WO2018105951A1 - 공기 청정 필터, 하이브리드 공기 청정 필터 및 공기 청정기 - Google Patents

공기 청정 필터, 하이브리드 공기 청정 필터 및 공기 청정기 Download PDF

Info

Publication number
WO2018105951A1
WO2018105951A1 PCT/KR2017/013927 KR2017013927W WO2018105951A1 WO 2018105951 A1 WO2018105951 A1 WO 2018105951A1 KR 2017013927 W KR2017013927 W KR 2017013927W WO 2018105951 A1 WO2018105951 A1 WO 2018105951A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
air
cross
filter medium
section
Prior art date
Application number
PCT/KR2017/013927
Other languages
English (en)
French (fr)
Inventor
유게세이로
후쿠오카다이스케
타케자와마나부
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020197006567A priority Critical patent/KR20190084242A/ko
Priority to US16/467,000 priority patent/US20190388904A1/en
Publication of WO2018105951A1 publication Critical patent/WO2018105951A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0032Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions using electrostatic forces to remove particles, e.g. electret filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0039Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices
    • B01D46/0041Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices for feeding
    • B01D46/0043Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices for feeding containing fixed gas displacement elements or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/50Means for discharging electrostatic potential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/09Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces at right angles to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/155Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/018Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0435Electret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0618Non-woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0654Support layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/30Means for generating a circulation of a fluid in a filtration system, e.g. using a pump or a fan
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/04Ionising electrode being a wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/06Ionising electrode being a needle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode with two or more serrated ends or sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/023Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Definitions

