WO2018105703A1 - 内燃機関の異常燃焼検出装置及びその検出方法 - Google Patents

内燃機関の異常燃焼検出装置及びその検出方法 Download PDF

Info

Publication number
WO2018105703A1
WO2018105703A1 PCT/JP2017/044062 JP2017044062W WO2018105703A1 WO 2018105703 A1 WO2018105703 A1 WO 2018105703A1 JP 2017044062 W JP2017044062 W JP 2017044062W WO 2018105703 A1 WO2018105703 A1 WO 2018105703A1
Authority
WO
WIPO (PCT)
Prior art keywords
knocking
internal combustion
abnormal combustion
combustion engine
different
Prior art date
Application number
PCT/JP2017/044062
Other languages
English (en)
French (fr)
Inventor
典宏 新屋
芳国 倉島
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018105703A1 publication Critical patent/WO2018105703A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • the present invention relates to an abnormal combustion detection device that detects abnormal combustion of an internal combustion engine and a detection method thereof.
  • the abnormal combustion phenomenon of the engine includes, for example, knocking that occurs after ignition and preignition that occurs before ignition.
  • Various detection and countermeasures for knocking have been conventionally performed.
  • the problem of pre-ignition in a low rotation and high load region has become apparent due to the high compression ratio and high supercharging accompanying the downsizing of a supercharged direct injection engine in recent years.
  • Pre-ignition that occurs in a low rotation and high load region is also called a super knock, which is accompanied by a rapid pressure rise and may lead to engine damage. For this reason, the necessity for not only knocking detection but also pre-ignition detection is increasing.
  • Patent Document 1 describes a technique for detecting knocking and pre-ignition. That is, the output signals of one or two vibration detection sensors are supplied to two band-pass filters having independent frequencies, and these are converted into digital signals using A / D converters having different gains (gains). Then, knocking and pre-ignition are detected by comparing each vibration component peculiar to knocking and pre-ignition in these digital signals with a threshold value.
  • both knocking and pre-ignition can be detected using the output signal of the vibration detection sensor.
  • the signal level of the vibration detection sensor is low when the engine is low and the signal level is high when the engine is high, it is difficult to ensure a sufficient dynamic range, and knocking detection accuracy may be reduced.
  • the present invention has been made in view of the circumstances as described above, and an object of the present invention is to detect an abnormal combustion of an internal combustion engine capable of detecting abnormal combustion different from knocking while ensuring the detection accuracy of knocking, and the detection thereof. It is to provide a method.
  • the abnormal combustion detection apparatus for an internal combustion engine has a converter configured to convert an output signal of a vibration sensor installed in the internal combustion engine into a plurality of signals having different gains, and an increase in engine speed. Accordingly, a signal having a low gain is selected, and the first processing unit configured to detect occurrence of knocking in the internal combustion engine, and a non-selected signal among the plurality of signals having different gains or the low gain And a second processing unit configured to determine abnormal combustion different from knocking using the signal. Further, according to the abnormal combustion detection method for an internal combustion engine of the present invention, the output signal of the vibration sensor installed in the internal combustion engine is converted into a plurality of signals having different gains, and the gain decreases as the engine speed increases. Selecting a signal to detect occurrence of knocking in the internal combustion engine, and determining abnormal combustion different from knocking using a non-selected signal among the plurality of signals having different gains or a signal having a low gain It is characterized by providing.
  • a non-selected signal that is not used for knock detection when the engine speed is high, or the gain Abnormal combustion different from knocking is determined using a low signal.
  • FIG. 1 is a block diagram showing a schematic configuration of an abnormal combustion detection device for an internal combustion engine according to an embodiment of the present invention.
  • FIG. 5 is a characteristic diagram illustrating a performance curve of a supercharged direct injection engine for explaining pre-ignition.
  • FIG. 6 is a waveform diagram for illustrating pre-ignition and showing a pressure curve in a cylinder when a super knock occurs. It is a wave form diagram which shows the in-cylinder pressure of the engine in the vicinity of the pre-ignition detection area and the knocking detection area of the abnormal combustion detection apparatus shown in FIG. It is a schematic diagram which shows the relationship between the pre-ignition detection area and the knocking detection area in the abnormal combustion detection apparatus shown in FIG.
  • FIG. 5 It is a wave form diagram which shows the output signal of the vibration sensor in the vicinity of the pre-ignition detection area and the knocking detection area in the abnormal combustion detection apparatus shown in FIG. It is a flowchart which shows operation
  • movement of the abnormal combustion detection apparatus shown in FIG. 6 is a flowchart illustrating an operation following FIG. 5.
  • FIG. 1 shows extracted main parts related to the detection of knocking and the detection of preignition in the abnormal combustion detection apparatus for an internal combustion engine according to the embodiment of the present invention.
  • 2 and 3 are for explaining pre-ignition that occurs in a low rotation and high load region.
  • FIG. 2 is a characteristic diagram showing an engine performance curve of a supercharged direct injection engine.
  • FIG. It is a wave form diagram which shows a cylinder internal pressure curve.
  • 4A to 4C show in-cylinder pressure, ignition timing, and vibration sensor output signals in the vicinity of the pre-ignition detection section and the knocking detection section in the abnormal combustion detection apparatus of FIG.
  • the output (power) increases as indicated by the broken line 20 as the engine speed increases.
  • the torque is generated at a relatively low rotation, and the maximum torque is maintained near high rotation. Pre-ignition is likely to occur in the low-rotation region 40 surrounded by a diagonal line.
  • Preignition that occurs in a low rotation and high load region, such as sudden acceleration from a vehicle stopped state or full open acceleration, is accompanied by a sudden pressure increase and pressure fluctuation as shown by a solid line 50 in FIG.
  • a solid line 50 in FIG. 3
  • an alternate long and short dash line 60 indicates a change in pressure in the cylinder when the engine is idling
  • a broken line 70 indicates a change in pressure during normal combustion
