WO2018105158A1 - リレー選択のための装置及び方法 - Google Patents

リレー選択のための装置及び方法 Download PDF

Info

Publication number
WO2018105158A1
WO2018105158A1 PCT/JP2017/023508 JP2017023508W WO2018105158A1 WO 2018105158 A1 WO2018105158 A1 WO 2018105158A1 JP 2017023508 W JP2017023508 W JP 2017023508W WO 2018105158 A1 WO2018105158 A1 WO 2018105158A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
relay
relay terminal
terminal
remote
Prior art date
Application number
PCT/JP2017/023508
Other languages
English (en)
French (fr)
Inventor
太一 大辻
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018554811A priority Critical patent/JP6933225B2/ja
Priority to US16/465,420 priority patent/US11122493B2/en
Publication of WO2018105158A1 publication Critical patent/WO2018105158A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0005Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This disclosure relates to direct communication between devices (device-to-device (D2D) communication), and more particularly to selection of a relay terminal.
  • D2D device-to-device
  • a wireless terminal is configured to be able to communicate directly with other wireless terminals. Such communication is called device-to-device (D2D) communication.
  • D2D communication includes at least one of direct communication and direct discovery.
  • a plurality of wireless terminals that support D2D communication form a D2D communication group autonomously or according to a network instruction, and communicate with other wireless terminals in the D2D communication group.
  • ProSe includes ProSe discovery (ProSe discovery) and ProSe direct communication. ProSe discovery enables the detection of proximity of wireless terminals (in proximity). ProSe discovery includes direct discovery (ProSe Direct Discovery) and network level discovery (EPC-level ProSe Discovery).
  • ProSe direct discovery is a wireless communication technology (for example, Evolved Universal Terrestrial Radio Access (E) where a wireless terminal capable of executing ProSe (ProSe-enabled User Equipment (UE)) has two other ProSe-enabled UEs. -UTRA) It is performed by the procedure to discover using only the ability of (technology).
  • EPC-level ProSe Discovery the core network (Evolved Packet Packet Core (EPC)) determines the proximity of two ProSe-enabled UEs and informs these UEs of this.
  • ProSe direct discovery may be performed by more than two ProSe-enabled UEs.
  • ProSe direct communication enables establishment of a communication path between two or more ProSe-enabled UEs existing in the direct communication range after the ProSe discovery procedure.
  • ProSe-direct communication is directly connected to other ProSe-enabled UEs without going through the public land mobile communication network (Public Land Mobile Mobile Network (PLMN)) including the base station (eNodeB). Allows to communicate.
  • PLMN Public Land Mobile Mobile Network
  • ProSe direct communication may be performed using the same wireless communication technology (E-UTRA technology) as that used to access the base station (eNodeB), or non-3GPP wireless technology, such as wireless local area network (WLAN) It may be performed using wireless technology (ie, IEEE 802.11 radio technology) or Bluetooth® wireless technology.
  • ProSe direct discovery and ProSe direct communication are performed at the direct interface between UEs.
  • the direct interface is called a PC5 interface or sidelink. That is, ProSe direct discovery and ProSe direct communication are examples of D2D communication. Note that D2D communication can also be called side link communication, and can also be called peer-to-peer communication.
  • ProSe function communicates with ProSe-enabled UE via the public land mobile communication network (PLMN) to support ProSe discovery and ProSe direct communication (assist).
  • ProSe function is a logical function used for operations related to PLMN necessary for ProSe.
  • the functionality provided by ProSe function is, for example, (a) communication with third-party applications (ProSe Application Server), (b) UE authentication for ProSe discovery and ProSe direct communication, (c) ProSe Including transmission of setting information (for example, EPC-ProSe-User ID) for discovery and ProSe direct communication to the UE, and (d) provision of network level discovery (ie, EPC-level ProSe discovery).
  • ProSe function may be implemented in one or more network nodes or entities. In this specification, one or a plurality of network nodes or entities that execute a ProSe function are referred to as “ProSe function functions” or “ProSe function servers”.
  • 3GPP Release 12 specifies a partial coverage scenario in which one UE is outside the network coverage and the other UE is within the network coverage (for example, Sections 4.4.3 and 4.5 of Non-Patent Document 1). See 4 and 5.4.4).
  • UEs that are out of coverage are called remote UEs
  • UEs that are in coverage and relay between remote UEs and networks are called ProSe UE-to-Network Relays.
  • ProSe UE-to-Network Relay relays traffic (downlink and uplink) between remote UE and network (E-UTRA network (E-UTRAN) and EPC).
  • ProSe UE-to-Network Relay attaches to the network as a UE, establishes a PDN connection to communicate with a ProSe function ⁇ ⁇ entity or other packet Data Network (PDN), and performs ProSe direct communication. Communicate with the ProSe function entity to get started.
  • ProSe UE-to-Network Relay further performs a discovery procedure with remote UE, communicates with remote UE on the direct inter-UE interface (eg, side link or PC5 interface), and between remote UE and network To relay traffic (downlink and uplink).
  • IPv4 Internet Protocol Version 4
  • DHCPv4 Dynamic Host Configuration Configuration Protocol Version 4
  • NAT Network Address Translation
  • IPv6 IPv6
  • ProSe UE-to-UE Relay is a UE that relays traffic between two remote UEs.
  • the distributed relay selection architecture (see, for example, Non-Patent Documents 3-5, 7, and 8) in which the remote UE performs relay selection, and the base station (
  • a centralized relay selection architecture (for example, see Non-Patent Documents 6 and 7) in which elements in a network such as eNodeB (eNB)) perform relay selection
  • the UE-to-Network Relay selection criteria consider the D2D link quality between the remote UE and the relay UE, the backhaul link quality between the relay UE and the eNB, and the D2D link quality and It has been proposed to consider both backhaul link quality (see, for example, Non-Patent Documents 3-8).
  • Non-Patent Document 3-5 describes that both the D2D link quality and the backhaul link quality are considered in distributed relay selection.
  • the remote UE considers both D2D link quality and backhaul link quality using the evaluation formula w * D2D link quality + (1-w) * backhaul link quality, where w is preset It is a constant (see Non-Patent Document 3).
  • the relay UE transmits a discovery message indicating the radio quality of the backhaul link (between the relay UE and the eNB) in order to assist the relay selection by the remote UE (see Non-Patent Document 4). .
  • the relay UE may implicitly indicate the radio quality of the backhaul link to the remote UE in order to assist the relay selection by the remote UE.
  • the radio quality of the backhaul link for example, priority information in the discovery signal is used (see Non-Patent Document 5).
  • Non-Patent Document 6 describes that both D2D link quality and backhaul link quality are considered in centralized relay selection.
  • the remote UE reports the D2D link quality to the eNB, and the eNB selects a relay for the remote UE taking into account the reported D2D link quality and (reported) backhaul link quality.
  • the backhaul link quality may be obtained by measurement by an eNB or measurement report by a relay UE in an existing cellular network.
  • the eNB selects one or a plurality of relay UEs in consideration of the backhaul link quality. Only these relay candidate UEs can be discovered by the remote UE in the relay discovery procedure.
  • the remote UE selects a relay from one or more relay candidates based on the D2D link quality. Since the backhaul link quality is taken into account when selecting relay candidates by the eNB, it is therefore also indirectly taken into account by the relay selection by the remote UE.
  • a radio terminal having D2D communication capability and relay capability such as ProSe UE-to-Network Relay and ProSe UE-to-UE Relay is referred to as a "relay radio terminal” or “relay UE”.
  • a wireless terminal that receives a relay service by the relay UE is referred to as a “remote wireless terminal” or “remote UE”.
  • 3GPP TS 23.303 V13.2.0 (2015-12), “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Proximity-based services (ProSe); Stage 2 (Release 13) '', December 2015 3GPP TR 23.713 V13.0.0 (2015-09), “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on extended architecture support for proximity-based services (Release 13) '', September 3GPP® R1-152778, “Support of UE-Network relays”, Qualcomm Incorporated, May 2015 3GPP S2-150925, “UE-to-Network Relay conclusions”, Qualcomm Incorporated, April 2015 3GPP R1-153087, “Discussion on UE-to-Network Relay measurement”, Sony, May 2015 3GPP R2-152560, “Role of eNB when remote UE is in coverage”, Qualcomm Incorporated, May 2015 3GPP R1-151965, “Views on UE-to-Network
  • the inventor has examined relay selection, found several problems including the problems specifically shown below, and devised some improvements to deal with these problems.
  • Non-Patent Documents 3-8 describe that either or both of the D2D link quality and the backhaul link quality are considered in relay selection for the remote UE.
  • Non-Patent Document 3 shows downlink (DL) Reference Signal Received Power (RSRP) and DL Signal-to-Interference plus Noise Ratio (SINR) as specific examples of backhaul link quality.
  • RSRP Reference Signal Received Power
  • SINR DL Signal-to-Interference plus Noise Ratio
  • Non-Patent Documents 3-8 do not disclose that other indicators or parameters regarding the backhaul link between the eNB and the relay UE are considered for relay selection.
  • the relay UE with the best DLRPRSRP does not necessarily provide the best throughput to the remote UE.
  • the system bandwidth eg, 100 MHz
  • the system bandwidth eg, 20 MHz
  • the second relay UE may be able to provide higher throughput to the remote UE than the first relay UE.
  • the second relay UE and the base station than the Radio Access Technology (RAT) eg, Long Term Evolution (LTE)
  • RAT eg, Long Term Evolution (LTE)
  • LTE Long Term Evolution
  • NR New Radio
  • 5G RAT New Radio
  • a relay UE receives a notification message (eg, Earthquake and Tsunami Warning System (ETWS) information) or a control message (eg, assignment information indicating D2D radio resources used in coverage) from a base station. Disclose on a D2D path to a remote UE. However, Patent Document 1 does not disclose that the remote UE uses the notification message and the control message from the base station for relay UE selection.
  • a notification message eg, Earthquake and Tsunami Warning System (ETWS) information
  • a control message eg, assignment information indicating D2D radio resources used in coverage
  • a base station reaches one terminal for communicating with a remote UE (terminal) via one or more relays (drift AP) to the terminal.
  • the selection of a plurality of routes is disclosed.
  • the indicator for route selection includes an indicator related to route quality.
  • the path quality indicator includes electric field strength, signal interference and noise ratio (SINR), carrier to interference and ationoiseCIratio (CINR), packet loss rate, number of hops, and the like in each radio section.
  • the path quality indicator may indicate the remaining power (or the amount of remaining radio resources) of radio resources of the relay (drift AP) or the remote UE (terminal) or both.
  • the path quality indicator may indicate the processing capability of the relay (drift AP) or the remote UE (terminal) or both.
  • U.S. Pat. No. 6,057,086 only teaches centralized relay selection by the base station. Therefore, Patent Document 2 does not disclose that the relay UE sends some information used for distribution by the remote UE to the remote UE.
  • a wireless terminal includes a memory and at least one processor coupled to the memory.
  • the at least one processor receives selection support information from each of one or more relay terminals, and based on the selection support information, at least one suitable for the wireless terminal from among the one or more relay terminals It is configured to select a specific relay terminal.
  • Each specific relay terminal is a device-to-device (D2D) link between each specific relay terminal and the wireless terminal and a backhaul link between each specific relay terminal and the base station, Relay traffic between a wireless terminal and the base station.
  • the selection support information includes a first information element transmitted from the base station and received by each relay terminal.
  • the first information element indicates at least one of the following: (A) a frequency band supported by the base station; (B) system bandwidth supported by the base station; (C) the downlink transmission power of the base station; (D) Uplink / downlink configuration of each cell provided by the base station to each relay terminal; (E) the number of cells that the base station provides to each relay terminal; (F) one or more cell types provided by the base station to each relay terminal; (G) Radio Access Technology (RAT) or communication method used between the base station and each relay terminal, and (h) the name or identifier of the mobile operator providing the base station.
  • A a frequency band supported by the base station
  • B system bandwidth supported by the base station
  • C the downlink transmission power of the base station
  • D Uplink / downlink configuration of each cell provided by the base station to each relay terminal
  • E the number of cells that the base station provides to each relay terminal
  • G Radio Access Technology
  • the remote terminal includes a memory and at least one processor coupled to the memory.
  • the at least one processor is configured to transmit selection assistance information to a remote terminal. Further, the at least one processor is configured to connect the remote terminal via a device-to-device (D2D) link between the relay terminal and the remote terminal and a backhaul link between the relay terminal and a base station. And the base station are configured to relay traffic.
  • the selection support information includes a first information element transmitted from the base station and received by the relay terminal.
  • the first information element indicates at least one of the following: (A) a frequency band supported by the base station; (B) system bandwidth supported by the base station; (C) the downlink transmission power of the base station; (D) Uplink / downlink configuration of each cell provided by the base station to the relay terminal; (E) the number of cells that the base station provides to the relay terminal; (F) one or more cell types provided by the base station to the relay terminal; (G) Radio Access Technology (RAT) or communication method used between the base station and the relay terminal, and (h) the name or identifier of the mobile operator providing the base station.
  • A a frequency band supported by the base station
  • B system bandwidth supported by the base station
  • C the downlink transmission power of the base station
  • D Uplink / downlink configuration of each cell provided by the base station to the relay terminal
  • E the number of cells that the base station provides to the relay terminal
  • G Radio Access Technology
  • RAT Radio Access Technology
  • a method in a wireless terminal is configured to receive selection support information from each of one or a plurality of relay terminals, and based on the selection support information, select the wireless from the one or more relay terminals. Selecting at least one specific relay terminal suitable for the terminal.
  • the selection support information is the same as that in the first aspect.
  • a method in a relay terminal includes transmitting selection support information to a remote terminal, and a device-to-device (D2D) link between the relay terminal and the remote terminal, and the relay terminal and the base Relaying traffic between the remote terminal and the base station via a backhaul link with the station.
  • the selection support information is the same as that in the second mode.
  • the program includes a group of instructions (software code) for causing the computer to perform the method according to the third or fourth aspect described above when read by the computer.
  • the plurality of embodiments described below can be implemented independently or in appropriate combinations.
  • the plurality of embodiments have different novel features. Therefore, these multiple embodiments contribute to solving different purposes or problems and contribute to producing different effects.
  • FIG. 1 shows a configuration example of a wireless communication network according to some embodiments including this embodiment.
  • FIG. 1 shows an example related to UE-to-Network Relay. That is, the remote UE 1 has at least one radio transceiver, and D2D communication (eg, ProSe direct discovery and ProSe direct communication) with one or more relay UEs 2 on the D2D link 102 (eg, PC5 interface or side link). Is configured to do.
  • the remote UE 1 is configured to perform cellular communication within the cellular coverage 31 provided by one or a plurality of base stations 3.
  • the cellular coverage 31 includes one or more cells.
  • the relay UE2 has at least one wireless transceiver, performs cellular communication on the cellular link 101 with the base station 3 in the cellular coverage 31, and performs D2D communication with the remote UE1 on the D2D link 102 (eg, ProSe direct discovery). And ProSe direct communication).
  • the base station 3 is an entity arranged in a radio access network (ie, E-UTRAN), provides a cellular coverage 31 including one or more cells, and uses cellular communication technology (eg, E-UTRA technology). Can be used to communicate with the relay UE2 in the cellular link 101. Furthermore, the base station 3 is configured to perform cellular communication with the remote UE 1 when the remote UE 1 is in the cellular coverage 31.
  • E-UTRAN radio access network
  • E-UTRA technology eg, E-UTRA technology
  • EPC 4 consists of multiple user plane entities (eg, Serving Gateway (S-GW) and Packet Data Gateway Network (P-GW)), and multiple control plane entities (Eg, Mobility Management Management Entity (MME) and Home Subscriber Server (HSS)).
  • S-GW Serving Gateway
  • P-GW Packet Data Gateway Network
  • MME Mobility Management Management Entity
  • HSS Home Subscriber Server
  • the plurality of user plane entities relay user data of the remote UE 1 and the relay UE 2 between the radio access network including the base station 3 and the external network.
  • the plurality of control plane entities perform various controls including mobility management, session management (bearer management), subscriber information management, and charging management of the remote UE1 and the relay UE2.
  • the remote UE 1 and the relay UE 2 are configured to communicate with the D2D controller 5 via the base station 3 and the core network 4 in order to use the proximity service (e.g., 3GPP ProSe).
  • the D2D controller 5 corresponds to a ProSe function entity.
  • the remote UE1 and the relay UE2 may use, for example, network level discovery (eg, EPC-level ProSe Discovery) provided by the D2D controller 5, or D2D communication (eg, ProSe direct discovery and ProSe direct communication).
  • the relay UE2 operates as a UE-to-Network Relay, and provides the relay operation between the remote UE1 and the cellular network (the base station 3 and the core network 4) to the remote UE1.
  • the relay UE2 relays the data flow (traffic) related to the remote UE1 between the remote UE1 and the cellular network (base station 3 and core network 4).
  • remote UE1 can communicate with the node 7 in the external network 6 via relay UE2 and a cellular network (base station 3 and core network 4).
  • the remote UE 1 is located outside the cellular coverage 31 (out-of-coverage). However, as already mentioned, the remote UE 1 may be located in the cellular coverage 31. In some implementations, if the remote UE1 cannot connect to the cellular network (base station 3 and core network 4) based on some condition (eg, selection by the user), D2D communication (eg, direct communication) with the relay UE2 ) May be performed. In some implementations, the remote UE 1 may further perform D2D communication with the relay UE 2 while performing cellular communication directly with the base station 3 within the coverage 31 of the base station 3. In some implementations, the remote UE 1 uses either direct cellular communication (referred to as a direct path) with the base station 3 or D2D communication (referred to as a relay path) with any relay UE 2. You may choose.
  • D2D communication eg, direct communication
  • the remote UE 1 uses either direct cellular communication (referred to as a direct path) with the base station 3 or D2D communication (referred to as a
  • FIG. 2 shows another configuration example of the wireless communication network according to some embodiments.
  • the remote UE 1 is located in the cellular coverage 81 of the base station 8.
  • the cellular coverage 81 includes one or more cells.
  • the remote UE 1 is configured to perform cellular communication on the cellular link 201 with the base station 8.
  • the remote UE1 can perform direct cellular communication (ie, direct path) with the base station 8 via the cellular link 201 and D2D communication (ie, direct relay) with any relay UE2 via the D2D link 102 (ie Or relay path) may be selected.
  • direct cellular communication ie, direct path
  • D2D communication ie, direct relay
  • any relay UE2 via the D2D link 102 ie Or relay path
  • the wireless communication network may have a HeterogeneouseNetwork (HetNet) structure.
  • the base station 8 may be a macro base station
  • the base station 3 may be a pico base station
  • the macro cell (ie, cellular coverage 81) of the base station 8 is the pico cell (ie , The cellular coverage 31) may be completely covered.
  • the base station 3 (or cellular coverage 31) and the base station 8 (or cellular coverage 81) may support different Radio Access Technologies (RAT).
  • RAT Radio Access Technologies
  • the base station 8 may be an LTE eNodeB (eNB) that supports LTE RAT
  • the base station 3 may be an NR NodeB (NR NB) that supports New Radio (NR).
  • 5G 5th generation mobile communication system
  • 5G is a combination of LTE and LTE-Advanced continuous enhancement / evolution and the introduction of a new 5G air interface (new Radio Access Technology (RAT)).
  • the new RAT is, for example, a frequency band higher than the frequency band (eg, 6 GHz or less) targeted for the continuous development of LTE / LTE-Advanced, such as a centimeter wave band of 10 GHz or more and a millimeter band of 30 GHz or more. Support waveband.
  • the fifth generation mobile communication system is also called Next Generation (NextGen) System (NG System).
  • the new RAT for NG System is called New Radio (NR), 5G RAT, or NG RAT.
  • NR Next Generation
  • NR New Radio
  • NG RAT New Radio
  • LTE Long Term Evolution
  • LTE-Advanced Pro LTE-Advanced Pro
  • LTE + enhanced LTE
  • the base station 3 and the base station 8 may be operated by different mobile operators.
  • the base station 3 and its cellular coverage 31 are operated by the operator A
  • the base station 8 and its cellular coverage 81 are operated by the operator B.
  • the relay UE2 can access the base station 3 using subscription credentials for the operator A.
  • the remote UE 1 can access the base station 8 using subscription credentials for the operator B.
  • Each entitlement information is stored in, for example, Universal Integrated Circuit Card (UICC) of each of the remote UE1 and the relay UE2.
  • UICC Universal Integrated Circuit Card
  • At least one specific relay UE suitable for the remote UE1 is selected from among the discovered relay UE2 and the relay discovery for discovering the relay UE2 that can be used by the remote UE1. It is necessary to select a relay.
  • Each relay UE2 before relay selection is performed can also be called a relay UE candidate or a relay candidate.
  • relay selection is performed by the remote UE 1 in some implementations (i.e., distributed relay selection).
  • FIG. 4 shows an example of a procedure (process 400) involving distributed relay selection.
  • the remote UE1 and the relay UE2 execute a relay discovery procedure for the remote UE1 to discover the relay UE2 as UE-to-Network Relay or UE-to-UE Relay.
  • the relay UE2 may transmit a discovery signal
  • the remote UE1 may discover the relay UE2 by detecting the discovery signal from the relay UE2.
  • the remote UE1 transmits a discovery signal indicating that it wants to relay
  • the relay UE2 transmits a response message to the discovery signal to the remote UE1.
  • the remote UE1 may discover the relay UE2 by receiving a response message from the relay UE2.
  • the remote UE1 selects at least one specific relay UE2 appropriate from the one or more relays UE2 discovered in step 401. Details of the relay selection procedure according to this embodiment will be described later.
  • the remote UE1 establishes a connection for one-to-one D2D communication (direct communication) with one of the selected at least one specific relay UE.
  • the remote UE1 may transmit a direct communication request (or relay request) to the relay UE2.
  • the relay UE2 may start a procedure for mutual authentication in response to receiving the direct communication request (or relay request).
  • FIG. 5 is a sequence diagram showing an example (process 500) of relay selection by the remote UE1.
  • each relay UE2 transmits selection support information (selection assistance information) to the remote UE1.
  • the remote UE1 receives selection support information from each relay UE2.
  • Each relay UE2 may transmit selection support information in a relay discovery procedure (e.g., step 401 in FIG. 4).
  • each relay UE2 may transmit a discovery signal including selection support information according to a so-called announcement model (model A).
  • model A announcement model
  • the selection support information includes cell information.
  • the cell information can also be referred to as base station information.
  • Cell information (or base station information) is information transmitted from the base station 3 and received by each relay terminal 2. That is, each relay UE2 receives the cell information transmitted by the base station 3, and forwards the received cell information to the remote UE1.
  • the cell information may be broadcast information that can be received by a plurality of UEs. In other words, the cell information may be broadcast in the cellular coverage 31 by the base station 3. For example, one of LTE logical channels, Broadcast Control Channel (BCCH), may be used for transmitting cell information.
  • BCCH Broadcast Control Channel
  • the cell information may be transmitted to each relay UE 2 in individual signaling (e.g., “Radio” Resource “Control (RRC) signaling) between the base station 3 and each relay UE 2. A specific example of the cell information will be described later.
  • the remote UE1 performs relay selection using the selection support information received from each relay UE2.
  • the remote UE1 may select at least one specific relay UE for the remote UE1 from one or a plurality of relay UE2 (i.e., relay UE candidates).
  • the remote UE1 estimates the uplink quality of each relay UE2 using the selection support information received from each relay UE2, and performs relay selection in consideration of the estimated uplink quality of each relay UE2.
  • the remote UE 1 can use the relay path (eg, cellular link 101 and D2D link 102 in FIG. 2 or FIG. 3) and the direct path (eg, cellular link in FIG. 2 or FIG. 3). 201) to use for the remote UE1.
  • the remote UE1 may compare between the estimated throughput of one or more relay paths and the estimated throughput of the direct path and select the path corresponding to the best estimated throughput for the remote UE1.
  • each relay UE2 must frequently transmit a radio signal (eg, discovery signal) to notify the remote UE1 of the selection support information, and thus the power consumption of each relay UE2 may increase. unknown.
  • a radio signal eg, discovery signal
  • the relay selection procedure shown in FIG. 6 may be employed.
  • the remote UE1 transmits a radio signal including a transmission request for selection support information.
  • each relay UE2 transmits a radio signal including selection support information to the remote UE1 in response to receiving the transmission request.
  • the remote UE 1 transmits a discovery signal including a transmission request for selection support information, and each relay UE 2 includes selection support information.
  • a response signal may be transmitted to the remote UE1.
  • remote UE1 can receive selection assistance information of the said relay UE2, while discovering each relay UE2 by detecting a response signal.
  • the processing in step 603 is the same as the processing in step 502 in FIG. That is, the remote UE1 performs relay selection in consideration of the selection support information received from each relay UE2.
  • the cell information can also be referred to as base station information.
  • the cell information indicates the capability of the base station 3 or the capability of one or more cells provided by the base station 3.
  • the cell information may indicate at least one of the following: (A) a frequency band supported by the base station 3, (B) System bandwidth supported by the base station 3; (C) the downlink transmission power of the base station 3, (D) Uplink / downlink configuration of each cell provided by the base station 3 to each relay terminal 2; (E) the number of cells that the base station 3 provides to each relay terminal 2, (F) one or more cell types provided by the base station 3 to each relay terminal 2; (G) Radio Access Technology (RAT) or communication method used between the base station 3 and each relay terminal 2, and (h) the name or identifier of the mobile operator providing the base station 3 (or cellular coverage 31) .
  • A a frequency band supported by the base station 3,
  • B System bandwidth supported by the base station 3
  • C the downlink transmission power of the base station 3
  • D Uplink / downlink configuration of each cell provided by the base station 3 to each relay terminal 2
  • E the number of cells that the base station 3 provides to each relay terminal 2
  • F one or more cell types provided by the
  • Cell information is a frequency band supported by the base station 3, for example, decimeter wave (or Ultra High Frequency (UHF), centimeter wave (or Super Super high frequency (SHF)), millimeter wave (or Extremely high frequency (EHF) may be indicated.
  • the frequency band supported by base station 3 is associated with the system bandwidth supported by base station 3, RAT, or both, thereby It may affect the estimated throughput of the cellular link 101 between the station 3 and each relay UE 2.
  • the frequency band supported by the base station 3 is one of the indices for evaluating the throughput of the cellular link 101. Available.
  • the cell information may indicate the system bandwidth (e.g., 10 MHz, 20 MHz, 100 MHz, 200 MHz) supported by the base station 3.
  • the system bandwidth supported by the base station 3 may affect the estimated throughput of the cellular link 101 between the base station 3 and each relay UE2.
  • the system bandwidth supported by the base station 3 can be used as one of indexes for evaluating the throughput of the cellular link 101.
  • the cell information may indicate the downlink transmission power of the base station 3.
  • the downlink transmission power of the base station 3 is associated with the size or cell type (eg, macrocell, microcell, picocell, femtocell) of the cellular coverage 31 of the base station 3, and further the cellular coverage 31
  • the size or cell type is associated with the system bandwidth. Therefore, in some implementations, the downlink transmission power of the base station 3 can affect the estimated throughput of the cellular link 101 between the base station 3 and each relay UE2. In other words, the downlink transmission power of the base station 3 can be used as one of indexes for evaluating the throughput of the cellular link 101.
  • the cell information may indicate an uplink / downlink (UL / DL) configuration of each cell that the base station 3 provides to each relay terminal 2.
  • the UL / DL configuration indicates the time ratio between uplink and downlink when the cellular link 101 uses Time division duplex (TDD).
  • the UL / DL configuration may indicate any one of seven UL / DL configurations supported by TDD LTE.
  • TDD LTE Time division duplex
  • UL subframes uplink subframes
  • DL subframes downlink subframes
  • LTE-TDD UL / DL configuration means the arrangement of uplink subframes and downlink subframes in one radio frame.
  • the UL / DL configuration may affect the estimated throughput of the cellular link 101 between the base station 3 and each relay UE2.
  • the UL / DL configuration of each cell provided by the base station 3 to each relay terminal 2 can be used as one of the indexes for evaluating the throughput of the cellular link 101.
  • the cell information may indicate the number of cells that the base station 3 provides to each relay terminal 2.
  • CA Carrier Aggregation
  • relay UE2 is configured by a base station with a plurality of cells having different frequencies (called Component Carrier (CC)), and uses a plurality of component carriers for uplink communication and / or downlink communication. Can do.
  • the plurality of CCs include one primary CC and one or more secondary CCs.
  • the primary CC is also called a primary frequency and is a CC used for a primary cell (primary cell (PCell)).
  • the secondary CC is also called a secondary frequency and is a CC used for a secondary cell (secondary cell (SCell)).
  • the relay UE 2 in which the CA is set by the base station 3 can simultaneously use a plurality of serving cells including one primary cell and at least one secondary cell.
  • the number of cells that the base station 3 provides to each relay terminal 2 can affect the estimated throughput of the cellular link 101 between the base station 3 and each relay UE2.
  • the number of cells that the base station 3 provides to each relay terminal 2 can be used as one of the indexes for evaluating the throughput of the cellular link 101.
  • the cell information may indicate one or more cell types (e.g., macro cell, micro cell, pico cell, femto cell) provided by the base station 3 to each relay terminal 2.
  • the cell type is associated with the RAT or system bandwidth that the base station 3 supports.
  • the type of one or more cells that the base station 3 provides to each relay terminal 2 affects the estimated throughput of the cellular link 101 between the base station 3 and each relay UE 2. obtain.
  • the type of one or more cells provided by the base station 3 to each relay terminal 2 can be used as one of indices for evaluating the throughput of the cellular link 101.
  • Cell information is RAT or communication method used between the base station 3 and each relay terminal 2 (eg, Long Long Term Evolution (LTE), LTE-Advanced, LTE-Advanced Pro, 5G, (Carrier aggregation, dual connectivity) may be indicated.
  • LTE Long Long Term Evolution
  • LTE-Advanced LTE-Advanced Pro
  • 5G Carrier aggregation, dual connectivity
  • the RAT (or communication scheme) supported by the base station 3 may affect the estimated throughput of the cellular link 101 between the base station 3 and each relay UE 2.
  • the frequency band supported by the base station 3 can be used as one of indices for evaluating the throughput of the cellular link 101.
  • the cell information may indicate the name or identifier of the mobile operator that provides the base station 3 (or cellular coverage 31).
  • different mobile operator networks support different system bandwidths or different RATs.
  • the name or identifier of the mobile operator providing base station 3 can affect the estimated throughput of cellular link 101 between base station 3 and each relay UE2. .
  • the name or identifier of the mobile operator providing the base station 3 can be used as one of the indicators for evaluating the throughput of the cellular link 101.
  • FIG. 7 is a flowchart showing an example of a relay selection procedure (process 700) performed by the relay selection entity arranged in the remote UE1.
  • the remote UE1 receives selection support information from each relay UE2.
  • the selection support information includes at least cell information (or base station information).
  • the remote UE1 selects at least one specific relay UE2 suitable for the remote UE1 in consideration of the selection support information received from each relay UE2. For example, the remote UE1 may use the cell information received from each relay UE2 in order to estimate the uplink quality or downlink quality or both of the cellular link 101 of each relay UE2. The remote UE 1 may acquire, derive, or estimate the system bandwidth of the base station 3 from the cell information, and estimate the throughput of the cellular link 101 using the system bandwidth. And remote UE1 may select at least 1 relay UE2 with relatively high cellular link quality among 1 or some relay UE2 as specific relay UE2 for remote UE1. Additionally or alternatively, the remote UE1 may compare between the estimated throughput of one or more relay paths and the estimated throughput of the direct path and select the path corresponding to the best estimated throughput for the remote UE1. .
  • each relay UE (candidate) 2 transmits selection support information including cell information to the remote UE 1, and the remote UE 1 considers the received selection support information.
  • the cell information (or base station information) indicates the capability of the base station 3 or the capability of one or more cells provided by the base station 3.
  • the relay UE2 having the best DL RSRP cannot always provide the best throughput to the remote UE1.
  • the system bandwidth eg, 100 MHz
  • the system bandwidth eg, 20 MHz
  • the second relay UE may be able to provide higher throughput to the remote UE1 than the first relay UE.
  • the RAT eg, Long Term Evolution (LTE)
  • LTE Long Term Evolution
  • the second relay UE may be able to provide higher throughput to the remote UE1 than the first relay UE. Therefore, in some implementations, cell information indicating base station capability or cell capability (eg, system bandwidth, UL / DL configuration, RAT type) that can affect the throughput of the cellular link 101 for cell selection. You may consider it. This can contribute to increasing the appropriateness of relay selection based on throughput criteria.
  • base station capability or cell capability eg, system bandwidth, UL / DL configuration, RAT type
  • each relay UE2 transmits selection support information to the remote UE1.
  • the selection support information includes uplink quality information (i.e., second information element) in addition to the above-described cell information (i.e., first information element).
  • the uplink quality information indicates the quality of uplink transmission from each relay UE2 to the base station 3.
  • the uplink quality information may indicate an estimated throughput of uplink transmission by the relay UE2.
  • the estimated throughput may be calculated by each relay UE2 and sent from each relay UE2 to the remote UE1.
  • the uplink quality information may indicate the uplink SINR.
  • the uplink quality information may indicate the maximum transmission power of each relay UE2, the path loss between each relay UE2 and the base station 3, and the uplink radio resource per unit time allocated to each relay UE2. Good.
  • the remote UE1 may estimate the uplink Modulation and Coding scheme (MCS) applied to each relay UE2 using the uplink quality information.
  • MCS Modulation and Coding scheme
  • the uplink quality information may indicate the uplink MCS itself applied to each relay UE2.
  • the uplink throughput of each relay UE2 can be estimated from the uplink MCS applied to each relay UE2 and the uplink radio resource per unit time. Therefore, the uplink MCS applied to each relay UE2 is closely related to the uplink throughput of each relay UE2.
  • the uplink quality information may indicate power class information indicating the maximum transmission power of each relay UE2.
  • LTE ProSe defines a high power UE with a maximum transmission power of 31 dBm or 33 dBm for public safety.
  • a high output UE having a maximum transmission power of 31 dBm or 33 dBm is distinguished from a normal UE having a maximum transmission power of 23 dBm and a UE power class.
  • the UE power class of the high-power UE is “class 1”, and the high-power UE is also called a class 1 UE or a class 1 device.
  • the UE power class of the normal UE is “class 3”, and the normal UE is also called a class 3 UE or a class 3 device.
  • High power UEs can be expected to provide better uplink throughput than UEs with normal power (i.e., maximum transmission power 23 dBm).
  • the uplink quality information may indicate a UE category (or UE class) representing the uplink communication performance of each relay UE2.
  • the UE category may represent the (maximum) uplink data rate supported by each relay UE2.
  • the UE category may represent communication parameters supported by each relay UE2, for example, a duplex mode, a modulation scheme, and a maximum number of Multiple-Input (Multiple-Output (MIMO) layers. It can be expected that relay UE2 having a higher UE category (that is, higher communication performance) can provide better uplink throughput.
  • MIMO Multiple-Output
  • the remote UE 1 may use selection assistance information including cell information and uplink quality information to calculate the uplink throughput of the relay path consisting of the cellular link 101 and the D2D link 102.
  • remote UE1 according to the following equation (1), may be calculated effective throughput R k of the k-th relay UE2:
  • the min function is a function that returns the minimum value of a plurality of arguments
  • U k is an estimated value of the uplink throughput of the cellular link 101
  • D k is an estimated value of the throughput of the D2D link 102.
  • the throughput estimates U k and D k may be calculated according to a Shannon capacity formula.
  • U k is defined by the following equation (2): Where R U is the resource ratio for uplink transmission within the D2D control period, and TBS U (n U , m U ) is the uplink MCS index equal to n U and the number of uplink resource blocks There is an uplink transport block size when equal to m U. Further, BLER (n U , SINR U, k ) is a block error rate when the uplink MCS index is equal to n U and the uplink SINR is equal to SINR U, k .
  • the D2D control period is also referred to as a side link control period or a PSCCH period.
  • side link transmission uses a subset of uplink resources in the frequency and time domain, and the base station schedules radio resources for D2D communication in the time and frequency direction every D2D control period (eg, 40ms). To do.
  • D k is defined by the following equation (3):
  • R D is the resource ratio for D2D transmission within the D2D control period
  • TBS D (n D , m D ) is the MCS index of D2D transmission equal to n D and the number of D2D resource blocks is m D2D transport block size when equal to D.
  • BLER (n D , SINR D, k ) is a block error rate when the MCS index of D2D transmission is equal to n D and the SINR of the D2D link is equal to SINR D, k .
  • n U and m U used in equation (2) is obtained by the following equation (4):
  • the arg max operator refers to a combination of an uplink MCS index n and an uplink resource block number m that maximizes the function indicated by the argument.
  • the number of uplink resource blocks (m U ) is a function of the system bandwidth supported by the base station 3. In other words, the uplink resource block count m U increases according to the system bandwidth of the base station 3.
  • the remote UE 1 may receive cell information (or base station information) indicating the system bandwidth supported by the base station 3 from each relay UE 2.
  • uplink SINR SINR (SINR U, k ) is an example of uplink quality information.
  • the remote UE1 estimates the uplink throughput of the relay UE2 with higher accuracy by using the cell information (eg, system bandwidth) and the uplink quality information (eg, uplink SINR) received from the relay UE2. can do.
  • the cell information eg, system bandwidth
  • the uplink quality information eg, uplink SINR
  • each relay UE2 transmits selection support information to the remote UE1, as in the first or second embodiment.
  • the selection support information further includes base station load information (i.e., third information element).
  • the base station load information indicates the load of the base station 3.
  • the base station load information may be the uplink radio resource usage rate, the computing resource usage rate of the base station 3, or the number of UEs connected to the base station 3, or any combination thereof.
  • the base station load information may include the occupancy level of the downlink transmission buffer (queue) of the base station 3, the occupancy level of the uplink reception buffer of the base station 3, or other packets related to DL transmission or UL reception. The occupation level of the buffer may be indicated.
  • the remote UE1 may use the base station load information in order to more accurately estimate the effective throughput R k of each relay UE2.
  • the constraint condition shown in the following equation (5) may be imposed on the variable m in the equation (4).
  • M U is the maximum number of resource blocks determined by the system bandwidth of the base station 3
  • L U is the load of the base station 3.
  • the load L U is 0 or more and 1 or less.
  • the load L U may be an uplink radio resource usage rate.
  • the remote UE 1 may use the base station load information to evaluate whether transmission that satisfies the delay requirement is possible.
  • the delay requirement may be a maximum delay or an average delay.
  • the delay here may be, for example, a delay time until the transmission data of the remote UE 1 reaches the destination node (e.g., node 7 in FIG. 1) via the relay UE 2 and the base station 3.
  • each relay UE2 transmits selection support information to the remote UE1.
  • the selection support information indicates relay load information.
  • the relay load information may indicate the number of other remote UEs connected to or communicating with each relay UE2. Additionally or alternatively, the relay load information may include D2D radio resource usage, relay UE2 uplink transmission buffer occupancy level, relay UE2 downlink reception buffer (queue) occupancy level, or UL transmission or DL reception. Other packet buffer occupancy levels may be indicated.
  • the remote UE 1 may preferentially select the remote UE 1 for the relay UE 2 having a smaller number of connected or communicating remote UEs. Thereby, remote UE1 can select relay UE2 which can provide higher effective throughput to new remote UE1 for the said remote UE1.
  • the remote UE1 may use relay load information in order to more accurately estimate the effective throughput R k of each relay UE2.
  • the following equation (6) may be used instead of the equation (3):
  • N UE is the number of other remote UEs connected or communicating with the kth relay UE2.
  • the remote UE 1 can perform relay load in addition to the base station load information described in the third embodiment in order to more accurately evaluate whether transmission satisfying the delay requirement is possible. Information may also be used.
  • each relay UE2 transmits selection support information to the remote UE1, as in the first, second, third, or fourth embodiment.
  • the selection support information further indicates a path loss between each relay UE 2 and the base station 3.
  • the side link transmission power of the 3GPP relay UE is controlled according to the path loss between the base station 3 and the relay UE2. As the path loss increases, the side link transmission power of the relay UE2 increases.
  • the remote UE 1 may use the path loss between each relay UE 2 and the base station 3 in order to estimate the side link transmission power of each relay UE 2.
  • the remote UE 1 may use a path loss between each relay UE 2 and the base station 3 in order to estimate (maximum) transmission power required for side link transmission to each relay UE 2.
  • the remote UE1 may preferentially select the relay UE2 having the minimum required side link transmission power for the remote UE1.
  • the remote UE 1 compares the side link transmission power (or power consumption required for side link transmission) in the relay path with the uplink transmission power (or power consumption required for uplink transmission) in the direct path, A path that results in low transmission power (or power consumption) may be selected.
  • FIG. 8 is a block diagram illustrating a configuration example of the remote UE 1.
  • the relay UE2 may also have the same configuration as that shown in FIG.
  • the Radio-Frequency (RF) transceiver 801 performs analog RF signal processing to communicate with the base station 3.
  • Analog RF signal processing performed by the RF transceiver 801 includes frequency up-conversion, frequency down-conversion, and amplification.
  • RF transceiver 801 is coupled with antenna 802 and baseband processor 803.
  • the RF transceiver 801 receives modulation symbol data (or OFDM symbol data) from the baseband processor 803, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 802. Further, the RF transceiver 801 generates a baseband received signal based on the received RF signal received by the antenna 802 and supplies this to the baseband processor 803.
  • the baseband processor 803 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Digital baseband signal processing consists of (a) data compression / decompression, (b) data segmentation / concatenation, (c) ⁇ transmission format (transmission frame) generation / decomposition, and (d) transmission path encoding / decoding. , (E) modulation (symbol mapping) / demodulation, and (f) generation of OFDM symbol data (baseband OFDM signal) by Inverse Fast Fourier Transform (IFFT).
  • control plane processing includes layer 1 (eg, transmission power control), layer 2 (eg, radio resource management, hybrid automatic repeat request (HARQ) processing), and layer 3 (eg, attach, mobility, and call management). Communication management).
  • the digital baseband signal processing by the baseband processor 803 includes signal processing of the Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, MAC layer, and PHY layer. But you can.
  • the control plane processing by the baseband processor 803 may include Non-Access Stratum (NAS) protocol, RRC protocol, and MAC CE processing.
  • NAS Non-Access Stratum
  • the baseband processor 803 includes a modem processor (eg, Digital Signal Processor (DSP)) that performs digital baseband signal processing and a protocol stack processor (eg, Central Processing Unit (CPU), or Micro Processing Unit that performs control plane processing. (MPU)).
  • DSP Digital Signal Processor
  • MPU Micro Processing Unit that performs control plane processing.
  • a protocol stack processor that performs control plane processing may be shared with an application processor 804 described later.
  • Application processor 804 is also referred to as a CPU, MPU, microprocessor, or processor core.
  • the application processor 804 may include a plurality of processors (a plurality of processor cores).
  • the application processor 804 is a system software program (Operating System (OS)) read from the memory 806 or a memory (not shown) and various application programs (for example, call application, web browser, mailer, camera operation application, music playback) By executing the application, various functions of the remote UE 1 are realized.
  • OS Operating System
  • the baseband processor 803 and the application processor 804 may be integrated on a single chip, as shown by the dashed line (805) in FIG.
  • the baseband processor 803 and the application processor 804 may be implemented as one System on Chip (SoC) device 805.
  • SoC System on Chip
  • An SoC device is sometimes called a system Large Scale Integration (LSI) or chipset.
  • the memory 806 is a volatile memory, a nonvolatile memory, or a combination thereof.
  • the memory 806 may include a plurality of physically independent memory devices.
  • the volatile memory is, for example, Static Random Access Memory (SRAM), Dynamic RAM (DRAM), or a combination thereof.
  • the non-volatile memory is a mask Read Only Memory (MROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, hard disk drive, or any combination thereof.
  • the memory 806 may include an external memory device accessible from the baseband processor 803, the application processor 804, and the SoC 805.
  • Memory 806 may include an embedded memory device integrated within baseband processor 803, application processor 804, or SoC 805.
  • the memory 806 may include a memory in a Universal Integrated Circuit Card (UICC).
  • UICC Universal Integrated Circuit Card
  • the memory 806 may store a software module (computer program) including an instruction group and data for performing processing by the remote UE 1 described in the plurality of embodiments described above.
  • the baseband processor 803 or the application processor 804 reads the software module from the memory 806 and executes the software module, thereby performing the processing of the remote UE 1 described using the sequence diagram and the flowchart in the above-described embodiment. It may be configured to do.
  • FIG. 9 is a block diagram illustrating a configuration example of the base station 3 according to the above-described embodiment.
  • the base station 3 includes an RF transceiver 901, a network interface 903, a processor 904, and a memory 905.
  • the RF transceiver 901 performs analog RF signal processing to communicate with the remote UE1 and the relay UE2.
  • the RF transceiver 901 may include multiple transceivers.
  • RF transceiver 901 is coupled with antenna 902 and processor 904.
  • the RF transceiver 901 receives modulation symbol data (or OFDM symbol data) from the processor 904, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 902. Further, the RF transceiver 901 generates a baseband received signal based on the received RF signal received by the antenna 902 and supplies this to the processor 904.
  • the network interface 903 is used to communicate with network nodes (e.g., Mobility Management Entity (MME) and Serving Gateway (S-GW)).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the network interface 903 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
  • NIC network interface card
  • the processor 904 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • the digital baseband signal processing by the processor 904 may include PDCP layer, RLC layer, MAC layer, and PHY layer signal processing.
  • the control plane processing by the processor 904 may include S1 protocol, RRC protocol, and MAC-CE processing.
  • the processor 904 may include a plurality of processors.
  • the processor 904 may include a modem processor (e.g., DSP) that performs digital baseband signal processing and a protocol stack processor (e.g., CPU or MPU) that performs control plane processing.
  • DSP digital baseband signal processing
  • protocol stack processor e.g., CPU or MPU
  • the memory 905 is configured by a combination of a volatile memory and a nonvolatile memory.
  • the volatile memory is, for example, SRAM or DRAM or a combination thereof.
  • the non-volatile memory is, for example, an MROM, PROM, flash memory, hard disk drive, or a combination thereof.
  • Memory 905 may include storage located remotely from processor 904. In this case, the processor 904 may access the memory 905 via the network interface 903 or an I / O interface not shown.
  • the memory 905 may store a software module (computer program) including an instruction group and data for performing processing by the base station 3 described in the plurality of embodiments.
  • the processor 904 is configured to read and execute the software module from the memory 905 to perform the processing of the base station 3 described using the sequence diagram and the flowchart in the above-described embodiment. Also good.
  • each of the processors included in the remote UE 1, the relay UE 2, and the base station 3 causes the computer to execute the algorithm described with reference to the drawings.
  • One or a plurality of programs including the instruction group is executed.
  • the program can be stored and supplied to a computer using various types of non-transitory computer readable media.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • non-transitory computer-readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), Compact Disc Read Only Memory (CD-ROM), CD-ROM R, CD-R / W, semiconductor memory (for example, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)).
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • the selection support information includes a first information element transmitted from the base station and received by each relay terminal, The first information element indicates at least one of the following: (A) a frequency band supported by the base station; (B) system bandwidth supported by the base station; (C) the downlink transmission power of the base station; (D) Uplink / downlink configuration of each cell provided by the base station to each relay terminal; (E) the number of cells that the base station provides to each relay terminal; (F) one or more cell types provided
  • the first information element indicates at least a system bandwidth supported by the base station;
  • the wireless terminal according to attachment 1.
  • the first information element indicates at least an uplink / downlink configuration of each cell provided by the base station to a relay UE, The wireless terminal according to appendix 1 or 2.
  • the selection support information further includes a second information element indicating the quality of uplink transmission from each relay terminal to the base station, The wireless terminal according to any one of appendices 1 to 3.
  • the second information element includes power class information representing the maximum transmission power of each relay terminal or terminal category information representing both uplink communication performance of each relay terminal, or both.
  • the wireless terminal according to appendix 4.
  • the second information element includes an estimation value of Modulation and Coding Scheme (MCS) applied to the uplink transmission of each relay terminal.
  • MCS Modulation and Coding Scheme
  • the selection support information further includes a third information element indicating a load of the base station, The wireless terminal according to any one of appendices 1 to 6.
  • the selection support information further includes a fourth information element indicating a load of each relay terminal.
  • the wireless terminal according to any one of appendices 1 to 7.
  • the fourth information element indicates the number of other remote terminals connected or communicating with each relay terminal.
  • the at least one processor is configured to preferentially select the at least one specific relay terminal for a relay terminal having a smaller number of the other remote terminals.
  • the selection support information further includes a fifth information element indicating a path loss between the base station and each relay terminal.
  • the wireless terminal according to any one of appendices 1 to 10.
  • the at least one processor is configured to perform either a relay path via the one or more relay terminals or a direct radio link between the radio terminal and the base station or another base station. Configured to determine what to use for communication, The wireless terminal according to any one of appendices 1 to 11.
  • D2D device-to-device
  • the selection support information includes a first information element transmitted from the base station and received by the relay terminal,
  • the first information element indicates at least one of the following: (A) a frequency band supported by the base station; (B) system bandwidth supported by the base station; (C) the downlink transmission power of the base station; (D) Uplink / downlink configuration of each cell provided by the base station to the relay terminal; (E) the number of cells that the base station provides to the relay terminal; (F) one or more cell types provided by the base station to the relay terminal; (G) Radio Access Technology (RAT) or communication scheme used between the base station and the relay terminal, and (h) the name or identifier of the mobile operator providing the base station, Relay terminal.
  • RAT Radio Access Technology
  • the selection support information causes the remote terminal to select at least one specific relay terminal suitable for the remote terminal from among one or more relay terminals.
  • the relay terminal according to attachment 13 The relay terminal according to attachment 13.
  • the selection support information includes either a relay route through one or a plurality of relay terminals and a direct wireless link between the remote terminal and the base station or another base station. Causing the remote terminal to decide which to use for 15.
  • the relay terminal according to appendix 13 or 14.
  • the first information element indicates at least a system bandwidth supported by the base station;
  • the relay terminal according to any one of appendices 13 to 15.
  • the first information element indicates at least an uplink / downlink configuration of each cell provided by the base station to a relay UE, The relay terminal according to any one of appendices 13 to 16.
  • the selection support information further includes a second information element indicating the quality of uplink transmission from the relay terminal to the base station, 18.
  • the relay terminal according to any one of appendices 13 to 17.
  • the second information element includes power class information representing the maximum transmission power of the relay terminal or terminal category information representing both uplink communication performance of each relay terminal, or both.
  • the relay terminal according to appendix 18.
  • the second information element includes an estimation value of Modulation and Coding Scheme (MCS) applied to the uplink transmission of each relay terminal.
  • MCS Modulation and Coding Scheme
  • the selection support information further includes a third information element indicating a load of the base station, The relay terminal according to any one of appendices 13 to 20.
  • the selection support information further includes a fourth information element indicating a load of the relay terminal.
  • the relay terminal according to any one of appendices 13 to 21.
  • the fourth information element indicates the number of other remote terminals connected or communicating with the relay terminal; The relay terminal according to attachment 22.
  • the selection support information further includes a fifth information element indicating a path loss between the base station and the relay terminal. 24.
  • the relay terminal according to any one of appendices 13 to 23.
  • (Appendix 25) A method in a wireless terminal, Receiving selection support information from each of the one or more relay terminals, and, based on the selection support information, selecting at least one specific relay terminal suitable for the wireless terminal from the one or more relay terminals.
  • Each specific relay terminal is a device-to-device (D2D) link between each specific relay terminal and the wireless terminal and a backhaul link between each specific relay terminal and the base station, Configured to relay traffic between a wireless terminal and the base station;
  • the selection support information includes a first information element transmitted from the base station and received by each relay terminal, The first information element indicates at least one of the following: (A) a frequency band supported by the base station; (B) system bandwidth supported by the base station; (C) the downlink transmission power of the base station; (D) Uplink / downlink configuration of each cell provided by the base station to each relay terminal; (E) the number of cells that the base station provides to each relay terminal; (F) one or more cell types provided by the base station to each relay terminal;
  • the selection support information includes a first information element transmitted from the base station and received by the relay terminal, The first information element indicates at least one of the following: (A) a frequency band supported by the base station; (B) system bandwidth supported by the base station; (C) the downlink transmission power of the base station; (D) Uplink / downlink configuration of each cell provided by the base station to the relay terminal; (E) the number of cells that the base station provides to the relay terminal; (F) one or more cell types provided by the base station to the relay terminal; (G) Radio Access Technology (RAT) or communication scheme used between the base station and the relay terminal, and (h) the name or identifier of the mobile operator providing the base station, Method.
  • D2D device-to-device
  • Appendix 27 A program for causing a computer to perform a method in a wireless terminal, The method Receiving selection support information from each of the one or more relay terminals, and, based on the selection support information, selecting at least one specific relay terminal suitable for the wireless terminal from the one or more relay terminals.
  • Each specific relay terminal is a device-to-device (D2D) link between each specific relay terminal and the wireless terminal and a backhaul link between each specific relay terminal and the base station, Configured to relay traffic between a wireless terminal and the base station;
  • the selection support information includes a first information element transmitted from the base station and received by each relay terminal, The first information element indicates at least one of the following: (A) a frequency band supported by the base station; (B) system bandwidth supported by the base station; (C) the downlink transmission power of the base station; (D) Uplink / downlink configuration of each cell provided by the base station to each relay terminal; (E) the number of cells that the base station provides to each relay terminal; (F) one or more cell types provided by the base station to each relay terminal; (G) Radio Access Technology (RAT) or communication method used between the base station and each relay terminal, and (h) the name or identifier of the mobile operator providing the base station, program.
  • RAT Radio Access Technology
  • the relay terminal includes a device-to-device (D2D) link between the relay terminal and a remote terminal, and a backhaul link between the relay terminal and the base station.
  • D2D device-to-device
  • the method comprises transmitting selection support information to the remote terminal;
  • the selection support information includes a first information element transmitted from the base station and received by the relay terminal,
  • the first information element indicates at least one of the following: (A) a frequency band supported by the base station; (B) system bandwidth supported by the base station; (C) the downlink transmission power of the base station; (D) Uplink / downlink configuration of each cell provided by the base station to the relay terminal; (E) the number of cells that the base station provides to the relay terminal; (F) one or more cell types provided by the base station to the relay terminal; (G) Radio Access Technology (RAT) or communication scheme used between the base station and the relay terminal, and (h) the name or identifier of the mobile operator providing the base station, program.
  • RAT Radio Access Technology

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

リレー端末(2)は、選択支援情報をリモート端末(1)に送信する。選択支援情報は、基地局(3)から送信されリレー端末(2)によって受信された第1の情報要素を含む。第1の情報要素は、基地局(3)の周波数帯;システム帯域幅;ダウンリンク送信電力;UL/DLコンフィグレーション;リレー端末に提供されるセルの数;セルの種別;基地局(3)とリレー端末(2)との間で使用されるRAT又は通信方式;及び基地局を提供するモバイルオペレータの名称又は識別子;のうち少なくとも1つを示す。これにより、例えば、リレー選択の妥当性を高めることに寄与できる。

Description

リレー選択のための装置及び方法
 本開示は、端末間直接通信(device-to-device(D2D)通信)に関し、特にリレー端末の選択に関する。
 幾つかの実装において、無線端末は、他の無線端末と直接的に通信できるよう構成される。このような通信は、device-to-device(D2D)通信と呼ばれる。D2D通信は、ダイレクト通信およびダイレクト・ディスカバリの少なくとも一方を含む。幾つかの実装において、D2D通信をサポートする複数の無線端末は、自律的に又はネットワークの指示に従ってD2D通信グループを形成し、当該D2D通信グループ内の他の無線端末と通信を行う。
 Third Generation Partnership Project (3GPP) Release 12は、Proximity-based services(ProSe)について規定している(例えば、非特許文献1を参照)。ProSeは、ProSeディスカバリ(ProSe discovery)及びProSeダイレクト通信(ProSe direct communication)を含む。ProSeディスカバリは、無線端末が近接していること(in proximity)の検出を可能にする。ProSeディスカバリは、ダイレクト・ディスカバリ(ProSe Direct Discovery)及びネットワークレベル・ディスカバリ(EPC-level ProSe Discovery)を含む。
 ProSeダイレクト・ディスカバリは、ProSeを実行可能な無線端末(ProSe-enabled User Equipment(UE))が他のProSe-enabled UEをこれら2つのUEが有する無線通信技術(例えば、Evolved Universal Terrestrial Radio Access (E-UTRA) technology)の能力だけを用いて発見する手順により行われる。これに対して、EPC-level ProSe Discoveryでは、コアネットワーク(Evolved Packet Core (EPC))が2つのProSe-enabled UEsの近接を判定し、これをこれらのUEsに知らせる。ProSeダイレクト・ディスカバリは、3つ以上のProSe-enabled UEsにより行われてもよい。
 ProSeダイレクト通信は、ProSeディスカバリ手順の後に、ダイレクト通信レンジ内に存在する2以上のProSe-enabled UEsの間の通信パスの確立を可能にする。言い換えると、ProSeダイレクト通信は、ProSe-enabled UEが、基地局(eNodeB)を含む公衆地上移動通信ネットワーク(Public Land Mobile Network (PLMN))を経由せずに、他のProSe-enabled UEと直接的に通信することを可能にする。ProSeダイレクト通信は、基地局(eNodeB)にアクセスする場合と同様の無線通信技術(E-UTRA technology)を用いて行われてもよいし、non-3GPP無線技術、例えばwireless local area network (WLAN)無線技術(つまり、IEEE 802.11 radio technology)又はBluetooth(登録商標)無線技術を用いて行われてもよい。
 ProSeダイレクト・ディスカバリ及びProSeダイレクト通信は、UE間のダイレクトインタフェースにおいて行われる。当該ダイレクトインタフェースは、PC5インタフェース又はサイドリンク(sidelink)と呼ばれる。すなわち、ProSeダイレクト・ディスカバリ及びProSeダイレクト通信は、D2D通信の一例である。なお、D2D通信は、サイドリンク通信と呼ぶこともでき、peer-to-peer通信と呼ぶこともできる。
 3GPP Release 12では、ProSe functionが公衆地上移動通信ネットワーク(PLMN)を介してProSe-enabled UEと通信し、ProSeディスカバリ及びProSeダイレクト通信を支援(assist)する。ProSe functionは、ProSeのために必要なPLMNに関連した動作に用いられる論理的な機能(logical function)である。ProSe functionによって提供される機能(functionality)は、例えば、(a)third-party applications(ProSe Application Server)との通信、(b)ProSeディスカバリ及びProSeダイレクト通信のためのUEの認証、(c)ProSeディスカバリ及びProSeダイレクト通信のための設定情報(例えば、EPC-ProSe-User IDなど)のUEへの送信、並びに(d)ネットワークレベル・ディスカバリ(i.e., EPC-level ProSe discovery)の提供、を含む。ProSe functionは、1又は複数のネットワークノード又はエンティティに実装されてもよい。本明細書では、ProSe functionを実行する1又は複数のネットワークノード又はエンティティを“ProSe function エンティティ”又は“ProSe functionサーバ”と呼ぶ。
 さらに、3GPP Release 12は、一方のUEがネットワークカバレッジ外であり、他方のUEがネットワークカバレッジ内であるパーシャルカバレッジ・シナリオについて規定している(例えば、非特許文献1のセクション4.4.3、4.5.4および5.4.4を参照)。パーシャルカバレッジ・シナリオにおいて、カバレッジ外のUEはremote UEと呼ばれ、カバレッジ内かつremote UEとネットワークを中継するUEはProSe UE-to-Network Relayと呼ばれる。ProSe UE-to-Network Relayは、remote UEとネットワーク(E-UTRA  network(E-UTRAN)及びEPC)との間でトラフィック(ダウンリンク及びアップリンク)を中継する。
 より具体的に述べると、ProSe UE-to-Network Relayは、UEとしてネットワークにアタッチし、ProSe function エンティティ又はその他のPacket Data Network(PDN)と通信するためのPDN connectionを確立し、ProSeダイレクト通信を開始するためにProSe function エンティティと通信する。ProSe UE-to-Network Relayは、さらに、remote UEとの間でディスカバリ手順を実行し、UE間ダイレクトインタフェース(e.g., サイドリンク又はPC5インタフェース)においてremote UEと通信し、remote UEとネットワークとの間でトラフィック(ダウンリンク及びアップリンク)を中継する。Internet Protocol version 4(IPv4)が用いられる場合、ProSe UE-to-Network Relayは、Dynamic Host Configuration Protocol Version 4 (DHCPv4) Server及びNetwork Address Translation (NAT) として動作する。IPv6が用いられる場合、ProSe UE-to-Network Relayは、stateless DHCPv6 Relay Agentとして動作する。
 さらに、3GPP Release 13及びRelease 14ではProSeの拡張が議論されている(例えば、非特許文献2-8を参照)。当該議論は、ProSe UE-to-Network Relay 及びProSe UE-to-UE Relayを選択するためのリレー選択基準(relay selection criteria)に関する議論、及びリレー選択の配置を含むリレー選択手順に関する議論を含む。ここで、ProSe UE-to-UE Relayは、2つのremote UEの間でトラフィックを中継するUEである。
 UE-to-Network Relayのリレー選択の配置に関しては、リモートUEがリレー選択を行う分散(distributed)リレー選択アーキテクチャ(例えば、非特許文献3-5、7、及び8を参照)と、基地局(eNodeB(eNB))等のネットワーク内の要素がリレー選択を行う集中(centralized)リレー選択アーキテクチャ(例えば、非特許文献6及び7を参照)が提案されている。UE-to-Network Relayのリレー選択基準に関しては、リモートUEとリレーUEの間のD2Dリンク品質を考慮すること、リレーUEとeNBの間のバックホールリンク品質を考慮すること、並びにD2Dリンク品質及びバックホールリンク品質の両方を考慮することが提案されている(例えば、非特許文献3-8を参照)。
 例えば、非特許文献3-5は、分散(distributed)リレー選択においてD2Dリンク品質及びバックホールリンク品質の両方を考慮することを記載している。一例において、リモートUEは、w * D2D link quality + (1-w) * backhaul link qualityという評価式を用いてD2Dリンク品質及びバックホールリンク品質の両方を考慮する、ここでwは予め設定される定数である(非特許文献3を参照)。幾つかの実装において、リレーUEは、リモートUEによるリレー選択をアシストするために、バックホールリンク(リレーUEとeNBの間)の無線品質を示すディスカバリメッセージを送信する(非特許文献4を参照)。これに代えて、リレーUEは、リモートUEによるリレー選択をアシストするために、バックホールリンクの無線品質を暗示的に(implicitly)リモートUEに示してもよい。バックホールリンクの無線品質を暗示的に示すために、例えば、ディスカバリ信号内の優先度情報(priority information)が使用される(非特許文献5を参照)。
 例えば、非特許文献6は、集中(centralized)リレー選択においてD2Dリンク品質及びバックホールリンク品質の両方を考慮することを記載している。一例において、リモートUEはD2Dリンク品質をeNBに報告し、eNBは報告されたD2Dリンク品質と(報告された)バックホールリンク品質を考慮してリモートUEのためのリレーを選択する。バックホールリンク品質は、既存のセルラーネットワークにおけるeNBによる測定又はリレーUEによる測定報告によって取得されてもよい。
 例えば、非特許文献7及び8は、eNBが、バックホールリンク品質を考慮して1又は複数のリレー候補(candidate)UEを選択する。これらのリレー候補UEのみがリレーディスカバリ手順においてリモートUEにより発見されることができる。リモートUEは、D2Dリンク品質に基づいて1又は複数のリレー候補の中からリレーを選択する。バックホールリンク品質はeNBによるリレー候補の選択の際に考慮されているから、したがってリモートUEによるリレー選択にも間接的に考慮されている。
 本明細書では、ProSe UE-to-Network Relay及びProSe UE-to-UE RelayのようなD2D通信能力およびリレー能力を持つ無線端末を「リレー無線端末」、又は「リレーUE」と呼ぶ。また、リレーUEによる中継サービスを受ける無線端末を「リモート無線端末」又は「リモートUE」と呼ぶ。
特開2016-096489号公報 特開2013-093781号公報
3GPP TS 23.303 V13.2.0 (2015-12), "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Proximity-based services (ProSe); Stage 2 (Release 13)", December 2015 3GPP TR 23.713 V13.0.0 (2015-09), "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on extended architecture support for proximity-based services (Release 13)", September 2015 3GPP R1-152778, "Support of UE-Network relays", Qualcomm Incorporated, May 2015 3GPP S2-150925, "UE-to-Network Relay conclusions", Qualcomm Incorporated, April 2015 3GPP R1-153087, "Discussion on UE-to-Network Relay measurement", Sony, May 2015 3GPP R2-152560, "Role of eNB when remote UE is in coverage", Qualcomm Incorporated, May 2015 3GPP R1-151965, "Views on UE-to-Network Relay Discovery", NTT DOCOMO, April 2015 3GPP R1-153188, "Discussion on Relay Selection" , NTT DOCOMO, May 2015
 発明者は、リレー選択に関する検討を行い、以下に具体的に示される課題を含む幾つかの課題を見出し、これらの課題に対処するための幾つかの改良を考案した。
 例えば、非特許文献3-8は、D2Dリンク品質及びバックホールリンク品質のいずれか又は両方がリモートUEのためのリレー選択において考慮されることを記載している。具体的には、非特許文献3は、バックホールリンク品質の具体例としてダウンリンク(DL)Reference Signal Received Power(RSRP)及びDL Signal-to-Interference plus Noise Ratio(SINR)を示し、バックホールリンクのDL RSRP又はDL SINRがリレー選択において考慮されることを記載している。しかしながら、非特許文献3-8は、eNBとリレーUEとの間のバックホールリンクに関するその他の指標又はパラメータがリレー選択のために考慮されることについて開示していない。
 最良のDL RSRPを持つリレーUEが必ずしも最良のスループットをリモートUEに提供できるとは限らない。一例として、最良のDL RSRPを持つ第1のリレーUEが利用できるシステム帯域(e.g., 20 MHz)よりも他のリレーUE(第2のリレーUE)が利用できるシステム帯域幅(e.g., 100 MHz)のほうが大きい場合、第1のリレーUEよりも第2のリレーUEのほうがリモートUEに高いスループットを提供できるかもしれない。あるいは、最良のDL RSRPを持つ第1のリレーUEと基地局との間で使用されるRadio Access Technology(RAT)(e.g., Long Term Evolution(LTE))よりも第2のリレーUEと基地局との間で使用されるRAT(e.g., New Radio(NR)、5G RAT)のほうが高速通信をサポートする場合、第1のリレーUEよりも第2のリレーUEのほうがリモートUEに高いスループットを提供できるかもしれない。
 なお、特許文献1は、基地局からの報知メッセージ(e.g., Earthquake and Tsunami Warning System(ETWS)情報)又は制御メッセージ(e.g., カバレッジ内で使用されるD2D無線リソースを示す割当情報)をリレーUEがリモートUEにD2Dパス上で転送することを開示している。しかしながら、特許文献1は、基地局からの報知メッセージ及び制御メッセージをリモートUEがリレーUE選択のために使用することを何ら開示していない。
 特許文献2は、基地局(アンカーAccess Point(AP))が、リモートUE(端末)と通信するための1つの経路を、1又はそれ以上のリレー(ドリフトAP)を経由して当該端末に至る複数の経路の中から選択することを開示している。経路選択のための指標は、経路品質に関する指標を含む。例えば、経路品質指標は、各無線区間の電界強度、signal to interference and noise ratio(SINR)、carrier to interference and noise ratio(CINR)、パケットロス率、ホップ数などを含む。さらに、経路品質指標は、リレー(ドリフトAP)若しくはリモートUE(端末)又はこれら両方の無線資源の余力(又は残存する無線リソース量)を示してもよい。さらに、経路品質指標は、リレー(ドリフトAP)若しくはリモートUE(端末)又はこれら両方の処理能力を示してもよい。しかしながら、特許文献2は、基地局による集中(centralized)リレー選択について教示しているのみである。したがって、特許文献2は、リモートUEによる分散(distributed)に使用される何らかの情報をリレーUEがリモートUEに送ることについて開示していない。
 本明細書に開示される実施形態が達成しようとする目的の1つは、リレー選択の妥当性(appropriateness)を高めることに寄与する装置、方法、及びプログラムを提供することである。なお、この目的は、本明細書に開示される複数の実施形態が達成しようとする複数の目的の1つに過ぎないことに留意されるべきである。その他の目的又は課題と新規な特徴は、本明細書の記述又は添付図面から明らかにされる。
 第1の態様では、無線端末は、メモリと、前記メモリに結合された少なくとも1つのプロセッサとを含む。前記少なくとも1つのプロセッサは、1又は複数のリレー端末の各々から選択支援情報を受信し、前記選択支援情報に基づいて、前記1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択するよう構成される。各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継する。前記選択支援情報は、前記基地局から送信され各リレー端末によって受信された第1の情報要素を含む。前記第1の情報要素は、以下のうち少なくとも1つを示す:
(a)前記基地局がサポートする周波数帯、
(b)前記基地局がサポートするシステム帯域幅、
(c)前記基地局のダウンリンク送信電力、
(d)前記基地局が各リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
(e)前記基地局が各リレー端末に提供するセルの数、
(f)前記基地局が各リレー端末に提供する1又はそれ以上のセルの種別、
(g)前記基地局と各リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
(h)前記基地局を提供するモバイルオペレータの名称又は識別子。
 第2の態様では、リモート端末は、メモリと、前記メモリに結合された少なくとも1つのプロセッサとを含む。前記少なくとも1つのプロセッサは、リモート端末に選択支援情報を送信するよう構成される。さらに、前記少なくとも1つのプロセッサは、前記リレー端末と前記リモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び前記リレー端末と基地局との間のバックホールリンクを介して、前記リモート端末と前記基地局との間でトラフィックを中継するよう構成される。前記選択支援情報は、前記基地局から送信され前記リレー端末によって受信された第1の情報要素を含む。前記第1の情報要素は、以下のうち少なくとも1つを示す:
(a)前記基地局がサポートする周波数帯、
(b)前記基地局がサポートするシステム帯域幅、
(c)前記基地局のダウンリンク送信電力、
(d)前記基地局が前記リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
(e)前記基地局が前記リレー端末に提供するセルの数、
(f)前記基地局が前記リレー端末に提供する1又はそれ以上のセルの種別、
(g)前記基地局と前記リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
(h)前記基地局を提供するモバイルオペレータの名称又は識別子。
 第3の態様では、無線端末における方法は、1又は複数のリレー端末の各々から選択支援情報を受信すること、及び前記選択支援情報に基づいて、前記1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択すること、を含む。前記選択支援情報は、第1の態様におけるそれと同様である。
 第4の態様では、リレー端末における方法は、リモート端末に選択支援情報を送信すること、及び前記リレー端末と前記リモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び前記リレー端末と基地局との間のバックホールリンクを介して、前記リモート端末と前記基地局との間でトラフィックを中継すること、を含む。前記選択支援情報は、第2の態様におけるそれと同様である。
 第5の態様では、プログラムは、コンピュータに読み込まれた場合に、上述の第3又は第4の態様に係る方法をコンピュータに行わせるための命令群(ソフトウェアコード)を含む。
 上述の態様によれば、リレー選択の妥当性(appropriateness)を高めることに寄与する装置、方法、及びプログラムを提供できる。
幾つかの実施形態に係る無線通信ネットワークの構成例を示す図である。 幾つかの実施形態に係る無線通信ネットワークの構成例を示す図である。 幾つかの実施形態に係る無線通信ネットワークの構成例を示す図である。 幾つかの実施形態に係るリレーを開始するための手順の一例を示すシーケンス図である。 第1の実施形態に係るリレーを開始するための手順の一例を示すシーケンス図である。 第1の実施形態に係るリレーを開始するための手順の一例を示すシーケンス図である。 第1の実施形態に係るリレー選択手順の一例を示すフローチャートである。 幾つかの実施形態に係る無線端末の構成例を示すブロック図である。 幾つかの実施形態に係る基地局の構成例を示すブロック図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
 以下に説明される複数の実施形態は、独立に実施されることもできるし、適宜組み合わせて実施されることもできる。これら複数の実施形態は、互いに異なる新規な特徴を有している。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し、互いに異なる効果を奏することに寄与する。
<第1の実施形態>
 図1は、本実施形態を含むいくつかの実施形態に係る無線通信ネットワークの構成例を示している。具体的には、図1は、UE-to-Network Relayに関する例を示している。すなわち、リモートUE1は、少なくとも1つの無線トランシーバを有し、D2Dリンク102(e.g., PC5インタフェース又はサイドリンク)上で1又は複数のリレーUE2とD2D通信(e.g., ProSeダイレクト・ディスカバリ及びProSeダイレクト通信)を行うよう構成されている。また、図1には示されていないが、リモートUE1は、1又は複数の基地局3により提供されるセルラーカバレッジ31内においてセルラー通信を行うよう構成されている。セルラーカバレッジ31は、1又はそれ以上のセルを含む。
 リレーUE2は、少なくとも1つの無線トランシーバを有し、セルラーカバレッジ31内において基地局3とのセルラーリンク101においてセルラー通信を行うとともに、D2Dリンク102上でリモートUE1とD2D通信(e.g., ProSeダイレクト・ディスカバリ及びProSeダイレクト通信)を行うよう構成されている。
 基地局3は、無線アクセスネットワーク(i.e., E-UTRAN)内に配置されたエンティティであり、1又は複数のセルを含むセルラーカバレッジ31を提供し、セルラー通信技術(e.g., E-UTRA technology)を用いてリレーUE2とセルラーリンク101において通信することができる。さらに、基地局3は、リモートUE1がセルラーカバレッジ31内にいる場合に、リモートUE1とセルラー通信を行うよう構成されている。
 コアネットワーク(i.e., Evolved Packet Core(EPC))4は、複数のユーザープレーン・エンティティ(e.g., Serving Gateway (S-GW)及びPacket Data Network Gateway (P-GW))、及び複数のコントロールプレーン・エンティティ(e.g., Mobility Management Entity(MME)及びHome Subscriber Server(HSS))を含む。複数のユーザープレーン・エンティティは、基地局3を含む無線アクセスネットワークと外部ネットワークとの間でリモートUE1及びリレーUE2のユーザデータを中継する。複数のコントロールプレーン・エンティティは、リモートUE1及びリレーUE2のモビリティ管理、セッション管理(ベアラ管理)、加入者情報管理、及び課金管理を含む様々な制御を行う。
 いくつかの実装において、近接サービス(e.g., 3GPP ProSe)を利用するために、リモートUE1及びリレーUE2は、基地局3及びコアネットワーク4を介してD2Dコントローラ5と通信するよう構成される。例えば、3GPP ProSeの場合、D2Dコントローラ5は、ProSe function エンティティに相当する。リモートUE1及びリレーUE2は、例えば、D2Dコントローラ5によって提供されるネットワークレベル・ディスカバリ(e.g., EPC-level ProSe Discovery)を利用してもよいし、D2D通信(e.g., ProSeダイレクト・ディスカバリ及びProSeダイレクト通信)のリモートUE1及びリレーUE2における起動(有効化、activation)を許可することを示すメッセージをD2Dコントローラ5から受信してもよいし、セルラーカバレッジ31におけるD2D通信に関する設定情報をD2Dコントローラ5から受信してもよい。
 図1の例では、リレーUE2は、UE-to-Network Relayとして動作し、リモートUE1とセルラーネットワーク(基地局3及びコアネットワーク4)の間でのリレー動作をリモートUE1に提供する。言い換えると、リレーUE2は、リモートUE1に関するデータフロー(トラフィック)をリモートUE1とセルラーネットワーク(基地局3及びコアネットワーク4)との間で中継する。これにより、リモートUE1は、リレーUE2及びセルラーネットワーク(基地局3及びコアネットワーク4)を経由して外部ネットワーク6内のノード7と通信することができる。
 図1の例では、リモートUE1は、セルラーカバレッジ31の外に位置している(アウト・オブ・カバレッジ)。しかしながら、既に述べたように、リモートUE1は、セルラーカバレッジ31内に位置してもよい。幾つかの実装において、リモートUE1は、何らかの条件(e.g., ユーザーによる選択)に基づいてセルラーネットワーク(基地局3及びコアネットワーク4)に接続できない場合に、リレーUE2とのD2D通信(e.g., ダイレクト通信)を行ってもよい。また、幾つかの実装において、リモートUE1は、基地局3のカバレッジ31内において基地局3と直接的にセルラー通信を行いながら、リレーUE2とのD2D通信をさらに行ってもよい。また、幾つかの実装において、リモートUE1は、基地局3との直接的なセルラー通信(ダイレクトパスと呼ぶ)といずれかのリレーUE2とのD2D通信(リレーパスと呼ぶ)のどちらを使用するかを選択してもよい。
 図2は、いくつかの実施形態に係る無線通信ネットワークの他の構成例を示している。図2の例では、リモートUE1は、基地局8のセルラーカバレッジ81内に位置している。セルラーカバレッジ81は、1又はそれ以上のセルを含む。リモートUE1は、基地局8とのセルラーリンク201においてセルラー通信を行うよう構成されている。幾つかの実装において、リモートUE1は、セルラーリンク201を介した基地局8との直接的なセルラー通信(i.e., ダイレクトパス)といずれかのリレーUE2とのD2Dリンク102を介したD2D通信(i.e.,リレーパス)のどちらを使用するかを選択してもよい。
 図2の例では、無線通信ネットワークは、Heterogeneous Network(HetNet)構造を有してもよい。一例において、基地局8はマクロ基地局であってもよく、基地局3はピコ基地局であってもよく、基地局8のマクロセル(i.e., セルラーカバレッジ81)は、基地局3のピコセル(i.e., セルラーカバレッジ31)を完全にカバーしてもよい。
 さらに又はこれに代えて、基地局3(又はセルラーカバレッジ31)と基地局8(又はセルラーカバレッジ81)は、異なるRadio Access Technology(RAT)をサポートしてもよい。図2に示されるように、基地局8はLTE RATをサポートするLTE eNodeB(eNB)であってもよく、基地局3はNew Radio(NR)をサポートするNR NodeB(NR NB)であってもよい。3GPPは、2020年以降の導入に向けた第5世代移動通信システム(5G)の標準化作業を開始している。5Gは、LTE及びLTE-Advancedの継続的な改良・発展(enhancement/evolution)と新たな5Gエア・インタフェース(新たなRadio Access Technology(RAT))の導入による革新的な改良・発展の組合せで実現されると想定されている。新たなRATは、例えば、LTE/LTE-Advancedの継続的発展が対象とする周波数帯(e.g., 6 GHz以下)よりも高い周波数帯、例えば10 GHz以上のセンチメートル波帯及び30 GHz以上のミリ波帯をサポートする。第5世代移動通信システムは、Next Generation (NextGen) System(NG System)とも呼ばれる。NG Systemのための新たなRATは、New Radio(NR)、5G RAT、又はNG RATと呼ばれる。本明細書で使用される“LTE”との用語は、特に断らない限り、NG Systemとのインターワーキングを可能とするためのLTE及びLTE-Advancedの改良・発展を含む。NG System とのインターワークのためのLTE及びLTE-Advancedの改良・発展は、LTE-Advanced Pro、LTE+、又はenhanced LTE(eLTE)とも呼ばれる。
 さらに又はこれに代えて、図3に示されるように、基地局3と基地局8は異なるモバイルオペレータによって運用されてもよい。図3の例では、基地局3及びそのセルラーカバレッジ31はオペレータAによって運用され、基地局8及びそのセルラーカバレッジ81はオペレータBによって運用される。リレーUE2は、オペレータAのための加入資格情報(subscription credentials)を利用して基地局3にアクセスできる。一方、リモートUE1は、オペレータBのための加入資格情報(subscription credentials)を利用して基地局8にアクセスできる。各加入資格情報は、例えば、リモートUE1及びリレーUE2それぞれのUniversal Integrated Circuit Card(UICC)内に格納される。
 続いて以下では、本実施形態を含むいくつかの実施形態に係るリレーを開始するための手順について図4を用いて説明する。リレーを開始するためには、リモートUE1が利用できるリレーUE2を発見するためのリレーディスカバリと、発見された1又は複数のリレーUE2の中からリモートUE1に適した少なくとも1つの特定のリレーUEを選択するリレー選択が必要である。リレー選択が行われる前の各リレーUE2は、リレーUE候補又はリレー候補と呼ぶこともできる。既に説明したように、リレー選択は、幾つかの実装においてリモートUE1により行われる(i.e., 分散(distributed)リレー選択)。
 図4は、分散リレー選択を伴う手順の一例(処理400)を示している。ステップ401では、リモートUE1及びリレーUE2は、リモートUE1がUE-to-Network Relay又はUE-to-UE RelayとしてのリレーUE2を発見するためのリレーディスカバリ手順を実行する。例えば、いわゆるアナウンスメント・モデル(モデルA)に従って、リレーUE2がディスカバリ信号を送信し、リモートUE1はリレーUE2からのディスカバリ信号を検出することによってリレーUE2を発見してもよい。これに代えて、いわゆる依頼(solicitation)/応答(response)モデル(モデルB)に従って、リモートUE1がリレーを希望すること示すディスカバリ信号を送信し、リレーUE2が当該ディスカバリ信号に対する応答メッセージをリモートUE1に送信し、リモートUE1はリレーUE2からの応答メッセージを受信することによってリレーUE2を発見してもよい。
 ステップ402では、リモートUE1は、ステップ401で発見された1又は複数のリレーUE2の中から、適切な少なくとも1つの特定のリレーUE2を選択する。本実施形態に係るリレー選択手順の詳細については後述する。
 ステップ403では、リモートUE1は、選択された少なくとも1つの特定のリレーUEのいずれかとone-to-one D2D通信(ダイレクト通信)のためのコネクションを確立する。例えば、リモートUE1は、ダイレクト通信要求(又はリレー要求)をリレーUE2に送信してもよい。リレーUE2は、ダイレクト通信要求(又はリレー要求)の受信に応答して、相互認証(mutual authentication)のための手順を開始してもよい。
 続いて以下では、本実施形態に係るリレー選択手順の具体例について説明する。図5は、リモートUE1によるリレー選択の一例(処理500)を示すシーケンス図である。ステップ501では、各リレーUE2は、選択支援情報(selection assistance information)をリモートUE1に送信する。リモートUE1は、各リレーUE2から選択支援情報を受信する。各リレーUE2は、リレーディスカバリ手順(e.g., 図4のステップ401)において選択支援情報を送信してもよい。具体的には、各リレーUE2は、いわゆるアナウンスメント・モデル(モデルA)に従って、選択支援情報を包含するディスカバリ信号を送信してもよい。これにより、リモートUE1は、ディスカバリ信号を検出することによって各リレーUE2を発見するとともに、当該リレーUE2の選択支援情報を受信することができる。
 選択支援情報は、セル情報を含む。セル情報は、基地局情報と呼ぶこともできる。セル情報(又は基地局情報)は、基地局3から送信され各リレー端末2によって受信された情報である。すなわち、各リレーUE2は、基地局3によって送信されるセル情報を受信し、受信したセル情報をリモートUE1にフォワードする。セル情報は、複数のUEによって受信されることができるブロードキャスト情報であってもよい。言い換えると、セル情報は、基地局3によってセルラーカバレッジ31内にブロードキャストされてもよい。例えば、LTEの論理チャネルの1つであるBroadcast Control Channel(BCCH)がセル情報の送信のために使用されてもよい。これに代えて、セル情報は、基地局3と各リレーUE2との間の個別シグナリング(e.g., Radio Resource Control(RRC)シグナリング)において各リレーUE2に送信されてもよい。セル情報の具体例については後述する。
 ステップ502では、リモートUE1は、各リレーUE2から受信した選択支援情報を用いてリレー選択を行う。ステップ502のリレー選択において、リモートUE1は、1又は複数のリレーUE2(i.e., リレーUE候補)の中からリモートUE1のための少なくとも1つの特定のリレーUEを選択してもよい。例えば、リモートUE1は、各リレーUE2から受信した選択支援情報を用いて各リレーUE2のアップリンク品質を推定し、推定された各リレーUE2のアップリンク品質を考慮してリレー選択を行う。
 さらに又はこれに代えて、ステップ502のリレー選択では、リモートUE1は、リレーパス(e.g., 図2又は図3のセルラーリンク101及びD2Dリンク102)とダイレクトパス(e.g., 図2又は図3のセルラーリンク201)のどちらをリモートUE1のために使用するかを決定してもよい。具体的には、リモートUE1は、1又は複数のリレーパスの推定スループット及びダイレクトパスの推定スループットの間で比較し、最良の推定スループットに対応するパスをリモートUE1のために選択してもよい。
 図5の例では、各リレーUE2は、選択支援情報をリモートUE1に知らせるために頻繁に無線信号(e.g., ディスカバリ信号)を送信しなければならず、したがって各リレーUE2の電力消費が大きくなるかもしれない。各リレーUE2による選択支援情報の送信頻度を低減するために、図6に示されたリレー選択手順(処理600)が採用されてもよい。ステップ601では、リモートUE1は、選択支援情報の送信要求を包含する無線信号を送信する。ステップ602では、各リレーUE2は、当該送信要求を受信したことに応答して、選択支援情報を包含する無線信号をリモートUE1に送信する。
 具体的には、いわゆる依頼(solicitation)/応答(response)モデル(モデルB)に従って、リモートUE1が選択支援情報の送信要求を包含するディスカバリ信号を送信し、各リレーUE2が選択支援情報を包含する応答信号をリモートUE1に送信してもよい。これにより、リモートUE1は、応答信号を検出することによって各リレーUE2を発見するとともに、当該リレーUE2の選択支援情報を受信することができる。
 ステップ603における処理は、図5のステップ502における処理と同様である。すなわち、リモートUE1は、各リレーUE2から受信した選択支援情報を考慮してリレー選択を行う。
 続いて以下では、上述したセル情報の具体例について説明する。セル情報は、基地局情報と呼ぶこともできる。セル情報(又は基地局情報)は、基地局3の能力(capability)、又は基地局3により提供される1又は以上のセルの能力(capability)を示す。より具体的には、セル情報は、例えば、以下のうち少なくとも1つを示してもよい:
(a)基地局3がサポートする周波数帯、
(b)基地局3がサポートするシステム帯域幅、
(c)基地局3のダウンリンク送信電力、
(d)基地局3が各リレー端末2に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
(e)基地局3が各リレー端末2に提供するセルの数、
(f)基地局3が各リレー端末2に提供する1又はそれ以上のセルの種別、
(g)基地局3と各リレー端末2との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
(h)基地局3(又はセルラーカバレッジ31)を提供するモバイルオペレータの名称又は識別子。
 セル情報(又は基地局情報)は、基地局3がサポートする周波数帯、例えば、デシメートル波(or Ultra High Frequency(UHF)、センチメートル波(or Super high frequency(SHF))、ミリ波(or Extremely high frequency(EHF))を示してもよい。幾つかの実装において、基地局3がサポートする周波数帯は、基地局3がサポートするシステム帯域幅若しくはRAT又はこれら両方と関連付けられ、これにより基地局3と各リレーUE2との間のセルラーリンク101の推定スループットに影響を与え得る。言い換えると、基地局3がサポートする周波数帯は、セルラーリンク101のスループットを評価するための指標の1つとして利用できる。
 セル情報(又は基地局情報)は、基地局3がサポートするシステム帯域幅(e.g., 10 MHz、20 MHz、100 MHz、200 MHz)、を示してもよい。基地局3がサポートするシステム帯域幅は、基地局3と各リレーUE2との間のセルラーリンク101の推定スループットに影響を与え得る。言い換えると、基地局3がサポートするシステム帯域幅は、セルラーリンク101のスループットを評価するための指標の1つとして利用できる。
 セル情報(又は基地局情報)は、基地局3のダウンリンク送信電力を示してもよい。幾つかの実装において、基地局3のダウンリンク送信電力は、基地局3のセルラーカバレッジ31の大きさ若しくはセル種別(e.g., マクロセル、マイクロセル、ピコセル、フェムトセル)に関連付けられ、さらにセルラーカバレッジ31の大きさ若しくはセル種別はシステム帯域幅に関連付けられる。したがって、幾つかの実装において、基地局3のダウンリンク送信電力は、基地局3と各リレーUE2との間のセルラーリンク101の推定スループットに影響を与え得る。言い換えると、基地局3のダウンリンク送信電力は、セルラーリンク101のスループットを評価するための指標の1つとして利用できる。
 セル情報(又は基地局情報)は、基地局3が各リレー端末2に提供する各セルのアップリンク・ダウンリンク(UL/DL)コンフィグレーションを示してもよい。UL/DLコンフィグレーションは、セルラーリンク101がTime division duplex(TDD)を使用する場合のアップリンクとダウンリンクの時間比率を示す。一例において、UL/DLコンフィグレーションは、TDD LTEがサポートしている7通りのUL/DLコンフィグレーションのうちいずれかを示してもよい。TDD LTEの場合、複数のアップリンク・サブフレーム(ULサブフレーム)と複数のダウンリンク・サブフレーム(DLサブフレーム)が1つの無線フレーム内に共存する。LTE-TDD UL/DLコンフィグレーションは、1つの無線フレーム内でのアップリンク・サブフレームとダウンリンク・サブフレームの配置を意味する。したがって、幾つかの実装において、UL/DLコンフィグレーションは、基地局3と各リレーUE2との間のセルラーリンク101の推定スループットに影響を与え得る。言い換えると、基地局3が各リレー端末2に提供する各セルのUL/DLコンフィグレーションは、セルラーリンク101のスループットを評価するための指標の1つとして利用できる。
 セル情報(又は基地局情報)は、基地局3が各リレー端末2に提供するセルの数を示してもよい。3GPP Release 10およびそれ以降は、キャリアアグリゲーション(Carrier Aggregation(CA))をサポートする。CAでは、リレーUE2は、周波数の異なる複数のセル(Component Carrier (CC)と呼ばれる)を基地局により設定され、アップリンク通信若しくはダウンリンク通信又はこれら両方のために複数のコンポーネントキャリアを利用することができる。複数のCCは、1つのプライマリCCと1又は複数のセカンダリCCを含む。プライマリCCは、プライマリ周波数とも呼ばれ、プライマリセル(primary cell(PCell))のために使用されるCCである。セカンダリCCは、セカンダリ周波数とも呼ばれ、セカンダリセル(secondary cell(SCell))のために使用されるCCである。すなわち、基地局3によりCAを設定されたリレーUE2は、1つのプライマリセル並びに少なくとも1つのセカンダリセルを含む複数のサービングセルを同時に利用することができる。したがって、幾つかの実装において、基地局3が各リレー端末2に提供するセルの数は、基地局3と各リレーUE2との間のセルラーリンク101の推定スループットに影響を与え得る。言い換えると、基地局3が各リレー端末2に提供するセルの数は、セルラーリンク101のスループットを評価するための指標の1つとして利用できる。
 セル情報(又は基地局情報)は、基地局3が各リレー端末2に提供する1又はそれ以上のセルの種別(e.g., マクロセル、マイクロセル、ピコセル、フェムトセル)を示してもよい。幾つかの実装において、セル種別は基地局3がサポートするRAT又はシステム帯域幅に関連付けられる。したがって、幾つかの実装において、基地局3が各リレー端末2に提供する1又はそれ以上のセルの種別は、基地局3と各リレーUE2との間のセルラーリンク101の推定スループットに影響を与え得る。言い換えると、基地局3が各リレー端末2に提供する1又はそれ以上のセルの種別は、セルラーリンク101のスループットを評価するための指標の1つとして利用できる。
 セル情報(又は基地局情報)は、基地局3と各リレー端末2との間で使用されるRAT又は通信方式(e.g., Long Term Evolution(LTE)、LTE-Advanced、LTE-Advanced Pro、5G、キャリアアグリゲーション、デュアルコネクティビティ)を示してもよい。幾つかの実装において、基地局3がサポートするRAT(又は通信方式)は、基地局3と各リレーUE2との間のセルラーリンク101の推定スループットに影響を与え得る。言い換えると、基地局3がサポートする周波数帯は、セルラーリンク101のスループットを評価するための指標の1つとして利用できる。
 セル情報(又は基地局情報)は、基地局3(又はセルラーカバレッジ31)を提供するモバイルオペレータの名称又は識別子を示してもよい。幾つかの実装において、異なるモバイルオペレータのネットワークは、異なるシステム帯域幅をサポートし、あるいは異なるRATをサポートする。したがって、幾つかの実装において、基地局3(又はセルラーカバレッジ31)を提供するモバイルオペレータの名称又は識別子は、基地局3と各リレーUE2との間のセルラーリンク101の推定スループットに影響を与え得る。言い換えると、基地局3(又はセルラーカバレッジ31)を提供するモバイルオペレータの名称又は識別子は、セルラーリンク101のスループットを評価するための指標の1つとして利用できる。
 図7は、リモートUE1に配置されたリレー選択エンティティによって行われるリレー選択手順の一例(処理700)を示すフローチャートである。ステップ701では、リモートUE1(リレー選択エンティティ)は、選択支援情報を各リレーUE2から受信する。既に説明したように、選択支援情報は、少なくともセル情報(又は基地局情報)を含む。
 ステップ702では、リモートUE1(リレー選択エンティティ)は、各リレーUE2から受信した選択支援情報を考慮して、リモートUE1に適した少なくとも1つの特定のリレーUE2を選択する。例えば、リモートUE1は、各リレーUE2のセルラーリンク101のアップリンク品質若しくはダウンリンク品質又は両方を推定するために、各リレーUE2から受信したセル情報を使用してもよい。リモートUE1は、基地局3のシステム帯域幅をセル情報から取得、導出、又は推定し、当該システム帯域幅を用いてセルラーリンク101のスループットを推定してもよい。そして、リモートUE1は、1又は複数のリレーUE2の中でセルラーリンク品質が相対的に高い少なくとも1つのリレーUE2を、リモートUE1のための特定のリレーUE2に選択してもよい。さらに又はこれに代えて、リモートUE1は、1又は複数のリレーパスの推定スループット及びダイレクトパスの推定スループットの間で比較し、最良の推定スループットに対応するパスをリモートUE1のために選択してもよい。
 以上の説明から理解されるように、本実施形態では、各リレーUE(候補)2は、セル情報を含む選択支援情報をリモートUE1に送信し、リモートUE1は、受信した選択支援情報を考慮してリレー選択を行う。ここで、セル情報(又は基地局情報)は、基地局3の能力、又は基地局3により提供される1又は以上のセルの能力を示す。
 既に説明したように、最良のDL RSRPを持つリレーUE2が必ずしも最良のスループットをリモートUE1に提供できるとは限らない。一例として、最良のDL RSRPを持つ第1のリレーUEが利用できるシステム帯域(e.g., 20 MHz)よりも他のリレーUE(第2のリレーUE)が利用できるシステム帯域幅(e.g., 100 MHz)のほうが大きい場合、第1のリレーUEよりも第2のリレーUEのほうがリモートUE1に高いスループットを提供できるかもしれない。あるいは、最良のDL RSRPを持つ第1のリレーUEと基地局3との間で使用されるRAT(e.g., Long Term Evolution(LTE))よりも第2のリレーUEと基地局3との間で使用されるRAT(e.g., NR、5G RAT)のほうが高速通信をサポートする場合、第1のリレーUEよりも第2のリレーUEのほうがリモートUE1に高いスループットを提供できるかもしれない。したがって、幾つかの実装において、セルラーリンク101のスループットに影響を与え得る基地局能力又はセル能力(e.g., システム帯域幅、UL/DLコンフィグレーション、RAT種別)を示すセル情報をセル選択のために考慮してもよい。これにより、スループット基準に基づくリレー選択の妥当性(appropriateness)を高めることに寄与できる。
<第2の実施形態>
 本実施形態では、第1の実施形態で説明されたリレー選択手順の変形例が説明される。本実施形態に係る無線通信ネットワークの構成例およびリレー開始手順例は、図1~図5と同様である。
 本実施形態では、第1の実施形態と同様に、各リレーUE2は、選択支援情報をリモートUE1に送信する。ただし、本実施形態では、選択支援情報は、上述のセル情報(i.e., 第1の情報要素)に加えて、アップリンク品質情報(i.e., 第2の情報要素)を含む。アップリンク品質情報は、各リレーUE2から基地局3へのアップリンク送信の品質を示す。
 アップリンク品質情報は、リレーUE2によるアップリンク送信の推定スループットを示してもよい。当該推定スループットは、各リレーUE2によって計算され、各リレーUE2からリモートUE1に送られてもよい。
 これに代えて、アップリンク品質情報は、アップリンクSINRを示してもよい。
 これに代えて、アップリンク品質情報は、各リレーUE2の最大送信電力、各リレーUE2と基地局3の間のパスロス、及び各リレーUE2に割り当てられる単位時間当たりのアップリンク無線リソースを示してもよい。リモートUE1は、アップリンク品質情報を用いて、各リレーUE2に適用されるアップリンクModulation and Coding Scheme(MCS)を推定してもよい。これに代えて、アップリンク品質情報は、アップリンク品質情報は、各リレーUE2に適用されるアップリンクMCSそれ自体を示してもよい。各リレーUE2に適用されるアップリンクMCS及び単位時間当たりのアップリンク無線リソースから各リレーUE2のアップリンク・スループットを推定できる。したがって、各リレーUE2に適用されるアップリンクMCSは、各リレーUE2のアップリンク・スループットと密接に関係している。
 これに代えて、アップリンク品質情報は、各リレーUE2の最大送信電力を表すパワークラス情報を示してもよい。LTE ProSeは、public safetyのために31 dBm又は33 dBmの最大送信電力を持つ高出力(high power)UEを規定している。最大送信電力31 dBm又は33 dBmの高出力UEは、最大送信電力23 dBmの通常UEとUEパワークラスによって区別される。具体的には、高出力UEのUEパワークラスは“クラス1”であり、高出力UEは、クラス1UE又はクラス1デバイスとも呼ばれる。これに対して、通常UEのUEパワークラスは“クラス3”であり、通常UEは、クラス3UE又はクラス3デバイスとも呼ばれる。高出力UEは、通常出力(i.e., 最大送信電力23 dBm)のUEに比べて、良好なアップリンク・スループットを提供できることが期待できる。
 さらに又はこれに代えて、アップリンク品質情報は、各リレーUE2のアップリンク通信性能を表すUEカテゴリ(又はUEクラス)を示してもよい。例えば、UEカテゴリは、各リレーUE2がサポートする(最大)アップリンク・データレートを表してもよい。UEカテゴリは、各リレーUE2がサポートする通信パラメータ、例えば、複信(duplex)モード、変調方式、及び最大Multiple-Input Multiple-Output(MIMO)レイヤ数、を表してもよい。高いUEカテゴリ(つまり、高い通信性能)を持つリレーUE2ほど良好なアップリンク・スループットを提供できることが期待できる。
 幾つかの実装において、リモートUE1は、セルラーリンク101及びD2Dリンク102から成るリレーパスのアップリンク・スループットを計算するために、セル情報及びアップリンク品質情報を含む選択支援情報を使用してもよい。例えば、リモートUE1は、以下の(1)式に従って、k番目のリレーUE2の実効スループットRkを計算してもよい:
Figure JPOXMLDOC01-appb-M000001
ここで、min関数は複数の引数のうちの最小値を返す関数であり、Ukはセルラーリンク101のアップリンク・スループットの推定値であり、DkはD2Dリンク102のスループットの推定値である。
 スループット推定値Uk及びDkは、シャノン容量式(Shannon capacity formula)に従って計算されてもよい。例えば、Ukは、以下の(2)式により定義される:
Figure JPOXMLDOC01-appb-M000002
ここで、RUは、D2D制御周期内のアップリンク送信のためのリソース割合であり、TBSU(nU, mU)は、アップリンクMCSインデックスがnUに等しく且つアップリンク・リソースブロック数がmUに等しいときのアップリンク・トランスポートブロックサイズである。さらに、BLER(nU, SINRU,k)は、アップリンクMCSインデックスがnUに等しく且つアップリンクSINRがSINRU,kに等しいときのブロック誤り率である。なお、D2D制御周期は、サイドリンク制御周期又はPSCCH周期とも呼ばれる。LTEでは、サイドリンク送信は、周波数および時間ドメインにおいてアップリンク・リソースのサブセットを使用し、基地局は、D2D制御周期(e.g., 40ms)毎にD2D通信用の無線リソースを時間・周波数方向でスケジューリングする。
 Dkは、以下の(3)式により定義される:
Figure JPOXMLDOC01-appb-M000003
ここで、RDは、D2D制御周期内のD2D送信のためのリソース割合であり、TBSD(nD, mD)は、D2D送信のMCSインデックスがnDに等しく且つD2Dリソースブロック数がmDに等しいときのD2Dトランスポートブロックサイズである。さらに、BLER(nD, SINRD,k)は、D2D送信のMCSインデックスがnDに等しく且つD2DリンクのSINRがSINRD,kに等しいときのブロック誤り率である。
 (2)式で使用されるnU及びmUの組み合せは、以下の(4)式により得られる:
Figure JPOXMLDOC01-appb-M000004
ここで、arg max演算子(operator)は、これの引数に示された関数が最大となるアップリンクMCSインデックスn及びアップリンク・リソースブロック数mの組み合せを参照する。
 (1)~(4)式に示した例において、アップリンク・リソースブロック数(mU)は、基地局3がサポートするシステム帯域幅の関数である。言い換えると、アップリンク・リソースブロック数mUは、基地局3のシステム帯域幅に応じて増加する。第1の実施形態において既に説明したように、リモートUE1は、基地局3がサポートするシステム帯域幅を示すセル情報(又は基地局情報)を各リレーUE2から受信してもよい。一方、(1)~(4)式に示した例において、アップリンクSINR(SINRU,k)は、アップリンク品質情報の一例である。
 すなわち、リモートUE1は、リレーUE2から受信したセル情報(e.g., システム帯域幅)及びアップリンク品質情報(e.g., アップリンクSINR)を使用することで、リレーUE2のアップリンク・スループットをより精度良く推定することができる。
<第3の実施形態>
 本実施形態では、第1及び第2の実施形態で説明されたリレー選択手順の変形例が説明される。本実施形態に係る無線通信ネットワークの構成例およびリレー開始手順例は、図1~図5と同様である。
 本実施形態では、第1又は第2の実施形態と同様に、各リレーUE2は、選択支援情報をリモートUE1に送信する。ただし、本実施形態では、選択支援情報は、基地局負荷情報(i.e., 第3の情報要素)をさらに含む。基地局負荷情報は、基地局3の負荷を示す。基地局負荷情報は、アップリンク無線リソースの使用率、基地局3のコンピューティングリソースの使用率、若しくは基地局3に接続しているUE数、又はこれらの任意の組み合せであってもよい。さらに又はこれに代えて、基地局負荷情報は、基地局3のダウンリンク送信バッファ(キュー)の占有レベル、基地局3のアップリンク受信バッファの占有レベル、又はDL送信若しくはUL受信に関するその他のパケットバッファの占有レベルを示してもよい。
 幾つかの実装において、リモートUE1は、各リレーUE2の実効スループットRkをより精度良く推定するために基地局負荷情報を使用してもよい。例えば、第2の実施形態で説明された実効スループットRkの計算において、(4)式の変数mに以下の(5)式に示す制約条件を課してもよい。
Figure JPOXMLDOC01-appb-M000005
ここで、MUは基地局3のシステム帯域幅によって定まる最大のリソースブロック数であり、LUは基地局3の負荷である。負荷LUは、0以上かつ1以下である。負荷LUは、アップリンク無線リソース使用率であってもよい。
 幾つかの実装において、リモートUE1は、遅延要件を満たす送信が可能であるか否かを評価するために基地局負荷情報を使用してもよい。遅延要件は、最大遅延または平均遅延であってもよい。ここで言う遅延は、例えば、リモートUE1の送信データがリレーUE2及び基地局3を介して宛先ノード(e.g., 図1のノード7)に到達するまでの遅延時間であってもよい。
<第4の実施形態>
 本実施形態では、第1~第3の実施形態で説明されたリレー選択手順の変形例が説明される。本実施形態に係る無線通信ネットワークの構成例およびリレー開始手順例は、図1~図5と同様である。
 本実施形態では、第1、第2、又は第3の実施形態と同様に、各リレーUE2は、選択支援情報をリモートUE1に送信する。ただし、本実施形態では、選択支援情報は、リレー負荷情報を示す。リレー負荷情報は、各リレーUE2と接続又は通信している他のリモートUEの数を示してもよい。さらに又はこれに代えて、リレー負荷情報は、D2D無線リソースの使用率、リレーUE2のアップリンク送信バッファの占有レベル、リレーUE2のダウンリンク受信バッファ(キュー)の占有レベル、又はUL送信若しくはDL受信に関するその他のパケットバッファの占有レベルを示してもよい。
 1つのリレーUE2に接続している(又は各リレーUE2と通信している)リモートUEの数が増加するにつれて、そのリレーUE2が各リモートUEに提供できる実効スループットは低下すると考えられる。したがって、リモートUE1は、接続している又は通信しているリモートUEの数が小さいリレーUE2ほど、リモートUE1のために優先的に選択してもよい。これにより、リモートUE1は、より高い実効スループットを新たなリモートUE1に提供できるリレーUE2を、当該リモートUE1のために選択することができる。
 幾つかの実装において、リモートUE1は、各リレーUE2の実効スループットRkをより精度良く推定するためにリレー負荷情報を使用してもよい。例えば、第2の実施形態で説明された実効スループットRkの計算において、(3)式に代えて以下の(6)式を使用してもよい:
Figure JPOXMLDOC01-appb-M000006
ここで、NUEは、k番目のリレーUE2と接続又は通信している他のリモートUEの数である。
 幾つかの実装において、リモートUE1は、遅延要件を満たす送信が可能であるか否かをより精度良く評価するために、第3の実施形態で説明された基地局負荷情報に加えて、リレー負荷情報をさらに使用してもよい。
<第5の実施形態>
 本実施形態では、第1~第4の実施形態で説明されたリレー選択手順の変形例が説明される。本実施形態に係る無線通信ネットワークの構成例およびリレー開始手順例は、図1~図5と同様である。
 本実施形態では、第1、第2、第3、又は第4の実施形態と同様に、各リレーUE2は、選択支援情報をリモートUE1に送信する。ただし、本実施形態では、選択支援情報は、各リレーUE2と基地局3の間のパスロスをさらに示す。3GPPのリレーUEのサイドリンク送信電力は、基地局3とリレーUE2の間のパスロスに応じて制御される。当該パスロスが大きくなるにつれて、リレーUE2のサイドリンク送信電力が増加する。
 したがって、リモートUE1は、各リレーUE2のサイドリンク送信電力を推定するために、各リレーUE2と基地局3の間のパスロスを使用してもよい。言い換えると、リモートUE1は、各リレーUE2へのサイドリンク送信に必要とされる(最大)送信電力を推定するために、各リレーUE2と基地局3の間のパスロスを使用してもよい。例えば、リモートUE1は、必要とされるサイドリンク送信電力が最小のリレーUE2をリモートUE1のために優先的に選択してもよい。これに代えて、リモートUE1は、リレーパスでのサイドリンク送信電力(又はサイドリンク送信に要する消費電力)とダイレクトパスでのアップリンク送信電力(又はアップリンク送信に要する消費電力)とを比較し、小さい送信電力(又は消費電力)をもたらすパスを選択してもよい。
 最後に、上述の複数の実施形態に係るリモートUE1、リレーUE2、及び基地局3の構成例について説明する。図8は、リモートUE1の構成例を示すブロック図である。リレーUE2も、図8に示されているのと同様の構成を有してもよい。Radio Frequency(RF)トランシーバ801は、基地局3と通信するためにアナログRF信号処理を行う。RFトランシーバ801により行われるアナログRF信号処理は、周波数アップコンバージョン、周波数ダウンコンバージョン、及び増幅を含む。RFトランシーバ801は、アンテナ802及びベースバンドプロセッサ803と結合される。すなわち、RFトランシーバ801は、変調シンボルデータ(又はOFDMシンボルデータ)をベースバンドプロセッサ803から受信し、送信RF信号を生成し、送信RF信号をアンテナ802に供給する。また、RFトランシーバ801は、アンテナ802によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをベースバンドプロセッサ803に供給する。
 ベースバンドプロセッサ803は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。デジタルベースバンド信号処理は、(a) データ圧縮/復元、(b) データのセグメンテーション/コンカテネーション、(c) 伝送フォーマット(伝送フレーム)の生成/分解、(d) 伝送路符号化/復号化、(e) 変調(シンボルマッピング)/復調、及び(f) Inverse Fast Fourier Transform(IFFT)によるOFDMシンボルデータ(ベースバンドOFDM信号)の生成などを含む。一方、コントロールプレーン処理は、レイヤ1(e.g., 送信電力制御)、レイヤ2(e.g., 無線リソース管理、及びhybrid automatic repeat request(HARQ)処理)、及びレイヤ3(e.g., アタッチ、モビリティ、及び通話管理に関するシグナリング)の通信管理を含む。
 例えば、LTEおよびLTE-Advancedの場合、ベースバンドプロセッサ803によるデジタルベースバンド信号処理は、Packet Data Convergence Protocol(PDCP)レイヤ、Radio Link Control(RLC)レイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、ベースバンドプロセッサ803によるコントロールプレーン処理は、Non-Access Stratum(NAS)プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。
 ベースバンドプロセッサ803は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., Digital Signal Processor(DSP))とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., Central Processing Unit(CPU)、又はMicro Processing Unit(MPU))を含んでもよい。この場合、コントロールプレーン処理を行うプロトコルスタック・プロセッサは、後述するアプリケーションプロセッサ804と共通化されてもよい。
 アプリケーションプロセッサ804は、CPU、MPU、マイクロプロセッサ、又はプロセッサコアとも呼ばれる。アプリケーションプロセッサ804は、複数のプロセッサ(複数のプロセッサコア)を含んでもよい。アプリケーションプロセッサ804は、メモリ806又は図示されていないメモリから読み出されたシステムソフトウェアプログラム(Operating System(OS))及び様々なアプリケーションプログラム(例えば、通話アプリケーション、WEBブラウザ、メーラ、カメラ操作アプリケーション、音楽再生アプリケーション)を実行することによって、リモートUE1の各種機能を実現する。
 いくつかの実装において、図8に破線(805)で示されているように、ベースバンドプロセッサ803及びアプリケーションプロセッサ804は、1つのチップ上に集積されてもよい。言い換えると、ベースバンドプロセッサ803及びアプリケーションプロセッサ804は、1つのSystem on Chip(SoC)デバイス805として実装されてもよい。SoCデバイスは、システムLarge Scale Integration(LSI)またはチップセットと呼ばれることもある。
 メモリ806は、揮発性メモリ若しくは不揮発性メモリ又はこれらの組合せである。メモリ806は、物理的に独立した複数のメモリデバイスを含んでもよい。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、マスクRead Only Memory(MROM)、Electrically Erasable Programmable ROM(EEPROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。例えば、メモリ806は、ベースバンドプロセッサ803、アプリケーションプロセッサ804、及びSoC805からアクセス可能な外部メモリデバイスを含んでもよい。メモリ806は、ベースバンドプロセッサ803内、アプリケーションプロセッサ804内、又はSoC805内に集積された内蔵メモリデバイスを含んでもよい。さらに、メモリ806は、Universal Integrated Circuit Card(UICC)内のメモリを含んでもよい。
 メモリ806は、上述の複数の実施形態で説明されたリモートUE1による処理を行うための命令群およびデータを含むソフトウェアモジュール(コンピュータプログラム)を格納してもよい。いくつかの実装において、ベースバンドプロセッサ803又はアプリケーションプロセッサ804は、当該ソフトウェアモジュールをメモリ806から読み出して実行することで、上述の実施形態でシーケンス図及びフローチャートを用いて説明されたリモートUE1の処理を行うよう構成されてもよい。
 図9は、上述の実施形態に係る基地局3の構成例を示すブロック図である。図9を参照すると、基地局3は、RFトランシーバ901、ネットワークインターフェース903、プロセッサ904、及びメモリ905を含む。RFトランシーバ901は、リモートUE1及びリレーUE2と通信するためにアナログRF信号処理を行う。RFトランシーバ901は、複数のトランシーバを含んでもよい。RFトランシーバ901は、アンテナ902及びプロセッサ904と結合される。RFトランシーバ901は、変調シンボルデータ(又はOFDMシンボルデータ)をプロセッサ904から受信し、送信RF信号を生成し、送信RF信号をアンテナ902に供給する。また、RFトランシーバ901は、アンテナ902によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをプロセッサ904に供給する。
 ネットワークインターフェース903は、ネットワークノード(e.g., Mobility Management Entity (MME)およびServing Gateway (S-GW))と通信するために使用される。ネットワークインターフェース903は、例えば、IEEE 802.3 seriesに準拠したネットワークインターフェースカード(NIC)を含んでもよい。
 プロセッサ904は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。例えば、LTEおよびLTE-Advancedの場合、プロセッサ904によるデジタルベースバンド信号処理は、PDCPレイヤ、RLCレイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、プロセッサ904によるコントロールプレーン処理は、S1プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。
 プロセッサ904は、複数のプロセッサを含んでもよい。例えば、プロセッサ904は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., DSP)とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., CPU又はMPU)を含んでもよい。
 メモリ905は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、SRAM若しくはDRAM又はこれらの組み合わせである。不揮発性メモリは、例えば、MROM、PROM、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの組合せである。メモリ905は、プロセッサ904から離れて配置されたストレージを含んでもよい。この場合、プロセッサ904は、ネットワークインターフェース903又は図示されていないI/Oインタフェースを介してメモリ905にアクセスしてもよい。
 メモリ905は、上述の複数の実施形態で説明された基地局3による処理を行うための命令群およびデータを含むソフトウェアモジュール(コンピュータプログラム)を格納してもよい。いくつかの実装において、プロセッサ904は、当該ソフトウェアモジュールをメモリ905から読み出して実行することで、上述の実施形態でシーケンス図及びフローチャートを用いて説明された基地局3の処理を行うよう構成されてもよい。
 図8及び図9を用いて説明したように、上述の実施形態に係るリモートUE1、リレーUE2、及び基地局3が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
<その他の実施形態>
 上述の実施形態は、各々独立に実施されてもよいし、適宜組み合わせて実施されてもよい。
 さらに、上述した実施形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。
 例えば、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
 無線端末であって、
 メモリと、
 前記メモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、1又は複数のリレー端末の各々から選択支援情報を受信し、前記選択支援情報に基づいて、前記1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択するよう構成され、
 各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継し、
 前記選択支援情報は、前記基地局から送信され各リレー端末によって受信された第1の情報要素を含み、
 前記第1の情報要素は、以下のうち少なくとも1つを示す:
(a)前記基地局がサポートする周波数帯、
(b)前記基地局がサポートするシステム帯域幅、
(c)前記基地局のダウンリンク送信電力、
(d)前記基地局が各リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
(e)前記基地局が各リレー端末に提供するセルの数、
(f)前記基地局が各リレー端末に提供する1又はそれ以上のセルの種別、
(g)前記基地局と各リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
(h)前記基地局を提供するモバイルオペレータの名称又は識別子、
無線端末。
(付記2)
 前記第1の情報要素は、前記基地局がサポートするシステム帯域幅を少なくとも示す、
付記1に記載の無線端末。
(付記3)
 前記第1の情報要素は、前記基地局がリレーUEに提供する各セルのアップリンク・ダウンリンク コンフィグレーションを少なくとも示す、
付記1又は2に記載の無線端末。
(付記4)
 前記選択支援情報は、各リレー端末から前記基地局へのアップリンク送信の品質を示す第2の情報要素をさらに含む、
付記1~3のいずれか1項に記載の無線端末。
(付記5)
 前記第2の情報要素は、各リレー端末の最大送信電力を表すパワークラス情報若しくは各リレー端末のアップリンク通信性能を表す端末カテゴリ情報又は両方を含む、
付記4に記載の無線端末。
(付記6)
 前記第2の情報要素は、各リレー端末の前記アップリンク送信に適用されるModulation and Coding Scheme(MCS)の推定値を含む、
付記4又は5に記載の無線端末。
(付記7)
 前記選択支援情報は、前記基地局の負荷を示す第3の情報要素をさらに含む、
付記1~6のいずれか1項に記載の無線端末。
(付記8)
 前記選択支援情報は、各リレー端末の負荷を示す第4の情報要素をさらに含む、
付記1~7のいずれか1項に記載の無線端末。
(付記9)
 前記第4の情報要素は、各リレー端末と接続又は通信している他のリモート端末の数を示す、
付記8に記載の無線端末。
(付記10)
 前記少なくとも1つのプロセッサは、前記他のリモート端末の数が小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に優先的に選択するよう構成されている、
付記9に記載の無線端末。
(付記11)
 前記選択支援情報は、前記基地局と各リレー端末との間のパスロスを示す第5の情報要素をさらに含む、
付記1~10のいずれか1項に記載の無線端末。
(付記12)
 前記少なくとも1つのプロセッサは、前記1又は複数のリレー端末のいずれかを介するリレー経路と、前記無線端末と前記基地局又は他の基地局との間の直接的な無線リンクのどちらを前記無線端末の通信のために使用するかを決定するよう構成されている、
付記1~11のいずれか1項に記載の無線端末。
(付記13)
 リレー端末であって、
 メモリと、
 前記メモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、
 リモート端末に選択支援情報を送信するよう構成され、且つ
 前記リレー端末と前記リモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び前記リレー端末と基地局との間のバックホールリンクを介して、前記リモート端末と前記基地局との間でトラフィックを中継するよう構成され、
 前記選択支援情報は、前記基地局から送信され前記リレー端末によって受信された第1の情報要素を含み、
 前記第1の情報要素は、以下のうち少なくとも1つを示す:
(a)前記基地局がサポートする周波数帯、
(b)前記基地局がサポートするシステム帯域幅、
(c)前記基地局のダウンリンク送信電力、
(d)前記基地局が前記リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
(e)前記基地局が前記リレー端末に提供するセルの数、
(f)前記基地局が前記リレー端末に提供する1又はそれ以上のセルの種別、
(g)前記基地局と前記リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
(h)前記基地局を提供するモバイルオペレータの名称又は識別子、
リレー端末。
(付記14)
 前記選択支援情報は、1又は複数のリレー端末の中から前記リモート端末に適した少なくとも1つの特定のリレー端末を選択することを前記リモート端末に引き起こす、
付記13に記載のリレー端末。
(付記15)
 前記選択支援情報は、1又は複数のリレー端末のいずれかを介するリレー経路と、前記リモート端末と前記基地局又は他の基地局との間の直接的な無線リンクのどちらを前記リモート端末の通信のために使用するかを決定することを前記リモート端末に引き起こす、
付記13又は14に記載のリレー端末。
(付記16)
 前記第1の情報要素は、前記基地局がサポートするシステム帯域幅を少なくとも示す、
付記13~15のいずれか1項に記載のリレー端末。
(付記17)
 前記第1の情報要素は、前記基地局がリレーUEに提供する各セルのアップリンク・ダウンリンク コンフィグレーションを少なくとも示す、
付記13~16のいずれか1項に記載のリレー端末。
(付記18)
 前記選択支援情報は、前記リレー端末から前記基地局へのアップリンク送信の品質を示す第2の情報要素をさらに含む、
付記13~17のいずれか1項に記載のリレー端末。
(付記19)
 前記第2の情報要素は、前記リレー端末の最大送信電力を表すパワークラス情報若しくは各リレー端末のアップリンク通信性能を表す端末カテゴリ情報又は両方を含む、
付記18に記載のリレー端末。
(付記20)
 前記第2の情報要素は、各リレー端末の前記アップリンク送信に適用されるModulation and Coding Scheme(MCS)の推定値を含む、
付記18又は19に記載のリレー端末。
(付記21)
 前記選択支援情報は、前記基地局の負荷を示す第3の情報要素をさらに含む、
付記13~20のいずれか1項に記載のリレー端末。
(付記22)
 前記選択支援情報は、前記リレー端末の負荷を示す第4の情報要素をさらに含む、
付記13~21のいずれか1項に記載のリレー端末。
(付記23)
 前記第4の情報要素は、前記リレー端末と接続又は通信している他のリモート端末の数を示す、
付記22に記載のリレー端末。
(付記24)
 前記選択支援情報は、前記基地局と前記リレー端末との間のパスロスを示す第5の情報要素をさらに含む、
付記13~23のいずれか1項に記載のリレー端末。
(付記25)
 無線端末における方法であって、
 1又は複数のリレー端末の各々から選択支援情報を受信すること、及び
 前記選択支援情報に基づいて、前記1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択すること、
を備え、
 各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継するよう構成され、
 前記選択支援情報は、前記基地局から送信され各リレー端末によって受信された第1の情報要素を含み、
 前記第1の情報要素は、以下のうち少なくとも1つを示す:
(a)前記基地局がサポートする周波数帯、
(b)前記基地局がサポートするシステム帯域幅、
(c)前記基地局のダウンリンク送信電力、
(d)前記基地局が各リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
(e)前記基地局が各リレー端末に提供するセルの数、
(f)前記基地局が各リレー端末に提供する1又はそれ以上のセルの種別、
(g)前記基地局と各リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
(h)前記基地局を提供するモバイルオペレータの名称又は識別子、
方法。
(付記26)
 リレー端末における方法であって、
 リモート端末に選択支援情報を送信すること、及び
 前記リレー端末と前記リモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び前記リレー端末と基地局との間のバックホールリンクを介して、前記リモート端末と前記基地局との間でトラフィックを中継すること、
を備え、
 前記選択支援情報は、前記基地局から送信され前記リレー端末によって受信された第1の情報要素を含み、
 前記第1の情報要素は、以下のうち少なくとも1つを示す:
(a)前記基地局がサポートする周波数帯、
(b)前記基地局がサポートするシステム帯域幅、
(c)前記基地局のダウンリンク送信電力、
(d)前記基地局が前記リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
(e)前記基地局が前記リレー端末に提供するセルの数、
(f)前記基地局が前記リレー端末に提供する1又はそれ以上のセルの種別、
(g)前記基地局と前記リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
(h)前記基地局を提供するモバイルオペレータの名称又は識別子、
方法。
(付記27)
 無線端末における方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、
 1又は複数のリレー端末の各々から選択支援情報を受信すること、及び
 前記選択支援情報に基づいて、前記1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択すること、
を備え、
 各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継するよう構成され、
 前記選択支援情報は、前記基地局から送信され各リレー端末によって受信された第1の情報要素を含み、
 前記第1の情報要素は、以下のうち少なくとも1つを示す:
(a)前記基地局がサポートする周波数帯、
(b)前記基地局がサポートするシステム帯域幅、
(c)前記基地局のダウンリンク送信電力、
(d)前記基地局が各リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
(e)前記基地局が各リレー端末に提供するセルの数、
(f)前記基地局が各リレー端末に提供する1又はそれ以上のセルの種別、
(g)前記基地局と各リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
(h)前記基地局を提供するモバイルオペレータの名称又は識別子、
プログラム。
(付記28)
 リレー端末における方法をコンピュータに行わせるためのプログラムであって、
 前記リレー端末は、前記リレー端末とリモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び前記リレー端末と基地局との間のバックホールリンクを介して、前記リモート端末と前記基地局との間でトラフィックを中継するよう構成され、
 前記方法は、前記リモート端末に選択支援情報を送信することを備え、
 前記選択支援情報は、前記基地局から送信され前記リレー端末によって受信された第1の情報要素を含み、
 前記第1の情報要素は、以下のうち少なくとも1つを示す:
(a)前記基地局がサポートする周波数帯、
(b)前記基地局がサポートするシステム帯域幅、
(c)前記基地局のダウンリンク送信電力、
(d)前記基地局が前記リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
(e)前記基地局が前記リレー端末に提供するセルの数、
(f)前記基地局が前記リレー端末に提供する1又はそれ以上のセルの種別、
(g)前記基地局と前記リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
(h)前記基地局を提供するモバイルオペレータの名称又は識別子、
プログラム。
 この出願は、2016年12月8日に出願された日本出願特願2016-238509を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 リモートUE
2 リレーUE
3 基地局
4 コアネットワーク
5 device-to-device(D2D)コントローラ
6 外部ネットワーク
7 ノード
8 基地局
101 セルラーリンク
102 D2Dリンク
201 セルラーリンク
801 radio frequency(RF)トランシーバ
803 ベースバンドプロセッサ
804 アプリケーションプロセッサ
806 メモリ
904 プロセッサ
905 メモリ

Claims (28)

  1.  無線端末であって、
     メモリと、
     前記メモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、1又は複数のリレー端末の各々から選択支援情報を受信し、前記選択支援情報に基づいて、前記1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択するよう構成され、
     各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継し、
     前記選択支援情報は、前記基地局から送信され各リレー端末によって受信された第1の情報要素を含み、
     前記第1の情報要素は、以下のうち少なくとも1つを示す:
    (a)前記基地局がサポートする周波数帯、
    (b)前記基地局がサポートするシステム帯域幅、
    (c)前記基地局のダウンリンク送信電力、
    (d)前記基地局が各リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
    (e)前記基地局が各リレー端末に提供するセルの数、
    (f)前記基地局が各リレー端末に提供する1又はそれ以上のセルの種別、
    (g)前記基地局と各リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
    (h)前記基地局を提供するモバイルオペレータの名称又は識別子、
    無線端末。
  2.  前記第1の情報要素は、前記基地局がサポートするシステム帯域幅を少なくとも示す、
    請求項1に記載の無線端末。
  3.  前記第1の情報要素は、前記基地局がリレーUEに提供する各セルのアップリンク・ダウンリンク コンフィグレーションを少なくとも示す、
    請求項1又は2に記載の無線端末。
  4.  前記選択支援情報は、各リレー端末から前記基地局へのアップリンク送信の品質を示す第2の情報要素をさらに含む、
    請求項1~3のいずれか1項に記載の無線端末。
  5.  前記第2の情報要素は、各リレー端末の最大送信電力を表すパワークラス情報若しくは各リレー端末のアップリンク通信性能を表す端末カテゴリ情報又は両方を含む、
    請求項4に記載の無線端末。
  6.  前記第2の情報要素は、各リレー端末の前記アップリンク送信に適用されるModulation and Coding Scheme(MCS)の推定値を含む、
    請求項4又は5に記載の無線端末。
  7.  前記選択支援情報は、前記基地局の負荷を示す第3の情報要素をさらに含む、
    請求項1~6のいずれか1項に記載の無線端末。
  8.  前記選択支援情報は、各リレー端末の負荷を示す第4の情報要素をさらに含む、
    請求項1~7のいずれか1項に記載の無線端末。
  9.  前記第4の情報要素は、各リレー端末と接続又は通信している他のリモート端末の数を示す、
    請求項8に記載の無線端末。
  10.  前記少なくとも1つのプロセッサは、前記他のリモート端末の数が小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に優先的に選択するよう構成されている、
    請求項9に記載の無線端末。
  11.  前記選択支援情報は、前記基地局と各リレー端末との間のパスロスを示す第5の情報要素をさらに含む、
    請求項1~10のいずれか1項に記載の無線端末。
  12.  前記少なくとも1つのプロセッサは、前記1又は複数のリレー端末のいずれかを介するリレー経路と、前記無線端末と前記基地局又は他の基地局との間の直接的な無線リンクのどちらを前記無線端末の通信のために使用するかを決定するよう構成されている、
    請求項1~11のいずれか1項に記載の無線端末。
  13.  リレー端末であって、
     メモリと、
     前記メモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、
     リモート端末に選択支援情報を送信するよう構成され、且つ
     前記リレー端末と前記リモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び前記リレー端末と基地局との間のバックホールリンクを介して、前記リモート端末と前記基地局との間でトラフィックを中継するよう構成され、
     前記選択支援情報は、前記基地局から送信され前記リレー端末によって受信された第1の情報要素を含み、
     前記第1の情報要素は、以下のうち少なくとも1つを示す:
    (a)前記基地局がサポートする周波数帯、
    (b)前記基地局がサポートするシステム帯域幅、
    (c)前記基地局のダウンリンク送信電力、
    (d)前記基地局が前記リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
    (e)前記基地局が前記リレー端末に提供するセルの数、
    (f)前記基地局が前記リレー端末に提供する1又はそれ以上のセルの種別、
    (g)前記基地局と前記リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
    (h)前記基地局を提供するモバイルオペレータの名称又は識別子、
    リレー端末。
  14.  前記選択支援情報は、1又は複数のリレー端末の中から前記リモート端末に適した少なくとも1つの特定のリレー端末を選択することを前記リモート端末に引き起こす、
    請求項13に記載のリレー端末。
  15.  前記選択支援情報は、1又は複数のリレー端末のいずれかを介するリレー経路と、前記リモート端末と前記基地局又は他の基地局との間の直接的な無線リンクのどちらを前記リモート端末の通信のために使用するかを決定することを前記リモート端末に引き起こす、
    請求項13又は14に記載のリレー端末。
  16.  前記第1の情報要素は、前記基地局がサポートするシステム帯域幅を少なくとも示す、
    請求項13~15のいずれか1項に記載のリレー端末。
  17.  前記第1の情報要素は、前記基地局がリレーUEに提供する各セルのアップリンク・ダウンリンク コンフィグレーションを少なくとも示す、
    請求項13~16のいずれか1項に記載のリレー端末。
  18.  前記選択支援情報は、前記リレー端末から前記基地局へのアップリンク送信の品質を示す第2の情報要素をさらに含む、
    請求項13~17のいずれか1項に記載のリレー端末。
  19.  前記第2の情報要素は、前記リレー端末の最大送信電力を表すパワークラス情報若しくは各リレー端末のアップリンク通信性能を表す端末カテゴリ情報又は両方を含む、
    請求項18に記載のリレー端末。
  20.  前記第2の情報要素は、各リレー端末の前記アップリンク送信に適用されるModulation and Coding Scheme(MCS)の推定値を含む、
    請求項18又は19に記載のリレー端末。
  21.  前記選択支援情報は、前記基地局の負荷を示す第3の情報要素をさらに含む、
    請求項13~20のいずれか1項に記載のリレー端末。
  22.  前記選択支援情報は、前記リレー端末の負荷を示す第4の情報要素をさらに含む、
    請求項13~21のいずれか1項に記載のリレー端末。
  23.  前記第4の情報要素は、前記リレー端末と接続又は通信している他のリモート端末の数を示す、
    請求項22に記載のリレー端末。
  24.  前記選択支援情報は、前記基地局と前記リレー端末との間のパスロスを示す第5の情報要素をさらに含む、
    請求項13~23のいずれか1項に記載のリレー端末。
  25.  無線端末における方法であって、
     1又は複数のリレー端末の各々から選択支援情報を受信すること、及び
     前記選択支援情報に基づいて、前記1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択すること、
    を備え、
     各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継するよう構成され、
     前記選択支援情報は、前記基地局から送信され各リレー端末によって受信された第1の情報要素を含み、
     前記第1の情報要素は、以下のうち少なくとも1つを示す:
    (a)前記基地局がサポートする周波数帯、
    (b)前記基地局がサポートするシステム帯域幅、
    (c)前記基地局のダウンリンク送信電力、
    (d)前記基地局が各リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
    (e)前記基地局が各リレー端末に提供するセルの数、
    (f)前記基地局が各リレー端末に提供する1又はそれ以上のセルの種別、
    (g)前記基地局と各リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
    (h)前記基地局を提供するモバイルオペレータの名称又は識別子、
    方法。
  26.  リレー端末における方法であって、
     リモート端末に選択支援情報を送信すること、及び
     前記リレー端末と前記リモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び前記リレー端末と基地局との間のバックホールリンクを介して、前記リモート端末と前記基地局との間でトラフィックを中継すること、
    を備え、
     前記選択支援情報は、前記基地局から送信され前記リレー端末によって受信された第1の情報要素を含み、
     前記第1の情報要素は、以下のうち少なくとも1つを示す:
    (a)前記基地局がサポートする周波数帯、
    (b)前記基地局がサポートするシステム帯域幅、
    (c)前記基地局のダウンリンク送信電力、
    (d)前記基地局が前記リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
    (e)前記基地局が前記リレー端末に提供するセルの数、
    (f)前記基地局が前記リレー端末に提供する1又はそれ以上のセルの種別、
    (g)前記基地局と前記リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
    (h)前記基地局を提供するモバイルオペレータの名称又は識別子、
    方法。
  27.  無線端末における方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、
     1又は複数のリレー端末の各々から選択支援情報を受信すること、及び
     前記選択支援情報に基づいて、前記1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択すること、
    を備え、
     各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継するよう構成され、
     前記選択支援情報は、前記基地局から送信され各リレー端末によって受信された第1の情報要素を含み、
     前記第1の情報要素は、以下のうち少なくとも1つを示す:
    (a)前記基地局がサポートする周波数帯、
    (b)前記基地局がサポートするシステム帯域幅、
    (c)前記基地局のダウンリンク送信電力、
    (d)前記基地局が各リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
    (e)前記基地局が各リレー端末に提供するセルの数、
    (f)前記基地局が各リレー端末に提供する1又はそれ以上のセルの種別、
    (g)前記基地局と各リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
    (h)前記基地局を提供するモバイルオペレータの名称又は識別子、
    非一時的なコンピュータ可読媒体。
  28.  リレー端末における方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記リレー端末は、前記リレー端末とリモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び前記リレー端末と基地局との間のバックホールリンクを介して、前記リモート端末と前記基地局との間でトラフィックを中継するよう構成され、
     前記方法は、前記リモート端末に選択支援情報を送信することを備え、
     前記選択支援情報は、前記基地局から送信され前記リレー端末によって受信された第1の情報要素を含み、
     前記第1の情報要素は、以下のうち少なくとも1つを示す:
    (a)前記基地局がサポートする周波数帯、
    (b)前記基地局がサポートするシステム帯域幅、
    (c)前記基地局のダウンリンク送信電力、
    (d)前記基地局が前記リレー端末に提供する各セルのアップリンク・ダウンリンク コンフィグレーション、
    (e)前記基地局が前記リレー端末に提供するセルの数、
    (f)前記基地局が前記リレー端末に提供する1又はそれ以上のセルの種別、
    (g)前記基地局と前記リレー端末との間で使用されるRadio Access Technology(RAT)又は通信方式、及び
    (h)前記基地局を提供するモバイルオペレータの名称又は識別子、
    非一時的なコンピュータ可読媒体。
PCT/JP2017/023508 2016-12-08 2017-06-27 リレー選択のための装置及び方法 WO2018105158A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018554811A JP6933225B2 (ja) 2016-12-08 2017-06-27 リレー選択のための装置及び方法
US16/465,420 US11122493B2 (en) 2016-12-08 2017-06-27 Apparatus and method for relay selection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-238509 2016-12-08
JP2016238509 2016-12-08

Publications (1)

Publication Number Publication Date
WO2018105158A1 true WO2018105158A1 (ja) 2018-06-14

Family

ID=62491775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023508 WO2018105158A1 (ja) 2016-12-08 2017-06-27 リレー選択のための装置及び方法

Country Status (3)

Country Link
US (1) US11122493B2 (ja)
JP (1) JP6933225B2 (ja)
WO (1) WO2018105158A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111601360A (zh) * 2020-05-22 2020-08-28 电子科技大学 一种毫米波通信系统中的中继选择方法
EP3745611A1 (en) * 2019-05-29 2020-12-02 Wilson Electronics, LLC Multiplex time division duplex (tdd) sync detection module
WO2021030131A1 (en) * 2019-08-15 2021-02-18 Qualcomm Incorporated Sidelink coordination for power control
WO2021077303A1 (zh) * 2019-10-22 2021-04-29 Oppo广东移动通信有限公司 无线通信方法和终端设备
CN113994603A (zh) * 2019-06-17 2022-01-28 高通股份有限公司 侧链路tx功率控制

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10531457B1 (en) * 2017-01-26 2020-01-07 Sprint Communications Company L.P. Wireless access point control over Carrier Aggregation (CA) through a wireless repeater chain
US10616897B1 (en) * 2017-02-23 2020-04-07 Sprint Communications Company L.P. Wireless access point to control wireless user data exchanges through wireless relays
CN109246688B (zh) * 2017-07-11 2021-02-23 华为技术有限公司 设备接入方法、设备及系统
CN110139337A (zh) * 2018-02-09 2019-08-16 电信科学技术研究院有限公司 一种中继节点的选择方法及设备
CN112425245B (zh) * 2018-07-17 2023-08-29 Lg 电子株式会社 在nr v2x中确定tbs的方法和设备
US11134397B2 (en) * 2018-08-01 2021-09-28 Qualcomm Incorporated Techniques for selecting backhaul nodes for connecting to an integrated access and backhaul network
US10904949B2 (en) * 2019-03-21 2021-01-26 Hall Labs Llc Bridge for wireless communication
US11051312B1 (en) * 2019-03-21 2021-06-29 Sprint Spectrum L.P. Controlling carrier assignment based on quantities of relay-served UEs
US11991641B2 (en) * 2019-09-09 2024-05-21 Qualcomm Incorporated Network-controlled power control on side-link communications
CN113133080B (zh) * 2020-01-15 2023-04-25 大唐移动通信设备有限公司 一种中继设备的选择方法、设备及计算机存储介质
CN111277994B (zh) * 2020-01-19 2022-10-25 展讯通信(上海)有限公司 服务小区的rat获取、指示方法及装置、设备
US10972160B1 (en) * 2020-04-21 2021-04-06 Sprint Spectrum L.P. Wireless communications over multiple input multiple output (MIMO) layers based on backhaul link quality
US11831389B2 (en) * 2020-08-04 2023-11-28 Qualcomm Incorporated Techniques for reporting repeater communication capability
US11595969B1 (en) * 2020-08-05 2023-02-28 Sprint Spectrum Lp Allocating air interface resources to relay nodes in heterogeneous networks
WO2022040830A1 (en) * 2020-08-23 2022-03-03 Qualcomm Incorporated Relay of wireless communication to a network entity based on a remote connection
CN114205807A (zh) * 2020-09-18 2022-03-18 中国移动通信有限公司研究院 终端辅助多连接的方法、装置、设备及可读存储介质
JPWO2022071571A1 (ja) * 2020-10-01 2022-04-07
EP3986086A1 (en) * 2020-10-13 2022-04-20 Nokia Technologies Oy Relay ue selection
US20230292234A1 (en) * 2020-10-22 2023-09-14 Kyocera Corporation Pc5 broadcast messages with selected system information
US11800573B2 (en) 2021-04-09 2023-10-24 Qualcomm Incorporated Disaggregated UE
CN115623555A (zh) * 2021-07-16 2023-01-17 大唐移动通信设备有限公司 中继选择方法、装置及终端
CN113923745B (zh) * 2021-10-15 2023-06-20 国网湖南省电力有限公司 电力通信系统的通信中继选择方法及其通信方法
WO2023116404A1 (zh) * 2021-12-20 2023-06-29 华为技术有限公司 一种通信方法及设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514031A (ja) * 2008-01-22 2011-04-28 ノーテル・ネットワークス・リミテッド 中継局を有する無線システムにおけるパス選択

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093781A (ja) 2011-10-27 2013-05-16 Fujitsu Ltd 通信ネットワークシステム、ノード装置、及び通信ネットワークシステムにおける経路選択方法
JPWO2016076107A1 (ja) * 2014-11-14 2017-08-31 株式会社Nttドコモ ユーザ装置及びd2d通信方法
JP6397315B2 (ja) 2014-11-17 2018-09-26 Kddi株式会社 端末装置、基地局装置および通信方法
US10212651B2 (en) * 2015-05-14 2019-02-19 Qualcomm Incorporated Systems, methods, and devices for link quality based relay selection
WO2016208097A1 (ja) * 2015-06-24 2016-12-29 日本電気株式会社 リレー選択のための装置及び方法
WO2017018553A1 (ko) * 2015-07-27 2017-02-02 엘지전자 주식회사 무선 통신 시스템에서 단말이 다중 링크를 설정하는 방법 및 이를 위한 장치
WO2017030400A1 (ko) * 2015-08-18 2017-02-23 엘지전자 주식회사 무선 통신 시스템에서 사이드링크를 지원하는 단말에 의해 수행되는 동작 방법 및 상기 방법을 이용하는 단말

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514031A (ja) * 2008-01-22 2011-04-28 ノーテル・ネットワークス・リミテッド 中継局を有する無線システムにおけるパス選択

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Support of UE-Network relays", 3GPP TSG-RAN WG1#81 RL-152778, 15 May 2015 (2015-05-15), XP050970156, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_81/Docs/R1-152778.zip> [retrieved on 20170807] *
HUAWEI, HISILICON: "Update and Evaluation UE-to- network relay solution R12", 3GPP TSG-SA WG2#100, 5 November 2013 (2013-11-05), pages 2 - 134066, XP050764637, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_sa/WG2Arch/TSGS2_100_San_Francisco/Docs/S2-134066.zip> [retrieved on 20170807] *
PANASONIC: "Pcell and Scell Common information", 3GPP TSG-RAN WG2#70BIS R2-103609, 22 June 2010 (2010-06-22), XP050605220, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR270bis/Docs/R2-103609.zip> [retrieved on 20170807] *
SAMSUNG: "Radio resource configuration changes for CA , UE specific", 3GPP TSG-RAN WG2#70BIS R2- 103795, 22 June 2010 (2010-06-22), XP050451235, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg-ran/WG2-RL2/TSGR2-70bis/Docs/R2-103795.zip> [retrieved on 20170807] *
SONY: "Considerations on ProSe Relays Selection", 3GPP TSG-SA WG2#105, 8 October 2014 (2014-10-08), pages 2 - 143134, XP050890993, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_sa/WG2Arch/TSGS2_105Sapporo/Docs/S2-143134.zip> [retrieved on 20170807] *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3745611A1 (en) * 2019-05-29 2020-12-02 Wilson Electronics, LLC Multiplex time division duplex (tdd) sync detection module
CN113994603A (zh) * 2019-06-17 2022-01-28 高通股份有限公司 侧链路tx功率控制
WO2021030131A1 (en) * 2019-08-15 2021-02-18 Qualcomm Incorporated Sidelink coordination for power control
US11601893B2 (en) 2019-08-15 2023-03-07 Qualcomm Incorporated Sidelink coordination for power control
WO2021077303A1 (zh) * 2019-10-22 2021-04-29 Oppo广东移动通信有限公司 无线通信方法和终端设备
CN111601360A (zh) * 2020-05-22 2020-08-28 电子科技大学 一种毫米波通信系统中的中继选择方法
CN111601360B (zh) * 2020-05-22 2022-08-02 电子科技大学 一种毫米波通信系统中的中继选择方法

Also Published As

Publication number Publication date
US20200008127A1 (en) 2020-01-02
US11122493B2 (en) 2021-09-14
JPWO2018105158A1 (ja) 2019-10-24
JP6933225B2 (ja) 2021-09-08

Similar Documents

Publication Publication Date Title
JP6933225B2 (ja) リレー選択のための装置及び方法
US11800599B2 (en) Method for discovering and selecting relay user equipment in communication system
KR102375747B1 (ko) Bwp 내의 참조 신호를 이용하여 rsrq를 측정하는 방법 및 이를 수행하는 단말
WO2017130593A1 (ja) リレー選択のための装置及び方法
JP6673350B2 (ja) リレー選択のための装置及び方法
US10104694B2 (en) Method and apparatus for controlling traffic steering in wireless communication system
US10531504B2 (en) Base station and scheduling method
JPWO2019092944A1 (ja) gNB−DU、gNB−CU、及びこれらの方法
US20200296745A1 (en) Apparatus and method for resource scheduling related to device-to-device communication
US11071119B2 (en) Apparatus for controlling device-to-device communication, base station, radio terminal, and method therefor
WO2018009462A1 (en) Uplink beamforming and beam management
US11012168B2 (en) Apparatus, method and non-transitory computer readable medium storing program, for wireless communication
JP6869955B2 (ja) 端末がwlan測定を実行する方法及び装置
JP6769811B2 (ja) 通信システム
JP2022501913A (ja) 無線通信ネットワークにおけるユーザ装置、ネットワークノード、および方法
US11910356B2 (en) Coverage-level-based paging carrier selection techniques
EP4268483A1 (en) Terminal device, network node, and methods therein for measurement reporting
KR20140105357A (ko) 무선랜 연결 상태 관리를 위한 방법 및 장치
WO2017187713A1 (ja) 無線通信のための装置および方法
WO2016163268A1 (ja) ユーザ端末及び移動通信方法
US11012821B2 (en) Radio terminal apparatus and method therefor
JP6696504B2 (ja) 無線端末装置、ネットワークノード、及び方法
KR20180058339A (ko) 무선 광대역 네트워크와 무선 로컬 영역 네트워크가 병합된 통신 시스템에서 측정을 수행하기 위한 방법 및 장치
JP2024515868A (ja) 信号転送方法および通信装置
KR20230138469A (ko) 무선 통신을 위한 스위치-온에서의 퍼블릭 랜드 모바일네트워크 검색의 개선

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554811

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879209

Country of ref document: EP

Kind code of ref document: A1