  • the present invention relates to a filter medium, an air purifier filter, a hybrid air purifier filter, and an air purifier.
  • the air cleaner filter used as the dust collector requires low pressure loss and high dust collection efficiency.
  • the pressure loss directly affects the air volume of the air cleaner, and the lower the pressure loss, the larger the air volume is obtained. Therefore, a low pressure loss and a high dust collection efficiency inevitably yield a high air cleaning capability.
  • the air cleaning filter needs to be replaced on a regular basis, and considering the cost and effort, it is preferable that the air cleaning capacity is maintained for a long time, that is, long life.
  • Japanese Unexamined Patent Publication No. 2010-142703 discloses a filter material composed of at least two layers of nonwoven fabric laminates, wherein a polyolefin-based nonwoven fabric is disposed on one layer and a polyester-based nonwoven fabric on the other layer.
  • An electrostatic filter medium is described which has an electret processed density of 0.10 to 0.20 g / cc and a laminated filter medium has a stiffness of 100 to 1500 mg.
  • Japanese Unexamined Patent Application Publication No. 2001-347119 discloses a filter having a plurality of flow paths formed of filter filters in which sidewalls disposed substantially parallel to the flow direction of the air flow are formed, and the sidewalls blocking adjacent flow paths are formed of a common filter filter material, At least one partition is formed in the flow direction of the flow path, and the air blocked by the partition flows into the adjacent flow path through the filter filter medium on the side wall, whereby air is filtered.
  • Japanese Unexamined Patent Application Publication No. 2011-152520 discloses a filter material obtained by laminating one or more layers of fine fiber nonwoven fabrics and one or more layers of reinforcing nonwoven fabrics, and a filter material having a curling degree of 0 to 80 mm.
  • Japanese Unexamined Patent Publication No. 2009-106824 discloses a melt blown nonwoven fabric composed of a single layer composed mainly of polyolefin and / or polyester, and has a weight of 80 to 140 g / m 2 and a thickness of 0.5 to 1.5 per unit area.
  • a non-woven fabric for an air filter is described, wherein the single layer has a fill factor gradient.
  • the substance passing through the air cleaning filter includes not only particulate matter but also oil, gas components and the like.
  • a mixture of particulate matter and oil adheres to a fiber having a small diameter it becomes a droplet-shaped deposition material, which causes a problem of clogging of voids, that is, clogging.
  • the initial performance is high, there is a problem that the pressure loss is increased, that is, the air volume is decreased early and the life is short.
  • One aspect of the present invention provides a filter medium for collecting suspended particulates in the air to purify the air and to realize high dust collection efficiency, low pressure loss and long life.
  • an air cleaning filter includes a filter material for cleaning air and a filter nonwoven fabric bonded to a support material for supporting the filter material, wherein the filter material has a resin fiber having an average fiber diameter of 3.6 ⁇ m or more and 16.5 ⁇ m or less. And a ratio of the weight per unit area and the average fiber diameter is 10 ⁇ 10 6 g / m 3 or more and 20 ⁇ 10 6 g / m 3 or less.
  • the filter medium may be composed of a resin fiber having an average fiber diameter of 4.0 ⁇ m or more and 15.0 ⁇ m or less.
  • the resin fibers constituting the filter medium may have at least one inflection point on the outer periphery of the cross section.
  • the resin fiber constituting the filter medium may be a polypropylene fiber having a cross-shaped cross section.
  • the support material may be composed of resin fibers, and the resin fibers may be composed of long fibers.
  • the resin fiber constituting the support member may have an inflection point at least one location on the outer circumference of the cross section.
  • the resin fiber constituting the support may be a polypropylene fiber having a cross-shaped cross section.
  • an air purifier includes an air cleaning filter including a filter material for cleaning air, a filter nonwoven fabric adhered to a support material for supporting the filter material, and a fan for generating air flow in the air cleaning filter.
  • the filter medium comprises a resin fiber having an average fiber diameter of 3.6 ⁇ m or more and 16.5 ⁇ m or less, and a ratio of the weight per unit area and the average fiber diameter of 10 ⁇ 10 6 g / m 3 or more and 20 ⁇ 10 6 g / m 3 It may be:
  • the filter medium may be 0.4 mm or more and 1.5 mm or less in the thinnest cross section.
  • the filter medium may be composed of a resin fiber having an average fiber diameter of 4.0 ⁇ m or more and 15.0 ⁇ m or less.
  • the resin fibers constituting the filter medium may have at least one inflection point on the outer periphery of the cross section.
  • the resin fiber constituting the filter medium may be a polypropylene fiber having a cross-shaped cross section.
  • the charging unit may further include a charging unit disposed at an upstream side of the air flow direction in the air cleaning filter to charge the suspended particulates flowing into the air cleaning filter.
  • the charging unit may include a high voltage electrode generating a corona discharge and an opposite electrode facing the high voltage electrode.
  • the filter nonwoven fabric may further include a bias electrode disposed between the filter nonwoven fabric to apply an electric field.
  • the high voltage electrode may include an electrode having any one of a wire shape, a needle shape, and a sawtooth shape.
  • a high dust collection efficiency, a low pressure loss, and a long life can be realized in a filter medium for collecting suspended fine particles in the air to clean the air.
  • FIG. 1 is a diagram illustrating an example of an air cleaner to which the first embodiment is applied.
  • FIG. 5A is a diagram showing the relationship between the average fiber diameter and the pressure loss when the weight / average fiber diameter per unit area is 20 ⁇ 10 6 g / m 3.
  • FIG. 5A is a diagram showing the relationship between the average fiber diameter and the pressure loss when the weight / average fiber diameter per unit area is 20 ⁇ 10 6 g / m 3.
  • FIG. 8A is a scanning electron micrograph (SEM image) of the filter medium of Example 4.
  • SEM image scanning electron micrograph
  • FIG. 8B is a scanning electron micrograph (SEM image) of the filter medium of Comparative Example 2.
  • first may be referred to as the second component
  • second component may also be referred to as the first component.
  • the term “and / or” includes any combination of a plurality of related items or any item of a plurality of related items.
  • FIG. 1 is a figure which shows an example of the air cleaner 1 to which 1st Embodiment is applied.
  • the air purifier 1 to which the first embodiment is applied includes an air clean filter 31, a housing 40, a fan 50, and a control unit 60.
  • the air cleaning filter 31 is provided with the frame 320 which fixes the filter nonwoven fabric 310 and filter nonwoven fabric 310 mentioned later.
  • the filter medium 311 (see FIG. 2 to be described later) provided in the filter nonwoven fabric 310 collects (adsorbs) suspended fine particles in the air to purify the air.
  • the frame 320 is provided in order to facilitate the installation of the air cleaner filter 31 to the air cleaner 1 and the exchange of the air cleaner filter 31.
  • the frame 320 may be any shape as long as it is a member that supports the filter nonwoven fabric 310 in the periphery and / or the surface in a lattice shape so as not to impede the ventilation to the filter nonwoven fabric 310.
  • the air clean filter 31 constitutes a dust collecting (collection) unit 30.
  • the air cleaning filter 31 may be described as a "filter.”
  • the housing 40 is shown with the broken line, and the structure of the air cleaning filter 31 (dust collection part 30), the fan 50, the control part 60, etc. which were provided in the inside of the housing 40 are shown.
  • the frame 320 of the air cleaning filter 31 is shown by the dashed-dotted line, and the structure of the filter nonwoven fabric 310 is shown.
  • the dust collecting part 30 constituting the air cleaning filter 31 may be an example of an air cleaning means
  • the fan 50 may be an example of a ventilation means
  • the controller 60 may be an example of a control means.
  • the dust collecting unit 30 collects (adsorbs) suspended particulates and the like.
  • the housing 40 houses the air cleaning filter 31 (dust collecting unit 30) and the control unit 60.
  • the opening part 41 is provided in the air cleaning filter 31 side of the housing 40.
  • a mesh may be provided in the opening portion 41.
  • the fan 50 may be installed in the opening 42 installed in the housing 40.
  • the fan 50 may generate a flow of air (ventilation).
  • the direction of the ventilation can be set to face the fan 50 from the air cleaning filter 31 (dust collector 30) (from left to right of the ground in Fig. 1). 1, the ventilation direction is shown by the white transparent arrow. That is, the flow of air enters from the opening 41 on the side of the air clean filter 31 of the housing 40 and from the opening 42 in which the fan 50 of the housing 40 is installed.
  • the ventilation direction is made into the z direction, and the direction orthogonal to it is made into the x direction and the y direction.
  • the air cleaner 1 may be placed in any direction.
  • FIG. 2 is a diagram illustrating the air cleaning filter 31.
  • the air cleaning filter 31 may be bent so that the filter nonwoven fabric 310 has a valley shape in cross section. Bending processing may be pleats bending and the like.
  • the air cleaning filter 31 has a thickness D in a bent state.
  • the filter nonwoven fabric 310 includes a filter material 311 that collects (collects) suspended particulates and a support material 312 that supports the filter material 311.
  • a filter material 311 that collects (collects) suspended particulates
  • a support material 312 that supports the filter material 311.
  • the filter medium 311 cannot maintain the shape by itself, it can be fixed and supported by the support material 312. Therefore, the dust collection (collection) efficiency can be determined by the filter medium 311.
  • the filter material 311 and the support material 312 in the filter nonwoven fabric 310 may be comprised from a nonwoven fabric.
  • the support 312 may be an elastic nonwoven fabric that supports the filter medium 311.
  • the thickness of the filter medium 311 is t.
  • the filter medium 311 includes polyolefin-based polypropylene, polyester-based polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, polyester, polycarbonate, polymethylpentene, phenol resin, polystyrene resin, and ethylene-propylene It may be composed of resin fibers such as copolymer resin, polyetherimide (PEI), polybenzimidazole (PBI) resin and the like. Among them, polypropylene is preferred. In addition, when the phosphorus-based antioxidant and the sulfur-based antioxidant are contained in the polyolefin fiber, a higher electrostatic effect is obtained.
  • Such resin fibers can be produced by, for example, a spunbond method or a melt brown method.
  • the melt brown method is preferable because the production of fine resin fibers having an average fiber diameter of 15 ⁇ m or less is possible.
  • the ventilation amount contributes more to the performance than the dust collection efficiency per one pass, the decrease in the ventilation amount is large. For this reason, it is important to realize the high-efficiency filter medium 311 which is low pressure loss which does not reduce the fiber surface area per unit area, and the fall of air flow rate is small.
  • the relation of the formula (1) is represented between the average fiber diameter d f , the weight I per unit area, and the fiber surface area s per unit area. have.
  • the weight (I) per unit area is the weight per unit area.
  • (sigma) is dispersion of fiber diameter
  • (rho f) is the density of a fiber raw material.
  • the fiber surface area s per unit area largely depends on the ratio (weight / average fiber diameter per unit area) of the weight I per unit area and the average fiber diameter d f .
  • the fiber surface area (s) per unit area is preferably larger, but if it is simply increased, the pressure loss increases. Therefore, the balance between pressure loss and dust collection efficiency must also be considered.
  • the weight / average fiber diameter per unit area in the example of the filter medium 311 which has been used so far was about 9.0 ⁇ 10 6 g / m 3 .
  • the weight / average fiber diameter per unit area is fixed to a value that can be expected to have a life expectancy higher than that of a conventional product, and under such conditions, the average fiber diameter d f , the thickness t of the filter medium 311, and the like are examined. It was found that there was a range of average fiber diameters (d f ) and thicknesses (t) from which hand and high dust collection efficiencies were obtained.
  • the pressure loss of the prior art is 45-60 Pa. Considering that the cleaning performance of the air cleaner is significantly improved compared with the conventional products, the pressure loss is preferably 30 Pa or less.
  • FIG. 3A is a diagram showing the relationship between the average fiber diameter and the pressure loss when the weight / average fiber diameter per unit area is 10 ⁇ 10 6 g / m 3.
  • FIG. 3A is a diagram showing the relationship between the average fiber diameter and the pressure loss when the weight / average fiber diameter per unit area is 10 ⁇ 10 6 g / m 3.
  • Fig. 3B is a diagram showing the relationship between the average fiber diameter and the dust collection efficiency when the weight / average fiber diameter per unit area is 10 ⁇ 10 6 g / m 3 .
  • Fig. 4A is a diagram showing the relationship between the average fiber diameter and the pressure loss when the weight / average fiber diameter per unit area is 15 ⁇ 10 6 g / m 3 .
  • FIG. 5A is a diagram showing the relationship between the average fiber diameter and the pressure loss when the weight / average fiber diameter per unit area is 20 ⁇ 10 6 g / m 3.
  • FIG. 5A is a diagram showing the relationship between the average fiber diameter and the pressure loss when the weight / average fiber diameter per unit area is 20 ⁇ 10 6 g / m 3.
  • the upper side shows the relationship between the average fiber diameter d f and the pressure loss
  • the lower side shows the relationship between the average fiber diameter d f and the dust collection efficiency.
  • the thickness t of the filter medium 311 is used as a parameter.
  • the average fiber diameter (d f ) is 4.0 ⁇ m or more and 15.0 ⁇ m or less, while pressure loss is minimized and dust collection efficiency of 99% or more is achieved. Obtained. Moreover, it turned out that pressure loss may become about 30 Pa or less in the range of weight I per unit area which was set.
  • the thickness t of the filter medium 311 is 0.4 mm or more, preferably 0.5 mm or more, in the thinnest region, the area where the pressure loss becomes small with respect to the average fiber diameter d f becomes wider and the air cleaner 1 It was found that high performance was obtained. In addition, it is preferable that the thickness t of the filter medium 311 be 1.5 mm or less.
  • the filter medium 311 has an average fiber diameter (d f ) of 4.0 ⁇ m or more and 15.0 ⁇ m or less, and a weight / average fiber diameter per unit area of 10 ⁇ 10 6 g / m 3 or more and 20 ⁇ 10 6 g / m It turns out that it is desirable to set it as 3 or less. However, the same effect can be obtained if the average fiber diameter d f is contained in the range of about 10% difference of the said lower limit and the upper limit.
  • the average fiber diameter d f may be 3.7 ⁇ m or 15.5 ⁇ m. That is, the average fiber diameter d f is preferably 4.0 ⁇ m or more and 15.0 ⁇ m or less, but may be 3.6 ⁇ m or more and 16.5 ⁇ m or less.
  • the weight / average fiber diameter per unit area is less than 10 ⁇ 10 6 g / m 3 , the life is shortened, and the dust collection efficiency is also lowered.
  • the weight / average fiber diameter per unit area is more than 20 ⁇ 10 6 g / m 3 , the pressure loss can be high.
  • the thickness t of the filter medium 311 is less than 0.4 mm at the thinnest point, it is difficult to lower the pressure loss.
  • the thickness t is more than 1.5 mm, pleat bending is difficult.
  • the resin fiber used for the filter medium 311 is electrostatically processed by well-known techniques, such as a corona discharge method.
  • electrostatic processing the collection (acquisition, adsorption) of suspended fine particles becomes easy.
  • the resin fiber used for the filter medium 311 has a release cross section whose cross section has at least one inflection point on the outer periphery.
  • the support material 312 if the resin fiber used is long fiber, the increase in pressure loss will be minimized.
  • the resin fiber used for the support material 312 has a release cross section in which a cross section has at least 1 or more inflection point on an outer periphery.
  • the resin fiber used for the filter medium 311 and / or the resin fiber used for the support material 312 has a cross section (release cross section) of a mold release as shown in FIG. 6A, 6B, and 6C, and has an outer circumferential image. It may be desirable to have at least one or more inflection points at. In addition, the cross section may preferably have at least one or more inflection points on the periphery, and may have other shapes.
  • the filter nonwoven fabric 310 may comprise the filter medium 311 in a single layer, and may laminate the thin filter medium 311 in thickness in multiple layers. When the filter media 311 is overlapped, the overlapped thickness becomes the thickness t of the filter media 311.