  • a broken line 80 indicates a change in pressure during knocking (spark knock).
  • the in-cylinder pressure of the engine rises as the piston rises, and is ignited at a timing Tig immediately before top dead center.
  • the in-cylinder pressure greatly increases due to ignition, and then gradually decreases.
  • the pre-ignition detection section and the knocking detection section partially overlap.
  • knocking and pre-ignition are selected by selecting the output signals of the two A / D converters. Both of them can be detected.
  • the output signal of the vibration sensor is generated before ignition in the case of pre-ignition, and is generated after ignition in the case of knocking. Therefore, both abnormal combustion can be detected with the output signal of one vibration sensor by determining whether it is a pre-ignition detection zone or a knocking detection zone.
  • an output signal NS of a vibration sensor (knock sensor) 1 installed in the engine 100 is input to an ECU (Electronic Control Unit) 200.
  • the ECU 200 detects preignition and knocking based on the pressure vibration of the combustion chamber detected by the vibration sensor 1. And based on this detection result, the engine 100 is controlled and abnormal combustion is suppressed.
  • the engine 100 is further provided with, for example, a crank angle sensor 2 and a water temperature sensor 3.
  • the output signal NE of the crank angle sensor 2 and the output signal TS of the water temperature sensor 3 are input to the ECU 200, respectively.
  • the crank angle sensor 2 is used for detecting the engine speed.
  • the water temperature sensor 3 is used for detecting a super knock due to oil that may occur at a low water temperature.
  • the output signal NS of the vibration sensor 1 input to the ECU 200 is amplified by the amplifier 4 and input to a signal input unit (low gain) 6a for high rotation of a CPU (Central Processing Unit) 6 and the vibration sensor 1 Output signal NS is amplified by the amplifiers 4 and 5 and input to the low-rotation signal input section (high gain) 6 b of the CPU 6.
  • the input terminals of the A / D converters 7 and 8 are connected to the signal input units 6a and 6b, respectively, and the output signal (analog signal) NS of the vibration sensor 1 amplified with different gains is A / D converted. Each of the devices 7 and 8 converts the signal into a digital signal.
  • the output of the A / D converter 7 is supplied to the knocking detection processing unit 9a when the engine speed is high, and is supplied to the pre-ignition detection processing unit 9c when the engine speed is low.
  • the knocking detection processing unit 9a, the pre-ignition detection processing unit 9c, and the input switching are realized by software, but each processing unit is formed by a dedicated IC chip or module and switched by a switch element such as a transistor. If configured, it can also be realized by hardware.
  • the CPU 6 selects a high gain signal input from the signal input unit 6b when the engine speed is low, and is input from the signal input unit 6a when the engine speed is high. Select a low gain signal. Therefore, a digital signal output from the A / D converter 8 is input to the knocking detection processing unit 9b when the engine is running at a low speed, and a digital signal output from the A / D converter 7 is processed when the engine is running at a high speed. Is input to the unit 9a, and the arithmetic unit 9 performs a knocking detection process.
  • the knocking detection processing unit 9b is also realized by software, but can also be configured by hardware.
  • This configuration is due to the characteristic that knocking has a low signal level when the engine 100 is running at a low speed and a high signal level when the engine 100 is running at a high speed.
  • Two A / D converters 7 and 8 are assigned to one vibration sensor 1 for low rotation (high gain) and high rotation (low gain), and these A / D converters 7 and 8
  • the output digital signal is input to the arithmetic unit 9 to perform knocking detection processing according to the engine speed.
  • the pre-ignition generation region leading to engine breakage is limited to the low rotation region as described above, and the signal strength is larger in the pre-ignition than in the knocking. Therefore, when the engine 100 is rotating at low speed, the A / D converter 7 for high rotation (low gain) is used for detecting the pre-ignition, and the pre-ignition detection process is executed. At this time, the A / D converter 8 is used for knocking detection and executes knocking detection processing. As described above, one vibration sensor 1 can detect knocking using an output signal having a different gain, and can also detect preignition that is abnormal combustion different from knocking.
  • the output signal NE of the crank angle sensor 2 is input to the signal input unit 6c of the CPU 6, and the output signal TS of the water temperature sensor 3 is input to the signal input unit 6d, and these signals are also converted into digital signals. .
  • the engine speed is detected from the output signal NE of the crank angle sensor 2, and is used for switching the input of the output of the A / D converter 7 to the knocking detection processing unit 9a and the pre-ignition detection processing unit 9c.
  • the output signal TS of the water temperature sensor 3 is used for determining the state of the engine 100 and the surrounding environment.
  • the ECU 200 includes a storage device 11 and is used for various programs and initial values of data for controlling the engine 100 by the control device 12, and determination for switching between the knocking detection processing unit 9a and the pre-ignition detection processing unit 9c. Predetermined values such as engine speed, load, and water temperature are stored, and learning values are stored.
  • the engine 100 is controlled by the control device 12 so as to suppress the abnormal combustion. For example, when it is detected that knocking has occurred, the ignition timing is retarded. When it is detected that pre-ignition has occurred, ETB (Electronic throttle) body is closed and fuel cut is performed.
  • ETB Electronic throttle
  • the engine speed is detected by a sensor (crank angle sensor 2 in this example) installed in the engine 100 (step S1), and the engine speed is compared with a predetermined value stored in advance in the storage device 11 (step S2). ). If the engine speed is less than or equal to the predetermined value, the load is compared with the predetermined value (step S3). If the load is greater than or equal to the predetermined value, the water temperature is further compared with the predetermined value (step S4). When the water temperature is lower than or equal to the predetermined value, it is determined whether or not the pre-ignition detection section (step S5).
  • step S6 If it is determined in step S5 that it is the pre-ignition detection section, the pre-ignition detection processing unit 9c is selected (step S6), and the output signal of the vibration sensor 1 is converted to A / D by the A / D converter 7 for high rotation. D conversion is performed (step S7). This A / D conversion result is input to the arithmetic unit 9, and pre-ignition detection processing is performed (step S8).
