WO2018108038A1 - 摆线液压马达及其配流支撑板的制造方法 - Google Patents

摆线液压马达及其配流支撑板的制造方法 Download PDF

Info

Publication number
WO2018108038A1
WO2018108038A1 PCT/CN2017/115326 CN2017115326W WO2018108038A1 WO 2018108038 A1 WO2018108038 A1 WO 2018108038A1 CN 2017115326 W CN2017115326 W CN 2017115326W WO 2018108038 A1 WO2018108038 A1 WO 2018108038A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic motor
front cover
motor according
hole
support
Prior art date
Application number
PCT/CN2017/115326
Other languages
English (en)
French (fr)
Inventor
王志生
张智敏
Original Assignee
镇江大力液压马达股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611144517.3A external-priority patent/CN106523264A/zh
Priority claimed from CN201611144518.8A external-priority patent/CN107061139A/zh
Priority claimed from CN201611181155.5A external-priority patent/CN106762385A/zh
Priority claimed from CN201710009159.3A external-priority patent/CN106762387A/zh
Application filed by 镇江大力液压马达股份有限公司 filed Critical 镇江大力液压马达股份有限公司
Publication of WO2018108038A1 publication Critical patent/WO2018108038A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C2/00Rotary-piston engines
    • F03C2/22Rotary-piston engines of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth- equivalents than the outer member