  • a polypropylene fiber having an average fiber diameter (d f ) of 5.0 ⁇ m, a weight (I) of 71 g / m 2 and a thickness (t) of 0.75 mm was used as the filter medium 311.
  • This filter material 311 and the support material 312 were bonded together, and the filter nonwoven fabric 310 was comprised. And the bending process (pleat process) of the valley shape was performed, and the air cleaning filter 31 was produced.
  • the total surface area of the filter medium 311 in the air cleaning filter 31 is 1.5 m 2 and the thickness D is 40 mm, and the surface orthogonal to the ventilation direction of the dust collecting part 30 (air clean filter 31).
  • the projection area to rho was 0.087 m 2 .
  • cross section of the polypropylene fiber of the filter medium 311 is circular, and the cross section of the resin fiber which comprises the support material 312 is also circular.
  • the filter nonwoven fabric 310 of the dust collecting part 30 (the air clean filter 31)
  • a HEPA (High-Efficiency Particulate Air) filter was used as the filter nonwoven fabric 310 of the dust collecting part 30 (the air clean filter 31).
  • the dust collection efficiency was substantially the same as in the example.
  • An E11 filter was used as the filter nonwoven fabric 310 of the dust collecting part 30 (air clean filter 31).
  • the pressure loss became substantially the same as an Example.
  • the dust collecting part 30 by this air cleaning filter 31 was installed in the performance measurement duct, and the pressure loss and the dust collection efficiency were measured on the conditions of 1.0 m / s of wind speed.
  • the pressure loss is the difference between the pressures on the upstream side (before entering the air purification filter 31) and the downstream side (after exiting the air purification filter 31) than the air cleaning filter 31 in the performance measurement duct. Dust collection efficiency was calculated
  • the lifetime was calculated
  • Example 1 As shown in Table 1, in Example 1, the pressure loss was 21 Pa, the dust collection efficiency was 99.8%, and the lifetime was about 4300 mg.
  • Comparative Example 1 in which the dust collection efficiency (99.95%) is approximately the same as that of Example 1, has a high pressure loss of 47 Pa, which is about twice that of Example 1, and a short lifetime of about 3600 mg.
  • the comparative example 2 in which pressure loss (25Pa) is substantially the same was about 1400 mg of 95% of dust collection efficiency, and about 1/3 of the lifetime of Example 1.
  • Example 1 Compared with these, in Example 1, compared with the comparative example 1 and the comparative example 2, low pressure loss, high dust collection efficiency, and long life are achieved. This is because in Example 1, the fiber diameter of the filter medium 311 was made thick (coarse fiber), the weight per unit area was made high (weight per unit area), and thickness was made thick (volume large).
  • Example 1 the projected area of the dust collecting part 30 and the thickness D (thickness D in the bent state shown in FIG. 2) are compared with the conventional ones (Comparative Examples 1 and 2). Low pressure loss, high dust collection efficiency of 99% or more, and long service life are achieved without increase.
  • Example 1 As the filter medium 311 in Example 1, a polypropylene fiber having a cross-shaped cross section shown in Fig. 6A was used. The other configuration is the same as that of the first embodiment.
  • Example 2 Example 1 Pressure Loss [PA] 22 21 Dust collection efficiency [%] 99.9 99.8 Life [mg] About 5000 About 4300
  • Example 2 using the resin fiber which has a cross-sectional cross section (release cross section) as the filter medium 311, compared with Example 1, dust collection efficiency improved and the life extended.
  • Example 1 As the support material 312 in Example 1, a resin fiber having a cross-shaped cross section shown in Fig. 6A was used. The other configuration is the same as that of the first embodiment.
  • Example 3 Example 1 Pressure Loss [PA] 21 21 Dust collection efficiency [%] 99.85 99.8 Life [mg] About 4700 About 4300
  • Example 3 As shown in Table 3, in Example 3 using a resin fiber having a cross-shaped cross section (release cross-section) as the support material 312, compared to Example 1, the dust collection efficiency was improved and the life was extended.
  • FIG. 7 is a figure which shows an example of the air cleaner 1 to which 2nd Embodiment is applied.
  • the air cleaner 1 includes a hybrid air cleaner filter 10, a housing 40, a fan 50, and a control unit 60.
  • the hybrid air clean filter 10 includes a charging unit 20 and a dust collecting (collection) unit 30.
  • the dust collecting part 30 may have an air cleaning filter 31 having a filter 320 and a frame 320 for fixing the filter nonwoven fabric 310.
  • the hybrid air cleaning filter 10 is a hybrid type using a charging technique for charging suspended particulates and a filter technique for collecting (capturing) suspended particulates charged with a filter medium.
  • the housing 40 is indicated by a broken line, and the hybrid air cleaning filter 10 (charge unit 20 and dust collecting unit 30) provided inside the housing 40, the fan 50, and the control unit 60 are shown. This configuration is shown.
  • the hybrid air clean filter 10 is another example of the air clean means.
  • the charging unit 20 charges the suspended fine particles floating in the air.
  • the dust collecting unit 30 collects (adsorbs) charged suspended fine particles and the like.
  • the housing 40 accommodates the hybrid air clean filter 10 (charge unit 20, dust collector 30) and control unit 60.
  • the opening part 41 is provided in the charging part 20 side of the housing 40.
  • a mesh may be provided in the opening portion 41.
  • the fan 50 may be installed in the opening 42 installed in the housing 40.
  • the fan 50 generates the air flow (ventilation).
  • the direction of ventilation can be set to face the dust collector 30 from the charging section 20 (from the left side of the paper to the right side of FIG. 7). 1, the ventilation direction is shown by the white transparent arrow. That is, the flow of air enters from the opening part 41 at the charging part 20 side of the housing 40, and the fan 50 of the housing 40 is connected via the charging part 20 and the dust collecting part 30. It can come out from the opening part 42 provided.
  • the ventilation direction is made into the z direction, and the direction orthogonal to it is made into the x direction and the y direction.
  • the air cleaner 1 may be placed in any direction.
  • the charging unit 20 will be described in detail.
  • the dust collecting part 30 is the same as that demonstrated in 1st Embodiment, the same code
  • the charging unit 20 includes a high voltage electrode 21 and a counter electrode 25 that faces the high voltage electrode 21.
  • the high voltage electrode 21 is an electrode to which a high voltage is applied, it is also called a high voltage electrode, and since it is an electrode which generate
  • the counter electrode 25 may be grounded GND, it may be called a ground electrode.
  • the high voltage of direct current DC is applied between the high voltage electrode 21 and the counter electrode 25, for example, with the high voltage electrode 21 as + and the counter electrode 25 as-. Then, corona discharge (discharge) is generated between the high voltage electrode 21 and the counter electrode 25. Then, the fine particles can be charged by the generated corona discharge.
  • the high voltage electrode 21 may include a plurality of tooth column electrodes 210.
  • Each tooth column electrode 210 may include a connection portion 211 and a plurality of tooth-shaped portions 212 (hereinafter referred to as tooth electrode 212) extending from the connection portion 211.
  • the pointed tip of the toothed electrode 212 can be directed toward the -z direction, that is, toward the wind up side of the ventilation.
  • connection part 211 may extend in the y direction.
  • the plurality of tooth column electrodes 210 may be arranged in the x direction.
  • the counter electrode 25 can be provided with the some plate-shaped electrode plate 250. As shown in FIG. Each electrode plate 250 may have a longitudinal direction in the y direction and a surface in the z direction. The electrode plates 250 are arranged in the x direction.
  • the electrode plate 250 and the sawtooth column electrode 210 may be alternately arranged such that one sawtooth column electrode 210 is positioned between two adjacent electrode plates 250.
  • the tip end of the saw electrode 212 and the electrode plate 250 may be disposed to face each other.
  • the number of the tooth column electrodes 210 and the electrode plate 250 are six in FIG. 7, other numbers may be sufficient.
  • the tooth column electrode 210 and the electrode plate 250 are made of a conductive metal such as stainless steel (SUS) and copper.
  • the charging section 20 was combined with the dust collecting section 30 of Example 1 to form a hybrid air clean filter 10.
  • a HEPA filter was used as the filter nonwoven fabric 310 of the dust collecting part 30 (air clean filter 31).
  • the dust collection efficiency was substantially the same as in Example 4.
  • the dust collecting part 30 and the charging part 20 which used this hybrid air cleaning filter 10 were installed in the performance measurement duct, and the pressure loss and the dust collection efficiency were measured on the conditions of 1.0 m / s of wind speed.
  • the pressure loss is the difference between the pressures upstream (before entering the hybrid air clean filter 10) and downstream (after coming out of the hybrid air clean filter 10) than the hybrid air clean filter 10 in the performance measurement duct. to be.
  • Dust collection efficiency was calculated
  • the lifetime was calculated
  • the initial cleaning capacity set based on the pressure loss and the dust collection efficiency is set to 100, and the weight (cumulative purification total amount) of the suspended fine particles collected (collected) on the air cleaning filter 31 until the cleaning capacity is 50. Evaluated. That is, the greater the weight, the longer the life. The smaller the weight, the shorter the life.
  • Example 4 Comparative Example 1 Comparative Example 4 Pressure Loss [PA] 23 50 28 Dust collection efficiency [%] 99.9995 99.995 99.9 Life [mg] About 10160 About 7500 About 3000
  • Example 4 As shown in Table 4, in Example 4, the pressure loss was 23 Pa, the dust collection efficiency was 99.9995%, and the lifetime was about 10160 mg.
  • Comparative Example 3 in which the dust collection efficiency (99.995%) is approximately the same as that of Example 4, has a high pressure loss of 50 Pa, which is about twice that of the Example, and a lifetime of about 7500 mg, which is 20% or more shorter.
  • the comparative example 4 of which pressure loss 25Pa is substantially the same as Example 4 was about 3000 mg of dust collection efficiency of 99.9% and the lifetime of 1/2 or less.
  • Example 4 Compared with these, in Example 4, compared with the comparative example 3 and the comparative example 4, low pressure loss, high dust collection efficiency, and long life are achieved.
  • Example 4 the effect of extending the life by combining the charging section 20 and the dust collecting section 30 is only about twice that of the comparative examples 1 and 2 described in the first embodiment.
  • Example 4 twice or more are obtained compared with Example 1 demonstrated in 1st Embodiment.
  • Example 4 this was made by increasing the fiber diameter of the filter medium 311 (coarse fiber), increasing the weight per unit area (higher weight per unit area), and increasing the thickness of the filter medium (enlarging the volume). Since this structure is relatively large, the charged suspended fine particles easily enter the inside of the filter medium 311 (downstream in the ventilation direction), and the fine particles are mainly deposited on the surface of the filter medium, such as when the fiber diameter is thin, thereby preventing clogging. It is suppressed.
  • Example 4 the projected area of the dust collecting part 30 and the thickness D (thickness D in the bent state shown in FIG. 2) are compared with the conventional ones (Comparative Examples 3 and 4). Low pressure loss, high dust collection efficiency of 99% or more, and long service life are achieved without increasing.
  • FIG. 8A is a scanning electron micrograph (SEM image) of the filter medium 311 of Example 4, and FIG. 8B is a scanning electron micrograph (SEM image) of the filter medium 311 of Comparative Example 2.
  • SEM image scanning electron micrograph
  • FIG. 8B is a scanning electron micrograph (SEM image) of the filter medium 311 of Comparative Example 2.
  • FIG. It is understood that the filter medium 311 of Example 4 is coarse and bulky in comparison with the filter medium 311 of Comparative Example 2.
  • Example 4 As the filter medium 311 in Example 4, a polypropylene fiber having a cross-shaped cross section shown in Fig. 6A was used. The other configuration is the same as that of the fourth embodiment.
  • Table 5 shows the results of comparing Example 5 and Example 4.
  • Example 5 Example 4 Pressure Loss [PA] 24 23 Dust collection efficiency [%] 99.9998 99.9995 Life [mg] About 12000 About 10160
  • Example 5 As shown in Table 5, in Example 5 using a resin fiber having a cross-shaped cross section (release cross section) as the filter medium 311, the dust collection efficiency was improved and the life was extended as compared with Example 4.
  • Example 4 As the support material 312 in Example 4, a resin fiber having a cross-shaped cross section shown in Fig. 6A was used. The other configuration is the same as that of the fourth embodiment.
  • Table 6 shows the results of comparing Example 6 with Example 4.
  • Example 6 Example 4 Pressure Loss [PA] 24 23 Dust collection efficiency [%] 99.9997 99.9995 Life [mg] Approximately 11800 About 10160
  • Example 6 As shown in Table 6, in Example 6 using a resin fiber having a cross-shaped cross section (release cross section) as the support material 312, the dust collection efficiency was improved and the life was extended as compared with Example 4.
  • FIG. 9 is a figure explaining the modified example of the hybrid air cleaning filter 10 to which 2nd Embodiment is applied. 9, the charging part 20 and the dust collecting part 30 of the hybrid air cleaning filter 10 in the air cleaner 1 are shown. Since the other structure is the same as that of 2nd Embodiment shown in FIG. 7, the same code
  • the needle column electrode 220 includes a connection portion 221 and a plurality of needle-shaped electrodes 222 (denoted as needle electrodes 222) extending from the connection portion 221.
  • FIG. 10 is a figure explaining the other modified example of the hybrid air cleaning filter 10 to which 2nd Embodiment is applied. 10, the charging part 20 and the dust collecting part 30 of the hybrid air cleaning filter 10 in the air cleaner 1 are shown. Since the other structure is the same as that of 2nd Embodiment shown in FIG. 7, the same code
  • the several tooth column electrode 210 in the high voltage electrode 21 of the electrification part 20 shown in FIG. 7 is the linear electrode 230 (linear electrode 230). It is.
  • FIG. 11 is a figure explaining the further modified example of the hybrid air cleaning filter 10 to which 2nd Embodiment is applied.
  • the electrification part 20 and the dust collecting part 30 of the hybrid air cleaning filter 10 in the air cleaner 1 are shown. Since the other structure is the same as that of 2nd Embodiment shown in FIG. 7, the same code
  • the plurality of toothed column electrodes 210 in the high voltage electrode 21 of the charging unit 20 shown in FIG. 7 are opposed to each other in the y direction.
  • a toothed column electrode 240 having a toothed electrode 242 is provided.
  • the sawtooth column electrode 240 is provided with the connection part 241 and the some tooth-shaped electrode 242 extended from the connection part 241.
  • the counter electrode 25 is formed in mesh (net) shape, and is provided in the air flow side rather than the high voltage electrode 21. As shown in FIG. Even in such a structure, a high voltage of direct current (DC) is applied between the high voltage electrode 21 and the counter electrode 25, whereby a corona discharge (discharge) is generated between the high voltage electrode 21 and the counter electrode 25. In addition, the suspended fine particles are charged by the generated corona discharge.
  • DC direct current
  • the tooth electrode 242 may be the needle electrode 222 described above.
  • the dust collector 30 is equipped with a pair of bias electrodes which apply an electric field to the hybrid air cleaning filter 10. As shown in FIG.
  • FIG. 12 is a figure explaining the hybrid air cleaning filter 10 of the air cleaner 1 to which 3rd Embodiment is applied.
  • FIG. 12 the charging part 20 and the dust collecting part 30 of the hybrid air cleaning filter 10 in the air cleaner 1 are shown. Since the other structure is the same as that of 2nd Embodiment shown in FIG. 7, the same code
  • the dust collecting part 30 of the hybrid air cleaning filter 10 is a pair (one set) which applies an electric field to the air cleaning filter 31 which has the nonwoven fabric 310 for the filter bent, and the air cleaning filter 31.
  • Bias electrodes 32 bias electrodes 32a and 32b may be provided.
  • a bias voltage of 6 kV to 8 kV may be applied to the bias electrodes 32a and 32b.
  • the bias voltage is negative for the bias electrode 32a on the wind side and positive for the bias electrode 32b on the wind side.
  • the charged suspended fine particles are attracted to the air cleaning filter 31, and the dust collection efficiency is further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Filtering Materials (AREA)
  • Electrostatic Separation (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

