと、
     前記XY可動台に固定端が保持され、自由端に前記カンチレバーを保持し、前記カンチレバーを前記XY平面に垂直なZ軸に沿ってZ走査させるZスキャナと、
     前記カンチレバーの変位を光学的に検出する光学式変位センサとを備えており、前記光学式変位センサは、前記XY可動台に保持された集光レンズを含んでおり、前記集光レンズは、入射する検出光を集光し、集束されたスポットを有する検出光を生成し、生成された前記検出光を前記カンチレバーに照射することで前記カンチレバー上に照射エリアを生成し、さらに、
     前記集光レンズに入射する前記検出光を生成し、生成された前記検出光を前記集光レンズに向けて出射する検出光出射器と、
     前記検出光出射器に含まれたスポット位置スキャナと、
     前記スポット位置スキャナをZ走査に応じて制御するスポット走査コントローラとを備えており、
     前記スポット位置スキャナは、Z走査に応じて、前記カンチレバーに対して前記スポットを変位させる、原子間力顕微鏡。
  16.  前記スポット位置スキャナは、前記集光レンズに向けて出射される前記検出光の前記集光レンズに対する出射角度を変化させる、請求項15に記載の原子間力顕微鏡。
  17.  前記スポット位置スキャナは、光源とコリメートレンズとを備えており、
     前記スポット位置スキャナはさらに、前記光源を前記コリメートレンズに対して前記コリメートレンズの光軸と垂直な面に沿って変位させる第一の変位アクチュエータと、前記コリメートレンズを前記光源に対して前記コリメートレンズの光軸と垂直な面に沿って変位させる第二の変位アクチュエータとの少なくとも一方を備えており、
     前記第一の変位アクチュエータと前記第二の変位アクチュエータは共に、前記スポット走査コントローラによって制御される、請求項16に記載の原子間力顕微鏡。
  18.  前記スポット位置スキャナは、光源とコリメートレンズとを備えており、
     前記スポット位置スキャナはさらに、前記検出光出射器から出射される前記検出光を前記集光レンズに向けて反射するミラーと、前記ミラーの角度を変化させる回転アクチュエータを備え、
     前記回転アクチュエータは、前記スポット走査コントローラによって制御される、請求項16に記載の原子間力顕微鏡。
  19.  前記スポット位置スキャナは、さらに、Z走査に応じて、前記集光レンズに向けて出射される前記検出光の拡がり角度を変化させる、請求項16に記載の原子間力顕微鏡。
  20.  前記スポット位置スキャナは、光源とコリメートレンズとを備えており、
     前記スポット位置スキャナはさらに、前記光源と前記コリメートレンズの一方を前記コリメートレンズの光軸と垂直な面に沿った方向に変位させる第一の変位アクチュエータと、前記光源と前記コリメートレンズの他方を前記コリメートレンズの光軸に沿った方向に変位させる第二の変位アクチュエータとを備えており、
     前記第一の変位アクチュエータと前記第二の変位アクチュエータは共に、前記スポット走査コントローラによって制御される、請求項19に記載の原子間力顕微鏡。
  21.  前記スポット位置スキャナは、光源とコリメートレンズとを備えており、
     前記スポット位置スキャナはさらに、前記光源と前記コリメートレンズのどちらか一方である変位対象を変位させる二つの変位アクチュエータを備え、前記二つの変位アクチュエータの一方は、前記コリメートレンズの光軸と垂直な面に沿った方向に前記変位対象を変位させる第一の変位アクチュエータであり、前記二つの変位アクチュエータの他方は、前記コリメートレンズの光軸に沿った方向に前記変位対象を変位させる第二の変位アクチュエータであり、
     前記第一の変位アクチュエータと前記第二の変位アクチュエータは共に、前記スポット走査コントローラによって制御される、請求項19に記載の原子間力顕微鏡。
  22.  前記スポット位置スキャナは、光源とコリメートレンズとを備えており、
     前記スポット位置スキャナはさらに、前記検出光出射器から出射される前記検出光を前記集光レンズに向けて反射するミラーと、前記ミラーの角度を変化させる回転アクチュエータと、前記光源と前記コリメートレンズの一方を前記コリメートレンズの光軸に沿った方向に変位させる変位アクチュエータを備えており、
     前記回転アクチュエータと前記変位アクチュエータは共に、前記スポット走査コントローラによって制御される、請求項19に記載の原子間力顕微鏡。
  23.  前記スポット位置スキャナは、光源とコリメートレンズとを備えており、
     前記スポット位置スキャナはさらに、前記光源と前記コリメートレンズのどちらか一方を前記コリメートレンズの光軸と垂直な面に沿った方向と前記コリメートレンズの光軸に沿った方向の両方の成分から合成される方向に変位させる変位アクチュエータを備えており、
     前記変位アクチュエータは、前記スポット走査コントローラによって制御される、請求項19に記載の原子間力顕微鏡。
PCT/JP2016/086900 2016-12-12 2016-12-12 原子間力顕微鏡 WO2018109803A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086900 WO2018109803A1 (ja) 2016-12-12 2016-12-12 原子間力顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086900 WO2018109803A1 (ja) 2016-12-12 2016-12-12 原子間力顕微鏡