Definitions

  • the invention relates to the technical field of hydraulic transmission, in particular to a cycloidal hydraulic motor which converts hydraulic energy to mechanical energy, and a manufacturing method of a flow distribution support plate in a cycloidal hydraulic motor.
  • the cycloidal hydraulic motor is a commonly used hydraulic drive device. It is a low-speed and high-torque motor. It has the advantages of small size, large unit power density, high efficiency, wide speed range, etc. It has been widely used, and it has been improved with the development of industry and agriculture. Will be more extensive.
  • the basic structure of such a device is that the body shell or the back cover is provided with a liquid inlet port and a return port, and one end is provided with a cycloidal pin wheel engagement pair and a flow distribution mechanism, and the flow distribution mechanism can be placed before or after the cycloid pin wheel meshing pair.
  • the front valve on the side of the body shell
  • the rear side is a plane distribution flow
  • the other end is equipped with an output shaft.
  • the rotor of the cycloidal pinion pair is meshed with the external gear at one end of the linkage shaft via an internal spline, and the other end of the linkage shaft is coupled to the output shaft.
  • the flow distribution mechanism communicates the inlet port with the extended engagement cavity of the cycloidal pin wheel pair, and connects the contraction chamber of the cycloidal pin wheel pair with the return port.
  • the pressurized liquid enters the body shell or the back cover from the liquid inlet, it enters the extended meshing cavity formed by the meshing pin engagement pair, so that the volume thereof is continuously expanded, and the liquid in the contraction meshing chamber formed by the meshing pin engagement pair is Returning from the return port; during this process, the rotor of the cycloidal pinion pair is driven to rotate by the pressure difference between the extended meshing cavity and the contraction meshing cavity, and the rotation is transmitted to the output shaft output through the linkage shaft, thereby realizing the hydraulic energy direction. Conversion of mechanical energy.
  • the distribution mechanism is also rotated by the linkage shaft, and the switching state is continuously switched continuously, so that the conversion process can be continued. In this way, the motor can continuously output torque. It can be said that the cycloidal pinion pair and the flow distribution mechanism are the core of the hydraulic motor.
  • the current high-speed distribution cycloidal hydraulic motor basically adopts an integral mounting flange structure, such as the announcement number.
  • the Chinese patent document of CN203685462U is a typical integral wheel mounting flange structure of ⁇ 82.55, which is different from the typical SAE A standard ⁇ 82.55 stop only for the mounting surface, which will cause motor processing, assembly and maintenance. It is very inconvenient to replace.
  • a cycloidal hydraulic motor includes a body casing having a mounting flange face, an output shaft of a torque output disposed in the body casing, and a rotating stator pair and a distribution system fixed to the body casing by connecting bolts The fluid enters and exits the flow path and back cover of the motor cavity.
  • a method for manufacturing a flow distribution support plate in a cycloidal hydraulic motor includes the following steps:
  • post-weld finishing complete the subsequent semi-finishing, heat treatment, grinding to form the finished product.
  • a cycloidal hydraulic motor includes a body casing having a mounting flange surface, an output shaft structure of a torque output disposed in the body casing, and a rotating stator pair and a distribution system fixed to the body casing by connecting bolts And a flow passage and a rear cover for the oil to enter and exit the inner cavity of the motor;
  • the body casing has a mounting positioning opening, a front cover is disposed in the opening of the body casing, and the front cover is provided with a rotating shaft seal, the front cover
  • the front cover has a partial screw cylindrical head mounting hole, and the body shell has a partial screw cylindrical head mounting hole, and the cylindrical head mounting hole of the screw is provided by the front cover It is formed together with the mounting holes on the body shell.
  • a cycloidal hydraulic motor includes a body casing having a mounting flange surface, an output shaft structure of a torque output disposed in the body casing, and a rotating stator pair and a distribution system fixed to the body casing by connecting bolts And a flow passage and a rear cover for the oil to enter and exit the inner cavity of the motor;
  • the body shell has a mounting positioning stop, a front cover is disposed in the opening of the body shell, and the output shaft shaft diameter is arranged to support the front and rear
  • the support is a front needle bearing and a rear front needle bearing, and a thin wall retaining ring is arranged between the front and rear supports.
  • the front needle bearing body shell hole has a convex step at the mounting portion.
  • a cycloidal hydraulic motor comprising a body casing having a mounting flange surface, an output shaft structure of a torque output disposed in the body casing, and a rotating stator pair, a distribution system, and an oil fixed to the body casing by connecting bolts a flow passage and a rear cover for the liquid to enter and exit the inner cavity of the motor;
  • the multi-piece composite distribution support plate of the distribution system is a combination of at least 5 component plates having different passages, and the outer edge of the composition plate has at least 3 a positioning hole, a positioning pin is disposed in the positioning hole, a concave shape is disposed at both ends of the positioning pin, the positioning pin is made of a low carbon steel material, and the combination body is brazed and sealed by the bonding surfaces of the constituent plates In one.
  • the output shaft is installed in the body shell, and the body shell is connected with the rotating stator pair, the distribution system and the back cover by connecting bolts, and the cycloid hydraulic motor is made through the research on the overall layout structure of the cycloidal hydraulic motor.
  • the overall structure is compact, the movement is stable and reliable, and the positional accuracy of the motor can be ensured, the assembly and maintainability can be enhanced, and the processing difficulty of the motor parts can be reduced to meet the customer's use requirements.
  • FIG. 1 is a cross-sectional structural view showing a cycloidal hydraulic motor according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional structural view showing a cycloidal hydraulic motor according to a second embodiment of the present invention
  • FIG. 3 is a cross-sectional structural view of a cycloidal hydraulic motor according to a third embodiment of the present invention.
  • FIG. 4 is a cross-sectional structural view showing a cycloidal hydraulic motor according to a fourth embodiment of the present invention.
  • Figure 5 is a schematic view showing an embodiment of a mounting surface of a front cover in the cycloidal hydraulic motor shown in the first embodiment and the third embodiment;
  • Figure 6 is a schematic view showing a partial mounting hole of a cylindrical head on the front cover shown in Figure 5;
  • Figure 7 is a schematic view showing another embodiment of the mounting surface of the front cover in the cycloidal hydraulic motor shown in the first embodiment and the third embodiment;
  • Figure 8 is a schematic view showing an embodiment of a mounting surface of a front cover in the cycloidal hydraulic motor shown in the second embodiment
  • Figure 9 is a schematic view showing the partial mounting hole of the cylindrical head on the front cover shown in Figure 8.
  • Figure 10 is a schematic view showing another embodiment of the mounting surface of the front cover in the cycloidal hydraulic motor shown in the second embodiment;
  • Figure 11 is a schematic view showing a thin-walled retaining ring in the cycloidal hydraulic motor shown in the third embodiment
  • Figure 12 is a cross-sectional structural view showing the flow distribution support plate of the cycloidal hydraulic motor shown in Figure 4;
  • FIG. 13 is a schematic view of a front component plate of an embodiment of the flow distribution support plate shown in FIG. 12;
  • Figure 14 is a schematic view of a front composition plate of another embodiment of the flow distribution support plate shown in Figure 12;
  • FIG. 15 is a schematic view of a rear component plate of an embodiment of the flow distribution support plate shown in FIG. 13;
  • Figure 16 is a schematic view of a rear composition plate of another embodiment of the flow distribution support plate shown in Figure 14;
  • 10-body shell 11-output shaft; 12-connection bolt; 13-turn stator pair; 131-stator; 132-rotor; 133-needle; 14-distribution system; 15-back cover; Seal; 17-front cover; 18-screw; 19-front support; 20-rear support; 21-stop ring; 22-plane bearing; 23-O type seal ring; 24--thin wall stop ring; 31-hole block Circle; 32-high pressure shaft seal; 33-distribution support plate.
  • a basic structure of a cycloidal hydraulic motor according to the present invention in which the cycloidal hydraulic motor includes a body casing 10, an output shaft 11 of a torque output disposed in the body casing 10, and a body
  • the casing 10 is provided with a rotating stator pair 13 fixed by a connecting bolt 12, a distribution system 14 and a flow passage and a rear cover 15 for the oil to enter and exit the inner cavity of the motor.
  • the invention studies the overall structure of the cycloidal hydraulic motor, especially the large and medium-sized structure cycloidal hydraulic motor, so that the cycloid hydraulic motor has a compact overall structure, stable and reliable movement, and can also ensure the positional accuracy of the motor, enhance assembly and maintainability. Sex, reduce the difficulty of machining parts of motor parts to meet customer needs.
  • the body casing 10 has a mounting positioning opening, and a front cover 17 is disposed in the mouth of the body casing 10.
  • the front cover 17 is provided with a rotating shaft seal 16.
  • the front cover 17 is fixedly coupled to the body casing 10 by screws 18, the front cover 17 has a partial screw cylinder mounting hole, and the body casing 10 has a partial screw cylindrical mounting hole, and the cylindrical portion of the screw 18.
  • the head mounting holes are formed by the mounting holes on the front cover 17 and the body casing 10.
  • the output shaft 11 is axially disposed to define the front support 19 and the rear support 20.
  • the front support 19 and the rear support 20 are a front needle bearing and a rear front needle bearing, and a thin wall retaining ring 24 is disposed between the front support 19 and the rear support 20, and the front needle bearing body shell 10 hole is installed. There are raised steps.
  • the front support 19 and the rear support 20 are located on the shoulder of the output shaft 11, and the front support 19 and the rear support 20 are provided with needle bearings of the same mounting size, and the front support 19 is located at the spline position of the output shaft 11.
  • the front support 19 and the rear support 20 are mounted on the front and rear bearing holes in the body casing 10, and the bearing holes are provided with front and rear needle bearing limit holes.
  • the front support 19 and the rear support 20 are disposed at the front and rear ends of the output shaft 11, the front support 19 is a full complement roller bearing, and the rear support 20 is a needle bearing.
  • one end of the front cover 17 is a convex step, one end of the step abuts against the front support 19 on the output shaft 11, and the front support 19 uses a cylindrical roller bearing.
  • the cylindrical roller bearing is comprised of a cylindrical roller and a support frame that is mounted within the machined recess of the support frame.
  • the front support 19 is provided with a retaining ring 31 for the hole.
  • a high pressure shaft seal 32 for rotationally sealing the inner bore of the body casing 10 and the output shaft 11 is disposed between the front support 19 and the rear support 20.
  • the outer circumference of the front cover 17 is gap-fitted with the inner hole of the body casing 10.
  • the front cover 17 has a flat end, and the plane is fixedly connected to the body casing 10 by screws 18, and the plane passes through the retaining ring 21 and The planar bearing 22 abuts against the shoulder of the output shaft 11.
  • the outer end of the inner hole of the body casing 10 is provided with a ring hole, and the ring hole and the front cover 17 form a cavity facing the inner cavity and a sealing ring is installed, and the sealing ring is an O-ring 23 .
  • the ring hole is located at the outer circumferential surface of the retaining ring 21 at the shoulder of the output shaft 11.
  • the stepped round surface of the front cover 17 is gap-fitted with the inner hole of the body casing 10, and a ring groove is disposed in the inner hole of the body casing 10, and the O-ring 23 is mounted in the ring groove.