공기 중의 부유 미립자를 포집해서 공기를 청정화시키는 여과재 등에 있어서, 고집진 효율, 저압력 손실, 그리 긴수명을 실현한다. 공기 청정기에 있어서의 공기 청정 필터가 구비하는 공기를 청정하게 하는 여과재는, 평균 섬유 직경이 3.6μm 이상이고 16.5μm 이하인 수지 섬유로 구성되고, 단위 면적당 중량과 평균 섬유 직경의 비가 10×106g/m3 이상이고 20×106g/m3 이하이다.

Description

공기 청정 필터, 하이브리드 공기 청정 필터 및 공기 청정기
본 발명은, 여과재, 공기 청정 필터, 하이브리드 공기 청정 필터 및 공기 청정기에 관한 것이다.
최근, PM2.5로 대표되는 대기 오염 문제가 부각됨에 따라 공기 청정기의 필요성이 높아져 정화 속도가 큰 공기 청정기가 요구되고 있다.
공기 청정기의 정화 속도(청정 성능)는 통풍량과 집진부의 집진 효율로 결정되므로, 집진부로 사용되는 공기 청정 필터는 저압력 손실, 고집진 효율이 요구된다. 압력 손실은 공기 청정기의 풍량에 직접적으로 영향을 미치고, 압력 손실이 낮을수록 큰 풍량이 얻어지므로, 저압력 손실, 고집진 효율이면 필연적으로 높은 공기 청정 능력을 얻을 수 있다.
한편, 공기 청정 필터는 정기적으로 교환할 필요가 있는데, 그 비용이나 수고를 고려한다면, 공기 청정 능력이 장기간 유지되는, 즉 장수명인 것이 바람직하다.
즉, 저압력 손실이며 고집진 효율, 또한, 장수명의 공기 청정 필터가 요구되고 있다.
일본특허 공개2010-142703호 공보에는, 적어도 2층의 부직포 적층체에 의해 구성되는 여과재로서, 한 쪽 층에 폴리올레핀계 부직포, 다른 한 쪽 층에 폴리에스테르계 부직포를 배치하고, 상기 폴리올레핀계 부직포가 일렉트릿 가공된 밀도가 0.10 내지 0.20g/cc의 부직포이며, 또한 적층된 여과재의 강연도가 100 내지 1500mg인 것을 특징으로 하는 정전(eletrostatic) 여과재가 기재되어 있다.
일본특허 공개2001-347119호 공보에는, 기류의 흐름 방향에 대하여 대략 평행하게 배치된 측벽이 필터 여과재로 이루어진 다수의 유로를 갖는 필터로서, 인접하는 유로를 가로막는 측벽은 공통의 필터 여과재로 형성되고, 유로의 흐름 방향으로 적어도 하나의 격벽이 형성되고, 격벽에 의해서 차단된 공기는, 측벽의 필터 여과재를 통과해서 인접하는 유로로 흐르고, 이에 의해 공기의 여과가 행해지는 에어 필터이며, 인접하는 적어도 2개의 유로에 대해서 한 쪽 유로에 복수의 격벽이 있고, 그 격벽의 사이이며 다른 위치에 다른 쪽 유로의 격벽 중 적어도 하나가 설치되고, 공기의 필터 여과재를 통과하는 횟수가 2회 이상인 에어 필터가 기재되어 있다.
일본특허 공개2011-152520호 공보에는, 1층 이상의 미세 섬유 부직포와 1층 이상의 보강용 부직포를 라미네이트한 여과재이며, 컬도가 0 내지 80mm인 여과재가 기재되어 있다.
일본특허 공개2009-106824호 공보에는, 폴리올레핀 및/또는 폴리에스테르를 주체로 구성된 단일층으로 이루어진 멜트 블로운(Melt blown) 부직포이며, 단위 면적당 중량이 80 내지 140g/m2, 두께가 0.5 내지 1.5mm이며 및 상기 단일층이 충전율 구배를 갖고 있는 것을 특징으로 하는 에어 필터용 부직포가 기재되어 있다.
한편, 가정용 공기 청정기에 사용되는 공기 청정 필터(에어 필터)에는, 저압력 손실, 고집진(포집) 효율, 긴 수명이 요구된다.
그러나, 일반적으로 압력 손실과 집진 효율은 상충(trade-off)관계에 있으며, 또한 압력 손실과 필터 수명도 상충관계에 있다.
저압손화와 고효율화를 양립시키기 위해서, 섬유 직경을 작게 하는 방법이 있고, 극세 섬유인 나노 파이버의 적용 등이 검토되고 있다. 그러나, 공기 청정 필터를 통과하는 물질은 입자상 물질뿐만 아니라, 유분(油分), 가스 성분 등이 포함된다. 직경이 작은 섬유에 입자상 물질과 유분이 혼합된 것이 부착되면, 액적 형상의 퇴적 물질로 되어, 공극이 막히는, 즉 눈막힘이 발생하는 문제가 있다. 즉, 초기 성능은 높지만, 압력 손실의 증가, 즉 조기에 통풍량의 저하가 일어나고, 수명이 짧다는 문제가 있었다.
또한, 저압손과 고효율을 양립시키기 위해서, 섬유 직경을 작게 하고 단위 면적당 중량을 낮게 해서 압력 손실을 줄이고, 집진 효율은 섬유를 대전시키는 효과(정전 처리)에 의해 확보하는 방법도 있다. 그러나, 단위 면적당 중량을 낮게 함으로써, 필터 수명에 크게 영향을 미치는 섬유 표면적을 작게 하면 초기에는 원하는 성능이 얻어지지만, 수명이 짧은 공기 청정 필터가 되어버린다. 또한, 섬유 직경이 작기 때문에 눈막힘도 발생하기 쉽고, 압력 손실의 증가가 발생하여 통풍량이 저하되므로, 장수명을 얻을 수 없다고 하는 문제가 있었다.
본 발명의 일 측면은 공기 중의 부유 미립자를 포집해서 공기를 청정화시키며 고집진 효율, 저압력 손실 및 장수명을 실현하는 여과재 등을 제공한다.
본 발명의 사상에 따른 공기 청정필터는 공기를 청정하게 하는 여과재와, 상기 여과재를 지지하는 지지재가 접착된 필터용 부직포를 구비하고, 상기 여과재는 평균 섬유 직경이 3.6μm 이상이고 16.5μm 이하인 수지 섬유로 구성되고, 단위 면적당 중량과 평균 섬유 직경의 비가 10×106g/m3 이상이고 20×106g/m3 이하일 수 있다.
상기 여과재는 평균 섬유 직경이 4.0μm 이상이고 15.0μm 이하인 수지 섬유로 구성될 수 있다.
상기 여과재를 구성하는 수지 섬유는 횡단면의 외주연 상에 적어도 1군데에 변곡점을 가질 수 있다.
상기 여과재를 구성하는 수지 섬유는 십자형 횡단면을 갖는 폴리프로필렌섬유일 수 있다.
상기 지지재는 수지 섬유로 구성되고, 상기 수지 섬유는 장섬유로 구성될 수 있다.
상기 지지재를 구성하는 수지 섬유는 횡단면의 외주연 상에 적어도 1군데에 변곡점을 가질 수 있다.
상기 지지대를 구성하는 상기 수지 섬유는 십자형 횡단면을 갖는 폴리프로필렌섬유일 수 있다.
본 발명의 사상에 따르면, 공기 청정기는 공기를 청정하게 하는 여과재와, 상기 여과재를 지지하는 지지재가 접착된 필터용 부직포를 구비하는 공기 청정 필터 및 상기 공기 청정 필터에 공기의 흐름을 발생시키는 팬을 구비하며, 상기 여과재는 평균 섬유 직경이 3.6μm 이상이고 16.5μm 이하인 수지 섬유로 구성되고, 단위 면적당 중량과 평균 섬유 직경의 비가 10×106g/m3 이상이고 20×106g/m3 이하일 수 있다.
상기 여과재는 단면의 두께가 가장 얇은 곳에서 0.4mm 이상이고 1.5mm 이하일 수 있다.
상기 여과재는 평균 섬유 직경이 4.0μm 이상이고 15.0μm 이하인 수지 섬유로 구성될 수 있다.
상기 여과재를 구성하는 수지 섬유는 횡단면의 외주연 상에 적어도 1군데에 변곡점을 가질 수 있다.
상기 여과재를 구성하는 상기 수지 섬유는 십자형 횡단면을 갖는 폴리프로필렌섬유일 수 있다.
상기 공기 청정 필터에서의 공기 흐름방향의 상류측에 배치되어 상기 공기 청정 필터로 유입되는 부유 미립자를 대전시키는 대전부를 더 포함할 수 있다.
상기 대전부는 코로나 방전을 발생시키는 고압 전극과, 상기 고압 전극에 대향하는 대향 전극을 구비할 수 있다.
상기 필터용 부직포에 전계를 인가하도록 상기 필터용 부직포를 사이에 배치되는 바이어스 전극을 더 포함할 수 있다.
상기 고압 전극은 선(wire)형, 바늘 형상, 톱니 형상 중 어느 하나의 형상의 의 전극을 구비할 수 있다.
본 발명에 따르면, 공기 중의 부유 미립자를 포집해서 공기를 청정화시키는 여과재 등에 있어서, 고집진 효율, 저압력 손실 및 장수명을 실현할 수 있다.
도 1은 제1 실시 형태가 적용되는 공기 청정기의 일례를 나타내는 도면이다.
도 2는 공기 청정 필터를 설명하는 도면이다.
도 3a는 단위 면적당 중량/평균 섬유 직경을 10×106g/m3로 했을 경우의 평균 섬유 직경과 압력 손실과의 관계를 도시하는 도면이다.
도 3b는 단위 면적당 중량/평균 섬유 직경을 10×106g/m3로 했을 경우의 및 평균 섬유 직경과 집진 효율과의 관계를 도시하는 도면이다.
도 4a는 단위 면적당 중량/평균 섬유 직경을 15×106g/m3로 했을 경우의 평균 섬유 직경과 압력 손실과의 관계를 도시하는 도면이다.
도 4b는 단위 면적당 중량/평균 섬유 직경을 15×106g/m3로 했을 경우의 평균 섬유 직경과 집진 효율과의 관계를 도시하는 도면이다.
도 5a는 단위 면적당 중량/평균 섬유 직경을 20×106g/m3로 했을 경우의 평균 섬유 직경과 압력 손실과의 관계를 도시하는 도면이다.
도 5b는 단위 면적당 중량/평균 섬유 직경을 20×106g/m3로 했을 경우의 평균 섬유 직경과 집진 효율과의 관계를 도시하는 도면이다.
도 6a는 이형 단면을 갖는 수지 섬유의 횡단면의 예인 십자형 단면을 나타내는 도면이다.
도 6b는 이형 단면을 갖는 수지 섬유의 횡단면의 예인 꽃 모양 단면을 나타내는 도면이다.
도 6c는 이형 단면을 갖는 수지 섬유의 횡단면의 예인 양쪽 오목형 단면을 나타내는 도면이다.
도 7은 제2 실시 형태가 적용되는 공기 청정기의 일례를 나타내는 도면이다.
도 8a는 실시예 4의 여과재의 주사형 전자 현미경 사진(SEM상)이다.
도 8b는 비교예 2의 여과재의 주사형 전자 현미경 사진(SEM상)이다.
도 9는 제2 실시 형태가 적용되는 하이브리드 공기 청정 필터의 변형예를 설명하는 도면이다.
도 10은 제2 실시 형태가 적용되는 하이브리드 공기 청정 필터의 다른 변형예를 설명하는 도면이다.
도 11은 제2 실시 형태가 적용되는 하이브리드 공기 청정 필터의 또 다른 변형예를 설명하는 도면이다.
도 12는 제3 실시 형태가 적용되는 공기 청정기의 하이브리드 공기 청정 필터를 설명하는 도면이다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 실시예이며, 본 출원의 출원 시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.
또한, 본 명세서의 각 도면에서 제시된 동일한 참조 번호 또는 부호는 실질적으로 동일한 기능을 수행하는 부품 또는 구성 요소를 나타낸다.
또한, 본 명세서에서 사용한 용어는 실시예를 설명하기 위해 사용된 것으로, 개시된 발명을 제한 및/또는 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는다.
또한, 본 명세서에서 사용한 "제1", "제2" 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되지는 않으며, 상기 용어들은 하나의 구성 요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1구성 요소는 제2구성 요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1구성 요소로 명명될 수 있다. "및/또는" 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
한편, 하기의 설명에서 사용된 용어 "선단", "후단", "상부", "하부", "상단" 및 "하단"등은 도면을 기준으로 정의한 것이며, 이 용어에 의하여 각 구성요소의 형상 및 위치가 제한되는 것은 아니다.
이하, 첨부 도면을 참조하여, 본 발명의 실시 형태에 대해서 상세하게 설명한다.
[제1 실시 형태]
도 1은, 제1 실시 형태가 적용되는 공기 청정기(1)의 일례를 나타내는 도면이다.
제1 실시 형태가 적용되는 공기 청정기(1)는, 공기 청정 필터(31), 하우징(40), 팬(50) 및 제어부(60)를 구비한다.
공기 청정 필터(31)는, 후술하는 필터용 부직포(310)와 필터용 부직포(310)를 고정하는 프레임(320)을 구비한다. 필터용 부직포(310)에 구비되어 있는 여과재(311)(후술하는 도 2 참조)는, 공기 중의 부유 미립자를 포집(흡착)해서 공기를 정화시킨다. 프레임(320)은 공기 청정 필터(31)의 공기 청정기(1)에의 설치나 공기 청정 필터(31)의 교환을 용이하게 하기 위해서 설치되어 있다. 프레임(320)은 필터용 부직포(310)에의 통풍을 저해하지 않도록, 필터용 부직포(310)를 주변 또는/및 표면을 격자 형상으로 지지하는 부재라면, 어떤 형상이라도 좋다. 공기 청정 필터(31)는 집진(포집)부(30)를 구성한다.
또한, 공기 청정 필터(31)를 "필터"로 표기하는 경우가 있다.
도 1에서는, 하우징(40)을 파선으로 나타내고, 하우징(40)의 내부에 설치된 공기 청정 필터(31)(집진부30), 팬(50), 제어부(60) 등의 구성이 보이도록 하고 있다. 또한, 공기 청정 필터(31)의 프레임(320)을 일점 쇄선으로 나타내고, 필터용 부직포(310)의 구조가 보이도록 하고 있다.
공기 청정 필터(31)를 구성하는 집진부(30)는 공기 청정 수단의 일례이고, 팬(50)은 통풍 수단의 일례일 수 있고, 제어부(60)는 제어 수단의 일례일 수 있다.
집진부(30)는 부유 미립자 등을 포집(흡착)한다.
하우징(40)은, 공기 청정 필터(31)(집진부30) 및 제어부(60)를 수납한다. 하우징(40)의 공기 청정 필터(31)측에는 개구부(41)가 설치되어 있다. 또한, 개구부(41)에는, 메쉬(망), 격자 등이 설치될 수 도 있다.
팬(50)은 하우징(40)에 설치된 개구부(42)에 설치될 수 있다.
팬(50)은 공기의 흐름(통풍)을 발생시킬 수 있다. 통풍의 방향은 공기 청정 필터(31)(집진부 30)로부터 팬(50)을 향하도록 설정될 수 있다(도 1의 지면의 좌측으로부터 우측). 또한, 도 1에서는, 통풍 방향을 백색 투명 화살표로 나타내고 있다. 즉, 공기의 흐름은 하우징(40)의 공기 청정 필터(31)측의 개구부(41)로부터 들어가고, 하우징(40)의 팬(50)이 설치된 개구부(42)로부터 나온다.
설명의 편의상, 도 1에 도시한 바와 같이, 통풍 방향을 z 방향으로 하고, 그에 직교하는 방향을 x 방향 및 y 방향으로 한다.
또한, 통풍이 저해되지 않는 한, 공기 청정기(1)는 어떤 방향으로 놓여도 좋다.
도 2는, 공기 청정 필터(31)를 설명하는 도면이다.
공기 청정 필터(31)는, 필터용 부직포(310)를 단면이 산곡(山谷) 형상으로 되도록 절곡 가공될 수 있다. 절곡 가공은 플리츠(pleats) 절곡 등이 될 수 있다. 공기 청정 필터(31)는 절곡 가공된 상태에서의 두께가 D이다.
필터용 부직포(310)는 부유 미립자를 집진(포집)하는 여과재(311)와 여과재(311)를 지지하는 지지재(312)를 구비한다. 여기에서는, 여과재(311)는 그 자체로는 형상을 유지할 수 없기 때문에, 지지재(312)에 고착되어 지지될 수 있다. 따라서, 집진(포집) 효율은, 여과재(311)에 의해 결정될 수 있다.
필터용 부직포(310)에 있어서의 여과재(311) 및 지지재(312)는 부직포로 구성될 수 있다. 지지재(312)는 여과재(311)를 지지하는 탄력있는 부직포일 수 있다. 여과재(311)의 두께는 t이다.
여과재(311)는, 폴리올레핀계의 폴리프로필렌, 폴리에스테르계의 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리메틸렌테레프탈레이트, 폴리에스테르, 폴리카보네이트, 폴리메틸펜텐, 페놀 수지, 폴리스티렌 수지, 에틸렌-프로필렌 공중합체 수지, 폴리에테르이미드(PEI), 폴리벤즈이미다졸(PBI) 수지 등의 수지 섬유로 구성될 수 있다. 그 중, 폴리프로필렌이 좋다. 또한, 폴리올레핀계의 섬유에 인계 산화 방지제 및 황계 산화 방지제가 포함되어 있으면, 보다 높은 정전 효과가 얻어진다.
이러한 수지 섬유는, 예를 들어 스판 본드(spunbond)법 또는 멜트 블로운(melt brown)법에 의해 제조될 수 있다. 특히, 멜트 블로운(melt brown)법은, 평균 섬유 직경이 15μm 이하인 가는 수지 섬유의 제조가 가능하므로 바람직하다.
공기 청정기(1)의 관점에서는, 1 패스당의 집진 효율보다도 통풍량이 성능에 크게 기여하므로, 통풍량의 저하는 영향이 크다. 이로 인해, 단위 면적당 섬유 표면적을 작게 하지 않고, 또한 통풍량 저하가 적게 일어나는 저압손이면서 고효율의 여과재(311)를 실현하는 것이 중요하다.
공기 청정 필터(31)에 있어서의 여과재(311)의 파라미터 중, 평균 섬유 직경(df)과, 단위 면적당 중량(I)과, 단위 면적당 섬유 표면적(s) 사이에는 식(1)의 관계가 있다. 또한, 단위 면적당 중량(I)은, 단위 면적당의 중량이다. 또한, 식(1)에 있어서, σ은 섬유 직경의 분산, ρf는, 섬유 소재의 밀도이다.
Figure PCTKR2017013927-appb-M000001
즉, 단위 면적당 섬유 표면적(s)은, 단위 면적당 중량(I)과 평균 섬유 직경(df)과의 비(단위 면적당 중량/평균 섬유 직경)에 크게 의존한다. 여과재의 장수명화를 목표로 할 경우, 단위 면적당 섬유 표면적(s)은 큰 편이 좋지만, 단순히 크게 하면 압력 손실이 증대한다. 따라서, 압력 손실과 집진 효율과의 밸런스도 고려해야 한다.
지금까지 사용되어 온 여과재(311)의 일례(이하에서는, 종래품으로 표기한다.)에 있어서의 단위 면적당 중량/평균 섬유 직경은, 약 9.0×106g/m3이었다.
따라서, 단위 면적당 중량/평균 섬유 직경을 종래품 이상의 수명을 기대할 수 있는 값으로 고정하고, 그러한 조건하에서 평균 섬유 직경(df), 여과재(311)의 두께(t)등을 검토한 결과, 저압손과 고집진 효율이 얻어지는 평균 섬유 직경(df)의 범위와 두께(t)의 범위가 있는 것을 발견하였다.
또한, 종래품의 압력 손실은 45 내지 60Pa이다. 공기 청정기의 청정 성능을 종래품보다 대폭으로 향상시킬 것을 생각하면, 압력 손실은 30Pa 이하인 것이 바람직하다.
도 3A는 단위 면적당 중량/평균 섬유 직경을 10×106g/m3로 했을 경우의 평균 섬유 직경과 압력 손실과의 관계를 도시하는 도면이다.
도 3B는 단위 면적당 중량/평균 섬유 직경을 10×106g/m3로 했을 경우의 및 평균 섬유 직경과 집진 효율과의 관계를 도시하는 도면이다.
도 4A는 단위 면적당 중량/평균 섬유 직경을 15×106g/m3로 했을 경우의 평균 섬유 직경과 압력 손실과의 관계를 도시하는 도면이다.
도 4B는 단위 면적당 중량/평균 섬유 직경을 15×106g/m3로 했을 경우의 평균 섬유 직경과 집진 효율과의 관계를 도시하는 도면이다.
도 5A는 단위 면적당 중량/평균 섬유 직경을 20×106g/m3로 했을 경우의 평균 섬유 직경과 압력 손실과의 관계를 도시하는 도면이다.
도 5B는 단위 면적당 중량/평균 섬유 직경을 20×106g/m3로 했을 경우의 평균 섬유 직경과 집진 효율과의 관계를 도시하는 도면이다.
도 3A, 3B, 4A, 4B, 5A, 5B에 있어서, 상측이 평균 섬유 직경(df)과 압력 손실과의 관계, 하측이 평균 섬유 직경(df)과 집진 효율과의 관계를 나타낸다. 또한, 여과재(311)의 두께(t)를 파라미터로 하고 있다.
도 3A, 3B, 4A, 4B, 5A, 5B에 도시한 바와 같이, 평균 섬유 직경(df)이 4.0μm 이상 또한 15.0μm 이하의 범위에서, 압력 손실이 최소화 됨과 함께, 99%이상의 집진 효율이 얻어진다. 또한, 설정한 단위 면적당 중량(I)의 범위에 있어서, 압력 손실이 약 30Pa 이하로 되는 경우가 있는 것을 알 수 있었다.
그리고, 여과재(311)의 두께(t)를 가장 얇은 곳에서 0.4mm 이상, 바람직하게는 0.5mm 이상으로 하면 평균 섬유 직경(df)에 대하여 압력 손실이 작아지는 영역이 넓어져서 공기 청정기(1)로서 높은 성능이 얻어지는 것을 알 수 있었다. 또한, 여과재(311)의 두께(t)는 1.5mm 이하로 하는 것이 바람직하다.
이상으로부터, 여과재(311)는, 평균 섬유 직경(df)을 4.0μm 이상 또한 15.0μm 이하, 단위 면적당 중량/평균 섬유 직경을 10×106g/m3 이상 또한 20×106g/m3 이하로 하는 것이 바람직하다는 것을 알 수 있다. 단, 평균 섬유 직경(df)이, 상기 하한값 및 상한값의 약 10% 차이의 범위에 포함되어 있으면 동일한 효과가 얻어질 수 있다. 예를 들어, 평균 섬유 직경(df)이 3.7μm 이어도 좋고, 또한, 15.5μm 이어도 좋다. 즉, 평균 섬유 직경(df)은, 4.0μm 이상 또한 15.0μm 이하인 것이 바람직하지만, 3.6μm 이상 또한 16.5μm 이하이어도 좋을 수 있다.
또한, 평균 섬유 직경(df)이 4.0μm 미만이면 압력 손실이 커져서 집진 효율도 내려간다. 한편, 평균 섬유 직경(df)이 15.0μm 를 초과하면, 집진 효율은 확보되지만, 압력 손실이 커지기 쉽다.
또한, 단위 면적당 중량/평균 섬유 직경이 10×106g/m3 미만이면 수명이 짧아지고, 집진 효율도 낮아진다. 한편, 단위 면적당 중량/평균 섬유 직경이 20×106g/m3 초과이면, 압력 손실이 높아질 수 있다.
또한, 여과재(311)의 두께(t)가 가장 얇은 곳에서 0.4mm 미만이면 압력 손실을 낮게 하는 것이 어렵다. 한편, 두께(t)가 1.5mm 초과이면, 플리츠 절곡 가공이 어려워진다.
그리고, 여과재(311)에 사용하는 수지 섬유는 코로나 방전법 등의 공지의 기술에 의해 정전(eletrostatic) 가공되어 있는 것이 좋다. 정전 가공되어 있음으로써, 부유 미립자의 포집(포착, 흡착)이 용이해진다.
또한, 여과재(311)에 사용하는 수지 섬유는 횡단면이 외주연 상에 적어도 1군데 이상의 변곡점을 갖는 이형(異形) 단면을 갖는 것이 바람직 할 수 있다. 또한, 지지재(312)는, 사용되는 수지 섬유가 장 섬유이면 압력 손실의 증가가 최소화된다. 또한, 지지재(312)에 사용하는 수지 섬유는, 횡단면이 외주연 상에 적어도 1군데 이상의 변곡점을 갖는 이형 단면을 갖는 것이 바람직할 수 있다.
도 6A는 이형 단면을 갖는 수지 섬유의 횡단면의 예인 십자형 단면을 나타내는 도면이다. 도 6B는 이형 단면을 갖는 수지 섬유의 횡단면의 예인 꽃 모양 단면을 나타내는 도면이다. 도 6C는 이형 단면을 갖는 수지 섬유의 횡단면의 예인 양쪽 오목형 단면을 나타내는 도면이다.
여과재(311)에 사용하는 수지 섬유 또는/및 지지재(312)에 사용하는 수지 섬유는, 도 6A, 도 6B, 도 6C에 도시한 바와 같은 이형의 횡단면(이형 단면)을 갖고, 외주연 상에 적어도 1군데 이상의 변곡점을 갖는 것이 바람직할 수 있다. 또한, 횡단면은, 주연 상에 적어도 1군데 이상의 변곡점을 갖는 것이 바람직할 수 있고, 다른 형상이라도 좋을 수 있다.
또한, 필터용 부직포(310)는, 여과재(311)를 단층으로 구성해도 좋고, 두께가 얇은 여과재(311)를 다층으로 겹쳐서 구성해도 좋을 수 있다. 여과재(311)를 겹칠 경우에는, 겹친 두께가 여과재(311)의 두께(t)가 된다.
(실시예 1)
여과재(311)로서, 평균 섬유 직경(df)이 5.0μm, 단위 면적당 중량(I)이 71g/m2, 두께(t)가 0.75mm의 폴리프로필렌섬유를 사용하였다. 이 여과재(311)와 지지재(312)를 접합해서 필터용 부직포(310)를 구성하였다. 그리고, 산곡 형상의 절곡 가공(플리츠 가공)을 실시해서 공기 청정 필터(31)를 제작하였다. 공기 청정 필터(31)에 있어서의 여과재(311)의 총 사용 면적을 1.5m2, 두께(D)를 40mm로 하고, 집진부(30)(공기 청정 필터(31))의 통풍 방향에 직교하는 면에의 투영 면적을 0.087m2로 하였다.
또한, 여과재(311)의 폴리프로필렌섬유의 횡단면은, 원형이며, 지지재(312)를 구성하는 수지 섬유의 횡단면도 원형이다.
(비교예1)
집진부(30)(공기 청정 필터(31))의 필터용 부직포(310)로서, HEPA(High-Efficiency Particulate Air) 필터를 사용하였다. 비교예 1에서는, 실시예와 집진 효율이 대략 동일하게 되었다.
(비교예2)
집진부(30)(공기 청정 필터(31))의 필터용 부직포(310)로서, E11 필터를 사용하였다. 비교예 2에서는, 실시예와 압력 손실이 대략 동일하게 되었다.
이 공기 청정 필터(31)에 의한 집진부(30)를 성능 측정 덕트에 설치하고, 풍속 1.0m/s의 조건에서 압력 손실과 집진 효율을 측정하였다. 압력 손실은, 성능 측정 덕트에 있어서의 공기 청정 필터(31)보다 상류측(공기 청정 필터(31)에 들어가기 전)과 하류측(공기 청정 필터(31)로부터 나온 후)의 압력의 차이이다. 집진 효율은, 성능 측정 덕트에 있어서의 공기 청정 필터(31)보다 상류측과 하류측에 있어서, 부유 미립자의 수를 파티클 카운터에 의해 계측해서 구하였다.
또한, 수명은, 공기 청정기에 관한 중국 국가 시험 규격(GB 규격)에 기초한 시험법에 의해, 담배 연기로부터의 분진량을 기초로 하여 누적 정화 총량을 구하고, 그것을 수명으로서 평가하였다. 즉, 압력 손실 및 집진 효율에 기초하여 설정된 초기의 청정 능력을 100으로 하고, 청정 능력이 50이 될 때까지, 공기 청정 필터(31)에 집진(포집)된 부유 미립자의 중량(누적 정화 총량)으로 평가하였다. 즉, 중량이 클수록 수명이 길고, 중량이 작을수록 수명이 짧다.
결과를 표 1에 나타낸다. 표 1에서는, 압력 손실[Pa], 집진 효율[%], 수명[mg], 평균 섬유 직경(df)[μm], 단위 면적당 중량/평균 섬유 직경[g/cm3] 및 여과재(311)의 두께(t)[mm]를 나타낸다.
실시예1 비교예1 비교예2
압력손실[Pa] 21 47 25
집진효율[%] 99.8 99.95 95
수명[mg] 약 4300 약 3600 약 1400
평균섬유직경[μm] 5.0 2.46 4.0
단위면적당 중량/평균섬유 직경 [g/cm3] 14.2×106 8.3×106 6.4×106
여과재의 두께 [mm] 0.75 0.42 0.38
표 1에 나타낸 바와 같이, 실시예 1에서는, 압력 손실이 21Pa, 집진 효율이 99.8%, 수명이 약 4300mg이다.
이에 대하여 집진 효율(99.95%)이 실시예 1과 대략 동일한 비교예 1은, 압력 손실이 실시예 1의 약 2배인 47Pa로 높고, 또한, 수명이 약 3600mg로 짧다.
또한, 압력 손실(25Pa)이 대략 동일한 비교예 2는, 집진 효율이 95%이고, 수명이 실시예 1의 약 1/3인 약 1400mg이었다.
즉, 비교예 1에 나타내는 바와 같이, 종래의 공기 청정 필터에서는, 집진 효율을 높이고자 하면, 압력 손실이 커졌다. 또한, 비교예 2에 나타내는 바와 같이, 종래의 공기 청정 필터에서는, 압력 손실을 낮추고자 하면, 집진 효율이 낮아지는 동시에 수명이 짧아졌다.
이들에 비하여, 실시예 1에서는, 비교예 1 및 비교예 2와 비교하여, 낮은 압력 손실, 높은 집진 효율, 긴 수명을 달성하고 있다. 이것은, 실시예 1에서는, 여과재(311)의 섬유 직경을 굵게 하고(굵은 섬유), 단위 면적당 중량을 높게 하며(높은 단위 면적당 중량), 두께를 두껍게(부피를 크게) 했기 때문이다.
즉, 실시예 1에서는, 집진부(30)의 투영 면적 및 두께(D)(도 2에 도시하는 절곡 가공된 상태에서의 두께(D))를, 종래의 것(비교예 1, 2)과 비교해서 증가시키지 않고, 낮은 압력 손실, 99% 이상의 높은 집진 효율 및 긴 수명을 달성하고 있다.
(실시예 2)
실시예 1에 있어서의 여과재(311)로서, 도 6A에 나타내는 십자형 횡단면을 갖는 폴리프로필렌섬유를 사용하였다. 다른 구성은, 실시예 1과 마찬가지이다.
실시예 1과 비교한 결과를 표 2에 나타낸다.
실시예 2 실시예 1
압력손실 [Pa] 22 21
집진효율 [%] 99.9 99.8
수명 [mg] 약 5000 약 4300
표 2에 나타내는 바와 같이, 여과재(311)로 십자형의 횡단면(이형 단면)을 갖는 수지 섬유를 사용한 실시예 2에서는, 실시예 1에 비하여, 집진 효율이 향상되고, 수명이 연장되었다.
(실시예 3)
실시예 1에 있어서의 지지재(312)로서, 도 6A에 나타내는 십자형 횡단면을 갖는 수지 섬유를 사용하였다. 다른 구성은, 실시예 1과 마찬가지이다.
실시예 1과 비교한 결과를 표 3에 나타낸다.
실시예 3 실시예 1
압력손실 [Pa] 21 21
집진효율 [%] 99.85 99.8
수명 [mg] 약 4700 약 4300
표 3에 나타낸 바와 같이, 지지재(312)로 십자형 횡단면(이형 단면)을 갖는 수지 섬유를 사용한 실시예 3에서는, 실시예 1에 비하여, 집진 효율이 향상되고, 수명이 연장되었다.
[제2 실시 형태]
도 7은, 제2 실시 형태가 적용되는 공기 청정기(1)의 일례를 나타내는 도면이다.
공기 청정기(1)는, 하이브리드 공기 청정 필터(10), 하우징(40), 팬(50) 및 제어부(60)를 구비한다. 하이브리드 공기 청정 필터(10)는, 대전부(20) 및 집진(포집)부(30)를 구비한다. 집진부(30)는 필터용 부직포(310)와 필터용 부직포(310)를 고정하는 프레임(320)을 구비한 공기 청정 필터(31)를 가질 수 있다.
즉, 하이브리드 공기 청정 필터(10)는, 부유 미립자를 대전하는 대전 기술과 여과재에 의해 대전한 부유 미립자 등을 포집(포착)하는 필터 기술을 사용한 하이브리드형이다.
도 7에서는, 하우징(40)을 파선으로 나타내고, 하우징(40)의 내부에 설치된 하이브리드 공기 청정 필터(10)(대전부(20) 및 집진부(30)), 팬(50), 제어부(60) 등의 구성이 보이도록 하고 있다.
하이브리드 공기 청정 필터(10)는 공기 청정 수단의 다른 일례이다.
대전부(20)는, 공기 중에 부유하는 부유 미립자를 대전시킨다. 집진부(30)는, 대전한 부유 미립자 등을 포집(흡착)한다.
하우징(40)은, 하이브리드 공기 청정 필터(10)(대전부(20), 집진부(30)) 및 제어부(60)를 수납한다. 하우징(40)의 대전부(20)측에는 개구부(41)가 설치되어 있다. 또한, 개구부(41)에는, 메쉬(망), 격자 등이 설치되어 있어도 좋다.
팬(50)은 하우징(40)에 설치된 개구부(42)에 설치될 수 있다.
팬(50)은, 공기의 흐름(통풍)을 발생시킨다. 통풍의 방향(통풍 방향)은, 대전부(20)로부터 집진부(30)를 향하도록 설정될 수 있다(도 7의 지면(紙面) 좌측으로부터 우측). 또한, 도 1에서는, 통풍 방향을 백색 투명한 화살표로 나타내고 있다. 즉, 공기의 흐름은, 하우징(40)의 대전부(20)측의 개구부(41)로부터 들어가고, 대전부(20), 집진부(30)를 경유하여, 하우징(40)의 팬(50)이 설치된 개구부(42)로부터 나올 수 있다.
설명의 편의상, 도 7에 도시한 바와 같이, 통풍 방향을 z 방향으로 하고, 그에 직교하는 방향을 x 방향 및 y 방향으로 한다.
또한, 통풍이 저해되지 않는 한, 공기 청정기(1)는, 어떤 방향으로 놓일 수 있다.
이하에서는, 대전부(20)를 상세하게 설명한다. 또한, 집진부(30)는 제1 실시 형태에서 설명한 것과 마찬가지이므로, 동일한 부호를 부여하고 설명을 생략한다.
(대전부(20))
대전부(20)는, 고압 전극(21)과, 고압 전극(21)에 대향하는 대향 전극(25)을 구비한다. 또한, 고압 전극(21)은, 고전압이 인가되는 전극이므로, 고전압 전극이라고도 불리며, 방전을 발생하는 전극이므로, 방전 전극이라고도 불리는 경우가 있다. 또한, 대향 전극(25)은, 접지(GND)되는 경우가 있으므로, 접지 전극으로 불리는 경우가 있다.
그리고, 고압 전극(21)과 대향 전극(25) 사이에, 예를 들어 고압 전극(21)을 +, 대향 전극(25)을 -로 해서, 직류(DC)의 고전압이 인가된다. 그러면 고압 전극(21)과 대향 전극(25) 사이에 코로나 방전(방전)이 발생한다. 그리고, 발생한 코로나 방전에 의해, 부유 미립자를 대전시킬 수 있다.
여기에서는, 고압 전극(21)은, 복수의 톱니 열전극(210)을 구비할 수 있다. 각각의 톱니 열전극(210)은 접속부(211)와 접속부(211)로부터 연장된 복수의 톱니형상의 부분(212)(이하에서는 톱니 전극(212)으로 표기한다.)를 구비할 수 있다. 또한, 톱니 전극(212)의 뾰족한 선단은, -z 방향, 즉 통풍의 풍상측을 향할 수 있다.
도 7에서는 접속부(211)는 y 방향으로 연장될 수 있다. 그리고, 복수의 톱니 열전극(210)은, x 방향으로 배열될 수 있다.
대향 전극(25)은, 복수의 판 형상의 전극판(250)을 구비할 수 있다. 각각의 전극판(250)은, 길이 방향이 y 방향을 향하고, 표면이 z 방향을 따를 수 있다. 그리고, 전극판(250)은 x 방향으로 배열되어 있다.
그리고, 인접하는 2개의 전극판(250) 사이에 하나의 톱니 열전극(210)이 위치하도록 전극판(250)과 톱니 열전극(210)이 교대로 배열될 수 있다.
또한, 톱니 전극(212)의 선단부에 전계가 집중되므로, 톱니 전극(212)의 선단부와 전극판(250)이 대향하도록 배치되는 것이 좋다.
또한, 도 7에서는, 톱니 열전극(210)이 5개, 전극판(250)이 6개이지만, 다른 개수라도 좋다.
톱니 열전극(210) 및 전극판(250)은, 스테인리스강(SUS), 구리 등의 전도성 금속으로 구성되어 있다.
(실시예 4)
실시예 1의 집진부(30)에, 대전부(20)를 조합해서 하이브리드 공기 청정 필터(10)로 하였다.
(비교예3)
집진부(30)(공기 청정 필터(31))의 필터용 부직포(310)로서, HEPA필터를 사용하였다. 비교예 3에서는, 실시예 4와 집진 효율이 대략 동일하게 되었다.
(비교예4)
집진부(30)(공기 청정 필터(31))의 필터용 부직포(310)로서, E11 필터를 사용하였다. 비교예 4에서는, 실시예 4와 압력 손실이 대략 동일하게 되었다.
이 하이브리드 공기 청정 필터(10)를 사용한 집진부(30)와 대전부(20)를 성능 측정 덕트에 설치하고, 풍속 1.0m/s의 조건에서 압력 손실과 집진 효율을 측정하였다. 압력 손실은 성능 측정 덕트에 있어서의 하이브리드 공기 청정 필터(10)보다 상류측(하이브리드 공기 청정 필터(10)에 들어가기 전)과 하류측(하이브리드 공기 청정 필터(10)로부터 나온 후)의 압력의 차이이다. 집진 효율은 성능 측정 덕트에 있어서의 하이브리드 공기 청정 필터(10)보다 상류측과 하류측에 있어서, 부유 미립자의 수를 파티클 카운터에 의해 계측해서 구하였다.
또한, 수명은, 공기 청정기에 관한 중국 국가 시험 규격(GB 규격)에 기초하는 시험법에 의해, 담배 연기로부터의 분진량을 기초로 하여 누적 정화 총량을 구하고, 그것을 수명으로서 평가하였다.
즉, 압력 손실 및 집진 효율에 기초하여 설정된 초기의 청정 능력을 100으로 하고, 청정 능력이 50이 될 때까지, 공기 청정 필터(31)에 집진(포집)된 부유 미립자의 중량(누적 정화 총량)으로 평가하였다. 즉, 중량이 클수록 수명이 길고, 중량이 작을수록 수명이 짧다.
결과를 표 4에 나타낸다. 표 4에서는, 압력 손실 [Pa], 집진 효율[%], 수명 [mg]을 나타낸다.
실시예 4 비교예 1 비교예 4
압력손실 [Pa] 23 50 28
집진효율 [%] 99.9995 99.995 99.9
수명 [mg] 약 10160 약 7500 약 3000
표 4에 나타낸 바와 같이, 실시예 4에서는, 압력 손실은 23Pa, 집진 효율은 99.9995%, 수명은 약 10160mg이다.
이에 대해, 집진 효율(99.995%)이 실시예 4와 대략 동일한 비교예 3은, 압력 손실이 실시예의 약 2배인 50Pa로 높고, 또한, 수명이 약 7500mg로 20% 이상 짧다.
또한, 압력 손실(25Pa)이 실시예 4와 대략 동일한 비교예 4는, 집진 효율이 99.9%이고, 수명이 1/2 이하인 약 3000mg이었다.
즉, 비교예 3에 도시한 바와 같이, 종래의 공기 청정 필터에서는, 집진 효율을 높이고자 하면, 압력 손실이 크고, 공기 청정 필터(31)의 수명이 짧아졌다. 또한, 비교예 4에 도시한 바와 같이, 종래의 공기 청정 필터에서는, 압력 손실을 낮추고자 하면, 집진 효율이 낮아지는 동시에, 공기 청정 필터(31)의 수명이 짧아졌다.
이들에 비하여, 실시예 4에서는, 비교예 3 및 비교예 4에 비해, 낮은 압력 손실, 높은 집진 효율, 긴 수명을 달성하고 있다.
또한, 대전부(20)와 집진부(30)를 조합하는 것에 의한 수명 연장의 효과는, 비교예 3, 4에서는, 제1 실시 형태에서 설명한 비교예 1, 2에 비하여 약 2배에 그치고 있다. 한편, 실시예 4에서는, 제1 실시 형태에서 설명한 실시예 1에 비하여 2배 이상이 얻어지고 있다.
이것은, 실시예 4에서는, 여과재(311)의 섬유 직경을 굵게 하고(굵은 섬유), 단위 면적당 중량을 높게 하며(높은 단위 면적당 중량), 두께를 두껍게(부피를 크게)한 것에 의해, 여과재 내의 공극이 비교적 크게 구성되었으므로, 대전된 부유 미립자가 여과재(311)의 내부(통풍 방향의 하류 방향)에 침입하기 쉬워지고, 섬유 직경이 가는 경우와 같이, 미립자가 주로 여과재 표면 부분에 퇴적되어 눈막힘을 일으키는 것이 억제되었기 때문이다.
즉, 실시예 4에서는, 집진부(30)의 투영 면적 및 두께(D)(도 2에 도시하는 절곡 가공된 상태에서의 두께(D))를, 종래의 것(비교예 3, 4)과 비교해서 증가시키지 않고, 낮은 압력 손실과, 99% 이상의 고집진 효율과, 긴 수명을 달성하고 있다.
도 8A는 실시예 4의 여과재(311)의 주사형 전자 현미경 사진(SEM상)이고, 도 8B는, 비교예 2의 여과재(311)의 주사형 전자 현미경 사진(SEM상)이다. 실시예 4의 여과재(311)는, 비교예 2의 여과재(311)에 비해, 굵은 섬유이고 또한 부피가 큰 것을 알 수 있다.
(실시예 5)
실시예 4에 있어서의 여과재(311)로서, 도 6A에 나타내는 십자형 횡단면을 갖는 폴리프로필렌섬유를 사용하였다. 다른 구성은, 실시예 4와 마찬가지이다.
실시예 5와 실시예 4을 비교한 결과를 표 5에 나타낸다.
실시예 5 실시예 4
압력손실 [Pa] 24 23
집진효율 [%] 99.9998 99.9995
수명 [mg] 약 12000 약 10160
표 5에 나타낸 바와 같이, 여과재(311)로 십자형 횡단면(이형 단면)을 갖는 수지 섬유를 사용한 실시예 5에서는, 실시예 4에 비하여, 집진 효율이 향상되고, 수명이 연장되었다.
(실시예 6)
실시예 4에 있어서의 지지재(312)로서, 도 6A에 나타내는 십자형 횡단면을 갖는 수지 섬유를 사용하였다. 다른 구성은, 실시예 4와 마찬가지이다.
실시예 6과 실시예 4를 비교한 결과를 표 6에 나타낸다.
실시예 6 실시예 4
압력손실 [Pa] 24 23
집진효율 [%] 99.9997 99.9995
수명 [mg] 약 11800 약 10160
표 6에 나타낸 바와 같이, 지지재(312)로 십자형 횡단면(이형 단면)을 갖는 수지 섬유를 사용한 실시예 6에서는, 실시예 4에 비하여, 집진 효율이 향상되고, 수명이 연장되었다.
이것은, 하이브리드 공기 청정 필터(10)로서, 미립자를 미리 대전시켜 두면, 지지재(312)의 수지 섬유의 표면에의 미립자의 흡착이 보다 촉진되기 때문에, 집진 효율이 향상되고 수명이 연장되는데 따른 것이다.
이어서, 제2 실시 형태가 적용되는 하이브리드 공기 청정 필터(10)의 변형예를 설명한다.
도 9는, 제2 실시 형태가 적용되는 하이브리드 공기 청정 필터(10)의 변형예를 설명하는 도면이다. 또한, 도 9에서는, 공기 청정기(1)에 있어서의 하이브리드 공기 청정 필터(10)의 대전부(20)와 집진부(30)를 나타낸다. 다른 구성은, 도 7에 나타내는 제2 실시 형태와 마찬가지이므로, 동일한 부호를 부여하고 설명을 생략한다.
이 변형예에서는, 도 7에 나타낸 대전부(20)의 고압 전극(21)에 있어서의 복수의 톱니 열전극(210)이, 복수의 바늘 열전극(220)으로 치환되어 있다. 바늘 열전극(220)은, 접속부(221)와 접속부(221)로부터 연장된 복수의 바늘 형상의 전극(222)(바늘 전극(222)으로 표기한다.)을 구비한다.
도 10은, 제2 실시 형태가 적용되는 하이브리드 공기 청정 필터(10)의 다른 변형예를 설명하는 도면이다. 또한, 도 10에서는, 공기 청정기(1)에 있어서의 하이브리드 공기 청정 필터(10)의 대전부(20)와 집진부(30)를 나타낸다. 다른 구성은, 도 7에 나타내는 제2 실시 형태와 마찬가지이므로, 동일한 부호를 부여하고 설명을 생략한다.
이 변형예에서는, 도 7에 나타낸 대전부(20)의 고압 전극(21)에 있어서의 복수의 톱니 열전극(210)이, 선(와이어) 형상의 전극(230)(선형 전극(230))으로 되어 있다.
도 11은, 제2 실시 형태가 적용되는 하이브리드 공기 청정 필터(10)의 또 다른 변형예를 설명하는 도면이다. 또한, 도 11에서는, 공기 청정기(1)에 있어서의 하이브리드 공기 청정 필터(10)의 대전부(20)와 집진부(30)를 나타낸다. 다른 구성은, 도 7에 나타내는 제2 실시 형태와 마찬가지이므로, 동일한 부호를 부여하고 설명을 생략한다.
이 변형예에서는, 도 7에 나타낸 대전부(20)의 고압 전극(21)에 있어서의 복수의 톱니 열전극(210)이, 서로 y 방향에 있어서 대향하는 복수의 톱니 형상의 전극(242)(톱니 전극(242)으로 표기한다.)을 구비하는 톱니 열전극(240)으로 되어 있다. 톱니 열전극(240)은, 접속부(241)와 접속부(241)로부터 연장된 복수의 톱니 형상의 전극(242)을 구비한다.
그리고, 대향 전극(25)이, 메쉬(망) 형상으로 형성되고, 고압 전극(21)보다 통풍의 풍하측에 설치되어 있다. 이러한 구조라도, 고압 전극(21)과 대향 전극(25) 사이에 직류(DC)의 고전압이 인가됨으로써, 고압 전극(21)과 대향 전극(25) 사이에 코로나 방전(방전)이 발생한다. 그리고, 발생한 코로나 방전에 의해, 부유 미립자가 대전된다.
또한, 톱니 전극(242)은, 상기한 바늘 전극(222)이어도 좋다.
또한, 톱니 전극(212, 242) 또는 바늘 전극(222)의 배열에는, 다른 방법을 사용해도 좋다. 또한, 고압 전극(21)과 대향 전극(25)의 배치에는, 다른 방법을 사용해도 좋다. 또한, 대향 전극(25)에는 다른 구성을 사용하고 있어도 좋다.
[제3 실시 형태]
제3 실시 형태에서는, 집진부(30)에 있어서, 하이브리드 공기 청정 필터(10)에 전계를 인가하는 한 쌍의 바이어스 전극을 구비하고 있다.
도 12는, 제3 실시 형태가 적용되는 공기 청정기(1)의 하이브리드 공기 청정 필터(10)를 설명하는 도면이다.
또한, 도 12에서는, 공기 청정기(1)에 있어서의 하이브리드 공기 청정 필터(10)의 대전부(20)와 집진부(30)를 나타낸다. 다른 구성은, 도 7에 나타내는 제2 실시 형태와 마찬가지이므로, 동일한 부호를 부여하고 설명을 생략한다.
하이브리드 공기 청정 필터(10)의 집진부(30)는, 절곡 가공된 필터용 부직포(310)를 갖는 공기 청정 필터(31)와, 공기 청정 필터(31)에 전계를 인가하는 한 쌍(1조)의 바이어스 전극(32)(바이어스 전극(32a, 32b))을 구비할 수 있다.
예를 들어, 절곡 가공된 필터용 부직포(310)를 갖는 공기 청정 필터(31)의 두께(D)가 40mm인 경우, 바이어스 전극(32a, 32b)에 6kV 내지 8kV의 바이어스 전압이 인가되면 좋다. 또한, 바이어스 전압은, 풍상측의 바이어스 전극(32a)을 부(-), 풍하측의 바이어스 전극(32b)을 정(+)으로 하고 있다.
이에 의해, 대전된 부유 미립자가 공기 청정 필터(31)에 끌어 당겨져, 집진 효율이 더욱 향상된다.
제1 실시 형태, 제2 실시 형태 및 제 3 실시 형태에서 나타낸 수치는, 일례이며, 이들에 한정되지 않는 것은 명확하다.
기타, 본 발명의 취지에 어긋나지 않는 한, 다양한 조합이나 변형을 행해도 좋다.

Claims (17)

  1. 공기를 청정하게 하는 여과재와, 상기 여과재를 지지하는 지지재가 접착된 필터용 부직포를 구비하고,
    상기 여과재는 평균 섬유 직경이 3.6μm 이상이고 16.5μm 이하인 수지 섬유로 구성되고, 단위 면적당 중량과 평균 섬유 직경의 비가 10×106g/m3 이상이고 20×106g/m3 이하인 공기 청정 필터.
  2. 제 1 항에 있어서,
    상기 여과재는 단면의 두께가 가장 얇은 곳에서 0.4mm 이상이고 1.5mm 이하인 공기 청정 필터.
  3. 제1항에 있어서,
    상기 여과재는 평균 섬유 직경이 4.0μm 이상이고 15.0μm 이하인 수지 섬유로 구성되는 공기 청정 필터.
  4. 제 1 항에 있어서,
    상기 여과재를 구성하는 수지 섬유는 횡단면의 외주연 상에 적어도 1군데에 변곡점을 갖는 공기 청정 필터.
  5. 제 1 항에 있어서,
    상기 여과재를 구성하는 수지 섬유는 십자형 횡단면을 갖는 폴리프로필렌섬유인 공기 청정 필터.
  6. 제 1 항에 있어서,
    상기 지지재는 수지 섬유로 구성되고, 상기 수지 섬유는 장섬유로 구성되는 공기 청정 필터.
  7. 제1항에 있어서,
    상기 지지재를 구성하는 수지 섬유는 횡단면의 외주연 상에 적어도 1군데에 변곡점을 갖는 공기 청정 필터.
  8. 제 7 항에 있어서,
    상기 지지대를 구성하는 상기 수지 섬유는 십자형 횡단면을 갖는 폴리프로필렌섬유인 공기 청정 필터.
  9. 공기를 청정하게 하는 여과재와, 상기 여과재를 지지하는 지지재가 접착된 필터용 부직포를 구비하는 공기 청정 필터; 및
    상기 공기 청정 필터에 공기의 흐름을 발생시키는 팬을 구비하며,
    상기 여과재는 평균 섬유 직경이 3.6μm 이상이고 16.5μm 이하인 수지 섬유로 구성되고, 단위 면적당 중량과 평균 섬유 직경의 비가 10×106g/m3 이상이고 20×106g/m3 이하인 공기 청정기.
  10. 제 9 항에 있어서,
    상기 여과재는 단면의 두께가 가장 얇은 곳에서 0.4mm 이상이고 1.5mm 이하인 공기 청정기.
  11. 제 9 항에 있어서,
    상기 여과재는 평균 섬유 직경이 4.0μm 이상이고 15.0μm 이하인 수지 섬유로 구성되는 공기 청정기.
  12. 제 9 항에 있어서,
    상기 여과재를 구성하는 수지 섬유는 횡단면의 외주연 상에 적어도 1군데에 변곡점을 갖는 공기 청정기.
  13. 제 12 항에 있어서,
    상기 여과재를 구성하는 상기 수지 섬유는 십자형 횡단면을 갖는 폴리프로필렌섬유인 공기 청정기
  14. 제 9 항에 있어서,
    상기 공기 청정 필터에서의 공기 흐름방향의 상류측에 배치되어 상기 공기 청정 필터로 유입되는 부유 미립자를 대전시키는 대전부를 더 포함하는 공기 청정기.
  15. 제 14 항에 있어서,
    상기 대전부는,
    코로나 방전을 발생시키는 고압 전극과, 상기 고압 전극에 대향하는 대향 전극을 구비하는 공기 청정기.
  16. 제 14 항에 있어서,
    상기 필터용 부직포에 전계를 인가하도록 상기 필터용 부직포를 사이에 배치되는 바이어스 전극을 더 포함하는 공기 청정기.
  17. 제 15 항에 있어서,
    상기 고압 전극은 선(wire)형, 바늘 형상, 톱니 형상 중 어느 하나의 형상의 의 전극을 구비하는 공기 청정기.
PCT/KR2017/013927 2016-12-05 2017-11-30 공기 청정 필터, 하이브리드 공기 청정 필터 및 공기 청정기 WO2018105951A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197006567A KR20190084242A (ko) 2016-12-05 2017-11-30 공기 청정 필터, 하이브리드 공기 청정 필터 및 공기 청정기
US16/467,000 US20190388904A1 (en) 2016-12-05 2017-11-30 Air clean filter, hybrid air clean filter and air cleaner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-235977 2016-12-05
JP2016235977A JP2018089585A (ja) 2016-12-05 2016-12-05 濾材、空気清浄フィルタ、ハイブリッド空気清浄フィルタ及び空気清浄機

Publications (1)

Publication Number Publication Date
WO2018105951A1 true WO2018105951A1 (ko) 2018-06-14

Family

ID=62491614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013927 WO2018105951A1 (ko) 2016-12-05 2017-11-30 공기 청정 필터, 하이브리드 공기 청정 필터 및 공기 청정기

Country Status (4)

Country Link
US (1) US20190388904A1 (ko)
JP (1) JP2018089585A (ko)
KR (1) KR20190084242A (ko)
WO (1) WO2018105951A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340759A (zh) * 2019-08-13 2022-04-12 3M创新有限公司 高性能纺粘空气过滤纤维网
US11465091B2 (en) * 2019-09-23 2022-10-11 The Boeing Company Particulate filter and methods for removing particulates from a particulate filter
US11465092B2 (en) * 2019-09-23 2022-10-11 The Boeing Company Particulate filter and methods for removing particulates from a particulate filter
EP4200058A2 (de) * 2020-08-20 2023-06-28 Dornier New Technologies GmbH Luftreinigungseinheit und verfahren zur beschichtung einer elektrode einer luftreinigungseinheit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290016A (ja) * 1994-04-28 1995-11-07 Zexel Corp 車両用空気清浄装置
KR20080010429A (ko) * 2005-04-22 2008-01-30 쓰리엠 이노베이티브 프로퍼티즈 컴파니 차량 객실부 공기 필터 장치
KR20080060829A (ko) * 2006-12-27 2008-07-02 (주)크린앤사이언스 내연기관 유입공기 정화용 필터 소재 및 그의 제조 방법
KR20110089168A (ko) * 2008-10-31 2011-08-04 칼 프로이덴베르크 카게 입자상 물질을 여과하기 위한 필터 매체
WO2015191676A1 (en) * 2014-06-11 2015-12-17 Fibervisions, L.P. Blended fiber filters

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771671B2 (en) * 2005-01-25 2010-08-10 Sharper Image Acquisition Llc Air conditioner device with partially insulated collector electrode
US6989051B2 (en) * 2003-08-25 2006-01-24 Delphi Technologies, Inc. Portable air filtration system
US7025806B2 (en) * 2003-11-25 2006-04-11 Stri{dot over (o)}nAir, Inc. Electrically enhanced air filtration with improved efficacy
US20050227564A1 (en) * 2004-01-30 2005-10-13 Bond Eric B Shaped fiber fabrics
JP5304096B2 (ja) * 2007-10-29 2013-10-02 ダイキン工業株式会社 荷電装置及び空気処理装置
US20110174158A1 (en) * 2008-05-13 2011-07-21 Research Triangle Institute Particle filter system incorporating electret nanofibers
JP5704032B2 (ja) * 2011-09-26 2015-04-22 株式会社デンソー 車両用空調装置
EP2828422A4 (en) * 2012-03-19 2015-10-28 Univ Cornell CHARGED NANOFIBERS AND METHODS OF MAKING
WO2013161534A1 (ja) * 2012-04-23 2013-10-31 三菱電機株式会社 コロナ放電装置及び空気調和機
KR102130743B1 (ko) * 2013-11-01 2020-07-06 삼성전자주식회사 공조용 필터장치
WO2016105045A1 (ko) * 2014-12-22 2016-06-30 삼성전자주식회사 전기 집진기
JP6692267B2 (ja) * 2016-09-20 2020-05-13 株式会社東芝 集塵装置および空気調和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290016A (ja) * 1994-04-28 1995-11-07 Zexel Corp 車両用空気清浄装置
KR20080010429A (ko) * 2005-04-22 2008-01-30 쓰리엠 이노베이티브 프로퍼티즈 컴파니 차량 객실부 공기 필터 장치
KR20080060829A (ko) * 2006-12-27 2008-07-02 (주)크린앤사이언스 내연기관 유입공기 정화용 필터 소재 및 그의 제조 방법
KR20110089168A (ko) * 2008-10-31 2011-08-04 칼 프로이덴베르크 카게 입자상 물질을 여과하기 위한 필터 매체
WO2015191676A1 (en) * 2014-06-11 2015-12-17 Fibervisions, L.P. Blended fiber filters

Also Published As

Publication number Publication date
JP2018089585A (ja) 2018-06-14
KR20190084242A (ko) 2019-07-16
US20190388904A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
WO2018105951A1 (ko) 공기 청정 필터, 하이브리드 공기 청정 필터 및 공기 청정기
WO2017074145A2 (ko) 공기청정장치
CN1254606C (zh) 净化燃气轮机进气的方法和装置
WO2021215680A1 (en) Filter device and air cleaner having the same
WO2015053444A1 (ko) 기재 사이에 나노섬유를 포함하는 필터 및 이의 제조방법
WO2015053443A1 (ko) 기재 양면에 나노섬유를 포함하는 필터 및 이의 제조방법
WO2018030725A1 (ko) 수처리용 평판형 필터모듈 및 이를 포함하는 수처리용 필터집합체
WO2022108247A1 (ko) 공기 중 유해 물질 및 바이러스 제거 성능이 개선된 공기 정화기
WO2021107584A1 (ko) 공기 조화기
WO2020246802A1 (ko) 전기집진장치 및 이의 제조방법
WO2015053442A1 (ko) 나노섬유를 포함하는 필터 및 이의 제조방법
WO2014084442A1 (ko) 전기변위장을 이용한 전기집진 장치
WO2022181990A1 (ko) 공기청정기
WO2016080620A1 (ko) 고효율 정전 필터 및, 이를 구비하는 정전 필터 유니트
WO2024219604A1 (ko) 집진 시트 및 전기 집진 장치
WO2020076076A1 (ko) 전도성 필터 유닛, 전도성 필터 유닛을 포함하는 전도성 필터 모듈, 및 전도성 필터 모듈이 구비된 미세먼지 제거 시스템
WO2019132554A1 (en) Charging apparatus and precipitator
WO2024053875A1 (ko) 공기 조화기 및 전기 집진 장치
WO2023090595A1 (ko) 전기집진장치 및 그 제어 방법
WO2020204546A1 (ko) 대전 장치 및 집진 장치
WO2022182007A1 (ko) 집진 및 탈취 기능을 갖는 공기청정필터 및 이의 제조방법
WO2016208890A1 (en) Air purifier
WO2021187801A1 (en) Electrostatic dust collecting apparatus and method of manufacturing the same
WO2019050151A1 (ko) 공기정화기용 전기집진유닛과 이를 이용한 공기정화기
WO2021091160A1 (ko) 대전부 및 집진부를 포함하는 전기집진장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006567

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878049

Country of ref document: EP

Kind code of ref document: A1