WO2018105944A1 - 내식성이 우수한 고강도 강선 및 이의 제조방법 - Google Patents
내식성이 우수한 고강도 강선 및 이의 제조방법 Download PDFInfo
- Publication number
- WO2018105944A1 WO2018105944A1 PCT/KR2017/013821 KR2017013821W WO2018105944A1 WO 2018105944 A1 WO2018105944 A1 WO 2018105944A1 KR 2017013821 W KR2017013821 W KR 2017013821W WO 2018105944 A1 WO2018105944 A1 WO 2018105944A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel wire
- corrosion resistance
- wire
- strength
- high strength
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
Definitions
- the present invention relates to a high strength steel wire, and more particularly to a high strength steel wire excellent in corrosion resistance and a method for manufacturing the same.
- Armor cables are reinforcements that support loads on flexible pipes that transport crude oil at sea. They require high strength and resistance to corrosion.
- the method for obtaining the required physical properties of the armor cable is as follows.
- Representative examples of the strength-reinforcing elements of the steel include carbon. As the carbon content increases, the fraction of hard cementite inside the wire increases, and the strength of the material improves as the lamellar spacing of the pearlite structure becomes finer.
- carbon is effective in improving strength, but because it inhibits corrosion resistance, there is a limit to select an appropriate content according to the use environment.
- drawing work is a method of greatly improving the strength by drawing the wire and giving work hardening.
- the drawing material is drawn and heat-treated the rolled wire and processed into final wire.
- drawing work can give work hardening due to miniaturization of lamellar spacing, increase in work hardening coefficient, and dislocation accumulation. .
- the strength can be improved by increasing the fresh strain of the tire cord material.
- the strain rate of the raw material is closely related to the ductility of the raw material, disconnection does not occur in the raw material itself during the fresh processing, and it may be advantageous to improve the strength as it is easily processed.
- the above-described methods are to change the strength of the steel material by the alloy composition, manufacturing conditions, structure, etc. are interrelated, there is a limit to improve the strength by controlling each independently.
- the above-described methods have no consideration in terms of corrosion resistance of high strength steel wires, and there is a limit in improving corrosion resistance.
- An aspect of the present invention is to provide a steel wire having a high corrosion resistance and high corrosion resistance while the heat treatment can be omitted, and a method of manufacturing the same.
- carbon (C) 0.07 ⁇ 0.15%
- manganese (Mn) 2.7 ⁇ 3.5%
- silicon (Si) 0.10 ⁇ 0.50%
- chromium (Cr) 0.8% or less ( 0%)
- titanium (Ti) 0.01% to 0.02%
- boron (B) 0.001% to 0.003%
- the balance contains iron (Fe) and unavoidable impurities, and has excellent corrosion resistance including a bainite phase as a microstructure.
- Another aspect of the invention the step of manufacturing a wire rod that satisfies the above-described alloy composition; Manufacturing cold drawn wire by cold drawing the wire with a total reduction of 40 to 80%; And cold rolling the cold drawn wire with a total reduction rate of 50 to 90% to produce a cold rolled material.
- the steel wire having a high strength can be provided even if the LP heat treatment step is omitted, and the steel wire of the present invention has an effect of ensuring excellent corrosion resistance.
- the steel wire of the present invention has an effect that can be advantageously applied to applications requiring high strength and high corrosion resistance.
- the present inventors have studied in depth to provide a steel wire that can be suitably used in an environment requiring high strength as well as high corrosion resistance. As a result, it was confirmed that by optimizing the alloy composition and manufacturing conditions of the steel, it is possible to provide a steel wire having a microstructure that is advantageous in ensuring excellent high strength and high corrosion resistance at the same time, and came to complete the present invention.
- the high-strength steel wire having excellent corrosion resistance is a weight%, carbon (C): 0.07 to 0.15%, manganese (Mn): 2.7 to 3.5%, silicon (Si): 0.10 to 0.50%, chromium (Cr ): 0.8% or less (including 0%), titanium (Ti): 0.01 to 0.02%, boron (B): 0.001 to 0.003% is preferably included.
- the content of each element means weight%.
- Carbon (C) is an element that is advantageous for improving the strength of the steel wire, when the content of C is less than 0.07%, there is a problem in that the strength is lowered. On the other hand, when the content of C exceeds 0.15%, the strength is improved, but there is a problem that the ductility is reduced. In particular, the corrosion resistance of the steel wire tends to decrease as the content of C increases.
- the content of C it is preferable to control the content of C to 0.07 to 0.15% in terms of securing the strength and corrosion resistance of the steel wire. More preferably, it may contain 0.09 to 0.13%.
- Manganese (Mn) is an element that is advantageous for securing the intended microstructure as well as improving the hardenability of the steel wire. If the Mn content is less than 2.7%, it is difficult to secure hardenability, and thus there is a problem in that the target microstructure and strength cannot be obtained. On the other hand, when the content of Mn exceeds 3.5% there is a problem that ductility is greatly reduced.
- the content of Mn it is preferable to control the content of Mn to 2.7 to 3.5%. More preferably, it may comprise 2.8 to 3.3%.