  • the multi-piece composite distribution support plate 33 of the distribution system is a combination of at least five component plates having different passages, and the outer edge of the composition plate has at least three positioning holes, and the positioning holes are arranged
  • the positioning pin has a concave shape at both ends of the positioning pin, the positioning pin is made of low carbon steel material, and the combined body is integrally formed by brazing and sealing joint surfaces of the constituent plates.
  • the rotor 132 of the rotary stator pair 13 is provided with a distribution groove and a passage
  • the distribution support plate 33 has three layers of passages, and the outermost single passage on the distribution support plate 33 is misaligned with the innermost single passage.
  • the channel on the rotor 132 is eccentrically moved to realize a part of the innermost layer of a single channel communicating with the inner cavity, and the channel on the rotor 132 is also eccentrically moved to realize another part of the innermost layer, and the single channel communicates with the single layer of the intermediate layer, and the distribution support plate 33 is the most
  • the outer channel of the outer layer realizes high and low pressure transformation through the eccentric motion of the rotor 132, and the high and low pressure oil of the outer and outer channels of the outer layer simultaneously drives the movement of the rotating stator cavity.
  • At least one opening hole is provided in the outer circumference of the constituent plate, and the opening hole is close to the connecting bolt hole constituting the plate.
  • the locating pin distribution circle is the same as the connecting bolt hole distribution circle.
  • the rotating shaft seal 16 disposed between the front cover 17 and the output shaft 11 is a skeleton shaft seal.
  • the thin-walled retaining ring 24 is of an open tubular shape with at least three openings.
  • the thin-walled retaining ring 24 is formed by powder metallurgy process.
  • the cylindrical head partial mounting hole of the front cover 17 exceeds half of the required mounting hole of the cylindrical head.
  • the cylindrical head partial mounting hole surface of the front cover 17 exceeds the mounting hole of the screw 18.
  • the cylindrical head partial mounting hole of the front cover 17 is milled.
  • the mounting holes of the cylindrical head of the screw 18 are equally divided odd-numbered.
  • the mounting holes of the cylindrical head of the screw 18 are equally divided into seven.
  • the mounting holes of the cylindrical head of the screw 18 are equally divided evenly.
  • the mounting holes of the cylindrical head of the screw 18 are evenly spaced and replaced by 8 equal parts.
  • the invention also provides a method for manufacturing a flow distribution support plate 33 in a high-speed distribution cycloidal hydraulic motor, comprising the following steps:
  • post-weld finishing complete the subsequent semi-finishing, heat treatment, grinding to form the finished product.
  • the brazing method is automatically carried out, and a mesh belt type continuous brazing furnace is mainly used, which is mainly composed of a preheating zone, a heating and holding zone, a cooling zone, and a gas protection end of the inlet and outlet.
  • the temperature increase rate of the heating step is controlled to be 22 ° C to 28 ° C per minute.
  • the holding temperature is maintained at a high temperature of 1120 ° C to 1140 ° C above the melting point of the reducing gas, or maintaining a temperature between 1120 ° C and 1140 ° C above the melting point temperature.
  • the different phases of the solid are 55 minutes.
  • the present invention provides a cycloidal hydraulic motor, thereby improving the positional accuracy of the motor stop having the front cover 17 and the reliability of the seal by the innovation of the front cover 17 and its sealing structure while improving the motor output shaft 11 and its bearing.
  • the cycloidal hydraulic motor of the present invention can also improve the positional accuracy of the motor stop having the front cover 17 by the innovation of the front cover 17 and its sealing structure, the reliability of the seal, the maintainability of the skeleton shaft seal, and the reinforced bearing. Assembly and maintainability, reducing the difficulty of machining the motor parts.
  • the body casing 10 has a positioning and positioning opening.
  • the front cover 17 is disposed in the opening of the body casing 10.
  • the front cover 17 is provided with a rotating shaft seal 16, and the front cover 17 is fixedly connected to the body casing 10 by screws 18.
  • the front cover 17 has a partial screw 18 cylinder
  • the head mounting hole has a partial screw cylindrical mounting hole on the body casing 10.
  • the cylindrical head mounting hole of the screw 18 is formed by the mounting hole on the front cover 17 and the body casing 10.
  • the invention provides a cycloidal hydraulic motor, which improves the installation of the motor bearing and the output shaft 11 through the innovation of the front cover 17 and its sealing structure, improves the positional accuracy of the motor stop having the front cover 17, and the reliability of the sealing,
  • the maintainability of the skeleton shaft seal enhances the assembly disassembly and maintainability of the motor as a whole, and reduces the processing difficulty of the motor parts.
  • the body casing 10 has a positioning and positioning opening
  • a front cover 17 is disposed in the opening of the body casing 10
  • the front and rear supports 20 are disposed on the output shaft 11 and the front and rear supports 20 are front needle bearings and rear front needle bearings.
  • the front and rear supports 20 are provided with a thin wall retaining ring 24, and the front needle bearing body shell 10 has a convex step at the mounting portion.
  • a high-speed distribution cycloid hydraulic motor of the embodiment has a SAE A-type standard ⁇ 82.55 mounting stop, and the basic structure includes a body shell 10 having a mounting flange surface, and an output shaft 11 with a torque output disposed in the body casing 10
  • the body shell 10 is integrally connected by the rotating stator pair 13 and the rear cover 15 fixed by the connecting bolt 12, and the fluid passage into and out of the motor cavity forms a closed cavity; the body shell 10
  • the front end has a flange surface mounted by the motor and a mounting and positioning stop of the motor, that is, a ⁇ 82.55 mounting opening or a mounting opening close to the ⁇ 82.55 size, and the positioning positioning opening is used as a part of the body casing 10 to ensure the installation positioning.
  • the front cover 17 is disposed in the mounting and positioning opening of the body casing 10, the front cover 17 is provided with a rotating shaft seal 16, and the front cover 17 is provided with a screw 18
  • the front cover 17 has a partial screw cylindrical head mounting hole, and the body shell 10 also has a partial screw cylindrical head mounting hole.
  • the cylindrical head mounting hole of the screw 18 is Mounting holes on the front cover 17 and the body casing 10 Formation.
  • the rotating shaft seal 16 disposed between the front cover 17 and the output shaft 11 is a skeleton shaft seal
  • the front support 19 and the rear support 20 are provided on the shoulder of the output shaft 11, and the front support 19 and
  • the rear support 20 is a front and rear bearing
  • the front and rear bearings adopt a front needle bearing and a rear needle bearing of the same mounting size
  • the length of the front needle bearing is greater than the length of the rear needle bearing
  • the front needle bearing is at the output
  • the inner spline position of the shaft 11 is set, the front and rear bearings are mounted on the front and rear bearing holes in the body casing 10, and the bearing holes are provided with front and rear needle bearing limit holes, front needle bearing and rear needle bearing They are mounted from the two directions of the body casing 10, respectively, so that the output shaft 11 can be mounted from the front end of the body casing 10 or the rear end of the body casing 10 when the motor is mounted.
  • the diameter of the front and rear needle bearing limiting holes is smaller than the diameter of the body casing
  • the outer circumference of the front cover 17 is gap-fitted with the body shell hole of the body shell 10 (ie, the inner hole of the body shell 10).
  • One end of the front cover 17 is disposed in a plane, and the plane of the front cover 17 passes through the screw.
  • 18 is fixedly coupled to the body casing 10, the plane is axially restrained by the retaining ring 21 and the plane bearing 22 against the shoulder of the output shaft 11, and the outer end of the body shell 10 is provided with a ring a hole, the ring hole and the front cover 17 form a cavity facing the inside of the motor, and an O-ring 23 is mounted in the cavity for cavity sealing, and the O-ring 23 faces the outer circumference of the retaining ring 21, The O-ring 23 seals the internal cavity of the motor.
  • the mounting hole of the cylindrical head of the screw 18 is composed of a partial mounting hole of the cylindrical head of the front cover 17 and a partial mounting hole of the cylindrical head on the positioning end of the body casing 10, and the body shell 10 is installed.
  • the cylindrical head partial mounting hole on the positioning end is only for the cylindrical head mounting space of the screw 18, and the cylindrical head of the screw 18 abuts against the cylindrical head partial mounting hole of the front cover 17 and is integrally fixed with the body shell 10;
  • the partial mounting hole of the cylindrical head of the front cover 17 is shown in the schematic diagram of the screw hole structure of the front cover of the front cover, and is formed by milling.
  • the partial mounting holes are oddly distributed, for example, the partial mounting holes are uniformly distributed in 7 equal parts.
  • the partial mounting hole is replaced by a 9-part uniform cloth.
  • the partial mounting hole of the cylindrical head of the front cover 17 exceeds half of the required mounting hole of the cylindrical head.
  • the partial mounting hole surface of the cylindrical head of the front cover 17 exceeds the installation of the screw 18. The holes help to secure the mounting of the screw 18.
  • the mounting holes of the cylindrical head of the screw 18 are evenly distributed, for example, the partial mounting holes are equally divided into 6 equal parts, for example, the partial mounting holes are replaced by 8 equal divisions.
  • the test proves that the above embodiment is very cleverly solved by the conventional SAE A type standard ⁇ 82.55 mounting opening or the non-standard mounting opening close to the ⁇ 82.55 size, which adopts the outer circle positioning of the front cover 17, It simplifies the motor structure and enhances the assemblability and maintainability of the motor.
  • the present invention may have other embodiments, such as an improvement in the outer circumference of the front cover 17 using a conventional cycloidal hydraulic motor, and the like. Any technical solution formed by equivalent replacement or equivalent transformation falls within the protection scope of the present invention.
  • a cycloidal hydraulic motor of the present invention has a SAE A-type standard ⁇ 82.55 mounting stop, and the basic structure includes a body casing 10 having a mounting flange surface, and an output shaft 11 in which the torque output is disposed in the body casing 10
  • the body casing 10 is fixedly connected by a connecting bolt 12 to connect the rotating stator pair 13, the distribution system 14 and the rear cover 15 into one body, and the fluid passage of the oil into and out of the motor cavity forms a closed cavity.
  • the front end of the body casing 10 has a motor-mounted flange surface and a mounting and positioning stop of the motor, that is, a ⁇ 82.55 mounting positioning stop or a mounting positioning stop close to the ⁇ 82.55 size, and a positioning and positioning opening as a body shell
  • the front cover 17 is disposed in the mounting positioning stop of the body casing 10, and the front cover 17 is provided with the rotating shaft seal 16,
  • the front cover 17 is integrally fixed with the body shell 10 by screws 18, the front cover 17 has a partial screw cylinder mounting hole, and the body shell 10 also has a partial screw cylinder mounting hole.
  • the cylindrical head mounting hole of the screw 18 is formed by the mounting hole on the front cover 17 and the body casing 10.
  • the mounting hole of the cylindrical head of the screw 18 is mounted by the cylindrical head partial mounting hole of the front cover 17 and the body casing 10.
  • the partial mounting holes of the cylindrical head on the positioning end are combined, and the partial mounting hole of the cylindrical head on the positioning end of the body shell 10 is only for the cylindrical head mounting space of the screw 18, and the cylindrical head of the screw 18 abuts against the front cover
  • the cylindrical head of the 17 is partially mounted on the hole and integrally fixed with the body shell 10;