  • the pre-ignition detection process is performed by comparing the frequency of the output signal NS of the vibration sensor 1 with a frequency unique to abnormal combustion of the vibration sensor 1 stored in the storage device 11 when the voltage level of the output signal NS exceeds a predetermined value. Analyze. Since the preignition has a higher voltage level than knocking, the preignition can be detected only by the voltage level of the output signal NS. Further, the pre-ignition can be detected only by frequency analysis, and particularly in a region where the compression process and the expansion stroke of the engine 100 overlap, it is preferable to make a determination based on the frequency of the output signal of the vibration sensor 1. It is determined whether or not pre-ignition has been detected (step S9). When it is detected that pre-ignition has occurred, ETB is closed, fuel cut, etc. is performed to suppress pre-ignition (step). S10).
  • step S11 if it is determined in step S2 that the engine speed is greater than the predetermined value, it is determined whether or not it is a knocking detection section (step S11). If it is determined that it is a knocking detection section, knocking detection processing is selected (step S12), and the output signal of the vibration sensor 1 is A / D converted by the A / D converter 7 for high rotation (step S13). ). Then, using the digital signal output from the A / D converter 7, a knocking detection process is performed in the arithmetic unit 9 (step S14).
  • the knocking detection process when the voltage level of the output signal NS of the vibration sensor 1 exceeds a predetermined value, the knocking detection process is compared with the frequency specific to abnormal combustion of the vibration sensor 1 stored in the storage device 11. Is to do. Further, knocking can be detected not only by the combination of the voltage level and the frequency analysis but only by the voltage level or by the frequency analysis alone. In this case, since it may be easily affected by noise or the like, for example, background noise specific to the engine is stored as a learning value in the storage device 11, and the output signal NS of the vibration sensor 1 is used as the learning value. It is good to correct.
  • step S15 When it is detected that knocking has occurred (step S15), the control device 12 performs knocking avoidance suppression, for example, retards the ignition timing (step S16). If it is determined in step S11 that it is not the knocking detection section, or if knocking is not detected in step S15, the abnormal combustion detection is terminated and the process returns.
  • step S17 If it is determined in step S3 that the load is smaller than the predetermined value, if it is determined in step S4 that the water temperature is higher than the predetermined value, if it is determined in step S5 that it is not the pre-ignition detection zone, and if it is determined in step S9
  • step S17 When the ignition is not detected, it is determined whether or not it is a knocking detection section (step S17). If it is determined that it is a knocking detection section, knocking detection processing is selected (step S18), and the output signal NS of the vibration sensor 1 is A / D converted by the A / D converter 8 for low rotation (step S18). S19). Then, using the digital signal output from the A / D converter 8, a knocking detection process is performed by the arithmetic device 9 (step S20).
  • the knocking detection process when the voltage level of the output signal NS of the vibration sensor 1 exceeds a predetermined value, the knocking detection process is compared with the frequency specific to abnormal combustion of the vibration sensor 1 stored in the storage device 11. Is to do. Further, knocking can be detected not only by the combination of the voltage level and the frequency analysis but only by the voltage level or by the frequency analysis alone. In this case, since it may be easily affected by noise or the like, for example, background noise specific to the engine is stored as a learning value in the storage device 11, and the output signal NS of the vibration sensor 1 is used as the learning value. It is good to correct.
  • step S21 When it is detected that knocking has occurred (step S21), the control device 12 performs knocking avoidance suppression, for example, retards the ignition timing (step S22). If it is determined in step S17 that it is not the knocking detection section, or if knocking is not detected in step S21, the detection of abnormal combustion is terminated and the process returns.
  • the output signal NS of the vibration sensor 1 installed in the engine 100 is acquired by converting into two signals having different gains, and the gain increases as the engine speed increases. Select a low signal and detect the occurrence of knocking. Then, abnormal combustion different from knocking, for example, pre-ignition, is determined using a high gain signal (non-selection signal) that is not selected when the engine speed is high.
  • a high gain signal non-selection signal
  • the vibration sensor 1 for detecting knocking and the signal processing unit the amplifier 4, the A / D converter 7 and the calculation.
  • the preignition can be detected using the device 9). Therefore, abnormal combustion different from knocking can be detected using the vibration sensor for detecting knocking and the signal processing unit.
  • ⁇ Modification 1> For example, in the above-described embodiment, the engine speed, the load, and the water temperature are detected, and the detection of pre-ignition and the detection of knocking are switched. However, the engine speed can be switched only by the level of the engine speed, and the engine speed and the load may be switched in combination. Furthermore, the switching may be performed in consideration of the output of the sensor other than the engine speed, the load, and the water temperature.
  • the output signal of the vibration sensor 1 is amplified by the amplifier 4 and the amplifiers 4 and 5, respectively, and A / D converters 7 and 8 are respectively A / D converted.
  • Each output can be processed by a DSP (Digital Signal Processor).
  • DSP Digital Signal Processor
  • amplification is performed by the one-stage amplifier 4 and the two-stage amplifiers 4 and 5, the configuration is not limited to this configuration as long as amplification can be performed with low gain and high gain.
  • the output signal of the vibration sensor is obtained by converting it into two signals having different gains, but it is obtained by converting it into three or more signals having different gains, and the gain increases as the engine speed increases.
  • a low signal may be selected, and abnormal combustion different from knocking may be determined using a non-selected signal or a low gain signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

ノッキングの検出精度を確保しつつ、ノッキングと異なる異常燃焼を検出できる内燃機関の異常燃焼検出装置及びその検出方法を提供する。 異常燃焼検出装置は、内燃機関に設置された振動センサの出力信号を、ゲインの異なる複数の信号に変換して取得し、機関回転数が高くなるにしたがってゲインの低い信号を選択し、内燃機関のノッキングの発生を検出する。更に、振動センサの出力信号から変換して取得したゲインの異なる複数の信号のうち非選択の信号、又はゲインの低い信号を用いてノッキングと異なる異常燃焼を判定する。

Description

内燃機関の異常燃焼検出装置及びその検出方法
 本発明は、内燃機関の異常燃焼を検出する異常燃焼検出装置及びその検出方法に関する。
 エンジンの異常燃焼現象には、例えば点火後に発生するノッキングと、点火前に発生するプレイグニッションがある。ノッキングの検出と対策は、従来から種々実施されている。しかし、近年の過給直噴エンジンのダウンサイジングに伴う高圧縮比化や高過給化により、低回転且つ高負荷領域におけるプレイグニッションの問題が顕在化してきている。低回転且つ高負荷領域で発生するプレイグニッションはスーパーノックとも呼ばれ、急激な圧力上昇を伴い、エンジン破損に繋がる可能性がある。このため、ノッキング検出だけでなくプレイグニッション検出の必要性が高まってきている。
 特許文献1には、ノッキングとプレイグニッションを検出する技術が記載されている。すなわち、1つまたは2つの振動検出センサの出力信号を、独立した周波数の2つのバンドパスフィルタに供給し、これらを異なる利得(ゲイン)のA/D変換器を用いてデジタル信号に変換する。そして、これらデジタル信号におけるノッキングとプレイグニッションのそれぞれ特異な振動成分を閾値と比較することで、ノッキングとプレイグニッションを検出する。
特許3236766号公報
 上記特許文献1の技術によれば、振動検出センサの出力信号を用いてノッキングとプレイグニッションの双方を検出できる。しかしながら、エンジンの低回転時には振動検出センサの信号レベルが小さく、高回転時には信号レベルが大きいため、十分なダイナミックレンジを確保するのが難しく、ノッキングの検出精度が低下する可能性がある。
 本発明は上記のような事情に鑑みてなされたもので、その目的とするところは、ノッキングの検出精度を確保しつつ、ノッキングと異なる異常燃焼を検出できる内燃機関の異常燃焼検出装置及びその検出方法を提供することにある。
 本発明の内燃機関の異常燃焼検出装置は、内燃機関に設置された振動センサの出力信号を、ゲインの異なる複数の信号に変換するように構成された変換器と、機関回転数が高くなるにしたがってゲインの低い信号を選択し、前記内燃機関のノッキングの発生を検出するように構成された第1の処理部と、前記ゲインの異なる複数の信号のうち非選択の信号、又は前記ゲインの低い信号を用いてノッキングと異なる異常燃焼を判定するように構成された第2の処理部とを備えることを特徴とする。
 また、本発明の内燃機関の異常燃焼検出方法は、内燃機関に設置された振動センサの出力信号を、ゲインの異なる複数の信号に変換することと、機関回転数が高くなるにしたがってゲインの低い信号を選択し、前記内燃機関のノッキングの発生を検出することと、前記ゲインの異なる複数の信号のうち非選択の信号、又は前記ゲインの低い信号を用いてノッキングと異なる異常燃焼を判定することとを備えることを特徴とする。
 本発明では、ノッキング検出用の振動センサの出力信号を、ゲインの異なる複数の信号に変換した信号のうち、機関回転数が高い場合にはノッキングの検出に用いない非選択の信号、又はゲインの低い信号を用いてノッキングと異なる異常燃焼を判定するようにしている。これによって、ノッキングの検出には振動センサの出力信号をゲインの異なる複数の信号に変換し、機関回転数に応じて選択することで精度を確保し、ノッキング検出に用いない非選択の信号、又はゲインの低い信号を利用して、ノッキングと異なる異常燃焼を検出できる。
本発明の実施形態に係る内燃機関の異常燃焼検出装置の概略構成を示すブロック図である。 プレイグニッションについて説明するためのもので、過給直噴エンジンのパフォーマンスカーブを示す特性図である。 プレイグニッションについて説明するためのもので、スーパーノック発生時のシリンダ内圧力カーブを示す波形図である。 図1に示した異常燃焼検出装置のプレイグニッション検出区間とノッキング検出区間の近傍におけるエンジンの筒内圧を示す波形図である。 図1に示した異常燃焼検出装置におけるプレイグニッション検出区間とノッキング検出区間の関係を示す模式図である。 図1に示した異常燃焼検出装置におけるプレイグニッション検出区間とノッキング検出区間の近傍における振動センサの出力信号を示す波形図である。 図1に示した異常燃焼検出装置の動作を示すフローチャートである。 図5に続く動作を示すフローチャートである。
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、本発明の実施形態に係る内燃機関の異常燃焼検出装置におけるノッキングの検出とプレイグニッションの検出に関係する要部を抽出して示している。図2及び図3は低回転且つ高負荷領域で発生するプレイグニッションについて説明するためのもので、図2は過給直噴エンジンのエンジンパフォーマンスカーブを示す特性図、図3はスーパーノック発生時のシリンダ内圧力カーブを示す波形図である。図4A乃至図4Cは図1の異常燃焼検出装置におけるプレイグニッション検出区間とノッキング検出区間の近傍の筒内圧、点火タイミング及び振動センサの出力信号を示している。
 本実施形態では、エンジン破損に至る虞があるプレイグニッションは、エンジンの低回転領域で発生すること、及び振動センサの信号強度はノッキングよりもプレイグニッションの方が大きいことに着目している。そして、エンジン低回転時には不使用である高回転時用(低ゲイン)の信号処理部を、プレイグニッションの検出に用いる。これによって、基本的なシステム構成とノッキング検出精度を維持しつつ、ノッキングとプレイグニッションの双方を検出する。
 図2に示すように、過給直噴エンジンでは、エンジン回転速度の上昇に伴って破線20で示すように出力(パワー)が上昇する。これに対し、トルクは、実線30で示すように比較的低回転で最大トルクが発生し、高回転近くまで最大トルクを維持する。プレイグニッションは、斜線で囲んで示す低回転領域40で発生しやすい。
 車輌停止状態からの急加速や全開加速のような、低回転且つ高負荷領域で発生するプレイグニッション(スーパーノック)は、図3に実線50で示すように急激な圧力上昇と圧力変動を伴う。図3において、一点鎖線60はエンジンを空回りさせたときのシリンダ内圧力変化を示し、破線70は正常燃焼時の圧力変化、破線80はノッキング(スパークノック)時の圧力変化をそれぞれ示している。
 このように、低回転且つ高負荷領域でプレイグニッションが発生すると、エンジンに大きなダメージを与える可能性がある。なお、“0”は上死点、“Tig”は点火タイミングである。
 図4Aに示すように、エンジンの筒内圧はピストンの上昇に伴って上昇していき、上死点の直前のタイミングTigで点火される。点火によって筒内圧は大きく上昇し、その後、徐々に低下していく。図4Bに示すように、プレイグニッション検出区間とノッキング検出区間の一部がオーバーラップしているが、本実施形態では2つのA/D変換器の出力信号を選択することにより、ノッキングとプレイグニッションの双方を検出することができる。振動センサの出力信号は、図4Cに示すようにプレイグニッションの場合には点火の前に発生し、ノッキングの場合には点火の後に発生する。よって、プレイグニッション検出区間かノッキング検出区間かを判定することで、1つの振動センサの出力信号で双方の異常燃焼を検出できる。
 すなわち、図1に示す異常燃焼検出装置は、エンジン100に設置された振動センサ(ノックセンサ)1の出力信号NSがECU(Electronic Control Unit)200に入力される。このECU200により、振動センサ1で検出された燃焼室の圧力振動に基づいて、プレイグニッションとノッキングが検出される。そして、この検出結果に基づいて、エンジン100が制御されて異常燃焼を抑制するものである。
 また、エンジン100には、例えばクランク角センサ2及び水温センサ3が更に設置されている。クランク角センサ2の出力信号NE、水温センサ3の出力信号TSがそれぞれECU200に入力される。クランク角センサ2は、エンジン回転数の検出に用いられる。水温センサ3は、オイル起因のスーパーノックが低水温時に発生する可能性があるため、これを検出するために用いられる。
 ECU200に入力された振動センサ1の出力信号NSは、増幅器4で増幅されてCPU(Central Processing Unit)6の高回転時用信号入力部(低ゲイン)6aに入力されるとともに、この振動センサ1の出力信号NSが、増幅器4,5で増幅されてCPU6の低回転時用信号入力部(高ゲイン)6bに入力される。これら信号入力部6a,6bにはそれぞれ、A/D変換器7,8の入力端が接続されており、異なるゲインで増幅された振動センサ1の出力信号(アナログ信号)NSがA/D変換器7,8によりそれぞれデジタル信号に変換されるようになっている。また、A/D変換器7の出力は、エンジン回転数が高い場合にはノッキング検出処理部9aに供給され、回転数が低い場合にはプレイグニッション検出処理部9cに供給される。ここでは、ノッキング検出処理部9a、プレイグニッション検出処理部9c及び入力の切り換えをソフトウェアで実現しているが、各処理部を専用のICチップやモジュールで形成し、トランジスタなどのスイッチ素子で切り換えるように構成すれば、ハードウェアで実現することもできる。
 CPU6は、ノッキングを検出する際には、エンジン回転数が低い場合には信号入力部6bから入力されたゲインの高い信号を選択し、エンジン回転数が高い場合には信号入力部6aから入力されたゲインの低い信号を選択する。したがって、エンジンが低回転時にはA/D変換器8から出力されるデジタル信号がノッキング検出処理部9bに入力され、エンジンが高回転時にはA/D変換器7から出力されるデジタル信号がノッキング検出処理部9aに入力され、演算装置9によりノッキング検出処理が実行される。ノッキング検出処理部9bもソフトウェアで実現しているが、ハードウェアで構成することもできる。
 このように構成しているのは、ノッキングはエンジン100が低回転時には信号レベルが小さく、高回転時には信号レベルが大きいという特性のためである。1つの振動センサ1に対して低回転時用(高ゲイン)と高回転時用(低ゲイン)に2つのA/D変換器7,8を割り当て、これらのA/D変換器7,8から出力されるデジタル信号を演算装置9に入力して、エンジン回転数に応じてノッキング検出処理を行う。このように、低回転時用と高回転時用の二系統で信号処理を行うことで、十分なダイナミックレンジを確保して高精度なノッキング検出を実現できる。
 これに対し、エンジン破損に至るプレイグニッションの発生領域は、上述したように低回転領域に限られており、信号強度はノッキングに比べてプレイグニッションの方が大きい。そこで、エンジン100の低回転時には、高回転時用(低ゲイン)のA/D変換器7をプレイグニッション検出用として用い、プレイグニッション検出処理を実行する。この際、A/D変換器8はノッキング検出用として用い、ノッキング検出処理を実行する。このように、1つの振動センサ1で、異なるゲインの出力信号を用いてノッキングを検出するとともに、ノッキングと異なる異常燃焼であるプレイグニッションも検出できる。
 また、CPU6の信号入力部6cにはクランク角センサ2の出力信号NEが入力され、信号入力部6dには水温センサ3の出力信号TSが入力されて、これらの信号もデジタル信号に変換される。そして、クランク角センサ2の出力信号NEにより、例えばエンジン回転数が検出され、A/D変換器7の出力のノッキング検出処理部9aとプレイグニッション検出処理部9cへの入力の切り換えに利用される。また、水温センサ3の出力信号TSは、エンジン100の状態や周囲環境の判断に利用される。
 更に、ECU200は、記憶装置11を備え、エンジン100を制御装置12で制御するための種々のプログラムやデータの初期値、ノッキング検出処理部9aとプレイグニッション検出処理部9cを切り換えるための判断に用いるエンジン回転数、負荷及び水温の所定値などが記憶されており、学習値を記憶するようになっている。
 演算装置9によるノッキング検出処理及びプレイグニッション検出処理によりエンジン100の異常燃焼が検出されると、制御装置12により異常燃焼を抑制するようにエンジン100が制御される。例えば、ノッキングが発生していることが検出された場合には、点火タイミングの遅角化が行われる。また、プレイグニッションが発生していることが検出された場合には、ETB(Electronic throttle body)の閉駆動や燃料カットが行われる。
 次に、上記のような構成において、図5及び図6のフローチャートにより動作を説明する。エンジン100に設置されたセンサ(本例ではクランク角センサ2)によってエンジン回転数が検出され(ステップS1)、エンジン回転数が記憶装置11に予め記憶されている所定値と比較される(ステップS2)。エンジン回転数が所定値より小さいか等しい場合には、負荷が所定値と比較される(ステップS3)。負荷が所定値よりも大きいか等しい場合には、更に水温が所定値と比較される(ステップS4)。そして、水温が所定値よりも低いか等しい場合には、プレイグニッション検出区間か否かが判定される(ステップS5)。
 ステップS5でプレイグニッション検出区間であると判定されると、プレイグニッション検出処理部9cが選択され(ステップS6)、高回転時用のA/D変換器7で振動センサ1の出力信号がA/D変換される(ステップS7)。このA/D変換結果が演算装置9に入力されて、プレイグニッションの検出処理が実施される(ステップS8)。
 プレイグニッションの検出処理は、振動センサ1の出力信号NSの電圧レベルが所定値を超えている場合に、記憶装置11に記憶されている振動センサ1の異常燃焼固有の周波数と比較することで周波数解析を行うものである。プレイグニッションはノッキングに比べて電圧レベルが大きいので、プレイグニッションの検出は、出力信号NSの電圧レベルのみでも判定可能である。また、プレイグニッションの検出は、周波数解析のみでも可能であり、特にエンジン100の圧縮工程と膨張行程がオーバーラップする領域では、振動センサ1の出力信号の周波数に基づいて判定すると良い。プレイグニッションが検出されたか否かが判定され(ステップS9)、プレイグニッションが発生していることが検出されると、ETBの閉駆動や燃料カットなどが行われてプレイグニッションが抑制される(ステップS10)。
 一方、ステップS2でエンジン回転数が所定値より大きいと判定された場合には、ノッキング検出区間であるか否かが判定される(ステップS11)。ノッキング検出区間であると判定されると、ノッキング検出処理が選択され(ステップS12)、高回転時用のA/D変換器7で振動センサ1の出力信号がA/D変換される(ステップS13)。そして、A/D変換器7から出力されるデジタル信号を用いて、演算装置9でノッキング検出処理が実施される(ステップS14)。
 ノッキングの検出処理は、振動センサ1の出力信号NSの電圧レベルが所定値を超えている場合に、記憶装置11に記憶されている振動センサ1の異常燃焼固有の周波数と比較することで周波数解析を行うものである。また、電圧レベルと周波数解析の組み合わせではなく、電圧レベルのみ、あるいは周波数解析のみでもノッキングを検出可能である。この場合には、ノイズなどによる影響を受けやすくなる可能性があるので、例えば記憶装置11にエンジン固有の背景ノイズを学習値として記憶させておき、この学習値で振動センサ1の出力信号NSを補正するとよい。ノッキングが発生していることが検出されると(ステップS15)、制御装置12によりノッキング回避抑制が実施され、例えば点火タイミングの遅角化が行われる(ステップS16)。
 ステップS11でノッキング検出区間でないと判定された場合や、ステップS15でノッキングが検出されない場合には異常燃焼の検出を終了してリターンする。
 ステップS3で負荷が所定値より小さいと判定された場合、ステップS4で水温が所定値より高いと判定された場合、ステップS5でプレイグニッション検出区間ではないと判定された場合、及びステップS9でプレイグニッションが検出されない場合には、ノッキング検出区間であるか否かが判定される(ステップS17)。ノッキング検出区間であると判定されると、ノッキング検出処理が選択され(ステップS18)、低回転時用のA/D変換器8で振動センサ1の出力信号NSがA/D変換される(ステップS19)。そして、A/D変換器8から出力されるデジタル信号を用いて、演算装置9でノッキング検出処理が実施される(ステップS20)。
 ノッキングの検出処理は、振動センサ1の出力信号NSの電圧レベルが所定値を超えている場合に、記憶装置11に記憶されている振動センサ1の異常燃焼固有の周波数と比較することで周波数解析を行うものである。また、電圧レベルと周波数解析の組み合わせではなく、電圧レベルのみ、あるいは周波数解析のみでもノッキングを検出可能である。この場合には、ノイズなどによる影響を受けやすくなる可能性があるので、例えば記憶装置11にエンジン固有の背景ノイズを学習値として記憶させておき、この学習値で振動センサ1の出力信号NSを補正するとよい。ノッキングが発生していることが検出されると(ステップS21)、制御装置12によりノッキング回避抑制が実施され、例えば点火タイミングの遅角化が行われる(ステップS22)。
 ステップS17でノッキング検出区間でないと判定された場合や、ステップS21でノッキングが検出されない場合には異常燃焼の検出を終了してリターンする。
 以上説明したように、本発明によれば、エンジン100に設置された振動センサ1の出力信号NSを、ゲインの異なる2つの信号に変換して取得し、エンジン回転数が高くなるにしたがってゲインの低い信号を選択し、ノッキングの発生を検出する。そして、エンジン回転数が高いときには非選択となるゲインの高い信号(非選択の信号)を用いてノッキングと異なる異常燃焼、例えばプレイグニッションを判定する。このように、エンジン低回転時にノッキング検出用のA/D変換器7をプレイグニッション検出に用いることで、ノッキング検出用の振動センサ1と信号処理部(増幅器4、A/D変換器7及び演算装置9)を利用してプレイグニッションを検出できる。したがって、ノッキング検出用の振動センサと信号処理部を利用して、ノッキングと異なる異常燃焼を検出できる。
 以上実施形態を用いて本発明の説明を行ったが、本発明は上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。
<変形例1>
 例えば、上述した実施形態では、エンジン回転数、負荷及び水温を検出してプレイグニッションの検出とノッキングの検出を切り換えるようにした。しかしながら、エンジン回転数の高低のみで切り換えることもでき、エンジン回転数と負荷を組み合わせて切り換えるようにしても良い。更に、エンジン回転数、負荷及び水温以外の他のセンサの出力を考慮して切り換えるようにしても良い。
<変形例2>
 また、図5のステップS2及びステップS3において、演算装置9でエンジン回転数が所定値よりも大きいか小さいか、あるいは負荷が所定値よりも大きいか小さいか判定するようにしたが、例えば記憶装置11にエンジン回転数と負荷のマップを記憶しておき、このマップを用いて判定するように構成することもできる。
<変形例3>
 更に、振動センサ1の出力信号を、増幅器4及び増幅器4,5でそれぞれ増幅し、A/D変換器7,8でそれぞれA/D変換するようにしたが、増幅器4及び増幅器4,5の出力をそれぞれDSP(Digital Signal Processor)により処理することもできる。更にまた、1段の増幅器4と2段の増幅器4,5で増幅するようにしたが、低ゲインと高ゲインで増幅できれば、この構成に限られない。
<変形例4>
 また、振動センサの出力信号をゲインの異なる2つ信号に変換して取得するようにしたが、ゲインの異なる3つ以上の信号に変換して取得し、エンジン回転数が高くなるにしたがってゲインの低い信号を選択し、非選択の信号、又はゲインの低い信号を用いてノッキングと異なる異常燃焼を判定するようにしても良い。
 なお、上記実施形態及び変形例には種々の段階の発明が含まれており、開示される複数の構成要件の適宜な組み合わせにより種々の発明が抽出され得る。例えば実施形態及び変形例に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題の少なくとも1つが解決でき、発明の効果の欄で述べられている効果の少なくとも1つが得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
 1…振動センサ、2…クランク角センサ、3…水温センサ、4,5…増幅器、6…CPU、6a…高回転時用信号入力部(低ゲイン)、6b…低回転時用信号入力部(高ゲイン)、6c,6d…信号入力部、7,8…A/D変換器、9…演算装置、9a,9b…ノッキング検出処理部、9c…プレイグニッション検出処理部、11…記憶装置、12…制御装置、100…エンジン、200…ECU、NS…振動センサの出力信号、NE…クランク角センサの出力信号、TS…水温センサの出力信号

Claims (20)

  1.  内燃機関に設置された振動センサの出力信号を、ゲインの異なる複数の信号に変換するように構成された変換器と、
     機関回転数が高くなるにしたがってゲインの低い信号を選択し、前記内燃機関のノッキングの発生を検出するように構成された第1の処理部と、
     前記ゲインの異なる複数の信号のうち非選択の信号、又は前記ゲインの低い信号を用いてノッキングと異なる異常燃焼を判定するように構成された第2の処理部と
    を備えることを特徴とする内燃機関の異常燃焼検出装置。
  2.  前記第2の処理部による前記ノッキングと異なる異常燃焼の判定は、前記機関回転数が所定値よりも低い場合に実行する、ことを特徴とする請求項1に記載の内燃機関の異常燃焼検出装置。
  3.  前記第2の処理部による前記ノッキングと異なる異常燃焼の判定は、前記機関回転数が所定値よりも低く且つ前記内燃機関に高負荷がかかった場合に実行する、ことを特徴とする請求項1に記載の内燃機関の異常燃焼検出装置。
  4.  前記第2の処理部による前記ノッキングと異なる異常燃焼の判定は、前記機関回転数が所定値よりも低く、前記内燃機関に高負荷がかかり、冷却水温が所定値よりも低い場合に実行する、ことを特徴とする請求項1に記載の内燃機関の異常燃焼検出装置。
  5.  前記第2の処理部による前記ノッキングと異なる異常燃焼の判定は、前記振動センサの出力電圧、又は前記振動センサの異常燃焼固有の周波数を用いる、ことを特徴とする請求項1に記載の内燃機関の異常燃焼検出装置。
  6.  前記第1の処理部及び前記第2の処理部による前記ノッキングの判定は、前記振動センサの出力信号の周波数に基づいて実行し、前記第2の処理部による前記ノッキングと異なる異常燃焼の判定は、電圧レベルによって判定する、ことを特徴とする請求項1に記載の内燃機関の異常燃焼検出装置。
  7.  前記第2の処理部による前記ノッキングと異なる異常燃焼の判定は、更に前記内燃機関の圧縮工程と膨張行程がオーバーラップする領域では、前記振動センサの出力信号の周波数に基づいて実行する、ことを特徴とする請求項6に記載の内燃機関の異常燃焼検出装置。
  8.  前記ノッキングと異なる異常燃焼は、プレイグニッションである、ことを特徴とする請求項1に記載の内燃機関の異常燃焼検出装置。
  9.  前記変換器により前記振動センサの出力信号を、複数の信号に変換する処理は、ゲインの異なる複数の増幅器の出力をそれぞれ複数のA/D変換器でA/D変換するものである、ことを特徴とする請求項1乃至8いずれか1項に記載の内燃機関の異常燃焼検出装置。
  10.  前記変換器により前記振動センサの出力信号を、複数の信号に変換する処理は、ゲインの異なる複数の増幅器の出力をそれぞれDSP(Digital Signal Processor)により処理するものである、ことを特徴とする請求項1乃至8いずれか1項に記載の内燃機関の異常燃焼検出装置。
  11.  前記第1の処理部は、前記ゲインの異なる複数の信号がそれぞれ入力される複数のA/D変換器と、前記複数のA/D変換器にそれぞれ対応して設けられ、前記内燃機関のノッキングの発生を検出するように構成された複数のノッキング検出処理部とを含む、ことを特徴とする請求項1に記載の内燃機関の異常燃焼検出装置。
  12.  前記第2の処理部は、前記ゲインの異なる複数の信号のうち非選択の信号、又は前記ゲインの低い信号が入力されるA/D変換器の出力信号が入力されるプレイグニッション検出処理部を含む、ことを特徴とする請求項11に記載の内燃機関の異常燃焼検出装置。
  13.  内燃機関に設置された振動センサの出力信号を、ゲインの異なる複数の信号に変換することと、
     機関回転数が高くなるにしたがってゲインの低い信号を選択し、前記内燃機関のノッキングの発生を検出することと、
     前記ゲインの異なる複数の信号のうち非選択の信号、又は前記ゲインの低い信号を用いてノッキングと異なる異常燃焼を判定することと
    を備えることを特徴とする内燃機関の異常燃焼検出方法。
  14.  前記ノッキングと異なる異常燃焼の判定は、前記機関回転数が所定値よりも低い場合に実行する、ことを特徴とする請求項13に記載の内燃機関の異常燃焼検出方法。
  15.  前記ノッキングと異なる異常燃焼の判定は、前記機関回転数が所定値よりも低く且つ前記内燃機関に高負荷がかかった場合に実行する、ことを特徴とする請求項13に記載の内燃機関の異常燃焼検出方法。
  16.  前記ノッキングと異なる異常燃焼の判定は、前記機関回転数が所定値よりも低く、前記内燃機関に高負荷がかかり、冷却水温が所定値よりも低い場合に実行する、ことを特徴とする請求項13に記載の内燃機関の異常燃焼検出方法。
  17.  前記ノッキングと異なる異常燃焼の判定は、前記振動センサの出力電圧、又は前記振動センサの異常燃焼固有の周波数を用いる、ことを特徴とする請求項13に記載の内燃機関の異常燃焼検出方法。
  18.  前記ノッキングの判定は、前記振動センサの出力信号の周波数に基づいて実行し、前記ノッキングと異なる異常燃焼の判定は、電圧レベルによって判定する、ことを特徴とする請求項13に記載の内燃機関の異常燃焼検出方法。
  19.  前記ノッキングと異なる異常燃焼の判定は、更に前記内燃機関の圧縮工程と膨張行程がオーバーラップする領域では、前記振動センサの出力信号の周波数に基づいて実行する、ことを特徴とする請求項18に記載の内燃機関の異常燃焼検出方法。
  20.  前記ノッキングと異なる異常燃焼は、プレイグニッションである、ことを特徴とする請求項13に記載の内燃機関の異常燃焼検出方法。
PCT/JP2017/044062 2016-12-09 2017-12-07 内燃機関の異常燃焼検出装置及びその検出方法 WO2018105703A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-239690 2016-12-09
JP2016239690A JP6695266B2 (ja) 2016-12-09 2016-12-09 内燃機関の異常燃焼検出装置

Publications (1)

Publication Number Publication Date
WO2018105703A1 true WO2018105703A1 (ja) 2018-06-14

Family

ID=62491671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044062 WO2018105703A1 (ja) 2016-12-09 2017-12-07 内燃機関の異常燃焼検出装置及びその検出方法

Country Status (2)

Country Link
JP (1) JP6695266B2 (ja)
WO (1) WO2018105703A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11248553B2 (en) 2019-10-18 2022-02-15 Toyota Jidosha Kabushiki Kaisha Vehicle control device, vehicle control system, and vehicle control method
US11530662B2 (en) 2019-10-18 2022-12-20 Toyota Jidosha Kabushiki Kaisha Method of generating vehicle control data, vehicle control device, and vehicle control system
US11654915B2 (en) 2019-10-18 2023-05-23 Toyota Jidosha Kabushiki Kaisha Method of generating vehicle control data, vehicle control device, and vehicle control system
US11679784B2 (en) 2020-01-09 2023-06-20 Toyota Jidosha Kabushiki Kaisha Vehicle control data generation method, vehicle controller, vehicle control system, vehicle learning device, vehicle control data generation device, and memory medium
US11745746B2 (en) 2020-01-09 2023-09-05 Toyota Jidosha Kabushiki Kaisha Method for generating vehicle controlling data, vehicle controller, vehicle control system, and learning device for vehicle
US11840245B2 (en) 2020-01-09 2023-12-12 Toyota Jidosha Kabushiki Kaisha Vehicle control data generation method, vehicle controller, vehicle control system, vehicle learning device, vehicle control data generation device, and memory medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352136B2 (ja) * 2019-06-06 2023-09-28 マツダ株式会社 エンジンの制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035238A (ja) * 1983-08-05 1985-02-23 Nippon Denso Co Ltd ノツキング検出装置
JP3236766B2 (ja) * 1995-09-29 2001-12-10 株式会社日本自動車部品総合研究所 振動検出装置
JP2013122229A (ja) * 2011-12-12 2013-06-20 Denso Corp 内燃機関の電子制御装置
JP2015040490A (ja) * 2013-08-21 2015-03-02 三菱自動車工業株式会社 エンジンの制御装置
JP2016169686A (ja) * 2015-03-13 2016-09-23 日立オートモティブシステムズ株式会社 内燃機関の制御装置及び異常燃焼検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035238A (ja) * 1983-08-05 1985-02-23 Nippon Denso Co Ltd ノツキング検出装置
JP3236766B2 (ja) * 1995-09-29 2001-12-10 株式会社日本自動車部品総合研究所 振動検出装置
JP2013122229A (ja) * 2011-12-12 2013-06-20 Denso Corp 内燃機関の電子制御装置
JP2015040490A (ja) * 2013-08-21 2015-03-02 三菱自動車工業株式会社 エンジンの制御装置
JP2016169686A (ja) * 2015-03-13 2016-09-23 日立オートモティブシステムズ株式会社 内燃機関の制御装置及び異常燃焼検出方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11248553B2 (en) 2019-10-18 2022-02-15 Toyota Jidosha Kabushiki Kaisha Vehicle control device, vehicle control system, and vehicle control method
US11530662B2 (en) 2019-10-18 2022-12-20 Toyota Jidosha Kabushiki Kaisha Method of generating vehicle control data, vehicle control device, and vehicle control system
US11654915B2 (en) 2019-10-18 2023-05-23 Toyota Jidosha Kabushiki Kaisha Method of generating vehicle control data, vehicle control device, and vehicle control system
US11679784B2 (en) 2020-01-09 2023-06-20 Toyota Jidosha Kabushiki Kaisha Vehicle control data generation method, vehicle controller, vehicle control system, vehicle learning device, vehicle control data generation device, and memory medium
US11745746B2 (en) 2020-01-09 2023-09-05 Toyota Jidosha Kabushiki Kaisha Method for generating vehicle controlling data, vehicle controller, vehicle control system, and learning device for vehicle
US11840245B2 (en) 2020-01-09 2023-12-12 Toyota Jidosha Kabushiki Kaisha Vehicle control data generation method, vehicle controller, vehicle control system, vehicle learning device, vehicle control data generation device, and memory medium

Also Published As

Publication number Publication date
JP2018096240A (ja) 2018-06-21
JP6695266B2 (ja) 2020-05-20

Similar Documents

Publication Publication Date Title
WO2018105703A1 (ja) 内燃機関の異常燃焼検出装置及びその検出方法
US7669459B2 (en) Knocking determination device for internal combustion engine
US7677083B2 (en) Internal combustion engine knock determination device
US7478624B2 (en) Ignition timing control device of internal combustion engine
US7424820B2 (en) Knocking state determination device
JP4358198B2 (ja) 内燃機関のノッキング判定装置
US7206691B2 (en) Internal combustion engine knock determination device
JP5464202B2 (ja) 内燃機関の電子制御装置
US8005607B2 (en) Device and method for controlling ignition timing of internal combustion engine
US10364760B2 (en) Engine control unit
US7478622B2 (en) Device and method for determining knocking of internal combustion engine
US7621172B2 (en) Knocking determination device for internal combustion engine
US20060236753A1 (en) Internal combustion engine knock determination device
JP2005090250A (ja) エンジンのノック制御装置
JP4357501B2 (ja) 内燃機関のノッキング判定装置
JP4803835B2 (ja) ノックセンサのフェール検出方法
JP4324137B2 (ja) 内燃機関の制御装置
JP4877276B2 (ja) 内燃機関の点火時期制御装置
JP4745198B2 (ja) 内燃機関のノッキング判定装置、判定方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体
KR102417381B1 (ko) 인젝션 분사 제어 장치 및 방법
JP4487453B2 (ja) 内燃機関用ノッキング検出装置
JP2009144616A (ja) 内燃機関の点火時期制御装置および点火時期制御方法
JP4729536B2 (ja) 内燃機関のノッキング判定装置、判定方法およびその方法をコンピュータで実現されるプログラムならびにそのプログラムを記録した記録媒体
JP4952554B2 (ja) 内燃機関の点火時期制御装置および点火時期制御方法
JP2007211690A (ja) 内燃機関の点火時期制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878425

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878425

Country of ref document: EP

Kind code of ref document: A1