- Silicon (Si) is an element advantageous for the deoxidation effect, and in order to obtain a sufficient deoxidation effect, it is preferable to add Si at 0.10% or more. If the content of Si is less than 0.10%, there is a possibility that the deoxidation effect is insufficient and the inclusions may increase, and thus the ductility and corrosion resistance may be inferior. On the other hand, when the content of Si exceeds 0.50% there is a problem that the fresh workability and sheet rolling property is lowered.
- the content of Si it is preferable to control the content of Si to 0.10 to 0.50%, more preferably to 0.15 to 0.40%.
- Chromium (Cr) is an element that is advantageous in securing bainite phase as a microstructure of steel wire by securing hardenability, and is also an element that is advantageous in improving strength.
- the Cr may be further included for the above-described effect, but if the content thereof exceeds 0.8%, there is a concern that the martensite phase may be formed as a microstructure to deteriorate the fresh workability.
- the content is preferably controlled to 0.8% or less, and even if the Cr is not added, there is no difficulty in securing the intended microstructure and strength, and includes 0%.
- Titanium (Ti) is the most reactive element with nitrogen (N) and forms nitride in steel.
- N nitrogen
- TiN titanium
- B boron
- the content of Ti it is preferable to control the content of Ti to 0.01 ⁇ 0.02%. More preferably, it is controlled at 0.012 to 0.07%.
- Boron (B) is an element that is advantageous in improving the hardenability of steel, and has the effect of suppressing the formation of ferrite during cooling and diffusing into the austenite grain boundary and increasing the hardenability.
- the remaining component of the present invention is iron (Fe).
- impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
- the nitrogen (N) forming TiN is the upper limit in order to allow boron (B) in the steel to remain in solid solution rather than precipitates (ex, BN) to sufficiently exhibit the effect of improving hardenability. It is desirable to limit to 0.005%.
- sulfur (S) forms a low melting point emulsion, inhibits hot rolling property, and deteriorates fresh workability, it is preferable to limit the upper limit to 0.015%.
- the steel wire of the present invention that satisfies the above-described alloy composition preferably includes bainite single phase as a microstructure.
- the steel wire of the invention having a bainite phase in the microstructure is the corrosion resistance to the yield strength and less to have a tensile strength of at least 1200MPa, as well as high strength, 2 ⁇ h sulfate corrosion decrease 800g / mm or more 1100MPa Has an excellent effect.
- the steel wire of the present invention can be produced by producing a wire rod that satisfies the above-described alloy composition, and then going through the step of drawing the wire rod.
- the wire rod may be manufactured through various wire rod manufacturing techniques commonly known in the art, but it is preferable to manufacture the wire rod through a series of processes described below.
- microstructure of the billet become austenite single phase through the heating process.
- the heating temperature is less than 1000 ° C., it is difficult to secure the temperature range during the subsequent wire rolling, whereas if the temperature exceeds 1100 ° C., the austenite grains are coarse to form a difficult level of strength. .
- finish hot rolling in the wire rod rolling in the temperature range of 950-1100 degreeC. If the finish hot rolling temperature is less than 950 °C there is a problem that the roll life is reduced by the increase of the rolling load. On the other hand, if the temperature exceeds 1100 °C grain size may be coarse to reduce the ductility, there is a fear that excessive decarburization occurs to deteriorate the fresh workability.
- a wire having a bainite phase by cooling at a cooling rate of 1 to 3 ° C / s. If the cooling rate is less than 1 ° C / s, there is a fear that a structure such as pearlite in addition to the bainite phase as a microstructure, while the martensite phase is formed when it exceeds 3 ° C / s.
- Steel wire can be manufactured by drawing the wire rod manufactured as mentioned above.
- the LP heat treatment that is generally performed before the wire is drawn can be omitted.
- the wire drawing process is performed on a wire rod having a uniform bainite phase without a ferrite structure, it is possible to secure homogeneity and high work hardening rate without performing a separate LP heat treatment.
- the wire rod can be cold drawn immediately without the LP heat treatment process, in which case it is preferable to cold drawn to a reduction ratio of 40 to 80% to prepare a cold drawn wire.
- the processing amount is insufficient to secure sufficient strength, whereas if the reduction rate exceeds 80%, cracking may occur.
- the cold drawn material cold drawn according to the above preferably has a yield strength of 1000 MPa or more and a tensile strength of 1100 MPa or more.
- cold roll the cold drawn material it is preferable to cold roll to a total reduction rate of 50 to 90% to prepare a cold rolled material.
- the cold rolling is for obtaining a steel wire having a plate-shaped shape. If the reduction rate is less than 50%, the processing amount is insufficient to secure sufficient strength, whereas if it exceeds 90%, cracking may occur.
- the cold rolled material cold rolled according to the above preferably has a yield strength of at least 1100 MPa and a tensile strength of at least 1200 MPa.
- the billet After preparing the billet having the alloy composition shown in Table 1, the billet was heated at 1000 ⁇ 1100 °C, and then hot-rolled at 1000 °C to prepare a wire rod. Thereafter, the wire rod was cooled to 500 ° C. at a cooling rate of 1 to 3 ° C./s, and then air cooled to room temperature.
- the steel wire was manufactured by cold rolling at a total reduction of 50 to 90% after the fresh processing with a total reduction of 40 to 80%.
- heat treatment was performed, followed by fresh processing (total reduction of 40 to 80%) and cold rolling (total reduction of 50 to 90%).