  • the partial mounting hole of the cylindrical head of the front cover 17 is as shown in the schematic diagram of the screw hole of the front cover of the front cover, which is formed by milling and is partially installed. The holes are evenly distributed.
  • the partial mounting holes are equally divided into 8 equal parts, or 6 equal parts are uniformly replaced.
  • the partial mounting holes of the cylindrical head of the front cover 17 exceed half of the required mounting holes of the cylindrical head, and the front cover
  • the partial mounting hole surface of the cylindrical head of 17 exceeds the mounting hole of the screw 18.
  • the mounting holes of the cylindrical head of the screw 18 are oddly distributed.
  • the partial mounting holes are equally divided into 9 equal parts, for example, the partial mounting holes are replaced by 7 equal divisions.
  • one end of the front cover 17 is provided as a convex step, and one end of the step abuts against a front bearing cylindrical roller bearing on the output shaft 11, and the stepped round surface is engaged with the inner hole of the body casing 10.
  • a ring groove is arranged in the inner hole of the body shell 10, and an O-ring 23 is mounted on the ring groove to seal the internal cavity of the motor.
  • the front cylindrical roller bearing here is the front support 19.
  • the rotating shaft seal 16 disposed between the front cover 17 and the output shaft 11 is a skeleton shaft seal
  • the front support 19 is a cylindrical roller bearing
  • the cylindrical roller bearing is composed of a cylindrical roller and a support frame
  • Cylindrical rollers are mounted in the machined grooves of the support frame which are carburized and quenched by low carbon alloy steel to form the support raceways of the cylindrical roller bearings.
  • the present invention may have other embodiments, such as an improvement in the outer circumference of the front cover 17 using a conventional shaft-aligned cycloidal hydraulic motor, and the like. Any technical solution formed by equivalent replacement or equivalent transformation falls within the protection scope of the present invention.
  • FIG. 3 The basic structure of a body-shell positioning high-speed distribution cycloidal hydraulic motor having a front cover according to the present invention is shown in FIG. 3. The present invention will be further described in detail below with reference to FIG.
  • a body shell 10 positioning high-speed distribution cycloid hydraulic motor having a front cover 17 of the present embodiment has a SAE A-type standard ⁇ 82.55 mounting stop (or proximity), and includes a body shell 10 having a mounting flange surface.
  • the body casing 10 has a mounting positioning opening, a front cover 17 is disposed in a circular surface of the mounting positioning opening of the body casing 10, and the output shaft 11 is provided with a front support 19 and a rear support 20
  • the front support 19 and the rear support 20 are a front needle bearing and a rear front needle bearing, and a thin wall retaining ring 24 is disposed between the front support 19 and the rear support 20, and the inner diameter of the body casing 10 is installed in the front needle bearing.
  • the front end has a convex step, and the step can axially limit the front needle bearing body.
  • the outer circular surface of the front cover 17 and the mounting hole of the body casing 10 are radially constrained by a clearance fit.
  • One end of the front cover 17 is a plane, and the plane is fixedly connected to the body shell 10 by screws 18 .
  • the plane passes through the retaining ring 21 and the planar bearing 22
  • the output shaft 11 is axially restrained against the shoulder of the output shaft 11; the front end of the front needle roller bearing body mounting hole of the body casing 10 is provided with a ring hole, and the ring hole and the front cover 17 are provided.
  • the plane forms a cavity facing the inner cavity and is mounted with an O-ring 23, and an O-ring 23 is mounted for cavity sealing, and the raised step intelligently solves the space for the O-ring 23 of the cavity seal.
  • the effective thread pitch space of the screw 18 is ensured that the output shaft 11 is rotated and sealed with a reasonable space of ⁇ 35, ⁇ 38.1 shaft diameter, and the effective wall thickness of the torque transmitting portion of the output shaft 11.
  • the rotating shaft seal 16 disposed between the front cover 17 and the output shaft 11 is a skeleton shaft seal, and the front cover 17 is fixedly coupled to the body shell 10 by screws 18, as shown in FIG. 5 and FIG.
  • the front cover 17 has a cylindrical head mounting hole with a partial screw, and the body casing 10 also has a partial screw cylindrical mounting hole.
  • the cylindrical head mounting hole of the screw 18 is provided on the front cover 17 and the body casing 10.
  • the mounting holes are formed together, so that the ⁇ 82.55 mounting opening of the SAE A type standard can be skillfully set, and the outer circular surface of the front cover 17 is solved as a positioning mounting stop.
  • the front needle bearing is the front support 19 and the rear needle bearing is the rear support 20.
  • the front needle bearing and the rear needle bearing are successively mounted from the rear end direction of the body casing 10, and the thin wall retaining ring 24 disposed between the front support 19 and the needle bearing of the rear support 20 is an open tubular shape.
  • the opening of the thin-walled retaining ring 24 is designed at least three places, and the thin-walled retaining ring 24 is formed by a powder metallurgy process, which reduces the weight of the motor and reduces the cost of parts.
  • the arrangement of the front cover 17 of the present invention solves the problem caused by the one-way installation of the output shaft 11 without the front cover 17 structure, so that it can be bidirectionally mounted from both ends of the body casing 10, and the rotary shaft seal is solved. 16 installation and maintenance problems.
  • the test proves that the above embodiment is very cleverly solved by the conventional SAE A type standard ⁇ 82.55 mounting opening or the non-standard mounting opening close to the ⁇ 82.55 size, which adopts the outer circle positioning of the front cover 17,
  • the ingenious design of the body casing 10 with the front cover 17 simplifies the motor structure and enhances the assemblability of the motor and its maintainability.
  • the invention may have other embodiments, such as improvements in the radial positioning of the front cover 17 in different ways, and the like. Any technical solution formed by equivalent replacement or equivalent transformation falls within the protection scope of the present invention.
  • a high-speed distribution cycloidal hydraulic motor of the present embodiment includes a body casing 10 having a mounting flange surface, an output shaft 11 of a torque output disposed in the body casing 10, and a connection with the body casing 10 by a connecting bolt 12.
  • the body casing 10 is provided with a wide width of the oil port surface and a width of 50 mm to 60 mm, and the rotating stator pair 13 It is composed of a stator 131, a rotor 132 and pin teeth 133.
  • the distribution system is composed of a rotor 132 and a distribution support plate 33.
  • the distribution support plate 33 is a multi-piece composite distribution support plate 33.
  • the assembly, the multi-piece composite distribution support plate 33 of the distribution support plate 33 is a combination of parts having at least 5 constituent plates having different passages, as shown in FIG. 13 and FIG.
  • a positioning pin is disposed in the positioning hole, and both ends of the positioning pin are provided with a concave shape, and the positioning pin is made of low carbon steel
  • the material is soft and the material is integrally formed by brazing and sealing the joint surfaces of the constituent plates.
  • the outer edge of the component plate of the distribution support plate 33 has seven uniformly positioned positioning holes, and positioning pins are disposed in the positioning holes.
  • the outer circumference of the component plate is provided with at least one open hole near the connection bolt hole of the component plate, and the purpose of the opening hole is as an assembly of the flow distribution support plate 33 in assembly and use thereof
  • the positioning pin distribution circle is the same as the distribution bolt hole distribution circle.
  • a positioning pin is disposed on the coordinate axis as shown in FIGS. 13 to 16.
  • the rotor 132 of the rotating stator pair is provided with a distribution groove and an oil passage, and at the same time, the distribution groove and the oil passage form a distribution system with the oil passage of the distribution support plate 33, as shown in FIG. 14 and FIG.
  • the rear component plate of the distribution support plate 33 has three layers of channels, and the outermost single channel on the distribution support plate 33 is misaligned with the innermost single channel, and the upper channel of the rotor 132 passes the eccentric motion.
  • a part of the innermost layer of the single channel communicates with the inner cavity, and at the same time, the eccentric motion of the upper portion of the rotor 132 through the rotating stator pair 13 also realizes that another portion of the innermost layer of the single channel communicates with the single layer of the intermediate layer, the distribution supporting plate
  • the outermost single channel of 33 achieves a high and low pressure shift by the eccentric motion of the rotor 132, and the high and low pressure oil of the outermost single channel simultaneously drives the continuous switching movement of the rotating stator cavity.
  • the front and rear ends of the output shaft 11 are provided with front and rear bearings, that is, a front support 19 and a rear support 20, the front bearing adopts a full complement roller bearing, and the rear bearing adopts a needle bearing, the cylindrical roller
  • the column bearing is composed of a cylindrical roller mounted in a machined support frame groove, the front bearing mounting position is provided with a hole retaining ring 31, and the front bearing support frame
  • the width is wider than the normal motor and the width is up to 25mm. It enhances the radial force bearing capacity of the motor's shaft extension, especially the wheel flange connection. It also contributes to the axial force bearing capacity.
  • the output shaft 11 will have a slight
  • the axial yaw displacement and the strengthening of the motor structure are especially suitable for the adaptability of the local driving force of the traveling drive.
  • a high-pressure shaft seal 32 for rotationally sealing the inner bore of the body casing 10 and the output shaft 11 is disposed on the body casing 10 between the front bearing and the rear bearing. It can be understood that the body shell hole refers to the inner hole of the body shell 10.
  • the brazing method of the multi-sheet composite distribution support plate 33 of the present invention comprises the following steps:
  • each component plate is stamped and formed according to the shape of the part, or precision laser cutting is used to form the concave shape at both ends of the positioning pin.
  • the material of the positioning pin is made of low carbon steel, which helps the installation of the positioning pin.
  • the fixed connecting plate is machined to have a reserved positioning pin position, an inner hole and a copper injection hole, and the bolts are prepared to be properly tightened to prepare a suitable copper powder material;
  • the selected equipment can be used to make the mesh belt heating furnace or vacuum heating furnace, under the condition of reducing gas protection or vacuum, gradually heating to a temperature above the melting point of the copper powder, and forming a solid at the joint surface of each group of constituent plates -
  • the liquid-solid phase is kept at a temperature of 40-60 minutes, then gradually drops to a temperature of 250 ° C, leaves the protective environment, enters the room temperature environment, and after completely cooling, disassembles the clamping tool;
  • post-weld finishing complete the subsequent semi-finishing of the outer circle, inner hole and end face, heat treatment, grinding the two ends to form the finished product.
  • the applicant developed a mesh belt type continuous brazing furnace which realizes the process, and the device mainly consists of a preheating zone, a heating and holding zone and a cooling zone, and passes through the workpiece.
  • the working chamber connects the three zones together with the gas protection end of the inlet and outlet.
  • the heating and heating is achieved under the condition of reducing gas protection or vacuum, reaching the highest welding temperature in about 40 minutes, and gradually increasing the temperature to between 1120 ° C and 1140 ° C at a temperature of 22 ° C to 28 ° C per minute to achieve copper powder melting. temperature.
  • the holding temperature is a solid-liquid-solid phase difference between the adjacent group of constituent plates and the copper powder between the adjacent group of constituent plates under the conditions of reducing gas protection or vacuum and exceeding 1140 ° C to 1140 ° C exceeding the melting point temperature. 55 minutes.

Abstract

一种摆线液压马达,包括具有安装法兰面的体壳(10),安置在所述体壳内的扭矩输出的输出轴(11),以及与所述体壳采用连接螺栓(12)固连的转定子副(13)、配流系统(14)和油液进出马达内腔的流道和后盖(15),以及该马达中配流支撑板(33)的制造方法。通过对摆线液压马达的整体布局结构研究,使得摆线液压马达整体结构紧凑,运动平稳可靠,而且,还能保证马达的位置精度,增强装配与可维修性,降低马达零件加工工艺难度,从而满足客户使用需求。

Description

摆线液压马达及其配流支撑板的制造方法
相关申请
本发明申请:要求2016年12月13日申请的,申请号为201611144517.3,名称为“一种高速配流摆线液压马达”的中国专利申请的优先权,在此将其全文引入作为参考;要求2016年12月13日申请的,申请号为201611144518.8,名称为“一种摆线液压马达”的中国专利申请的优先权,在此将其全文引入作为参考;要求2017年01月06日申请的,申请号为201710009159.3,名称为“一种具有前盖的体壳定位高速配流摆线液压马达”的中国专利申请的优先权,在此将其全文引入作为参考;要求2016年12月20日申请的,申请号为201611181155.5,名称为“一种高速配流摆线液压马达及配流支撑板的制造方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及液压传动技术领域,特别涉及一种液压能向机械能转换的摆线液压马达,以及一种摆线液压马达中配流支撑板的制造方法。
背景技术
摆线液压马达是常用的液压驱动装置,是一种低速大扭矩马达,具有体积小、单位功率密度大、效率高、转速范围宽等优点,得到了广泛应用,而随着工农业发展水平提高应用将更加广泛。
此类装置的基本结构是体壳或后盖上制有进液口和回流口,一端装有摆线针轮啮合副和配流机构,配流机构可以放置在摆线针轮啮合副前或后,一般在前(体壳一侧)为轴阀配流,在后(后盖一侧)为平面配流,另一端装有输出轴。摆线针轮啮合副的转子通过内花键与联动轴一端的外齿轮啮合,联动轴的另一端与输出轴传动衔接。工作时,配流机构使进液口与摆线针轮副的扩展啮合腔连通,并使摆线针轮副的收缩腔与回流口连通。结果,压力液体从进液口进入体壳或后盖后,进入摆线针轮啮合副形成的扩展啮合腔,使其容积不断扩大,同时摆线针轮啮合副形成的收缩啮合腔中液体则从回流口回流;在此过程中,摆线针轮啮合副的转子被扩展啮合腔与收缩啮合腔的压力差驱使旋转,并将此转动通过联动轴传递到输出轴输出,从而实现液压能向机械能的转换。与此同时,配流机构也被联动轴带动旋转,周而复始的不断切换连通状态,使转换过程得以延续下去。这样,马达就可以连续的输出扭矩,可以说摆线针轮啮合副以及配流机构是液压马达的核心。
据申请人了解,目前的高速配流摆线液压马达基本采用整体式安装法兰结构,如公告号 CN203685462U的中国专利文献是典型的Φ82.55止口的整体式车轮安装法兰结构,与典型的SAE A型标准的Φ82.55止口仅仅是安装面不同,会造成马达加工、装配及其维修更换等十分不便。
发明内容
基于此,有必要针对马达加工、装配及其维修更换等十分不便的问题,提供一种便于马达加工、装配及其维修更换等操作的摆线液压马达。
上述目的通过以下实施方式实现:
一种摆线液压马达,包括具有安装法兰面的体壳,安置在所述体壳内的扭矩输出的输出轴,以及与所述体壳采用连接螺栓固连的转定子副、配流系统和油液进出马达内腔的流道和后盖。
一种摆线液压马达中配流支撑板的制造方法,包括以下步骤:
1)、准备——将各个组成板按照零件形状冲压成形,将定位销两端加工出内凹形状,将固定连接板加工出预留定位销位置、内孔和注铜粉孔,准备紧固螺栓,准备合适的铜粉材料;2)、装配——按一组组成板开口孔的位置采用定位销将其固连在一起,将两固定连接板放置在一组组成板上面和下面,采用压机将一组组成板压实,并用紧固螺栓固定好两固定连接板,同时将定位销的内凹形状铆接好;
3)、加入连接剂——将适量铜粉放置在一组组成板的组成的流道合适的位置;
4)、复合配流支撑板的组合体焊合:将经过以上步骤的一组组成板放置在铜焊设备中,在还原性气体保护或真空条件下,逐渐升温至铜粉熔点以上的温度,每一组组成板的结合面处形成固-液-固的不同相体,保持温度40-60分钟后,逐渐降低温度,进入室温环境;
5)、焊后精加工——完成后续半精加工,热处理,磨削形成成品。
一种摆线液压马达,包括具有安装法兰面的体壳,安置在所述体壳内的扭矩输出的输出轴结构,以及与所述体壳采用连接螺栓固连的转定子副、配流系统和油液进出马达内腔的流道和后盖;所述体壳具有安装定位止口,所述体壳的止口内设置了前盖,所述前盖设置了旋转轴封,所述前盖采用螺钉与体壳固连在一起,所述的前盖上具有部分螺钉圆柱头安装孔,所述的体壳上具有部分螺钉圆柱头安装孔,所述螺钉的圆柱头安装孔由前盖上和体壳上的安装孔共同形成。
一种摆线液压马达,包括具有安装法兰面的体壳,安置在所述体壳内的扭矩输出的输出轴结构,以及与所述体壳采用连接螺栓固连的转定子副、配流系统和油液进出马达内腔的流道和后盖;所述体壳具有安装定位止口,所述体壳的止口内设置了前盖,所述的输出轴轴径设置前后支撑,所述前后支撑为前滚针轴承和后前滚针轴承,所述前后支撑间设置薄壁挡环, 所述前滚针轴承体壳孔安装处有凸起台阶。
一种摆线液压马达,包括具有安装法兰面的体壳,安置在体壳内的扭矩输出的输出轴结构,以及与所述体壳采用连接螺栓固连的转定子副、配流系统和油液进出马达内腔的流道和后盖;所述的配流系统的多片式复合配流支撑板是至少5块组成板具有不同通道的零件组合体,所述组成板的外沿上至少有3个定位孔,所述定位孔中设置了定位销,所述定位销两端设置有内凹形状,所述定位销采用低碳钢材质,所述组合体由组成板各结合面铜焊密封连接成一体。
采用上述技术方案后,本发明的有益效果是:
本发明的摆线液压马达,输出轴安装于体壳中,并且体壳采用连接螺栓联结转定子副、配流系统和后盖,通过对摆线液压马达的整体布局结构研究,使得摆线液压马达整体结构紧凑,运动平稳可靠,而且,还能保证马达的位置精度,增强装配与可维修性,降低马达零件加工工艺难度,从而满足客户使用需求。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为本发明实施例一的摆线液压马达的剖视结构示意图;
图2为本发明实施例二的摆线液压马达的剖视结构示意图;
图3为本发明实施例三的摆线液压马达的剖视结构示意图;
图4为本发明实施例四的摆线液压马达的剖视结构示意图;
图5为实施例一和实施例三所示的摆线液压马达中前盖的安装面一实施方式的示意图;
图6为图5所示的前盖上圆柱头局部安装孔的示意图;
图7为实施例一和实施例三所示的摆线液压马达中前盖的安装面另一实施方式的示意图;
图8为实施例二所示的摆线液压马达中前盖的安装面一实施方式的示意图;
图9为图8所示的前盖上圆柱头局部安装孔的示意图;
图10为实施例二所示的摆线液压马达中前盖的安装面另一实施方式的示意图;
图11为实施例三所示的摆线液压马达中薄壁挡环的示意图;
图12为图4所示的摆线液压马达中配流支撑板的剖视结构示意图;
图13为图12所示的配流支撑板一实施方式的前组成板示意图;
图14为图12所示的配流支撑板另一实施方式的前组成板示意图;
图15为图13所示的配流支撑板一实施方式的后组成板示意图;
图16为图14所示的配流支撑板另一实施方式的后组成板示意图;
其中:10-体壳;11-输出轴;12-连接螺栓;13-转定子副;131-定子;132-转子;133-针齿;14-配流系统;15-后盖;16-旋转轴封;17-前盖;18-螺钉;19-前支撑;20-后支撑;21-挡圈;22-平面轴承;23-O型密封圈;24-薄壁挡环;31-孔用挡圈;32-高压轴封;33-配流支撑板。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本发明的摆线液压马达进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
参见图1至图4,本发明一种摆线液压马达的基本结构,在本发明中,摆线液压马达包括体壳10,安置在体壳10内的扭矩输出的输出轴11,以及与体壳10采用连接螺栓12固连的转定子副13、配流系统14和油液进出马达内腔的流道和后盖15。本发明通过对摆线液压马达整体结构研究,尤其是大中型结构摆线液压马达,使得摆线液压马达整体结构紧凑,运动平稳可靠,而且,还能保证马达的位置精度,增强装配与可维修性,降低马达零件加工工艺难度,从而满足客户使用需求。
在其中一个实施例中,体壳10具有安装定位止口,体壳10的止口内设置了前盖17。
在其中一个实施例中,前盖17设置了旋转轴封16。
在其中一个实施例中,前盖17采用螺钉18与体壳10固连在一起,前盖17上具有部分螺钉圆柱头安装孔,体壳10上具有部分螺钉圆柱头安装孔,螺钉18的圆柱头安装孔由前盖17上和体壳10上的安装孔共同形成。
在其中一个实施例中,输出轴11轴径设置前支撑19与后支撑20。
在其中一个实施例中,前支撑19与后支撑20为前滚针轴承和后前滚针轴承,前支撑19与后支撑20间设置薄壁挡环24,前滚针轴承体壳10孔安装处有凸起台阶。
在其中一个实施例中,前支撑19与后支撑20位于输出轴11轴肩上,前支撑19与后支撑20采用相同安装尺寸的滚针轴承,前支撑19位于输出轴11内花键位置,前支撑19与后支撑20安装在体壳10中前后设置的轴承孔,轴承孔设置了前后滚针轴承限位孔。
在其中一个实施例中,前支撑19与后支撑20设置于的输出轴11前后两端,前支撑19采用满装滚柱轴承,后支撑20采用滚针轴承。
在其中一个实施例中,前盖17的一端为凸出的台阶,台阶的一端抵靠输出轴11上的前支撑19,前支撑19采用圆柱滚子轴承。
在其中一个实施例中,圆柱滚子轴承由圆柱滚子和支撑架组成,圆柱滚子安装在支撑架的机械加工的凹槽内。
在其中一个实施例中,前支撑19安装位置设置了孔用挡圈31。
在其中一个实施例中,前支撑19与后支撑20之间设置对体壳10内孔和输出轴11进行旋转密封的高压轴封32。
在其中一个实施例中,前盖17外圆与体壳10内孔间隙配合限位,前盖17的一端为平面,平面通过螺钉18与体壳10固连在一起,平面通过挡圈21和平面轴承22抵靠输出轴11的轴肩。
在其中一个实施例中,体壳10内孔外端设置环孔,环孔与前盖17平面形成朝向内腔的腔体并安装密封圈,密封圈为O型密封圈23。
在其中一个实施例中,环孔位于输出轴11的轴肩处挡圈21外圆面位置。
在其中一个实施例中,前盖17的台阶圆面与体壳10内孔进行间隙配合定位,体壳10内孔内设置环槽,环槽安装O型密封圈23。
在其中一个实施例中,配流系统的多片式复合配流支撑板33是至少5块组成板具有不同通道的零件组合体,组成板的外沿上至少有3个定位孔,定位孔中设置了定位销,定位销两端设置有内凹形状,定位销采用低碳钢材质,组合体由组成板各结合面铜焊密封连接成一体。
在其中一个实施例中,转定子副13的转子132上设置了配流槽与通道,配流支撑板33上具有三层通道,配流支撑板33上最外层单个通道与最内层单个通道错位沟通,转子132上通道通过偏心运动实现一部分最内层单个通道与内腔沟通,同时转子132上通道通过偏心运动也实现另一部分最内层单个通道与中间层单个通道沟通,配流支撑板33上最外层单个通道通过转子132的偏心运动就实现了高低压变换,最外层单个通道高低压变换的高低压油液同时驱动转定子腔体运动。
在其中一个实施例中,组成板的外圆上至少设置有1个开口孔,开口孔靠近组成板的连接螺栓孔。
在其中一个实施例中,定位销分布圆与连接螺栓孔分布圆相同。
在其中一个实施例中,前盖17与输出轴11之间设置的旋转轴封16为骨架轴封。
在其中一个实施例中,薄壁挡环24为开口型管状,开口至少有3处。
在其中一个实施例中,薄壁挡环24采用粉末冶金工艺成形制造。
在其中一个实施例中,前盖17的圆柱头局部安装孔超过圆柱头所需安装孔的一半。
在其中一个实施例中,前盖17的圆柱头局部安装孔面超过螺钉18的安装孔。
在其中一个实施例中,前盖17的圆柱头局部安装孔采用铣削加工而成。
在其中一个实施例中,螺钉18的圆柱头的安装孔为等分奇数均布。
在其中一个实施例中,螺钉18的圆柱头的安装孔为7等分均布。
在其中一个实施例中,螺钉18的圆柱头的安装孔为等分偶数均布。
在其中一个实施例中,螺钉18的圆柱头的安装孔为偶数均布替代为8等分。
本发明还提供一种高速配流摆线液压马达中配流支撑板33的制造方法,包括以下步骤:
1)、准备——将各个组成板按照零件形状冲压成形,将定位销两端加工出内凹形状,将固定连接板加工出预留定位销位置、内孔和注铜粉孔,准备紧固螺栓,准备合适的铜粉材料;
2)、装配——按一组组成板开口孔的位置采用定位销将其固连在一起,将两固定连接板放置在一组组成板上面和下面,采用压机将一组组成板压实,并用紧固螺栓固定好两固定连接板,同时将定位销的内凹形状铆接好;
3)、加入连接剂——将适量铜粉放置在一组组成板的组成的流道合适的位置;
4)、复合配流支撑板33的组合体焊合:将经过以上步骤的一组组成板放置在铜焊设备中,在还原性气体保护或真空条件下,逐渐升温至铜粉熔点以上的温度,每一组组成板的结合面处形成固-液-固的不同相体,保持温度40-60分钟后,逐渐降低温度,进入室温环境;
5)、焊后精加工——完成后续半精加工,热处理,磨削形成成品。
在其中一个实施例中,铜焊方法自动进行,采用一种网带式连续铜焊炉,主要由预热区、加热保温区、冷却区三段组成,以及进出口的气体保护端。
在其中一个实施例中,加热步骤的升温速度控制在每分钟升温22℃-28℃。
在其中一个实施例中,保持温度是在还原性气体保护或真空及超过超过熔点温度的1120℃-1140℃高温条件下,保持相邻一组组成板与其之间的铜粉处于固-液-固的不同相体55分钟。
本发明提供提出一种摆线液压马达,从而通过前盖17及其密封结构的创新,同时改善马达输出轴11及其轴承,提升具有前盖17的马达止口的位置精度,密封的可靠性、骨架轴封的可维修性,增强轴承的装配与可维修性,降低马达零件的加工工艺难度等。并且,本发明的摆线液压马达还能通过前盖17及其密封结构的创新,提升具有前盖17的马达止口的位置精度,密封的可靠性、骨架轴封的可维修性,增强轴承的装配与可维修性,降低马达零件的加工工艺难度等。
可选地,体壳10具有安装定位止口,体壳10的止口内设置了前盖17,前盖17设置了旋转轴封16,前盖17采用螺钉18与体壳10固连在一起,前盖17上具有部分螺钉18圆柱 头安装孔,体壳10上具有部分螺钉圆柱头安装孔,螺钉18的圆柱头安装孔由前盖17上和体壳10上的安装孔共同形成。