Publications (1)

Publication Number Publication Date
WO2018109803A1 true WO2018109803A1 (ja) 2018-06-21

Family

ID=62558198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086900 WO2018109803A1 (ja) 2016-12-12 2016-12-12 原子間力顕微鏡

Country Status (1)

Country Link
WO (1) WO2018109803A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040169A1 (en) * 2021-02-03 2022-08-10 Oxford Instruments Asylum Research, Inc. Automated optimization of afm light source positioning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234994A (ja) * 1999-02-16 2000-08-29 Jeol Ltd 走査プローブ顕微鏡におけるカンチレバー変位測定方法
JP2000517433A (ja) * 1996-09-06 2000-12-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 小さな入射ビームスポットを生成するための原子間力顕微鏡
US20070220958A1 (en) * 2006-03-21 2007-09-27 Veeco Instruments Inc. Optical detection alignment/tracking method and apparatus
JP2012185066A (ja) * 2011-03-07 2012-09-27 Olympus Corp 走査機構および走査型プローブ顕微鏡
JP2015505617A (ja) * 2012-01-31 2015-02-23 インフィニテシマ リミテッド ビーム走査システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000517433A (ja) * 1996-09-06 2000-12-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 小さな入射ビームスポットを生成するための原子間力顕微鏡
JP2000234994A (ja) * 1999-02-16 2000-08-29 Jeol Ltd 走査プローブ顕微鏡におけるカンチレバー変位測定方法
US20070220958A1 (en) * 2006-03-21 2007-09-27 Veeco Instruments Inc. Optical detection alignment/tracking method and apparatus
JP2012185066A (ja) * 2011-03-07 2012-09-27 Olympus Corp 走査機構および走査型プローブ顕微鏡
JP2015505617A (ja) * 2012-01-31 2015-02-23 インフィニテシマ リミテッド ビーム走査システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040169A1 (en) * 2021-02-03 2022-08-10 Oxford Instruments Asylum Research, Inc. Automated optimization of afm light source positioning
US11644478B2 (en) 2021-02-03 2023-05-09 Oxford Instruments Asylum Research, Inc. Automated optimization of AFM light source positioning

Similar Documents

Publication Publication Date Title
US6229607B1 (en) Fine movement mechanism unit and scanning probe microscope
JP2020005005A (ja) アライメントセンサーとビーム測定センサーを備えている荷電粒子リソグラフィシステム
JPH06300542A (ja) 2次元レーザパターンによる形状特徴抽出装置および2次元レーザパターン発生装置
US7333191B2 (en) Scanning probe microscope and measurement method using the same
JP5911365B2 (ja) 複合型顕微鏡
JP2007324045A (ja) 電子顕微鏡装置およびブレーキ機構
JP5305650B2 (ja) 走査型プローブ顕微鏡用変位検出機構およびこれを用いた走査型プローブ顕微鏡
US20080087820A1 (en) Probe control method for scanning probe microscope
KR101198178B1 (ko) 고속 및 고정밀 원자힘 현미경
WO2018109803A1 (ja) 原子間力顕微鏡
US7388199B2 (en) Probe manufacturing method, probe, and scanning probe microscope
JP6552043B2 (ja) シート照明顕微鏡
JP2024053081A (ja) 顕微鏡システム及びこの顕微鏡システムを用いた試料の観察方法
JP2007003246A (ja) 走査形プローブ顕微鏡
US9519005B2 (en) Scanning mechanism and scanning probe microscope
JP5913818B2 (ja) 走査機構および走査型プローブ顕微鏡
JP2006329704A (ja) 走査型プローブ顕微鏡
JP5055607B2 (ja) 荷電粒子ビーム描画装置を用いた荷電粒子ビーム描画方法
US11598788B2 (en) Measuring method for measuring heat distribution of specific space using SThM probe, method and device for detecting beam spot of light source
US10564181B2 (en) Atomic force microscope with optical guiding mechanism
JP2007139557A (ja) 複合型顕微鏡
WO2023042444A1 (ja) 走査型プローブ顕微鏡
JP3033663B2 (ja) 多次元極微小変位計測方法とその装置
US9003561B1 (en) Device and method for measuring distribution of atomic resolution deformation
CN116735562A (zh) 一种三维动态显微成像系统、方法及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP