WO2018105229A1 - 液槽形成方法,測定装置及び分析デバイス - Google Patents

液槽形成方法,測定装置及び分析デバイス Download PDF

Info

Publication number
WO2018105229A1
WO2018105229A1 PCT/JP2017/036944 JP2017036944W WO2018105229A1 WO 2018105229 A1 WO2018105229 A1 WO 2018105229A1 JP 2017036944 W JP2017036944 W JP 2017036944W WO 2018105229 A1 WO2018105229 A1 WO 2018105229A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
membrane
independent
solution
independent electrode
Prior art date
Application number
PCT/JP2017/036944
Other languages
English (en)
French (fr)
Inventor
真由 青木
至 柳
原田 邦男
武田 健一
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US16/464,835 priority Critical patent/US11656218B2/en
Publication of WO2018105229A1 publication Critical patent/WO2018105229A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor

Definitions

  • the present invention relates to a liquid tank forming method, a measuring apparatus, and an analysis device.
  • the nanopore sequencer of the blocking current method is composed of a thin film membrane having pores having the same size as that of a biological sample, and a liquid tank having electrodes arranged above and below the membrane.
  • the liquid tank is filled with the solution, and the biological sample is introduced to one side of the liquid tank.
  • a voltage is applied to the electrodes, and a change in the current value flowing between the electrodes when the biological sample passes through the pores is measured. By such measurement, the structural characteristics of the biological sample are determined.
  • the solid method is a method that uses materials and processes with high mechanical strength.
  • a silicon nitride film is used as a membrane, and nanometer-sized pores are formed in the membrane by electron beam irradiation or voltage application.
  • nanopore sequencer in order to improve the reading throughput, it is important to arrange a plurality of nanopore sequencers in an array and measure the structure of biomolecules in parallel. In order to form an array of nanopore sequencers, it is necessary to parallelize not only the pores but also the peripheral structures such as the associated liquid tanks and electrodes.
  • Patent Document 1 discloses a method for forming an array of solid nanopore sequencers.
  • the components of each sequencer are the membrane, liquid tank, electrode, and two flow paths for inflow and outflow.
  • the two flow paths are connected to valves and pumps through pipes to supply solutions to each sequencer. It is a mechanism for collecting the solution.
  • the present invention provides a liquid tank forming method capable of simply forming an array of solid nanopore sequencers.
  • the flow path is eliminated to improve the degree of array integration, and the solution is introduced into the substrate and bonded together in the solution.
  • the method of the present invention includes a step of introducing a solution between a substrate with a membrane provided with a membrane so as to close an opening, a substrate with an independent electrode having an independent electrode, and a membrane with a partition interposed therebetween.
  • a step of applying a voltage to the membrane to form a pore in the membrane a step of introducing a sample into the pore, and a flow through the pore when the sample passes through the pore Analyzing the structure of the sample by measuring current.
  • the measuring device of the present invention includes, as an example, a substrate with a membrane provided with a membrane so as to close the opening, a substrate with an independent electrode provided with an independent electrode, and a substrate between the membrane-attached substrate and the substrate with an independent electrode.
  • a drive unit that brings the first stage and the second stage closer together and presses the substrate with membrane and the substrate with independent electrode through the partition, and the electrode and the independent electrode arranged on the opposite side of the independent electrode across the membrane
  • the analysis device of the present invention includes a substrate with a membrane provided with a membrane so as to block a plurality of openings arranged in an array, a substrate with an independent electrode provided with a plurality of independent electrodes, A plurality of liquid tanks filled with a solution are formed by the substrate with the membrane, the substrate with the independent electrode, and the partition wall, each having a partition wall that includes the independent electrode between the substrate with the membrane and the substrate with the independent electrode.
  • the plurality of independent electrodes are substantially insulated by separating the solution by the partition walls, and the liquid tank has no flow path and the solution is sealed in the liquid tank.
  • the flowchart which shows the whole flow of an Example The principal part schematic diagram which shows an example of a measuring apparatus.
  • the principal part schematic diagram which shows an example of a measuring apparatus.
  • the schematic diagram which shows an example of alignment.
  • the principal part cross-sectional schematic diagram which shows an example of an analysis device.
  • the principal part cross-sectional schematic diagram which shows an example of an analysis device.
  • the principal part cross-sectional schematic diagram which shows an example of an analysis device.
  • the principal part cross-sectional schematic diagram which shows an example of an analysis device The principal part cross-sectional schematic diagram which shows an example of an analysis device.
  • the principal part cross-sectional schematic diagram which shows an example of an analysis device.
  • substrate The principal part schematic diagram which shows an example of a measuring apparatus.
  • the analysis device of this embodiment includes a substrate 113 with a membrane, a substrate 114 with independent electrodes, and a partition wall 106.
  • the substrate with membrane 113 includes a membrane 100, a first substrate 101, a first electrode 102, and a first liquid tank support unit 103.
  • the first substrate 101 is provided with a plurality of openings 120 penetrating front and back in an array.
  • the membrane 100 is provided on one side of the first substrate 101 so as to close the plurality of openings 120 of the first substrate 101.
  • the substrate with independent electrodes 114 includes the second substrate 104 and independent electrodes 105A and 105B.
  • the independent electrodes 105 ⁇ / b> A and 105 ⁇ / b> B are arranged in an array so as to correspond one-to-one to the plurality of openings 120 of the first substrate 101.
  • the first electrode 102 and the independent electrodes 105A and 105B are arranged on opposite sides of the membrane 100.
  • the partition 106 has a plurality of openings corresponding to the independent electrodes arranged in an array, and each independent electrode is disposed so as to be surrounded by one in each opening of the partition.
  • the membrane 100 is a silicon nitride film
  • the first substrate 101 is a silicon substrate
  • the first electrode 102 and the independent electrodes 105A and 105B are platinum
  • the second substrate 104 is a glass epoxy substrate
  • the partition wall 106 is, for example, dimethyl. Polysiloxane.
  • the second substrate 104 includes wirings connected to the independent electrodes 105A and 105B and external output terminals.
  • the size of the back surface opening of the first substrate is 250 ⁇ m square
  • the diameter of the independent electrode of the second substrate is 150 ⁇ m
  • the diameter of the opening of the partition wall is 450 ⁇ m
  • the array pitch is 700 ⁇ m. .
  • the measuring apparatus includes an upper stage 112, a lower stage 116, a control circuit unit 115, a power source, and a control / detection data acquisition unit 117.
  • the upper stage 112 has an opening for introducing a solution or a sample, and operates to press the membrane-equipped substrate 113 of the analysis device against the substrate 114 with independent electrodes.
  • the upper stage 112 and the lower stage 116 are provided with corresponding insertion pins 131 and recesses 132 for introducing the pins, and serve as guides for alignment when pressing the substrate. Fulfill.
  • the control circuit unit 115 is wired to the independent electrodes 105A and 105B, the power source and the control / detection data acquisition unit 117, and controls the voltage applied to the independent electrodes and transfers signals obtained during measurement to the PC. To play a role.
  • the power supply and control / detection data acquisition unit 117 includes at least a high-output power supply, a processor such as a CPU (Central Processing Unit), a memory, and a storage unit such as a hard disk.
  • FIG. 1 is a flowchart showing an overall flow from a pore formation process to a sample analysis process including a liquid tank formation process of the analysis device of this example.
  • the details of the laminated chip when the number of arrays is two will be described, but it goes without saying that the number of arrays may be one or two or more.
  • Step S11 First, as shown in FIG. 2, the substrate 114 with independent electrodes including the partition 106 is attached to the control circuit unit 115 and the lower stage 116, and the substrate 113 with membrane is attached to the upper stage 112. Then, the solution 107 is introduced, and one surface of the membrane-attached substrate 113 is immersed in the solution 107. Thus, the solution is introduced between the substrate 113 with membrane and the substrate 114 with independent electrodes. The solution 107 is introduced so as to cover a plurality of openings of the partition wall 106. As shown in FIG. 5, through this solution introduction step, the membrane 100 and the independent electrodes 105A and 105B are filled with the solution. The solution 107 contains an electrolyte such as KCl.
  • Step S12 the upper stage 112 is driven to the lower stage 116 side, and as shown in FIG. 4, the upper stage 112 and the lower stage 116 are combined with the insertion pin 131 and the recess 132 to mechanically combine the upper stage 112 and the lower stage 116. Align the position of. By this alignment step, the membrane-equipped substrate 113 and the independent electrode-provided substrate 114 are aligned so that the opening 120 of the first substrate 101 and the independent electrode of the independent electrode-provided substrate 114 have a one-to-one correspondence.
  • the membrane-attached substrate 113 is accurately attached to the upper stage by being fitted into a recess provided in the upper stage 112.
  • the substrate 114 with independent electrodes is attached to the lower stage 116 with high accuracy by being fitted into a recess provided in the lower stage 116 together with the control circuit unit 115. Therefore, in the present embodiment, the alignment of the substrate 113 with a membrane and the substrate 114 with an independent electrode is performed by aligning the upper stage 112 and the lower stage 116.
  • the order of the step S11 and the step S12 may be reversed.
  • Step S13 Further, as shown in FIG. 3, the upper stage 112 is brought close to the lower stage 116, the membrane-equipped substrate 113 and the independent electrode-provided substrate 114 are pressure-bonded via the partition wall 106, and the membrane-equipped substrate 113 and the independent electrode-equipped substrate 114 are bonded. Fix the position.
  • the plurality of sections where the membrane 100 is exposed from the opening 120 of the first substrate 101 and the independent electrodes 105A and 105B are aligned so as to correspond to each other.
  • a plurality of independent liquid tanks 108A and 108B separated by the partition 106 are formed. That is, a sealed independent liquid tank surrounded by the membrane 100 and the partition wall 106 can be formed without using a flow path.
  • the plurality of independent electrodes 105A and 105B are substantially insulated by separating the solution by the partition wall 106, and there is no channel in the liquid tank and the solution is sealed in the liquid tank.
  • Step S14 if there is a solution leak between the independent liquid tanks 108A and 108B, various problems such as that pores are not formed in the pore forming process described later and signal noise is generated in the sample analysis process. Give rise to Therefore, a voltage is applied between the adjacent independent electrodes 105A and 105B, and the leakage current value is measured.
  • Step S15 For the leakage current value, a certain level that does not cause a problem in the pore formation process and the sample analysis process described later is set as a threshold value, and the measured leakage current value is compared with the threshold value.
  • the threshold value is set to a sufficiently small value, for example, 100 pA, compared to the current flowing through the pores in step S21 described later when the applied voltage is 0.1V.
  • step S15 If it is determined in step S15 that the leak current value is equal to or greater than the threshold value, the process proceeds to step S22, and the section having the independent liquid tanks 108A and 108B in which the leak current is detected is identified as defective.
  • the defective section or the non-defective section is stored in the storage unit.
  • Step S16 If it is determined in step S15 that the leak current value is smaller than the threshold value, the process proceeds to step S16, and the solution is introduced into the upper side of the membrane 100 using the nozzle 121 containing the solution as shown in FIG. 109 is formed. Thereby, the upper and lower sides of the membrane 100 are filled with the solution.
  • Step S17 Subsequently, as shown in FIG. 8, a voltage is applied between the first electrode 102 and the independent electrodes 105A and 105B, and the nanometer-sized pores 110A are formed in the membrane 100 by a known dielectric breakdown mechanism. , 110B.
  • Step S18 the diameters of the pores 110A and 110B increase as the current value flowing through the pores increases, and thus can be controlled by the current value (see WO 2015/097765 A).
  • the voltage is not normally applied to the top and bottom of the membrane, and pores are not formed. Therefore, in order to determine whether or not a pore having a desired size has been formed, a voltage smaller than the voltage applied in the pore forming step is applied between the first electrode and the plurality of independent electrodes 105A and 105B. A current value flowing between one electrode 102 and a plurality of independent electrodes 105A and 105B is measured.
  • Step S19 It is determined whether or not the value of the current flowing between the first electrode 102 and the independent electrodes 105A and 105B is a value corresponding to a pore having a desired size.
  • the section is determined to be defective. Thereafter, the process proceeds to step S22, and the defective section is stored in the storage unit.
  • the voltage and sequence applied to each independent electrode are controlled by the control circuit unit 115 to form pores in parallel in a plurality of sections.
  • Step S20 Next, as shown in FIG. 9, the sample 118 is introduced into the first liquid tank 109 from the nozzle 121.
  • Step S21 Finally, as shown in FIG. 10, a voltage is applied between the first electrode 102 and the independent electrodes 105A and 105B. By applying a voltage, an electric field is generated around the pores 110A and 110B, and an electrophoretic force is generated that attracts the biological samples 118A and 118B charged in the liquid to the electric field. As a result, the samples 118A and 118B are introduced into the pores 110A and 110B and pass through the pores 110A and 110B.
  • the detected current value changes between before the biological sample passes through the pores 110A and 110B and between when the biological sample 118A and 118B passes through the pores 110A and 110B.
  • the structural analysis of the sample by the measurement of the blocking current may be performed on the sections other than the defective section.
  • the content described in the above embodiment is an example, and the present invention is not limited to this configuration.
  • a mechanical alignment method that matches the insertion pin was used for the positional alignment between the substrate with membrane and the substrate with independent electrode.
  • a camera 119 is mounted on the apparatus, the positional relationship between the pattern provided on the substrate with membrane 113 and the pattern provided on the substrate with independent electrode 114 is recognized, and the relative position of these substrates is controlled. It doesn't matter.
  • the arrangement of the optical system represented by the camera is not limited to between the substrates.
  • the upper stage 112 and the lower stage 116 may be driven by using an existing one such as a lever type, motor or pneumatic control.
  • control circuit unit 115 is an independent component, it may be provided on the second substrate 104 and may be disposed in the power supply and control / detection data acquisition unit 117, and there are various apparatus variations. A system suitable for the measurement environment may be constructed.
  • a silicon nitride film is used as the membrane, but a silicon oxide film, graphene, graphite, an organic substance, or a polymer material may be used. Platinum is used for the electrode, but other metals such as silver-silver chloride and gold may be used.
  • the first substrate is installed such that the membrane is on the upper side, the first substrate may be positioned on the upper side of the membrane.
  • a glass epoxy substrate is used as the second substrate, but another printed substrate such as Teflon (registered trademark), a glass substrate, or a silicon substrate may be used.
  • FIG. 12 is a conceptual plan view for explaining the layout of the first substrate 101, the partition 106 and the second substrate 104 when the number of arrays is 49 (7 rows and 7 columns).
  • the partition 106 shown in FIG. 12 has a circular opening corresponding to the independent liquid tanks 108A and 108B in FIG. 6, and the other region has a layout in which the partition material is arranged in a solid film shape. In other words, the space between adjacent independent liquid tanks is filled with partition walls.
  • substrate shown with the rectangle is an opening part provided in the 1st board
  • the partition wall 106 is provided on the second substrate 104 side, but may be provided on the first substrate 101 side.
  • dimethylpolysiloxane is used for the partition wall, the material is not limited to this as long as it is an insulator and can be a material such as an elastomer that can sufficiently adhere the first substrate and the second substrate by pressure bonding.
  • the first liquid tank support unit 103 has a configuration in which the first liquid tank 109 has a ceiling, but is not limited to this configuration.
  • the first liquid tank support portion may have a wall shape that surrounds the four sides like a bank, and a large opening may be provided in the upper part of the first liquid tank. There may be.
  • the means for introducing the sample into the pores is not limited to electrophoresis, and a driving mechanism for controlling the position of the sample is placed in the upper part of the membrane. The operation of the sample may be controlled using a drive mechanism (see WO ⁇ 2016/088486 A).
  • the pores 110A and 110B may be formed in the membrane 100 in advance.
  • the pores 110A and 110B are formed by applying a voltage to the membrane 100, but the present invention is not limited to this.
  • the pores 110A and 110B may be formed by other methods such as irradiating the membrane 100 with an electron beam (see A. J. Storm et al., Nat. Mat. 2 (2003)).
  • the analysis device may be immersed in a mixture of hydrogen sulfide and hydrogen peroxide to remove organic matter, or alcohol is introduced before the solution is introduced and the solution is replaced with the solution.
  • the analysis device may be subjected to oxygen plasma treatment. Moreover, you may combine these.
  • Example 2 In this example, another example of a solution introduction method that can obtain the same effect as that of Example 1 is shown. Since the method of Example 1 is applied except for the method for introducing the solution, the description of the process and structure is omitted. Since only the process of the first step S11 is different from the process of the first embodiment described with reference to FIG. 1, only the process of the step S11 in this embodiment will be described here, and the description of the subsequent processes will be omitted. To do.
  • FIG. 13 is a schematic diagram of a main part of the measuring apparatus according to the present embodiment.
  • the introduction of the solution 107 in the formation of the independent liquid tank in FIG. 1 is performed at two locations, one surface of the substrate with membrane 113 and one surface of the substrate 114 with independent electrodes.
  • the upper stage 112 is used to invert the rear surface so that the upper surface is on the upper side, and the solution 107 is introduced to the rear surface of the membrane-equipped substrate 113 in the inverted state.
  • the solution introduction portion of the membrane-attached substrate 113 is in a sufficiently high wettability state, the solution can be introduced without inverting the substrate.
  • the method for introducing the solution into the substrate 114 with the independent electrode conforms to the contents shown in the first embodiment and will not be described.
  • the upper stage 112 and the lower stage 116 are brought close to each other, and the solutions introduced into the two substrates are brought into contact with each other. After that, alignment is performed, and the membrane-attached substrate and the electrode-attached substrate are pressure-bonded via the partition wall 106.
  • a plurality of independent liquid tanks 108 ⁇ / b> A and 108 ⁇ / b> B separated by a partition wall 106 are formed through the solution introduction, alignment, and pressure bonding processes. That is, a sealed independent liquid tank can be formed without using a flow path.
  • Example 3 In the present embodiment, a device structure that reduces the defect rate at the time of forming the liquid bath is shown as compared with the analytical device shown in the first embodiment.
  • Example 1 due to the flatness of the analysis device and the like, when the partition wall and the substrate located outside the analysis device are pressed before the partition wall and the substrate located inside the analysis device, the analysis is performed.
  • the solution stays between the substrate in the region located inside the device and the substrate. If the solution stays between the partition walls and the substrate as it is, the solution leaks between the independent liquid tanks, and the section where the stay has occurred becomes defective. Further, if the pressure is further pressed to eliminate the leakage of the solution, the staying solution flows into the independent liquid tank, so that the pressure in the independent liquid tank increases and the membrane may be damaged.
  • FIG. 16 is a diagram showing a planar layout of the partition walls in the present example when the number of arrays is 49 (7 rows, 7 columns).
  • the partition wall 106 has a ring shape, the inside of the ring is a region of the independent liquid tank, and the outside of the ring is a region communicating with the outside of the device.
  • FIGS. 14 and 15 there are double partitions between the adjacent independent electrodes 105A and 105B.
  • FIG. 14 is a schematic cross-sectional view of the main part of the device after the solution introduction and position alignment steps.
  • the space between the membrane 100 and the independent electrodes 105 ⁇ / b> A and 105 ⁇ / b> B is filled with the solution 107, and the solution also intervenes between the partition wall 106 and the first substrate 101.
  • FIG. 15 is a schematic cross-sectional view of the main part of the analytical device after undergoing the crimping process.
  • the independent liquid tanks 108 ⁇ / b> A and 108 ⁇ / b> B are formed by the ring-shaped partition wall 106.
  • the partition 106 and the first substrate 101 in the region located outside the analysis device are pressed before the partition 106 and the first substrate 101 in the region located inside the analysis device, the independent liquid is used.
  • a state in which the space between the tanks 108A and 108B is sealed with the partition wall 106 can be formed.
  • the outside of the ring of the partition wall 106 is connected to the outside of the analysis device, and there is a region having a lower pressure than the solution region in the adjacent portion of the liquid tank. Therefore, excess solution is discharged to the outside from between the partition wall 106 and the partition wall 106, and a defect due to the retention of the solution can be prevented. Further, since the excessive solution does not flow into the independent liquid tanks 108A and 108B, the membrane 100 can be prevented from being damaged.
  • a method for forming a ring-shaped partition wall for example, if a photosensitive resin is used for the partition wall material, it can be formed using a lithography method. Alternatively, it can be formed by a method of pressing a mold using a soft lithography method or a method of arranging an O-ring. However, the forming method is not limited to these.
  • the ring-shaped partition wall is not limited to a circle but may be polygonal or indefinite as long as it can form an independent liquid tank.
  • Example 4 In the present embodiment, a device structure that improves the reliability of the device as compared with the analysis device shown in the third embodiment will be described. Since the structure and method of Example 3 are applied except for the partition walls, the description of the process and structure is omitted.
  • FIG. 17 and 18 are schematic cross-sectional views of the relevant part of the analytical device in this example.
  • the partition wall 106 in this embodiment has a structure in which the surface of the second substrate 104 is covered except for a part of the independent electrodes 105A and 105B.
  • FIG. 17 is a schematic cross-sectional view of the principal part of the device after the solution introduction and position alignment steps. The space between the two substrates 101 and 104 is filled with the solution 107.
  • FIG. 18 is a schematic cross-sectional view of the main part of the analysis device after the crimping process. As shown in FIG. 18, the independent liquid tanks 108 ⁇ / b> A and 108 ⁇ / b> B are formed by the partition wall 106 after the crimping process.
  • the highest surface of the partition wall 106 has the same ring-like structure as in Example 3, and the outer ring surface of the partition wall is connected to the outside of the analysis device, that is, the space between the partition walls is released. Since it becomes a space, excess solution is discharged from between the partition walls, so that defects due to the retention of the solution can be prevented. Furthermore, when the components of the solution change characteristics such as swelling or dissolution of the second substrate material, the structure of the partition wall in this embodiment is a structure in which the second substrate 104 and the solution 107 are not in direct contact. Therefore, the second substrate 104 can be protected from the solution.
  • a method of forming the ring-shaped partition wall 106 for example, it can be formed by applying a partition material to the second substrate 104 and then pressing a mold using a soft lithography method. If it is difficult to form the penetration pattern by pressing the mold, the pattern can be formed by pressing the mold and then irradiating the portions where the independent electrodes 105A and 105B are exposed by irradiating a laser beam. Alternatively, it can be formed by a method of isotropically etching with plasma instead of a laser and providing an opening so that at least a part of the independent electrode is exposed.
  • the method of forming the ring-shaped partition wall 106 is not limited to these.
  • Example 5 In the present embodiment, a device structure for reducing the defect rate at the time of forming the liquid tank is shown, compared with the analytical device shown in the first embodiment.
  • Example 1 when an excessive solution flows into the independent liquid tank, the membrane may be damaged and a defect may occur.
  • FIG. 19 is a schematic cross-sectional view of the main part of the device after introducing the solution and before the position alignment step.
  • the space between the two substrates is filled with the solution 107.
  • the solution 107 has a plurality of gas phase regions 111.
  • FIG. 20 is a schematic cross-sectional view of the main part of the analytical device after the crimping process.
  • independent liquid tanks 108 ⁇ / b> A and 108 ⁇ / b> B are formed by the partition wall 106.
  • the present embodiment has the gas phase region 111 as a region having a lower pressure than the solution region in the independent liquid tank, even when the pressure in the liquid tank rises due to the solution inflow, Volume shrinks due to pressure. Thereby, the pressure rise in the liquid tank is prevented and membrane damage can be prevented.
  • the formation method of the gas phase region 111 for example, microbubbles are generated in the solution using an ejector method, a cavitation method, a swirl flow method, a pressure dissolution method, etc. This is a method of introducing by the method described in Example 1 or Example 2.
  • the gas phase region can be formed using thermally expandable microcapsules.
  • the method for forming the gas phase region is not limited to these.
  • the degree of device integration can be improved by eliminating flow paths. Moreover, the solution supply method to an independent liquid tank can be simplified.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment.
  • the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
  • SYMBOLS 100 Membrane 101: 1st board

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

開口部を塞ぐようにメンブレンが設けられたメンブレン付き基板と,独立電極を有する独立電極付き基板の間に溶液を導入する工程と,間に隔壁を介してメンブレン付き基板と独立電極付き基板を圧着する工程と,圧着により,少なくともメンブレンと隔壁で囲まれた密封された液槽を形成する工程と,を含み,ソリッド式のナノポアシーケンサのアレイ化を簡便に行う。

Description

液槽形成方法,測定装置及び分析デバイス
 本発明は,液槽形成方法,測定装置及び分析デバイスに関する。
 DNAやタンパク質などの生体試料を分析する生体試料分析装置として封鎖電流方式のナノポアシーケンサの開発が進められている。封鎖電流方式のナノポアシーケンサは,生体試料と同程度の大きさの細孔を有する薄膜のメンブレンと,メンブレンの上下に配置された,電極を有する液槽とから構成される。このような構成において,液槽が溶液で満たされ,液槽の片側に生体試料が導入される。そして,電極には電圧が印加され,生体試料が細孔を通過する際に両電極間に流れる電流値の変化が計測される。このような計測により,生体試料の構造的な特徴を判定する。
 現在の,封鎖電流方式のナノポアシーケンサの形成方法としてソリッド式がある。ソリッド式は,機械強度の強い材料及びプロセスを使う手法である。ソリッド式では,例えばシリコン窒化膜がメンブレンとして用いられ,電子線の照射又は電圧の印加により,メンブレンにナノメートルサイズの細孔が形成される。
 ナノポアシーケンサでは,読み取りスループットの向上のために,複数のナノポアシーケンサをアレイ状に配置し,生体分子の構造を並行して計測することが重要となる。ナノポアシーケンサのアレイ化では,細孔のみならず,付随する液槽,電極等の周辺構造も並列化する必要がある。
 例えば特許文献1に,ソリッド式のナノポアシーケンサのアレイ化方法が開示されている。各シーケンサの構成要素は,メンブレン,液槽,電極,流入用と流出用の2本の流路であり,2本の流路は,配管を通してバルブやポンプに接続され,各シーケンサに溶液を供給し,溶液を回収する機構となっている。
特開2012-26986号公報
 ソリッド式のナノポアシーケンサのアレイ化において,特許文献1では,各シーケンサに独立して設けられた液槽に溶液を供給するために,流入用,流出用の2本の流路を設けているが,このように流路を有する構造では,流路の設置面積によりアレイ面積を増大させる。結果として,シーケンサの集積化及び並列化を阻害する要因となる。更に,溶液を供給するために流路に接続した配管やポンプを備えることは,装置面積,及び装置コストを増大させる。
 そこで,本発明では,ソリッド式のナノポアシーケンサのアレイ化を簡便に行うことのできる液槽形成方法を提供する。
 本発明では,ソリッド式のナノポアシーケンサのアレイ化において,流路を無くしてアレイ集積度を向上させ,基板に溶液を導入して液中貼り合わせを行う。
 本発明の方法は,一例として,開口部を塞ぐようにメンブレンが設けられたメンブレン付き基板と,独立電極を有する独立電極付き基板の間に溶液を導入する工程と,間に隔壁を介してメンブレン付き基板と独立電極付き基板を圧着する工程と,圧着により,少なくともメンブレンと隔壁で囲まれた密封された液槽を形成する工程と,を含む。
 また,密封された液槽を形成した後,メンブレンに電圧を印加しメンブレンに細孔を形成する工程と,細孔に試料を導入する工程と,試料が細孔を通過するとき細孔を流れる電流を測定することで試料の構造を分析する工程と,を有する。
 また,本発明の測定装置は,一例として,開口部を塞ぐようにメンブレンが設けられたメンブレン付き基板と,独立電極が設けられた独立電極付き基板と,メンブレン付き基板と独立電極付き基板の間に独立電極を内包する区画を形成する隔壁と,メンブレン付き基板に接続する第1のステージと,独立電極付き基板に接続する第2のステージと,メンブレン付き基板と独立電極付き基板をアライメントする機構と,第1のステージと第2のステージを接近させ,メンブレン付き基板と独立電極付き基板を隔壁を介して押し付ける駆動部と,メンブレンを挟んで独立電極と反対側に配置された電極と独立電極の間に電圧を印加するための電源と,電源から電圧を印加することにより独立電極に流れる電流を測定する測定部と,を有する。
 また,本発明の分析デバイスは,アレイ状に配置された複数の開口部を塞ぐようにメンブレンが設けられたメンブレン付き基板と,複数の独立電極がアレイ状に設けられた独立電極付き基板と,メンブレン付き基板と独立電極付き基板の間に独立電極をそれぞれ内包する複数区画を形成する隔壁とを有し,メンブレン付き基板と独立電極付き基板と隔壁により,溶液が充填された液槽が複数構成されており,複数の独立電極は隔壁により溶液が隔離されて実質的に絶縁されており,液槽には流路がなく溶液が液槽に密閉されている。
 本発明によれば,ソリッド式のナノポアシーケンサのアレイ化において,流路が不要となり,各シーケンサで独立した液槽を,高集積度にアレイ化することができる。
 なお,本発明に関連する更なる特徴は,本明細書の記述,添付図面から明らかになるものである。また,上記した以外の,課題,構成及び効果は,以下の実施例の説明により明らかにされる。
実施例の全体フローを示すフローチャート。 測定装置の一例を示す要部模式図。 測定装置の一例を示す要部模式図。 アライメントの一例を示す模式図。 分析デバイスの一例を示す要部断面模式図。 分析デバイスの一例を示す要部断面模式図。 分析デバイスの一例を示す要部断面模式図。 分析デバイスの一例を示す要部断面模式図。 分析デバイスの一例を示す要部断面模式図。 分析デバイスの一例を示す要部断面模式図。 アライメントの他の例を示す模式図。 第1の基板,隔壁及び第2の基板のレイアウトを説明するための平面概念図。 測定装置の一例を示す要部模式図。 分析デバイスの一例を示す要部断面模式図。 分析デバイスの一例を示す要部断面模式図。 隔壁の平面レイアウトを示す図。 分析デバイスの一例を示す要部断面模式図。 分析デバイスの一例を示す要部断面模式図。 分析デバイスの一例を示す要部断面模式図。 分析デバイスの一例を示す要部断面模式図。
 以下,図面を用いて本発明の実施例について説明する。各図面は模式的に描いており,説明に不用な箇所は省略している。実施例に記載する構造,材料,及び形成方法は,本発明の思想を具現化するための一例であり,材料及び寸法などを厳密に特定するものではない。
<実施例1>
 最初に,本実施例に関係する分析デバイスと測定装置について概略を説明する。
 図5から図10は,分析デバイスの一例を示す要部断面模式図である。本実施例の分析デバイスは,メンブレン付き基板113,独立電極つき基板114,及び隔壁106を有する。メンブレン付き基板113は,メンブレン100,第1の基板101,第1の電極102,及び第1の液槽サポート部103を有する。第1の基板101には表裏を貫通する複数の開口部120がアレイ状に設けられている。メンブレン100は,第1の基板101の複数の開口部120を塞ぐように第1の基板101の片面に設けられている。独立電極付き基板114は,第2の基板104及び独立電極105A,105Bを有する。独立電極105A,105Bは,第1の基板101の複数の開口部120に一対一に対応するようにアレイ状に配置されている。第1の電極102と独立電極105A,105Bは,メンブレン100を挟んで互いに反対側に配置されている。隔壁106はアレイ状に配置された独立電極に対応する複数の開口を有し,各独立電極は隔壁の各開口内に1個ずつ囲まれて配置される。
 ここで,例えば,メンブレン100はシリコン窒化膜,第1の基板101はシリコン基板,第1の電極102及び独立電極105A,105Bは白金,第2の基板104はガラスエポキシ基板,隔壁106は例えばジメチルポリシロキサンである。なお,第2の基板104は,独立電極105A,105Bと接続する配線や外部出力端子を備えている。また,一例として,ここでは,第1の基板の裏面開口部の大きさは,250μm角,第2の基板の独立電極の口径は150μm,隔壁の開口の口径は450μm,アレイピッチは700μmとした。
 図2及び図3は,本実施例の測定装置の要部模式図である。本実施例の測定装置は,上部ステージ112,下部ステージ116,制御回路部115,電源及び制御・検出データ取得ユニット117を有する。上部ステージ112は,溶液や試料を導入する領域が開口されており,分析デバイスのメンブレン付き基板113を独立電極付き基板114に対して押し付けるために稼働するようになっている。また,図4に示すように,上部ステージ112と下部ステージ116には,対応する挿入ピン131と,ピンを導入する窪み132が備わっており,基板を押し付ける際に位置合わせをするガイドの役割を果たす。また,制御回路部115は,独立電極105A,105B,電源及び制御・検出データ取得ユニット117と配線されており,独立電極に印加する電圧を制御する他,計測中に得られる信号をPCに転送するなどの役割を果たす。電源及び制御・検出データ取得ユニット117には,高出力電源と,CPU(Central Processing Unit)などのプロセッサと,メモリと,ハードディスクなどの記憶部を少なくとも備える。
 図1は,本実施例の分析デバイスの液槽形成工程を含む,細孔形成,試料分析工程までの全体フローを示すフローチャートである。以下では,アレイ数が2の場合の積層チップの詳細を説明するが,当然ながら,アレイ数は1つでも2つ以上であってもよい。
(1) ステップS11
 はじめに,図2に示すように,隔壁106を備える独立電極付き基板114を制御回路部115及び下部ステージ116に取り付け,メンブレン付き基板113を上部ステージ112に取り付けた状態で,独立電極付き基板114上に溶液107を導入し,メンブレン付き基板113の一面を溶液107に浸漬させる。こうして,メンブレン付き基板113と独立電極付き基板114の間に溶液が導入される。溶液107の導入は,隔壁106の複数の開口を覆うようにして行われる。図5に示すように,この溶液導入の工程を経て,メンブレン100と,独立電極105A,105Bの間を溶液で満たす。溶液107には,KCl等の電解質を含む。
(2) ステップS12
 次に,上部ステージ112を下部ステージ116側に駆動し,図4に示すように,上部ステージ112と下部ステージ116に備わる挿入ピン131と窪み132を組み合わせ,機械的に上部ステージ112と下部ステージ116の位置をアライメントする。このアライメント工程によって,メンブレン付き基板113と独立電極付き基板114は,第1の基板101の開口部120と独立電極付き基板114の独立電極が一対一対応するようにアライメントされる。
 メンブレン付き基板113は,上部ステージ112に設けられた窪みに嵌め込むことによって上部ステージに対して精度よく取り付けられる。また,独立電極付き基板114は,制御回路部115と共に下部ステージ116に設けられた窪みに嵌め込むことによって下部ステージ116に対して精度よく取り付けられる。従って,本実施例では,上部ステージ112と下部ステージ116をアライメントすることにより,メンブレン付き基板113と独立電極付き基板114のアライメントが行われる。
 ステップS11の工程とステップS12の工程は順序が逆であっても構わない。
(3) ステップS13
 更に,図3に示すように,上部ステージ112を下部ステージ116に近づけ,メンブレン付き基板113と独立電極付き基板114を,隔壁106を介して圧着し,メンブレン付き基板113と独立電極付き基板114の位置を固定する。
 図6に示すように,このアライメント,圧着工程を経て,第1の基板101の開口部120からメンブレン100が露出した複数区画と,独立電極105A,105Bとをそれぞれ対応するように位置合わせした状態で,隔壁106で隔たれた複数の独立液槽108A,108Bが形成される。つまり,流路を用いずにメンブレン100と隔壁106で囲まれた密封された独立液槽を形成することができる。複数の独立電極105A,105Bは隔壁106により溶液が隔離されて実質的に絶縁されており,液槽には流路がなく溶液が液槽に密閉されている。
(4) ステップS14
 ここで,独立液槽108A,108B間に,溶液のリークがあると,後に説明する細孔形成工程で細孔が形成されない,また,試料分析工程で,信号ノイズを発生させるなど,様々な不具合を生じさせる。そこで,隣接する独立電極105A,105B間に電圧を印加し,リーク電流値を測定する。
(5) ステップS15
 リーク電流値は,この後説明する細孔形成工程や,試料分析工程で問題のないある一定のレベルを閾値と設定し,測定したリーク電流値を閾値と比較する。その閾値は,印加する電圧が0.1Vである場合に,後述のステップS21の際に細孔を流れる電流に比べて十分に小さな値,例えば100pAとする。
 ステップS15の判定でリーク電流値が閾値以上である場合には,ステップS22に進み,リーク電流が検出された独立液槽108A,108Bを有する区画を不良と特定する。不良区画もしくは良品区画は,記憶部にて記憶しておく。
(6) ステップS16
 ステップS15の判定でリーク電流値が閾値より小さければ,ステップS16に進み,図7に示すように,溶液の入ったノズル121を用いてメンブレン100の上側に溶液を導入し,第1の液槽109を形成する。これにより,メンブレン100の上下が溶液で満たされる。
(7) ステップS17
 続いて,図8に示すように,第1の電極102と,独立電極105A,105B其々の間に電圧を印加し,既知の絶縁破壊のメカニズムによりメンブレン100に,ナノメートルサイズの細孔110A,110Bを形成する。
(8) ステップS18
 ここで,細孔110A,110Bの径は,細孔に流れる電流値が大きいほど大きくなることから,電流値で制御できる(WO 2015/097765 A参照)。しかし,メンブレン100の親水化が不十分でメンブレン100と溶液が接しない場合,メンブレン上下に電圧が正常に印加されず,細孔が形成されない。そのため,所望のサイズの細孔が形成されたかを判断するために,第1の電極と複数の独立電極105A,105B間に,細孔形成工程で印加した電圧よりも小さい電圧を印加し,第1の電極102と,複数の独立電極105A,105B間に流れる電流値を測定する。
(9) ステップS19
 第1の電極102と,独立電極105A,105B其々の間に流れる電流値が所望のサイズの細孔に対応する値になっているかどうかを判定する。
 第1の電極102と独立電極105A,105Bの間に流れる電流値が所定の電流量に達しない区画が有った場合,その区画を不良と判断する。その後,ステップS22に進み,この不良区画を記憶部にて記憶しておく。
 なお,各独立電極に印加する電圧及びシーケンスは,制御回路部115が制御し,複数区画で平行して細孔形成を行う。なお,先に説明した液槽形成後に不良と判断した区画には,この電圧を印加する工程や,電流を測定する工程は行う必要はない。良品区画のみに上記細孔形成工程及び電流値測定工程を行えば,細孔形成を効率よく行うことができる。
(10) ステップS20
 次に,図9に示すように,ノズル121から第1の液槽109に試料118を導入する。
(11) ステップS21
 最後に,図10に示すように,第1の電極102と独立電極105A,105B其々の間に電圧を印加する。電圧を印加することにより,細孔110A,110Bの周辺に電場が発生し,液中でチャージした生体試料118A,118Bが電場に引き寄せられる電気泳動の力が発生する。これにより,試料118A,118Bが細孔110A,110Bに導入され,細孔110A,110Bを通過する。ここで,検出される電流値は,生体試料が細孔110A,110Bを通過する前と,生体試料118A,118Bが細孔110A,110Bを通過中との間で変化する。生体試料118A,118Bの断面積により,細孔110A,110Bが一部封鎖され,細孔110A,110Bの抵抗値が変化するためである。これらの測定した電流値から,試料の構造を分析する。この封鎖電流測定による試料の構造分析は,不良区画以外の区画に対して実施すればよい。
 以上の工程を経て,流路がなく,密閉された複数の独立液槽が実現され,複数の独立液槽を用いて,細孔形成,及び試料分析が実現される。
 なお,上記の実施例で説明した内容は一例であり,この構成に限定されない。メンブレン付き基板と独立電極付き基板の間の位置アライメントには,挿入ピンを合わせる機械的なアライメント手法を用いた。しかし,例えば図11に示すように,装置にカメラ119を搭載し,メンブレン付き基板113に備わるパターンと,独立電極付き基板114に備わるパターンの位置関係を認識し,これらの基板の相対位置を制御しても構わない。また,カメラに代表される光学系の配置は,基板の間に限らない。上部ステージ112と下部ステージ116の駆動は,レバー式,モータや空気圧による制御等,既存のものを使えば良い。
 制御回路部115は,独立した部品としたが,第2の基板104に備えてもよく,電源及び制御・検出データ取得ユニット117内に配置してもよく,装置のバリエーションは様々である。測定環境に適した系が構築されればよい。
 分析デバイスに関しても,例えば,メンブレンには,シリコン窒化膜を用いたが,シリコン酸化膜,グラフェン,グラファイト,有機物質,又は高分子材料などが用いられてもよい。電極には,白金を用いたが,銀-塩化銀,金などの他の金属が用いられてもよい。第1の基板は,メンブレンが上側になるように設置したが,第1の基板がメンブレンの上側に位置する構成であってもよい。第2の基板にはガラスエポキシ基板を用いたが,テフロン(登録商標)などの他のプリント基板,もしくはガラス基板,シリコン基板であってもよい。
 図12は,アレイ数が49(7行,7列)の場合の第1の基板101,隔壁106及び第2の基板104のレイアウトを説明するための平面概念図である。図12に示す隔壁106には,図6における独立液槽108A,108Bに対応する円形の開口部があり,それ以外の領域は,隔壁材料がべた膜状に配置しているレイアウトである。つまり,隣接する独立液槽間は,隔壁で満たされている構造である。また,四角形で示されている第1の基板の開口部120は,図5における第1の基板101に設けられた開口部のことであり,これによりメンブレン100の裏面が露出されている。図12に示すように,第1の基板の開口部120と,独立電極105は,隔壁106の開口部により区分けされた独立液槽に内包される。
 また,本実施例では,図5に示すように,隔壁106を第2の基板104側に設けたが,第1の基板101側に設けても構わない。隔壁にジメチルポリシロキサンを用いたが,絶縁体で,第1の基板と第2の基板間を圧着で十分密着できるエラストマー等の材料であれば,これに限らない。
 第1の液槽サポート部103を,第1の液槽109が天井を有する構成にしたが,この構成に限定されない。例えば,第1の液槽サポート部が土手のように四方を囲う壁状になっており,第1の液槽の上部に大きな開口部が設けられた構成であってもよく,他の構造であってもよい。更に,第1の液槽の上部に大きな開口部が設けられた構成の場合は,試料を細孔に導入する手段は電気泳動に限らず,メンブレン上部に試料の位置を制御する駆動機構を置き,駆動機構を用いて試料の動作を制御しても良い(WO 2016/088486 A参照)。
 なお,細孔110A,110Bはメンブレン100に予め形成されていてもよい。本実施例では,細孔110A,110Bは,メンブレン100に電圧を印加することにより形成されたが,これに限定されない。細孔110A,110Bは,電子線をメンブレン100に照射するなどの他の方法によって形成されてもよい(A. J. Storm et al., Nat. Mat. 2 (2003)参照)。
 更には,溶液導入の際には,分析デバイスと溶液との濡れ性が高いことが必要である。濡れ性を高めるためには,メンブレン付き基板113と独立電極付き基板114に,溶液導入の前に表面処理を行うと効果的である。濡れ性を向上させる表面処理として,硫化水素と過酸化水素の混合液に分析デバイスを漬けて,有機物を除去してもよいし,溶液導入前にアルコールを導入し,それを溶液で置換してもよいし,分析デバイスを酸素プラズマ処理してもよい。また,これらを組み合わせてもよい。
<実施例2>
 本実施例では,実施例1と同等の効果が得られる溶液の導入方法の別の例を示す。溶液の導入方法以外は,実施例1の方法を適用するため,工程や構造の説明を省略する。図1を用いて説明した実施例1の工程と異なるのは最初のステップS11の工程のみであるため,ここでは本実施例におけるステップS11の工程についてのみ説明し,その後の工程については説明を省略する。
 図13は,本実施例における測定装置の要部模式図である。
 本実施例では,図1の独立液槽形成における溶液107の導入は,図13に示す通り,メンブレン付き基板113の一面と独立電極付き基板114の一面の2箇所に対して行う。例えば,メンブレン付き基板113への溶液の導入には,上部ステージ112を用いて裏面が上側にくるように反転させ,反転させた状態でメンブレン付き基板113の裏面に溶液107を導入する。ただし,メンブレン付き基板113の溶液導入部が十分に濡れ性の高い状態であれば,基板を反転させることなく溶液を導入することができる。独立電極付き基板114への溶液導入方法は,実施例1に示す内容に準ずるため省略する。
 次に,上部ステージ112と下部ステージ116を近づけ,2枚の基板に導入した溶液同士を接触させる。その後,位置アライメントし,メンブレン付き基板と電極付き基板とを,隔壁106を介して圧着する。図3に示すように,この溶液導入,アライメント,圧着工程を経て,隔壁106で隔たれた複数の独立液槽108A,108Bを形成する。つまり,流路を用いずに密封された独立液槽を形成することができる。
<実施例3>
 本実施例では,実施例1に示した分析デバイスに比べて,液槽形成時の不良率を低減するデバイス構造を示す。
 実施例1では,分析デバイスの平坦性などの理由により,分析デバイスの外側に位置する領域の隔壁と基板が,分析デバイスの内側に位置する領域の隔壁と基板より先に圧着された場合,分析デバイスの内側に位置する領域の隔壁と基板の間に溶液が滞留する。そのまま隔壁と基板間に溶液が滞留していると,独立液槽間で溶液がリークするため,滞留が発生した区画が不良となる。また,溶液のリークを無くすため,更に押し付けると,滞留していた溶液が独立液槽に流入することで,独立液槽内の圧力が増し,メンブレンを損傷させる場合がある。
 本実施例では,隔壁以外は,実施例1の構造及び方法を適用するため,工程や構造の説明を省略する。図14及び図15は,本実施例における分析デバイスの要部断面模式図である。図16は,アレイ数が49(7行,7列)の場合の本実施例における隔壁の平面レイアウトを示す図である。図16に示すとおり,隔壁106はリング状であり,リングの内側は独立液槽の領域であり,リングの外側はデバイスの外側と通じている領域である。図14及び図15の断面模式図に示されているように,隣接する独立電極105A,105Bの間には隔壁が2重に存在することになる。
 図14は,溶液導入,位置アライメント工程後のデバイス要部断面模式図である。メンブレン100と独立電極105A,105Bの間は溶液107で満たされており,隔壁106と第1の基板101間にも溶液が介入している。
 図15は,圧着工程を経た後の分析デバイス要部断面模式図である。図15に示す通り,圧着工程後は,リング状の隔壁106により,独立液槽108A,108Bが形成される。ここで,分析デバイスの外側に位置する領域の隔壁106と第1の基板101が,分析デバイスの内側に位置する領域の隔壁106と第1の基板101より先に圧着された場合でも,独立液槽108A,108B間が隔壁106で密閉された状態を形成することができる。本実施例の構造の場合,隔壁106のリング外側が,分析デバイスの外側と繋がっており,液槽の隣接部に溶液領域よりも低圧力な領域が存在するため,つまり,隔壁間が解放された空間となるため,隔壁106と隔壁106の間から余分な溶液が外部に排出され,溶液の滞留による不良を防止できる。また,余分な溶液が独立液槽108A,108B内に流入することがないため,メンブレン100の損傷も防止できる。
 ここで,リング状の隔壁の形成方法を挙げると,例えば,隔壁材料に感光性の樹脂を用いれば,リソグラフィー工法を用いて形成できる。もしくは,ソフトリソグラフィー工法を用いてモールドを押し付ける方法や,Oリングを配置するやり方でも形成できる。しかし,形成方法はこれらに限らない。
 また,リング状の隔壁は,円形に限らず,独立液槽を形成できる形状であれば,多角形でも不定形でもよい。
<実施例4>
 本実施例では,実施例3に示した分析デバイスより,デバイスの信頼性を向上させるデバイス構造を示す。隔壁以外は,実施例3の構造及び方法を適用するため,工程や構造の説明を省略する。
 図17及び図18は,本実施例における分析デバイスの要部断面模式図である。本実施例における隔壁106は,独立電極105A,105Bの一部の領域を除いて,第2の基板104の表面を被覆した構造を有する。図17は,溶液導入,位置アライメント工程後のデバイス要部断面模式図である。2枚の基板101,104間が,溶液107で満たされている。図18は,圧着工程を経たあとの分析デバイス要部断面模式図である。図18に示す通り,圧着工程後は,隔壁106により,独立液槽108A,108Bが形成される。
 ここで,隔壁106の最も高さの高い面は,実施例3と同じリング状構造をしており,隔壁のリング外側が分析デバイスの外側と繋がっているため,つまり,隔壁間が解放された空間となるため,隔壁と隔壁の間から余分な溶液が排出され,溶液の滞留による不良を防止できる。さらに,溶液の成分が,第2の基板材料を膨潤させたり溶解させるなど,特性を変化させる場合,本実施例の隔壁の構造は,第2の基板104と溶液107が直接接しない構造になっているため,第2の基板104を溶液から保護することができる。
 ここで,リング状の隔壁106の形成方法を挙げると,例えば,隔壁材料を第2の基板104に塗布した後,ソフトリソグラフィー工法を用いてモールドを押し付ける方法で形成することができる。モールドの押しつけで貫通パターンの形成が難しい場合には,モールドで押し付けた後,独立電極105A,105Bを露出させる部分にレーザ光を照射して開口部を設ける方法でも形成できる。その他,レーザの代わりに,プラズマで等方的にエッチングし,独立電極の少なくとも一部が露出するように開口部を設ける方法でも形成できる。しかし,リング状の隔壁106の形成方法は,これらに限らない。
<実施例5>
 本実施例では,実施例1に示した分析デバイスより,液槽形成時の不良率を低減するためのデバイス構造を示す。実施例1では,独立液槽内に,余分な溶液が流入した場合,メンブレン損傷がおこり,不良を発生させることがある。
 本実施例では,液槽内の構造以外は,実施例1と同様の構造を適用する。図19及び図20は,本実施例における分析デバイスの要部断面模式図である。図19は,溶液導入後,位置アライメント工程前のデバイス要部断面模式図である。2枚の基板間が溶液107で満たされている。ここで,溶液107内には,複数の気相領域111を有する。
 図20は,圧着工程を経たあとの分析デバイス要部断面模式図である。図20に示す通り,圧着工程後は,隔壁106により,独立液槽108A,108Bが形成される。ここで,独立液槽内に余分な溶液が流入した場合にも,独立液槽108A,108B間が隔壁106で密閉された状態を形成することができる。本実施例は,独立液槽内に溶液領域よりも低圧力な領域として気相領域111を有するため,溶液流入により液槽内の圧力が上昇するような場合においても,気相領域111がその圧力により体積収縮する。それにより,液槽内の圧力上昇が防止され,メンブレン損傷を防止できる。
 ここで,気相領域111の形成方法を挙げると,例えば,エジェクター方式,キャビテーション方式,旋回流方式,加圧溶解方式等を用いてマイクロバブルを溶液中に発生させ,マイクロバブルを有する溶液を,実施例1もしくは実施例2に記載の方法で導入する方法である。もしくは,気相領域は,熱膨張性マイクロカプセルを用いて形成することもできる。しかし,気相領域の形成方法は,これらに限らない。
 以上の実施例1~5によれば,ソリッド式のナノポアシーケンサのアレイ化において,流路を無くしてデバイスの集積度を向上することができる。また,独立液槽への溶液供給方法を簡便化することができる。
 本発明は上記した実施例に限定されるものではなく,様々な変形例が含まれる。上記実施例は本発明を分かりやすく説明するために詳細に説明したものであり,必ずしも説明した全ての構成を備えるものに限定されるものではない。また,ある実施例の構成の一部を他の実施例の構成に置き換えることもできる。また,ある実施例の構成に他の実施例の構成を加えることもできる。また,各実施例の構成の一部について,他の構成を追加・削除・置換することもできる。
100:メンブレン
101:第1の基板
102:第1の電極
103:第1の液槽サポート部
104:第2の基板
105,105A,105B:独立電極
106:隔壁
107:溶液
108A,108B:独立液槽
109:第1の液槽
110A,110B:細孔
111:気相領域
112:上部ステージ
113:メンブレン付き基板
114:独立電極付き基板
115:制御回路部
116:下部ステージ
117:電源及び制御・検出データ取得ユニット
118,118A,118B:試料
119:カメラ
120:第1の基板の開口部
121:ノズル 

Claims (15)

  1.  開口部を塞ぐようにメンブレンが設けられたメンブレン付き基板と,独立電極を有する独立電極付き基板の間に溶液を導入する工程と,
     間に隔壁を介して前記メンブレン付き基板と前記独立電極付き基板を圧着する工程と, 前記圧着により,少なくとも前記メンブレンと前記隔壁で囲まれた密封された液槽を形成する工程と,を含む方法。
  2.  前記メンブレン付き基板には複数の前記開口部がアレイ状に配置され,前記独立電極付き基板には複数の前記独立電極がアレイ状に配置され,前記隔壁は前記アレイ状に配置された独立電極に対応する複数の開口を有し,
     前記メンブレン付き基板と前記独立電極付き基板を,前記開口部と前記独立電極が一対一対応するようにアライメントする工程を有し,
     前記溶液を導入する工程において前記隔壁の複数の開口を覆うように溶液を導入することで,少なくとも,前記メンブレンと前記複数の開口を有する隔壁で囲まれた複数の密封された液槽を形成する,請求項1に記載の方法。
  3.  前記溶液を導入する工程において,前記独立電極付き基板上に溶液を導入し,前記メンブレン付き基板の一面を浸漬させることで,前記メンブレン付き基板と前記独立電極付き基板の間に溶液を導入する,請求項2に記載の方法。
  4.  前記溶液を導入する工程の前に,前記メンブレン付き基板及び独立電極付き基板に,溶液の濡れ性を向上するための表面処理工程を有する,請求項2に記載の方法。
  5.  前記溶液を導入する工程において,前記メンブレン付き基板の一面及び前記独立電極付き基板の一面それぞれに溶液を導入し,導入した溶液同士を接触させる,請求項2に記載の方法。
  6.  前記複数の密封された液槽を形成した後に,
     隣接する前記独立電極の間に電圧を印加してリーク電流を測定する工程と,
     前記リーク電流の値が予め設定した閾値以上である場合に当該独立電極を含む区画を不良と判定する,請求項2に記載の方法。
  7.  前記密封された液槽を形成した後,
     前記メンブレンに電圧を印加し前記メンブレンに細孔を形成する工程と,
     前記細孔に試料を導入する工程と,
     試料が前記細孔を通過するとき前記細孔を流れる電流を測定することで試料の構造を分析する工程と,を有する請求項1に記載の方法。
  8.  前記複数の密封された液槽を形成した後,
     前記メンブレンに電圧を印加し前記メンブレンに細孔を形成する工程と,
     前記細孔を流れる電流を測定し,所定の電流値に達しない区画を不良区画とする工程と,
     前記細孔に試料を導入する工程と,
     試料が前記細孔を通過するとき不良区画以外の区画に対して前記細孔を流れる電流を測定して試料の構造を分析する工程と,を有する請求項2に記載の方法。
  9.  開口部を塞ぐようにメンブレンが設けられたメンブレン付き基板と,
     独立電極が設けられた独立電極付き基板と,
     前記メンブレン付き基板と前記独立電極付き基板の間に前記独立電極を内包する区画を形成する隔壁と,
     前記メンブレン付き基板に接続する第1のステージと,
     前記独立電極付き基板に接続する第2のステージと,
     前記メンブレン付き基板と前記独立電極付き基板をアライメントする機構と,
     前記第1のステージと前記第2のステージを接近させ,前記メンブレン付き基板と前記独立電極付き基板を前記隔壁を介して押し付ける駆動部と,
     前記メンブレンを挟んで前記独立電極と反対側に配置された電極と前記独立電極の間に電圧を印加するための電源と,
     前記電源から電圧を印加することにより前記独立電極に流れる電流を測定する測定部と,
    を有する測定装置。
  10.  前記メンブレン付き基板には複数の前記開口部がアレイ状に配置され,前記独立電極付き基板には複数の前記独立電極がアレイ状に配置され,前記隔壁は前記アレイ状の独立電極に対応する複数の開口を有し,
     前記測定部は,複数の前記独立電極にそれぞれ接続しており,各独立電極に流れる電流をそれぞれ測定する,請求項9に記載の測定装置。
  11.  アレイ状に配置された複数の開口部を塞ぐようにメンブレンが設けられたメンブレン付き基板と,
     複数の独立電極がアレイ状に設けられた独立電極付き基板と,
     前記メンブレン付き基板と前記独立電極付き基板の間に前記独立電極をそれぞれ内包する複数区画を形成する隔壁とを有し,
     前記メンブレン付き基板と前記独立電極付き基板と前記隔壁により,溶液が充填された液槽が複数構成されており,
     前記複数の独立電極は前記隔壁により溶液が隔離されて実質的に絶縁されており,前記液槽には流路がなく溶液が前記液槽に密閉されている,分析デバイス。
  12.  前記液槽それぞれの内部もしくは隣接部に溶液領域よりも低圧力な領域が存在する,請求項11に記載の分析デバイス。
  13.  前記隔壁はリング状であり,隣接する前記独立電極間に前記隔壁が2重に存在する,請求項11に記載の分析デバイス。
  14.  前記独立電極付き基板の表面を前記隔壁の材料が覆っており,
     前記独立電極付き基板の表面を覆う前記隔壁の材料には前記独立電極の少なくとも一部が露出するように開口部が設けてある,請求項11に記載の分析デバイス。
  15.  前記液槽内に気相領域を有するマイクロカプセルあるいはマイクロバブルを有する,請求項11に記載の分析デバイス。 
PCT/JP2017/036944 2016-12-07 2017-10-12 液槽形成方法,測定装置及び分析デバイス WO2018105229A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/464,835 US11656218B2 (en) 2016-12-07 2017-10-12 Liquid tank formation method, measurement device, and analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016237960A JP6730171B2 (ja) 2016-12-07 2016-12-07 液槽形成方法,測定装置及び分析デバイス
JP2016-237960 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018105229A1 true WO2018105229A1 (ja) 2018-06-14

Family

ID=62490860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036944 WO2018105229A1 (ja) 2016-12-07 2017-10-12 液槽形成方法,測定装置及び分析デバイス

Country Status (3)

Country Link
US (1) US11656218B2 (ja)
JP (1) JP6730171B2 (ja)
WO (1) WO2018105229A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010112A1 (ja) 2019-07-17 2021-01-21 Nok株式会社 粒子解析装置の保管方法及びその製造方法
WO2021095325A1 (ja) 2019-11-11 2021-05-20 Nok株式会社 粒子解析装置の製造方法及び粒子解析装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112469665B (zh) * 2018-05-22 2023-10-17 Etx公司 用于二维材料的转移的方法和装置
JP6955475B2 (ja) * 2018-07-11 2021-10-27 株式会社日立製作所 生体試料分析装置および生体試料分析方法
WO2020241291A1 (ja) * 2019-05-31 2020-12-03 株式会社日立製作所 フローセルおよびナノポアアレイ感知システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120267729A1 (en) * 2011-04-22 2012-10-25 International Business Machines Corporation Self-sealed fluidic channels for nanopore array
WO2015097765A1 (ja) * 2013-12-25 2015-07-02 株式会社日立製作所 穴形成方法、測定装置及びチップセット
JP2015197385A (ja) * 2014-04-02 2015-11-09 株式会社日立ハイテクノロジーズ 孔形成方法及び測定装置
JP2016126003A (ja) * 2014-12-26 2016-07-11 株式会社東芝 検体検出方法および検体検出装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204407A (ja) * 2008-02-27 2009-09-10 National Institutes Of Natural Sciences パッチクランプ素子用基板、平面基板型パッチクランプ素子及び細胞イオンチャンネル活性測定方法
JP5427722B2 (ja) 2010-07-28 2014-02-26 株式会社日立ハイテクノロジーズ ナノポア式分析装置及び試料分析用チャンバ
CN103380369B (zh) * 2011-02-23 2016-12-28 纽约市哥伦比亚大学理事会 使用纳米孔进行单分子检测的系统和方法
JP5670278B2 (ja) * 2011-08-09 2015-02-18 株式会社日立ハイテクノロジーズ ナノポア式分析装置
US10908143B2 (en) * 2013-11-27 2021-02-02 Hitachi, Ltd. Current measuring device, current measuring method, and current measuring kit
EP3828540B1 (en) * 2014-12-19 2024-04-17 The University of Ottawa Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown
WO2016181465A1 (ja) * 2015-05-11 2016-11-17 株式会社日立製作所 分析デバイス及び分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120267729A1 (en) * 2011-04-22 2012-10-25 International Business Machines Corporation Self-sealed fluidic channels for nanopore array
WO2015097765A1 (ja) * 2013-12-25 2015-07-02 株式会社日立製作所 穴形成方法、測定装置及びチップセット
JP2015197385A (ja) * 2014-04-02 2015-11-09 株式会社日立ハイテクノロジーズ 孔形成方法及び測定装置
JP2016126003A (ja) * 2014-12-26 2016-07-11 株式会社東芝 検体検出方法および検体検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010112A1 (ja) 2019-07-17 2021-01-21 Nok株式会社 粒子解析装置の保管方法及びその製造方法
WO2021095325A1 (ja) 2019-11-11 2021-05-20 Nok株式会社 粒子解析装置の製造方法及び粒子解析装置

Also Published As

Publication number Publication date
JP2018096688A (ja) 2018-06-21
US11656218B2 (en) 2023-05-23
US20190293625A1 (en) 2019-09-26
JP6730171B2 (ja) 2020-07-29

Similar Documents

Publication Publication Date Title
WO2018105229A1 (ja) 液槽形成方法,測定装置及び分析デバイス
JP4216712B2 (ja) マイクロ流体式化学検定装置および方法
US20030127333A1 (en) Integrated solid-phase hydrophilic matrix circuits and micro-arrays
JP2008519969A (ja) オーム抵抗の最小化を伴うマイクロ流体装置
MXPA00004350A (es) Metodo y dispositivo de electroforesis con arreglo capilar microfabricado.
US7988839B2 (en) Capillary electrophoresis systems and methods
JP2006505797A (ja) エレクトロスプレー質量分析計における試料分注装置
CN210108849U (zh) 透射电镜原位液体环境力学试验平台
JPH1164277A (ja) 電気泳動分析装置及びそれに用いる試料容器
JP5563601B2 (ja) 試料中の荷電種の濃度を測定するための装置
JP4362987B2 (ja) マイクロチップ電気泳動におけるサンプル導入方法
JPH1010088A (ja) キャピラリ−電気泳動装置
US10514353B2 (en) Arrangement and method for the electrochemical analysis of liquid samples by means of lateral flow assays
US11333626B2 (en) Biological sample analysis chip, biological sample analyzer and biological sample analysis method
US20080206828A1 (en) Device For Introducing Substance Into Cell, Cell Clamping Device and Flow Path Forming Method
KR102064388B1 (ko) 단일 지점 검출 방식 미소유체 등전점 전기영동 및 미소유체 칩
Li et al. Development of an integrated CMOS-microfluidic instrumentation array for high throughput membrane protein studies
US20070051626A1 (en) Cataphoresis apparatus cataphoresis method, and detection method for organism-related material using the apparatus and the method
JP7253045B2 (ja) 生体ポリマ分析装置及び生体ポリマ分析方法
JP6955475B2 (ja) 生体試料分析装置および生体試料分析方法
US20160025667A1 (en) Apparatus for the detection of liquids or substances from liquids
JP4387624B2 (ja) 試料作成装置
US9409357B1 (en) Devices, systems, and methods for microscale isoelectric fractionation
JP2004061426A (ja) 塩基配列検出装置及び塩基配列自動解析装置
JP2007155560A (ja) 電気泳動装置、電気泳動システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878710

Country of ref document: EP

Kind code of ref document: A1