- the inventive steels 1 to 6 in which the alloy composition satisfies the present invention have improved strength (yield strength and tensile strength) of the wire compared to the comparative steels 1 to 4.
- the strength of the steel wire of the inventive steels 1 to 6 is also higher than that of the comparative steels 1 to 4 subjected to the LP heat treatment.
- the work hardening rate is high, and thus the target high strength can be achieved through drawing and cold rolling without performing the LP heat treatment compared to the comparative steels 1 to 4 having the pearlite phase. It can be secured.
- the steel wires of the inventive steels 1 to 6 all had a corrosion loss of 550 g / mm 2 ⁇ h or less.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
본 발명은 고강도 강선에 관한 것으로서, 보다 상세하게는 열처리 생략이 가능하면서도 고강도와 더불어 고내식 특성을 갖는 강선 및 이것을 제조하는 방법을 제공하고자 하는 것이다.
Description
본 발명은 고강도 강선에 관한 것으로서, 보다 상세하게는 내식성이 우수한 고강도 강선 및 이의 제조방법에 관한 것이다.
아머 케이블(armor cable)은 해상에서 원유를 수송하는 플렉서블 파이프(flexible pipe)에 걸리는 하중을 지탱해주는 보강재로서, 고강도와 더불어 부식환경에서의 저항성을 필요로 한다.
아머 케이블에서 요구되는 물성을 얻기 위한 방법은 다음과 같다.
첫째, 강의 강도를 높이는 원소를 다량 첨가하여 소재 자체의 강도를 증가시키는 방법이다. 강의 강도 강화 원소의 대표적인 예로는 탄소를 들 수 있다. 상기 탄소의 함량이 증가할수록, 선재 내부에는 경질상인 세멘타이트의 분율이 증가하고, 펄라이트 조직의 라멜라 간격이 미세화됨에 따라 소재의 강도가 향상된다.
하지만, 탄소는 강도 향상에는 효과적이나, 내부식 특성을 저해하므로 사용 환경에 따라서 적절한 함량을 선정하여야 하는 한계가 있다.
둘째, 선재를 신선가공하여 가공 경화를 부여함으로써 강도를 대폭 향상시키는 방법이다. 신선가공재는 압연된 선재를 신선 및 열처리하여 최종 소선으로 가공한 것인데, 이와 같이 신선가공을 행하면 라멜라 간격이 미세화되고 가공 경화 계수가 증가하며, 전위가 집적되는 등의 이유로 가공 경화를 부여할 수 있다.
셋째, 타이어코드용 소재의 신선 변형율을 증가시킴으로써 강도를 향상시킬 수 있다. 이때, 소재의 신선 변형율은 소재의 연성과 밀접한 관계가 있으므로, 신선가공시 소재 자체에 단선이 일어나지 않고, 쉽게 가공될수록 강도 향상에 유리하다 할 수 있다.
하지만, 상술한 방법들은 합금조성, 제조조건, 조직 등이 상호 연관되어 강재의 강도를 변화시키는 것이므로, 각각 독립적으로 제어하여 강도를 향상시킴에는 한계가 있다. 게다가, 상술한 방법들은 고강도 강선의 내부식성 측면에서는 고려가 없어, 내식성을 향상시키는 데에는 한계가 있다.
본 발명의 일 측면은, 열처리 생략이 가능하면서도 고강도와 더불어 고내식 특성을 갖는 강선 및 이것을 제조하는 방법을 제공하고자 하는 것이다.
본 발명의 일 측면은, 중량%로, 탄소(C): 0.07~0.15%, 망간(Mn): 2.7~3.5%, 실리콘(Si): 0.10~0.50%, 크롬(Cr): 0.8% 이하(0% 포함), 티타늄(Ti): 0.01~0.02%, 보론(B): 0.001~0.003%, 잔부는 철(Fe) 및 불가피한 불순물을 포함하고, 미세조직으로 베이나이트 상을 포함하는 내식성이 우수한 고강도 강선을 제공한다.
본 발명의 다른 일 측면은, 상술한 합금조성을 만족하는 선재를 제조하는 단계; 상기 선재를 총 감면율 40~80%로 냉간신선하여 냉간신선재를 제조하는 단계; 및 상기 냉간신선재를 총 감면율 50~90%로 냉간압연하여 냉간압연재를 제조하는 단계를 포함하는 내식성이 우수한 고강도 강선의 제조방법을 제공한다.
본 발명에 의하면, LP 열처리 공정을 생략함에도 고강도를 갖는 강선을 제공할 수 있을 뿐만 아니라, 상기 본 발명의 강선은 내부식성을 우수하게 확보할 수 있는 효과가 있다.
이에 따라, 본 발명의 강선은 고강도 및 고내식성이 요구되는 용도에 유리하게 적용할 수 있는 효과가 있다.
본 발명자들은 고강도뿐만 아니라 고내식성이 요구되는 환경에 적합하게 사용할 수 있는 강선을 제공하기 위하여 깊이 연구하였다. 그 결과, 강의 합금조성 및 제조조건을 최적화함으로써 고강도 및 고내식성을 동시에 우수하게 확보하는데에 유리한 미세조직을 갖는 강선을 제공할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이하, 본 발명에 대하여 상세히 설명한다.
본 발명의 일 측면에 따른 내식성이 우수한 고강도 강선은 중량%로, 탄소(C): 0.07~0.15%, 망간(Mn): 2.7~3.5%, 실리콘(Si): 0.10~0.50%, 크롬(Cr): 0.8% 이하(0% 포함), 티타늄(Ti): 0.01~0.02%, 보론(B): 0.001~0.003%를 포함하는 것이 바람직하다.
이하에서는 본 발명에서 제공하는 강선의 합금조성을 위와 같이 제어한 이유에 대하여 상세히 설명한다. 이때, 특별한 언급이 없는 한 각 원소의 함량은 중량%를 의미한다.
C: 0.07~0.15%
탄소(C)는 강선의 강도를 향상시키는데에 유리한 원소로서, 이러한 C의 함량이 0.07% 미만이면 오히려 강도가 저하되는 문제가 있다. 반면, 상기 C의 함량이 0.15%를 초과하게 되면 강도는 향상되는 반면, 연성이 감소하는 문제가 있다. 특히, 강선의 내부식 특성은 상기 C의 함량이 증가할수록 감소하는 경향을 보인다.
본 발명에서는, 강선의 강도 및 내부식성의 확보 측면에서 상기 C의 함량을 0.07~0.15%로 제어하는 것이 바람직하다. 보다 바람직하게는 0.09~0.13%로 포함할 수 있다.
Mn: 2.7~3.5%
망간(Mn)은 강선의 소입성 향상과 더불어 의도하는 미세조직을 확보하는데에 유리한 원소이다. 이러한 Mn의 함량이 2.7% 미만이면 소입성 확보가 어려워 목표로 하는 미세조직과 강도를 얻을 수 없게 되는 문제가 있다. 반면, 상기 Mn의 함량이 3.5%를 초과하게 되면 연성이 크게 저하되는 문제가 있다.
따라서, 본 발명에서는 상기 Mn의 함량을 2.7~3.5%로 제어하는 것이 바람직하다. 보다 바람직하게는 2.8~3.3%로 포함할 수 있다.
Si: 0.10~0.50%
실리콘(Si)은 탈산효과에 유리한 원소로서, 충분한 탈산효과를 얻기 위해서는 0.10% 이상으로 Si을 첨가하는 것이 바람직하다. 만일, 상기 Si의 함량이 0.10% 미만이면 탈산효과가 미비해져 개재물이 증가할 우려가 있으며, 이로부터 연성 및 내부식 특성이 열위할 가능성이 높다. 반면, 상기 Si의 함량이 0.50%를 초과하게 되면 신선가공성 및 판압연성이 저하되는 문제가 있다.
따라서, 본 발명에서는 상기 Si의 함량을 0.10~0.50%로 제어하는 것이 바람직하며, 보다 유리하게는 0.15~0.40%로 제어하는 것이 바람직하다.
Cr: 0.8% 이하
크롬(Cr)은 소입성을 확보하여 강선의 미세조직으로 베이나이트 상을 확보하는데에 유리한 원소이면서, 강도 향상에도 유리한 원소이다.
본 발명에서는 상술한 효과를 위해 상기 Cr을 추가적으로 더 포함할 수 있으나, 그 함량이 0.8%를 초과하게 되면 미세조직으로 마르텐사이트 상을 형성시켜 신선가공성을 악화시킬 우려가 있다.
따라서, 본 발명에서는 상기 Cr을 첨가시 그 함량을 0.8% 이하로 제어하는 것이 바람직하며, 상기 Cr을 첨가하지 않더라도 의도하는 미세조직 및 강도 확보에는 무리가 없으므로, 0%를 포함한다.
Ti: 0.01~0.02%
티타늄(Ti)은 질소(N)와의 반응성이 가장 큰 원소로서, 강 중에서 질화물을 형성한다. 본 발명에서는 상기 Ti을 첨가하여 TiN을 형성함으로써, 강 중 대부분의 질소를 소진하게 되며, 이로 인해 보론(B)이 상기 N와 반응하여 BN을 형성하는 것을 최소화할 수 있다. 즉, 상기 B이 용해(soluble)된 상태로 존재하도록 함으로써, 경화능 향상을 유리하게 얻을 수 있는 것이다.
상술한 효과를 위해서는 0.01% 이상으로 Ti을 첨가하는 것이 바람직하나, 그 함량이 0.02%를 초과하게 되면 조대한 질화물이 형성되어 기계적 물성을 해치는 문제가 있다.
따라서, 본 발명에서는 상기 Ti의 함량을 0.01~0.02%로 제어하는 것이 바람직하다. 보다 바람직하게는 0.012~0.07%로 제어하는 것이 유리하다.
B: 0.001~0.003%
보론(B)은 강의 경화능을 향상시키는데 유리한 원소로서, 오스테나이트 결정립계로 확산하여 냉각시 페라이트의 생성을 억제하고, 소입성을 증가시키는 효과가 있다.
상술한 효과를 충분히 얻기 위해서는 0.001% 이상으로 B을 첨가하는 것이 바람직하다. 다만, 그 함량이 0.003%를 초과하게 되면 상기 효과가 포화될 뿐만 아니라, 보론계 질화물이 석출하여 입계강도가 저하되어 열간 가공성이 열위하는 문제가 있다.
따라서, 본 발명에서는 상기 B의 함량을 0.001~0.003%로 제어하는 것이 바람직하다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
한편, 상술한 바와 같이 TiN을 형성하는 질소(N)는 강 중 보론(B)이 석출물(ex, BN)이 아닌 고용상태로 유지되어 경화능 향상 효과를 충분히 발휘할 수 있도록 하기 위하여, 그 상한을 0.005%로 제한하는 것이 바람직하다.
또한, 황(S)은 저융점 유화물을 형성하여 열간 압연성을 저해하고, 신선가공성을 악화시키므로, 그 상한을 0.015%로 제한하는 것이 바람직하다.
상술한 합금조성을 만족하는 본 발명의 강선은 미세조직으로 베이나이트 단상을 포함하는 것이 바람직하다.
본 발명에서는 일반적으로 강선의 강도를 높게 확보하기 위해 라멜라 간격이 미세한 펄라이트 상을 형성하는 것 대신, 미세조직으로 균일한 베이나이트 상을 형성함으로써 고강도와 더불어 고내식 특성을 갖는 강선을 제공하는 동시에, 기존의 LP 열처리 공정을 생략할 수 있는 기술적 의의가 있다.
상술한 합금조성과 더불어, 미세조직으로 베이나이트 상을 갖는 본 발명의 강선은 1100MPa 이상의 항복강도 및 1200MPa 이상의 인장강도를 갖는 것으로 고강도뿐만 아니라, 황산 부식 감량이 800g/mm2·h 이하로 내식성이 우수한 효과를 가진다.
이하, 본 발명의 다른 일 측면인 내식성이 우수한 고강도 강선을 제조하는 방법에 대하여 상세히 설명한다.
본 발명의 강선은 상술한 합금조성을 만족하는 선재를 제조한 후, 상기 선재를 신선하는 공정을 거침으로써 제조할 수 있다.
상기 선재는 당해 기술분야에서 통상적으로 널리 알려진 다양한 선재 제조 기술을 통해 제조할 수 있으나, 바람직하게는 후술하는 일련의 공정을 거쳐 제조하는 것이 바람직하다.
먼저, 상기 상술한 합금조성을 만족하는 빌렛을 제조한 후, 이를 균질화하는 가열 공정을 거치는 것이 바람직하다.
상기 가열 공정을 통해서 빌렛의 미세조직이 오스테나이트 단상이 되도록 하는 것이 바람직하다.
이를 위해서는 1000~1100℃의 온도범위에서 가열을 행하는 것이 바람직하다. 만일, 상기 가열 온도가 1000℃ 미만이면 후속하는 선재압연시 온도 영역의 확보가 어려워지며, 반면 그 온도가 1100℃를 초과하게 되면 오스테나이트 결정립이 조대하게 형성되어 목표 수준의 강도를 확보하기 어려워진다.
상기에 따라 가열된 빌렛을 선재 압연한 후 냉각하여 선재를 제조하는 것이 바람직하다.
이때, 선재 압연은 950~1100℃의 온도범위에서 마무리 열간압연을 행하는 것이 바람직하다. 상기 마무리 열간압연시 온도가 950℃ 미만이면 압연부하의 증가로 롤 수명이 감소하는 문제가 있다. 반면, 그 온도가 1100℃를 초과하게 되면 결정립 크기가 조대해져 연성이 감소될 우려가 있으며, 탈탄이 과다하게 발생하여 신선가공성을 악화시킬 우려가 있다.
이후, 1~3℃/s의 냉각속도로 냉각하여 베이나이트 상을 갖는 선재를 제조하는 것이 바람직하다. 상기 냉각속도가 1℃/s 미만이면 미세조직으로 베이나이트 상 이외에 펄라이트 등의 조직이 형성될 우려가 있으며, 반면 3℃/s를 초과하게 되면 마르텐사이트 상이 형성될 우려가 있다.
상술한 바에 따라 제조된 선재에 대해서 신선을 행하여 강선을 제조할 수 있다. 본 발명에서는 상기 선재를 신선하기 전에 일반적으로 행해지는 LP 열처리에 대해서는 생략할 수 있다.
본 발명은 페라이트 조직 없이 균일한 베이나이트 상을 갖는 선재에 대해 신선 공정을 행하므로, 별도의 LP 열처리를 행하지 않고서도 균질성과 높은 가공경화율을 확보할 수 있는 것이다.
보다 구체적으로, 상기 선재를 LP 열처리 공정 없이 바로 냉간신선할 수 있으며, 이때 총 40~80%의 감면율로 냉간신선하여 냉간신선재를 제조하는 것이 바람직하다.
상기 냉간신선시 감면율이 40% 미만이면 신선가공량이 불충분하여 충분한 강도를 확보할 수 없으며, 반면 80%를 초과하게 되면 크랙(crack)이 발생할 우려가 있다.
상기에 따라 냉간신선된 냉간신선재는 1000MPa 이상의 항복강도 및 1100MPa 이상의 인장강도를 갖는 것이 바람직하다.
후속하여, 상기 냉간신선재를 냉간압연하는 것이 바람직하며, 이때 총 감면율 50~90%로 냉간압연하여 냉간압연재를 제조하는 것이 바람직하다.
상기 냉간압연은 판상형태의 형상을 갖는 강선을 얻기 위한 것으로서, 이때의 감면율이 50% 미만이면 가공량이 부족하여 충분한 강도를 확보할 수 없으며, 반면 90%를 초과하게 되면 크랙이 발생할 우려가 있다.
상기에 따라 냉간압연된 냉간압연재는 1100MPa 이상의 항복강도 및 1200MPa 이상의 인장강도를 갖는 것이 바람직하다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실시예)
하기 표 1에 나타낸 합금조성을 갖는 빌렛을 제조한 후, 상기 빌렛을 1000~1100℃에서 가열한 다음, 1000℃에서 열간압연하여 선재를 제조하였다. 이후, 상기 선재를 1~3℃/s의 냉각속도로 500℃까지 냉각한 후 상온까지 공냉하였다.
이후, 본 발명에서 제안하는 합금조성을 만족하는 발명강 1 내지 6에 대해서는 총 감면율 40~80%로 신선가공을 행한 후 총 감면율 50~90%로 냉간압연하여 강선을 제조하였으며, 비교강 1 내지 4에 대해서는 LP 열처리를 행한 다음에 신선가공(총 감면율 40~80%) 및 냉간압연(총 감면율 50~90%)을 행하였다.
상기에서 제조한 각각의 선재와 강선에 대해 상온 인장시험을 통해 인장특성을 평가하였으며, 또한 각각의 강선에 대해 5% 황산용액에 강선을 침지하여 부식감량을 측정하였다. 위 결과에 대해서는 하기 표 2에 나타내었다.
구분 | 합금조성 (중량%) | |||||||
C | Si | Mn | Cr | S | Ti | B | N | |
발명강 1 | 0.11 | 0.15 | 3.0 | - | 0.004 | 0.015 | 0.002 | 0.004 |
발명강 2 | 0.11 | 0.15 | 3.0 | 0.5 | 0.004 | 0.015 | 0.002 | 0.004 |
발명강 3 | 0.12 | 0.16 | 3.1 | - | 0.004 | 0.016 | 0.002 | 0.004 |
발명강 4 | 0.13 | 0.13 | 3.3 | - | 0.003 | 0.012 | 0.002 | 0.004 |
발명강 5 | 0.10 | 0.16 | 2.8 | 0.6 | 0.004 | 0.013 | 0.002 | 0.003 |
발명강 6 | 0.10 | 0.14 | 2.7 | 0.4 | 0.003 | 0.017 | 0.002 | 0.005 |
비교강 1 | 0.35 | 0.20 | 0.7 | - | 0.004 | - | - | 0.006 |
비교강 2 | 0.32 | 0.24 | 0.8 | - | 0.005 | - | - | 0.007 |
비교강 3 | 0.38 | 0.17 | 0.6 | - | 0.005 | - | - | 0.006 |
비교강 4 | 0.33 | 0.18 | 1.3 | - | 0.011 | 0.03 | 0.07 | 0.008 |
구분 | LP 열처리 | 선재 | LP재 | 냉간압연선(강선) | 부식감량(g/mm2·h) | |||
YS | TS | YS | TS | YS | TS | |||
발명강 1 | 미실시 | 480 | 757 | - | - | 1230 | 1331 | 527 |
발명강 2 | 미실시 | 584 | 895 | - | - | 1344 | 1474 | 539 |
발명강 3 | 미실시 | 483 | 762 | - | - | 1241 | 1332 | 532 |
발명강 4 | 미실시 | 479 | 761 | - | - | 1232 | 1342 | 518 |
발명강 5 | 미실시 | 596 | 901 | - | - | 1349 | 1489 | 548 |
발명강 6 | 미실시 | 573 | 881 | - | - | 1330 | 1463 | 532 |
비교강 1 | 실시 | 293 | 327 | 451 | 687 | 1090 | 1187 | 1093 |
비교강 2 | 실시 | 287 | 319 | 448 | 673 | 1073 | 1163 | 1087 |
비교강 3 | 실시 | 312 | 334 | 467 | 692 | 1118 | 1203 | 1218 |
비교강 4 | 실시 | 332 | 347 | 505 | 714 | 1147 | 1198 | 1196 |
(상기 표 2에서 YS는 항복강도, TS는 인장강도를 의미하며, 그 단위는 MPa 이다.)
상기 표 1 및 2에 나타낸 바와 같이, 합금조성이 본 발명을 만족하는 발명강 1 내지 6은 비교강 1 내지 4 대비 선재의 강도(항복강도 및 인장강도)가 향상된 것을 확인할 수 있다. 또한, 발명강 1 내지 6의 강선의 강도 역시 LP 열처리를 행한 비교강 1 내지 4의 강선 대비 더욱 높은 것을 확인할 수 있다.
이는, 미세조직으로 베이나이트 상을 갖는 발명강 1 내지 6의 경우 가공경화율이 높아 펄라이트 상을 갖는 비교강 1 내지 4 대비 LP 열처리를 행하지 않고서도 신선가공 및 냉간압연을 통해서 목표로 하는 고강도를 확보할 수 있는 것이다.
또한, 발명강 1 내지 6의 강선은 부식감량이 모두 550g/mm2·h 이하로 나타났는데, 이는 비교강 1 내지 4 대비 동일 조건에서 부식속도가 대략 50% 정도 감소한 것을 확인할 수 있다.
이는, 강선의 내부식 특성에 나쁜 영향을 미치는 페라이트 상을 제거하고 베이나이트 상을 형성하는 것으로부터 내부식 특성을 향상시킬 수 있음을 보여주는 결과이다.
Claims (7)
- 중량%로, 탄소(C): 0.07~0.15%, 망간(Mn): 2.7~3.5%, 실리콘(Si): 0.10~0.50%, 크롬(Cr): 0.8% 이하(0% 포함), 티타늄(Ti): 0.01~0.02%, 보론(B): 0.001~0.003%, 잔부는 철(Fe) 및 불가피한 불순물을 포함하고,미세조직으로 베이나이트 상을 포함하는 내식성이 우수한 고강도 강선.
- 제 1항에 있어서,상기 강선은 황산 부식 감량이 800g/mm2·h 이하인 내식성이 우수한 고강도 강선.
- 제 1항에 있어서,상기 강선은 1100MPa 이상의 항복강도, 1200MPa 이상의 인장강도를 갖는 내식성이 우수한 고강도 강선.
- 중량%로, 탄소(C): 0.07~0.15%, 망간(Mn): 2.7~3.5%, 실리콘(Si): 0.10~0.50%, 크롬(Cr): 0.8% 이하(0% 포함), 티타늄(Ti): 0.01~0.02%, 보론(B): 0.001~0.003%, 잔부는 철(Fe) 및 불가피한 불순물을 포함하는 선재를 제조하는 단계;상기 선재를 총 감면율 40~80%로 냉간신선하여 냉간신선재를 제조하는 단계; 및상기 냉간신선재를 총 감면율 50~90%로 냉간압연하여 냉간압연재를 제조하는 단계를 포함하는 내식성이 우수한 고강도 강선의 제조방법.
- 제 4항에 있어서,상기 선재를 제조하는 단계는, 빌렛을 제조하는 단계; 상기 빌렛을 1000~1100℃에서 가열하는 단계; 가열된 빌렛을 950~1100℃에서 마무리 선재압연하여 선재를 제조하는 단계 및 상기 선재를 1~3℃/s의 냉각속도로 냉각하는 단계를 포함하는 것인 내식성이 우수한 고강도 강선의 제조방법.
- 제 4항에 있어서,상기 냉간신선재는 1000MPa 이상의 항복강도 및 1100MPa 이상의 인장강도를 갖는 것인 내식성이 우수한 고강도 강선의 제조방법.
- 제 4항에 있어서,상기 냉간압연재는 1100MPa 이상의 항복강도 및 1200MPa 이상의 인장강도를 갖는 것인 내식성이 우수한 고강도 강선의 제조방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17878243.9A EP3553197B1 (en) | 2016-12-08 | 2017-11-29 | High strength steel wire having excellent corrosion resistance and method for manufacturing same |
CN201780076162.5A CN110036130B (zh) | 2016-12-08 | 2017-11-29 | 具有优异耐腐蚀性的高强度钢丝及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160166820A KR101917436B1 (ko) | 2016-12-08 | 2016-12-08 | 내식성이 우수한 고강도 강선 및 이의 제조방법 |
KR10-2016-0166820 | 2016-12-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018105944A1 true WO2018105944A1 (ko) | 2018-06-14 |
Family
ID=62492063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/013821 WO2018105944A1 (ko) | 2016-12-08 | 2017-11-29 | 내식성이 우수한 고강도 강선 및 이의 제조방법 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3553197B1 (ko) |
KR (1) | KR101917436B1 (ko) |
CN (1) | CN110036130B (ko) |
WO (1) | WO2018105944A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109355476A (zh) * | 2018-12-05 | 2019-02-19 | 江苏科技大学 | 一种抗co2腐蚀的低合金钢材料及其制备方法与应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08164413A (ja) * | 1994-12-14 | 1996-06-25 | Sumitomo Metal Ind Ltd | 高張力鋼線の製造方法 |
KR20160063534A (ko) * | 2014-11-26 | 2016-06-07 | 주식회사 포스코 | 고강도 강선 및 그 제조방법 |
KR20160063563A (ko) * | 2014-11-26 | 2016-06-07 | 주식회사 포스코 | 강도와 충격 인성이 우수한 선재 및 그 제조방법 |
KR20160063553A (ko) * | 2014-11-26 | 2016-06-07 | 주식회사 포스코 | 고강도 강선 및 그 제조방법 |
KR20160075957A (ko) * | 2014-12-19 | 2016-06-30 | 주식회사 포스코 | 고강도 고내식 강선 및 이의 제조방법 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2768062B2 (ja) * | 1991-06-17 | 1998-06-25 | 株式会社神戸製鋼所 | 高強度強靭鋼の製造方法 |
JP2000144321A (ja) * | 1998-11-11 | 2000-05-26 | Sumitomo Electric Ind Ltd | Pc鋼より線およびその製造方法 |
KR100797327B1 (ko) * | 2006-10-11 | 2008-01-22 | 주식회사 포스코 | 냉간가공성이 우수한 고강도, 고인성 스프링용 강선재,상기 강선재의 제조방법 및 상기 강선재로부터 스프링을제조하는 방법 |
JP5747249B2 (ja) * | 2011-04-15 | 2015-07-08 | 国立研究開発法人物質・材料研究機構 | 強度、延性及びエネルギー吸収能に優れた高強度鋼材とその製造方法 |
CN104357754B (zh) * | 2014-10-17 | 2016-06-22 | 江阴兴澄特种钢铁有限公司 | 一种耐硫酸露点腐蚀钢板及其制造方法 |
WO2016072679A1 (ko) * | 2014-11-03 | 2016-05-12 | 주식회사 포스코 | 강도와 충격 인성이 우수한 선재 및 그 제조방법 |
KR20160063565A (ko) * | 2014-11-26 | 2016-06-07 | 주식회사 포스코 | 고강도 선재 및 그 제조방법 |
-
2016
- 2016-12-08 KR KR1020160166820A patent/KR101917436B1/ko active IP Right Grant
-
2017
- 2017-11-29 CN CN201780076162.5A patent/CN110036130B/zh active Active
- 2017-11-29 WO PCT/KR2017/013821 patent/WO2018105944A1/ko unknown
- 2017-11-29 EP EP17878243.9A patent/EP3553197B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08164413A (ja) * | 1994-12-14 | 1996-06-25 | Sumitomo Metal Ind Ltd | 高張力鋼線の製造方法 |
KR20160063534A (ko) * | 2014-11-26 | 2016-06-07 | 주식회사 포스코 | 고강도 강선 및 그 제조방법 |
KR20160063563A (ko) * | 2014-11-26 | 2016-06-07 | 주식회사 포스코 | 강도와 충격 인성이 우수한 선재 및 그 제조방법 |
KR20160063553A (ko) * | 2014-11-26 | 2016-06-07 | 주식회사 포스코 | 고강도 강선 및 그 제조방법 |
KR20160075957A (ko) * | 2014-12-19 | 2016-06-30 | 주식회사 포스코 | 고강도 고내식 강선 및 이의 제조방법 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109355476A (zh) * | 2018-12-05 | 2019-02-19 | 江苏科技大学 | 一种抗co2腐蚀的低合金钢材料及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
EP3553197A4 (en) | 2019-10-16 |
CN110036130B (zh) | 2022-07-05 |
CN110036130A (zh) | 2019-07-19 |
KR20180065669A (ko) | 2018-06-18 |
EP3553197A1 (en) | 2019-10-16 |
KR101917436B1 (ko) | 2019-01-24 |
EP3553197B1 (en) | 2020-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016099191A1 (ko) | 방향성 전기강판 및 그 제조방법 | |
WO2017111290A1 (ko) | Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법 | |
WO2009145563A2 (ko) | 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리 경화형 부재 및 이들의 제조방법 | |
WO2017082684A1 (ko) | 냉간단조성이 우수한 선재 및 그 제조방법 | |
WO2016111388A1 (ko) | 인장강도 1300MPa 이상의 초고강도 도금강판 및 이의 제조방법 | |
WO2021125793A1 (ko) | 우수한 수소취성 저항성을 가지는 고강도 냉간압조용 선재 및 그 제조방법 | |
WO2021085800A1 (ko) | 항복비가 향상된 오스테나이트계 스테인리스강 및 그 제조 방법 | |
WO2021010599A2 (ko) | 강도가 향상된 오스테나이트계 스테인리스강 및 그 제조 방법 | |
WO2018105944A1 (ko) | 내식성이 우수한 고강도 강선 및 이의 제조방법 | |
WO2015099214A1 (ko) | 강도와 연성이 우수한 열처리 경화형 강판 및 그 제조방법 | |
WO2011081236A1 (ko) | 열간 프레스 가공성이 우수한 열처리 강화형 강판 및 그 제조방법 | |
WO2016047840A1 (ko) | 압연강판 및 그의 제조방법 | |
WO2021125564A1 (ko) | 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법 | |
WO2022131589A1 (ko) | 열처리 특성 및 수소지연파괴 특성이 우수한 고강도 냉간압조용 선재, 열처리부품 및 이들의 제조방법 | |
WO2021125471A1 (ko) | 초고강도 스프링용 선재, 강선 및 그 제조방법 | |
WO2020085687A1 (ko) | 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법 | |
WO2017095049A1 (ko) | 저온 충격 인성이 우수한 선재 및 그 제조방법 | |
WO2018117449A1 (ko) | 수소유기균열 저항성이 우수한 인장강도 450mpa급 후육 강재 및 그 제조방법 | |
WO2022139277A1 (ko) | 공구용 강재 및 그 제조방법 | |
WO2019039774A1 (ko) | 저온 충격인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법 | |
WO2020111705A1 (ko) | 연신율이 우수한 고강도 열연강판 및 그 제조방법 | |
WO2018110866A1 (ko) | 충격 인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법 | |
WO2023075287A1 (ko) | 페라이트계 스테인리스강 및 그 제조방법 | |
WO2024029679A1 (ko) | 고내식 고강도 스테인리스강 및 이의 제조방법 | |
WO2022139135A1 (ko) | 강도와 저온 충격인성이 우수한 극후강판 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17878243 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017878243 Country of ref document: EP Effective date: 20190708 |