本发明提供一种摆线液压马达,通过前盖17及其密封结构的创新,同时改善马达轴承与输出轴11的安装,提升具有前盖17的马达止口的位置精度,密封的可靠性、骨架轴封的可维修性,增强马达整体的装配拆卸性与可维修性,降低马达零件的加工工艺难度等。
可选地,体壳10具有安装定位止口,体壳10的止口内设置了前盖17,输出轴11轴径设置前后支撑20,前后支撑20为前滚针轴承和后前滚针轴承,前后支撑20间设置薄壁挡环24,前滚针轴承体壳10孔安装处有凸起台阶。
具体详述如下:
实施例一
本发明一种摆线液压马达基本构成参见图1所示,结合上述图1实施例,对本发明再进行如下详细描述。本实施例的一种高速配流摆线液压马达具有SAE A型标准的Φ82.55安装止口,基本结构包括具有安装法兰面的体壳10,体壳10内设置了扭矩输出的输出轴11,体壳10采用连接螺栓12固连的转定子副13、配流系统14和后盖15连接为一体,并将油液进出马达内腔的流道形成封闭的腔体;所述体壳10的前端具有马达安装的法兰面及其马达的安装定位止口,即Φ82.55安装止口或接近Φ82.55尺寸的安装止口,安装定位止口作为体壳10的一部分,可以保证安装定位止口的位置精度以及安装定位止口强度;同时,所述体壳10的安装定位止口内设置了前盖17,所述前盖17设置了旋转轴封16,所述前盖17采用螺钉18与体壳10固连为一体,所述的前盖17上具有部分螺钉圆柱头安装孔,所述的体壳10上也具有部分螺钉圆柱头安装孔,所述螺钉18的圆柱头安装孔由前盖17上和体壳10上的安装孔共同形成。
如图1所示,所述前盖17与输出轴11之间设置的旋转轴封16为骨架轴封,所述输出轴11的轴肩上设置前支撑19和后支撑20,前支撑19和后支撑20为前后轴承,所述前后轴承采用相同安装尺寸的前滚针轴承和后滚针轴承,所述前滚针轴承的长度大于后滚针轴承的长度,所述前滚针轴承位于输出轴11的设置的内花键位置,所述的前后轴承安装在体壳10中前后设置的轴承孔,所述轴承孔设置了前后滚针轴承限位孔,前滚针轴承和后滚针轴承分别从体壳10的两个方向安装,使得马达安装时输出轴11可以从体壳10的前端安装,也可以从体壳10的后端安装。较佳地,前后滚针轴承限位孔的直径小于体壳孔的直径。
所述前盖17的外圆与体壳10的体壳孔(即为体壳10内孔)间隙配合限位,所述前盖17的一端设置为平面,所述前盖17的平面通过螺钉18与体壳10固连在一起,所述平面通过挡圈21和平面轴承22抵靠输出轴11的轴肩,进行轴向限位;所述体壳10孔外端设置环 孔,所述环孔与前盖17平面形成朝向马达内部的腔体,腔体内安装O型密封圈23进行腔体密封,所述O型密封圈23正对着挡圈21的外圆面,所述O型密封圈23对马达内部腔体进行密封。
如图5所示,所述螺钉18的圆柱头的安装孔是由前盖17的圆柱头局部安装孔和体壳10安装定位止口端上的圆柱头局部安装孔共同组成,体壳10安装定位止口端上的圆柱头局部安装孔仅仅是为了螺钉18的圆柱头安装空间,螺钉18的圆柱头抵靠在前盖17的圆柱头局部安装孔上并与体壳10固连为一体;所述的前盖17的圆柱头局部安装孔如图6前盖螺钉孔结构示意图所示,采用铣削加工而成,局部安装孔为奇数均布,如局部安装孔为7等分均布,可采用局部安装孔为9等分均布替换,所述前盖17的圆柱头局部安装孔超过圆柱头所需安装孔的一半,所述前盖17的圆柱头局部安装孔面超过螺钉18的安装孔,有助于螺钉18的安装可靠。
如图7所示,螺钉18的圆柱头的安装孔为偶数均布,如局部安装孔为6等分均布,如局部安装孔为8等分均布替换。
试验证明,由于上述实施例十分巧妙的解决了传统SAE A型标准的Φ82.55安装止口或接近Φ82.55尺寸的非标安装止口的采用前盖17外圆定位而带来的问题,及其简化了马达结构,增强了马达的可装配性及其可维修性。除上述实施例外,本发明还可以有其他实施方式,例如传统的摆线液压马达的采用前盖17外圆定位的改进,等等。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。
实施例二
本发明一种摆线液压马达基本构成参见图2所示,结合图2对本发明再进行如下详细描述。本实施例的一种摆线液压马达具有SAE A型标准的Φ82.55安装止口,基本结构包括具有安装法兰面的体壳10,所述体壳10内安置了扭矩输出的输出轴11结构,所述体壳10采用连接螺栓12固连将转定子副13、配流系统14和后盖15连接为一体,并将油液进出马达内腔的流道形成封闭的腔体。所述体壳10的前端具有马达安装的法兰面及其马达的安装定位止口,即Φ82.55安装定位止口或接近Φ82.55尺寸的安装定位止口,安装定位止口作为体壳10的一部分,可以保证安装定位止口的位置精度以及安装定位止口强度;同时,所述体壳10的安装定位止口内设置了前盖17,所述前盖17设置了旋转轴封16,所述前盖17采用螺钉18与体壳10固连为一体,所述的前盖17上具有部分螺钉圆柱头安装孔,所述的体壳10上也具有部分螺钉圆柱头安装孔,所述螺钉18的圆柱头安装孔由前盖17上和体壳10上的安装孔共同形成。
如图8所示,螺钉18的圆柱头的安装孔是由前盖17的圆柱头局部安装孔和体壳10安装 定位止口端上的圆柱头局部安装孔共同组成,体壳10安装定位止口端上的圆柱头局部安装孔仅仅是为了螺钉18的圆柱头安装空间,螺钉18的圆柱头抵靠在前盖17的圆柱头局部安装孔上并与体壳10固连为一体;所述的前盖17的圆柱头局部安装孔如图9前盖螺钉孔结构示意图所示,采用铣削加工而成,局部安装孔为偶数均布,如局部安装孔为8等分均布,或6等分均布替换,所述前盖17的圆柱头局部安装孔超过圆柱头所需安装孔的一半,所述前盖17的圆柱头局部安装孔面超过螺钉18的安装孔。
如图10所示,螺钉18的圆柱头的安装孔为奇数均布,如局部安装孔为9等分均布,如局部安装孔为7等分均布替换。
如图2所示,所述前盖17的一端设置为凸出的台阶,台阶的一端抵靠输出轴11上的前轴承圆柱滚子轴承,所述台阶圆面与体壳10的内孔进行间隙配合定位,所述体壳10内孔内设置一环槽,环槽安装O型密封圈23,对马达内部腔体进行密封。可以理解的是,这里的前圆柱滚子轴承为前支撑19。
所述前盖17与输出轴11之间设置的旋转轴封16为骨架轴封,所述前支撑19采用圆柱滚子轴承,所述圆柱滚子轴承由圆柱滚子和支撑架组成,所述圆柱滚子安装在支撑架的机械加工的凹槽内,所述的支撑架由低碳合金钢经过渗碳淬火处理形成圆柱滚子轴承的支撑滚道。
试验证明,由于上述实施例十分巧妙的解决了传统SAE A型标准的Φ82.55安装止口或接近Φ82.55尺寸的非标安装止口的采用前盖17外圆定位而带来的问题。除上述实施例外,本发明还可以有其他实施方式,例如传统的轴配流摆线液压马达的采用前盖17外圆定位的改进,等等。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。
实施例三
本发明一种具有前盖的体壳定位高速配流摆线液压马达基本构成参见图3所示,结合图3,对本发明再进行如下详细描述。本实施例的一种具有前盖17的体壳10定位高速配流摆线液压马达具有SAE A型标准的Φ82.55安装止口(或接近尺寸),包括具有安装法兰面的体壳10,安置在体壳10内的扭矩输出的输出轴11,以及与所述体壳10采用连接螺栓12固连的转定子副13、配流系统14和油液进出马达内腔的流道和后盖15;所述体壳10具有安装定位止口,所述体壳10的安装定位止口圆面内设置了前盖17,所述的输出轴11轴径设置前支撑19和后支撑20,所述前支撑19和后支撑20为前滚针轴承和后前滚针轴承,所述前支撑19和后支撑20间设置薄壁挡环24,所述体壳10内孔径在前滚针轴承的安装处前端具有凸起台阶,台阶可以对前滚针轴承体进行轴向限位。
所述前盖17外圆面与体壳10的安装孔采用间隙配合进行径向限位,所述前盖17的一端为平面,所述平面通过螺钉18与体壳10固连在一起,所述平面通过挡圈21和平面轴承22 抵靠输出轴11的轴肩,对输出轴11进行轴向限位;所述体壳10的前滚针轴承体安装孔凸起台阶外端设置一环孔,所述环孔与前盖17平面形成一朝向内腔的腔体并安装O型密封圈23,安装O型密封圈23进行腔体密封,所述凸起台阶的巧妙的解决了腔体密封的O型密封圈23的设置空间,以螺钉18的有效螺纹间距空间,同时又保证了输出轴11旋转密封采用Φ35、Φ38.1轴径的合理空间,以及输出轴11扭矩传递部分的有效壁厚。
所述前盖17与输出轴11之间设置的旋转轴封16为骨架轴封,所述前盖17通过螺钉18与体壳10固连在一起,如图5和图7所示,所述的前盖17上具有部分螺钉的圆柱头安装孔,所述的体壳10上也具有部分螺钉圆柱头安装孔,所述螺钉18的圆柱头安装孔由前盖17上和体壳10上的安装孔共同形成,从而使得SAE A型标准的Φ82.55安装止口可以巧妙的设置上,解决了前盖17外圆面作为定位安装止口的不足。
可以理解的是,前滚针轴承为前支撑19,后滚针轴承为后支撑20。所述前滚针轴承和后滚针轴承从体壳10的后端方向先后安装,所述前支撑19与所述后支撑20的滚针轴承之间设置的薄壁挡环24为开口型管状,如图11所示,所述薄壁挡环24的开口至少设计了3处,所述薄壁挡环24采用粉末冶金工艺成形制造,减少了马达的重量,以及降低了零件成本。
本发明的所述前盖17的设置,解决了原无前盖17结构输出轴11的单向安装带来的问题,使得其可以从体壳10的两端进行双向安装,以及解决旋转轴封16安装维修难题。
试验证明,由于上述实施例十分巧妙的解决了传统SAE A型标准的Φ82.55安装止口或接近Φ82.55尺寸的非标安装止口的采用前盖17外圆定位而带来的问题,具有前盖17的体壳10定位的巧妙设计及其简化了马达结构,并增强了马达的可装配性及其可维修性。除上述实施例外,本发明还可以有其他实施方式,例如采用的前盖17不同方式径向定位的改进,等等。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。
实施例四
本发明一种高速配流摆线液压马达基本构成参见图4所示,结合图4对本发明再进行如下详细描述。本实施例的一种高速配流摆线液压马达包括具有安装法兰面的体壳10,安置在体壳10内的扭矩输出的输出轴11,以及与所述体壳10采用连接螺栓12固连的转定子副13、配流系统和油液进出马达内腔的流道和后盖15,所述体壳10设置的油口面的宽度宽,宽度达到50mm至60mm,所述的转定子副13由定子131、转子132和针齿133组成,所述的配流系统由转子132和配流支撑板33组成,如图12所示,所述的配流支撑板33是多片式复合配流支撑板33的组合体,所述的配流支撑板33的多片式复合配流支撑板33是至少5块组成板具有不同通道的零件组合体,如图13和图15所示,所述组成板的外沿上至少有3个定位孔,所述定位孔中设置了定位销,所述定位销两端设置有内凹形状,所述定位销采用低碳钢 材质材料,材质较软,所述组合体由组成板各结合面铜焊密封连接成一体。
如图14和图16所示,所述配流支撑板33的组成板的外沿上具有7个均布的定位孔,所述定位孔中设置了定位销。
所述组成板的外圆上至少设置有1个开口孔,所述开口孔靠近组成板的连接螺栓孔附近,所述开口孔的目的是作为配流支撑板33的组合体在装配及其使用中的显著标识,所述的定位销分布圆与连接螺栓孔分布圆相同,为了冲压模具的设计制造的便利,如图13至图16所示有一定位销设置在坐标轴上。
所述转定子副的转子132上设置了配流槽和油液通道,同时,所述的配流槽和油液通道与配流支撑板33的油液通道形成配流系统,如图14和图16所示,所述的配流支撑板33的后组成板上具有三层通道,所述的配流支撑板33上最外层单个通道与最内层单个通道错位沟通,所述的转子132上通道通过偏心运动实现一部分最内层单个通道与内腔沟通,同时所述的转子132上通道通过转定子副13的偏心运动也实现另一部分最内层单个通道与中间层单个通道沟通,所述的配流支撑板33上最外层单个通道通过转子132的偏心运动就实现了高低压变换,所述最外层单个通道高低压变换的高低压油液同时驱动转定子腔体不断的转换运动。
所述的输出轴11前后两端均设置有前后轴承,即为前支撑19与后支撑20,所述前轴承采用满装滚柱轴承,所述的后轴承采用滚针轴承,所述圆柱滚柱轴承由圆柱滚子和支撑架组成,所述圆柱滚子安装在机械加工的支撑架凹槽内,所述的前轴承安装位置设置了孔用挡圈31,所述的前轴承的支撑架宽度较通常马达宽,宽达25mm,加强马达的轴伸的径向力承受能力,尤其是车轮法兰连接方式的,同时也有利于轴向力的承受能力,输出轴11的会有轻微的轴向窜动位移,马达结构的加强尤其适合于行走驱动的局部受力的恶劣工况的适应能力。
所述前轴承与后轴承之间的体壳10上设置对体壳10内孔和输出轴11进行旋转密封的高压轴封32。可以理解的是,体壳孔是指体壳10内孔。
本发明多片式复合配流支撑板33的铜焊方法包括以下步骤:
1)、准备——将各个组成板按照零件形状冲压成形,或采用精密激光切割成形,将定位销两端加工出内凹形状,定位销的材料采用低碳钢,有助于定位销的安装,将固定连接板加工出具有预留定位销位置、内孔和注铜粉孔洞,准备适当紧固螺栓,准备合适的铜粉材料;
2)、装配——按一组组成板开口孔的位置采用定位销将其固连在一起,将两固定连接板放置在一组组成板上面和下面,采用压机将一组组成板压实,并用紧固螺栓固定好两固定连接板,同时将定位销的内凹形状铆接好,使得一组组成板的各个接触面获得良好的接触,并在焊合过程中可以一定时间段保持;
3)、加入连接剂——将适量铜粉放置在一组组成板的组成的流道合适的位置;
4)、复合配流支撑板33的组合体焊合:将经过以上步骤1-3的一组组成板放置在铜焊设 备中,选取的设备可以使网带加热炉或真空加热炉,在还原性气体保护或真空条件下,逐渐加热升温至铜粉熔点以上的温度,每一组组成板的结合面处形成固-液-固的不同相体,保持温度40-60分钟后,然后逐渐降至250℃温度,脱离保护环境,进入室温环境,完全冷却后,拆卸夹紧工装;
5)、焊后精加工——完成后续半精加工外圆、内孔和端面,热处理,磨削两端面形成成品。
为了实现铜焊方法自动进行以上工艺过程,申请人研制了实现工艺的一种网带式连续铜焊炉,该设备主要由预热区、加热保温区、冷却区三段组成,通过工件通过的工作腔体将三区连接起来,以及进出口的气体保护端。
所述加热升温是在还原性气体保护或真空条件下,大约在40分钟内达到焊接最高温度,以每分钟升温22℃-28℃速度逐渐升温至1120℃到1140℃之间,达到铜粉熔化温度。
所述保持温度是在还原性气体保护或真空及超过超过熔点温度的1120℃-1140℃高温条件下,保持相邻一组组成板与其之间的铜粉处于固-液-固的不同相体55分钟。
试验证明,本发明简化了马达配流支撑板33结构,提高了其多片式复合式接合面间的连接强度、密封可靠性,以及成品率大大提高,同时本发明马达提升了径向力的承受能力,等等。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (37)

  1. 一种摆线液压马达,其特征在于,包括具有安装法兰面的体壳,安置在所述体壳内的扭矩输出的输出轴,以及与所述体壳采用连接螺栓固连的转定子副、配流系统和油液进出马达内腔的流道和后盖。
  2. 根据权利要求1所述的摆线液压马达,其特征在于,所述体壳具有安装定位止口,所述体壳的止口内设置了前盖。
  3. 根据权利要求2所述的摆线液压马达,其特征在于,所述前盖设置了旋转轴封。
  4. 根据权利要求3所述的摆线液压马达,其特征在于,所述前盖采用螺钉与所述体壳固连在一起,所述的前盖上具有部分螺钉圆柱头安装孔,所述的体壳上具有部分螺钉圆柱头安装孔,所述螺钉的圆柱头安装孔由所述前盖上和所述体壳上的安装孔共同形成。
  5. 根据权利要求1至4任一项所述的摆线液压马达,其特征在于,所述的输出轴轴径设置前支撑与后支撑。
  6. 根据权利要求5所述的摆线液压马达,其特征在于,所述前支撑与所述后支撑为前滚针轴承和后前滚针轴承,所述前支撑与所述后支撑间设置薄壁挡环,所述前滚针轴承体壳孔安装处有凸起台阶。
  7. 根据权利要求5所述的摆线液压马达,其特征在于,所述前支撑与所述后支撑位于所述输出轴轴肩上,所述前支撑与所述后支撑采用相同安装尺寸的滚针轴承,所述前支撑位于输出轴内花键位置,所述的前支撑与所述后支撑安装在体壳中前后设置的轴承孔,所述轴承孔设置了前后滚针轴承限位孔。
  8. 根据权利要求5所述的摆线液压马达,其特征在于,所述前支撑与所述后支撑设置于所述的输出轴前后两端,所述前支撑采用满装滚柱轴承,所述的后支撑采用滚针轴承。
  9. 根据权利要求4或5所述的摆线液压马达,其特征在于,所述前盖的一端为凸出的台阶,所述台阶的一端抵靠所述输出轴上的前支撑,所述前支撑采用圆柱滚子轴承。
  10. 根据权利要求9所述的摆线液压马达,其特征在于,所述圆柱滚子轴承由圆柱滚子和支撑架组成,所述圆柱滚子安装在所述支撑架的机械加工的凹槽内。
  11. 根据权利要求10所述的摆线液压马达,其特征在于,所述的前支撑安装位置设置了孔用挡圈。
  12. 根据权利要求11所述的摆线液压马达,其特征在于,所述前支撑与所述后支撑之间设置对所述体壳内孔和所述输出轴进行旋转密封的高压轴封。
  13. 根据权利要求4、5或6所述的摆线液压马达,其特征在于,所述前盖外圆与所述体壳内孔间隙配合限位,所述前盖的一端为平面,所述平面通过螺钉与所述体壳固连在一起, 所述平面通过挡圈和平面轴承抵靠所述输出轴的轴肩。
  14. 根据权利要求13所述的配流摆线液压马达,其特征在于,所述体壳内孔外端设置环孔,所述环孔与所述前盖平面形成朝向内腔的腔体并安装密封圈,所述密封圈为O型密封圈。
  15. 根据权利要求14所述的摆线液压马达,其特征在于,所述环孔位于所述输出轴的轴肩处所述挡圈外圆面位置。
  16. 根据权利要求9所述的摆线液压马达,其特征在于,所述前盖的台阶圆面与所述体壳孔进行间隙配合定位,所述体壳孔内设置环槽,所述环槽安装O型密封圈。
  17. 根据权利要求1、8、9、11及12中任一项所述的摆线液压马达,其特征在于,所述的配流系统的多片式复合配流支撑板是至少5块组成板具有不同通道的零件组合体,所述组成板的外沿上至少有3个定位孔,所述定位孔中设置了定位销,所述定位销两端设置有内凹形状,所述定位销采用低碳钢材质,所述组合体由组成板各结合面铜焊密封连接成一体。
  18. 根据权利要求17所述的摆线液压马达,其特征在于,所述转定子副的转子上设置了配流槽与通道,所述的配流支撑板上具有三层通道,所述的配流支撑板上最外层单个通道与最内层单个通道错位沟通,所述的转子上通道通过偏心运动实现一部分最内层单个通道与内腔沟通,同时所述的转子上通道通过偏心运动也实现另一部分最内层单个通道与中间层单个通道沟通,所述的配流支撑板上最外层单个通道通过所述转子的偏心运动就实现了高低压变换,所述最外层单个通道高低压变换的高低压油液同时驱动转定子腔体运动。
  19. 根据权利要求18所述的摆线液压马达,其特征在于,所述组成板的外圆上至少设置有1个开口孔,所述开口孔靠近组成板的连接螺栓孔。
  20. 根据权利要求19所述的摆线液压马达,其特征在于,所述的定位销分布圆与所述连接螺栓孔分布圆相同。
  21. 根据权利要求14或16所述的摆线液压马达,其特征在于,所述前盖与所述输出轴之间设置的旋转轴封为骨架轴封。
  22. 根据权利要求21所述的摆线液压马达,其特征在于,所述薄壁挡环为开口型管状,所述开口至少有3处。
  23. 根据权利要求22所述的摆线液压马达,其特征在于,所述薄壁挡环采用粉末冶金工艺成形制造。
  24. 根据权利要求14或16所述的摆线液压马达,其特征在于,所述前盖的圆柱头局部安装孔超过圆柱头所需安装孔的一半。
  25. 根据权利要求24所述的摆线液压马达,其特征在于,所述前盖的圆柱头局部安装孔面超过螺钉的安装孔。
  26. 根据权利要求25所述的摆线液压马达,其特征在于,所述前盖的圆柱头局部安装孔 采用铣削加工而成。
  27. 根据权利要求26所述的摆线液压马达,其特征在于,所述螺钉的圆柱头的安装孔为等分奇数均布。
  28. 根据权利要求27所述的摆线液压马达,其特征在于,所述螺钉的圆柱头的安装孔为7等分均布。
  29. 根据权利要求26所述的摆线液压马达,其特征在于,所述螺钉的圆柱头的安装孔为等分偶数均布。
  30. 根据权利要求29所述的摆线液压马达,其特征在于,所述螺钉的圆柱头的安装孔为偶数均布替代为8等分。
  31. 一种摆线液压马达中配流支撑板的制造方法,其特征在于,包括以下步骤:
    1)、准备——将各个组成板按照零件形状冲压成形,将定位销两端加工出内凹形状,将固定连接板加工出预留定位销位置、内孔和注铜粉孔,准备紧固螺栓,准备合适的铜粉材料;
    2)、装配——按一组组成板开口孔的位置采用定位销将其固连在一起,将两固定连接板放置在一组组成板上面和下面,采用压机将一组组成板压实,并用紧固螺栓固定好两固定连接板,同时将定位销的内凹形状铆接好;
    3)、加入连接剂——将适量铜粉放置在一组组成板的组成的流道合适的位置;
    4)、复合配流支撑板的组合体焊合:将经过以上步骤的一组组成板放置在铜焊设备中,在还原性气体保护或真空条件下,逐渐升温至铜粉熔点以上的温度,每一组组成板的结合面处形成固-液-固的不同相体,保持温度40-60分钟后,逐渐降低温度,进入室温环境;
    5)、焊后精加工——完成后续半精加工,热处理,磨削形成成品。
  32. 根据权利要求31所述的制造方法,其特征在于,所述铜焊方法自动进行,采用一种网带式连续铜焊炉,主要由预热区、加热保温区、冷却区三段组成,以及进出口的气体保护端。
  33. 根据权利要求32所述的制造方法,其特征在于,所述加热步骤的升温速度控制在每分钟升温22℃-28℃。
  34. 根据权利要求32所述的制造方法,其特征在于,所述保持温度是在还原性气体保护或真空及超过超过熔点温度的1120℃-1140℃高温条件下,保持相邻一组组成板与其之间的铜粉处于固-液-固的不同相体55分钟。
  35. 一种摆线液压马达,其特征在于,包括具有安装法兰面的体壳,安置在所述体壳内的扭矩输出的输出轴结构,以及与所述体壳采用连接螺栓固连的转定子副、配流系统和油液进出马达内腔的流道和后盖;所述体壳具有安装定位止口,所述体壳的止口内设置了前盖,所述前盖设置了旋转轴封,所述前盖采用螺钉与体壳固连在一起,所述的前盖上具有部分螺 钉圆柱头安装孔,所述的体壳上具有部分螺钉圆柱头安装孔,所述螺钉的圆柱头安装孔由前盖上和体壳上的安装孔共同形成。
  36. 一种摆线液压马达,其特征在于,包括具有安装法兰面的体壳,安置在所述体壳内的扭矩输出的输出轴结构,以及与所述体壳采用连接螺栓固连的转定子副、配流系统和油液进出马达内腔的流道和后盖;所述体壳具有安装定位止口,所述体壳的止口内设置了前盖,所述的输出轴轴径设置前后支撑,所述前后支撑为前滚针轴承和后前滚针轴承,所述前后支撑间设置薄壁挡环,所述前滚针轴承体壳孔安装处有凸起台阶。
  37. 一种摆线液压马达,其特征在于,包括具有安装法兰面的体壳,安置在体壳内的扭矩输出的输出轴结构,以及与所述体壳采用连接螺栓固连的转定子副、配流系统和油液进出马达内腔的流道和后盖;所述的配流系统的多片式复合配流支撑板是至少5块组成板具有不同通道的零件组合体,所述组成板的外沿上至少有3个定位孔,所述定位孔中设置了定位销,所述定位销两端设置有内凹形状,所述定位销采用低碳钢材质,所述组合体由组成板各结合面铜焊密封连接成一体。
PCT/CN2017/115326 2016-12-13 2017-12-08 摆线液压马达及其配流支撑板的制造方法 WO2018108038A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201611144517.3A CN106523264A (zh) 2016-12-13 2016-12-13 一种高速配流摆线液压马达
CN201611144518.8 2016-12-13
CN201611144517.3 2016-12-13
CN201611144518.8A CN107061139A (zh) 2016-12-13 2016-12-13 一种摆线液压马达
CN201611181155.5 2016-12-20
CN201611181155.5A CN106762385A (zh) 2016-12-20 2016-12-20 一种高速配流摆线液压马达及配流支撑板制造方法
CN201710009159.3A CN106762387A (zh) 2017-01-06 2017-01-06 一种具有前盖的体壳定位高速配流摆线液压马达
CN201710009159.3 2017-01-06

Publications (1)

Publication Number Publication Date
WO2018108038A1 true WO2018108038A1 (zh) 2018-06-21

Family

ID=62557989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115326 WO2018108038A1 (zh) 2016-12-13 2017-12-08 摆线液压马达及其配流支撑板的制造方法

Country Status (1)

Country Link
WO (1) WO2018108038A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114932239A (zh) * 2022-06-01 2022-08-23 安徽皖南新维电机有限公司 一种加工电机定子机座两端止口的工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572983A (en) * 1969-11-07 1971-03-30 Germane Corp Fluid-operated motor
US6257853B1 (en) * 2000-06-05 2001-07-10 White Hydraulics, Inc. Hydraulic motor with pressure compensating manifold
CN1966971A (zh) * 2006-11-08 2007-05-23 镇江大力液压马达有限责任公司 高速配流摆线液压马达配流支撑板及其制造方法
CN101446286A (zh) * 2008-10-13 2009-06-03 王晓忻 模块式内啮合齿轮泵或马达
CN106523264A (zh) * 2016-12-13 2017-03-22 镇江大力液压马达股份有限公司 一种高速配流摆线液压马达
CN106762387A (zh) * 2017-01-06 2017-05-31 镇江大力液压马达股份有限公司 一种具有前盖的体壳定位高速配流摆线液压马达
CN106762385A (zh) * 2016-12-20 2017-05-31 镇江大力液压马达股份有限公司 一种高速配流摆线液压马达及配流支撑板制造方法
CN206319993U (zh) * 2016-12-13 2017-07-11 镇江大力液压马达股份有限公司 一种高速配流摆线液压马达
CN206319994U (zh) * 2016-12-13 2017-07-11 镇江大力液压马达股份有限公司 一种摆线液压马达
CN107061139A (zh) * 2016-12-13 2017-08-18 镇江大力液压马达股份有限公司 一种摆线液压马达
CN206458560U (zh) * 2017-01-06 2017-09-01 镇江大力液压马达股份有限公司 一种具有前盖的体壳定位高速配流摆线液压马达
CN206582058U (zh) * 2016-12-20 2017-10-24 镇江大力液压马达股份有限公司 一种高速配流摆线液压马达

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572983A (en) * 1969-11-07 1971-03-30 Germane Corp Fluid-operated motor
US6257853B1 (en) * 2000-06-05 2001-07-10 White Hydraulics, Inc. Hydraulic motor with pressure compensating manifold
CN1966971A (zh) * 2006-11-08 2007-05-23 镇江大力液压马达有限责任公司 高速配流摆线液压马达配流支撑板及其制造方法
CN101446286A (zh) * 2008-10-13 2009-06-03 王晓忻 模块式内啮合齿轮泵或马达
CN106523264A (zh) * 2016-12-13 2017-03-22 镇江大力液压马达股份有限公司 一种高速配流摆线液压马达
CN206319993U (zh) * 2016-12-13 2017-07-11 镇江大力液压马达股份有限公司 一种高速配流摆线液压马达
CN206319994U (zh) * 2016-12-13 2017-07-11 镇江大力液压马达股份有限公司 一种摆线液压马达
CN107061139A (zh) * 2016-12-13 2017-08-18 镇江大力液压马达股份有限公司 一种摆线液压马达
CN106762385A (zh) * 2016-12-20 2017-05-31 镇江大力液压马达股份有限公司 一种高速配流摆线液压马达及配流支撑板制造方法
CN206582058U (zh) * 2016-12-20 2017-10-24 镇江大力液压马达股份有限公司 一种高速配流摆线液压马达
CN106762387A (zh) * 2017-01-06 2017-05-31 镇江大力液压马达股份有限公司 一种具有前盖的体壳定位高速配流摆线液压马达
CN206458560U (zh) * 2017-01-06 2017-09-01 镇江大力液压马达股份有限公司 一种具有前盖的体壳定位高速配流摆线液压马达

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114932239A (zh) * 2022-06-01 2022-08-23 安徽皖南新维电机有限公司 一种加工电机定子机座两端止口的工艺

Similar Documents

Publication Publication Date Title
CN106670553B (zh) 行星减速式调节偏心量螺旋铣孔装置
CN204565130U (zh) 车铣复合主轴
CN103438119A (zh) 花键轴花键套代圆盘,穿行器连接电磁驱动离合器
WO2018108038A1 (zh) 摆线液压马达及其配流支撑板的制造方法
CN102927255A (zh) 一种行星齿轮传动装置及其装配方法
CN106762385A (zh) 一种高速配流摆线液压马达及配流支撑板制造方法
WO2019210625A1 (zh) 新型波发生器的谐波传动机构
CN109396720A (zh) 一种多工位真空焊接台
CN202937402U (zh) 径向支撑轴阀配流摆线液压马达
CN212857804U (zh) 一种全行程中空气动卡盘
CN209856312U (zh) 大扭矩低转速节能电机
CN101463792B (zh) 非圆齿轮行星轮系低速大扭矩液压马达
CN208178434U (zh) 一种新型主轴箱单元
CN206319994U (zh) 一种摆线液压马达
CN109441709B (zh) 一种紧凑型大扭矩抗污染齿轮液压马达
CN113775724B (zh) 一种商用车用增强液力缓速器
CN100455825C (zh) 高速配流摆线液压马达
CN206582058U (zh) 一种高速配流摆线液压马达
CN107061139A (zh) 一种摆线液压马达
CN113623340B (zh) 一种增强液力缓速器上的反制动力控制机构
CN202381250U (zh) 后轴输出平面配流摆线液压马达
CN211987279U (zh) 一种板框式压滤机
CN210152887U (zh) 一种转子间间隙可调整的转子泵
WO2018108039A1 (zh) 摆线液压马达
CN207953193U (zh) 一种高精度零背隙弧面凸轮机构传动的数控回转工作台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882042

Country of ref document: EP

Kind code of ref document: A1