WO2017130593A1 - リレー選択のための装置及び方法 - Google Patents

リレー選択のための装置及び方法 Download PDF

Info

Publication number
WO2017130593A1
WO2017130593A1 PCT/JP2016/087341 JP2016087341W WO2017130593A1 WO 2017130593 A1 WO2017130593 A1 WO 2017130593A1 JP 2016087341 W JP2016087341 W JP 2016087341W WO 2017130593 A1 WO2017130593 A1 WO 2017130593A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
terminal
remote
base station
quality
Prior art date
Application number
PCT/JP2016/087341
Other languages
English (en)
French (fr)
Inventor
太一 大辻
一志 村岡
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017563736A priority Critical patent/JPWO2017130593A1/ja
Priority to US16/071,924 priority patent/US20190036595A1/en
Publication of WO2017130593A1 publication Critical patent/WO2017130593A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This disclosure relates to direct communication between devices (device-to-device (D2D) communication), and more particularly to selection of a relay terminal.
  • D2D device-to-device
  • the wireless terminal is configured to communicate directly with other wireless terminals. Such communication is called device-to-device (D2D) communication.
  • D2D communication includes at least one of direct communication and direct discovery.
  • a plurality of wireless terminals that support D2D communication form a D2D communication group autonomously or according to a network instruction, and communicate with other wireless terminals in the D2D communication group.
  • ProSe Proximity-based services
  • ProSe discovery ProSe discovery
  • ProSe direct communication ProSe discovery enables the detection of proximity of wireless terminals (in proximity).
  • ProSe discovery includes direct discovery (ProSe Direct Discovery) and network level discovery (EPC-level ProSe Discovery).
  • ProSe direct discovery is a wireless communication technology (for example, Evolved Universal Terrestrial Radio Access (E) where a wireless terminal capable of executing ProSe (ProSe-enabled User Equipment (UE)) has two other ProSe-enabled UEs. -UTRA) It is performed by the procedure to discover using only the ability of (technology).
  • EPC-level ProSe Discovery the core network (Evolved Packet Packet Core (EPC)) determines the proximity of two ProSe-enabled UEs and informs these UEs of this.
  • ProSe direct discovery may be performed by more than two ProSe-enabled UEs.
  • ProSe direct communication enables establishment of a communication path between two or more ProSe-enabled UEs existing in the direct communication range after the ProSe discovery procedure.
  • ProSe-direct communication is directly connected to other ProSe-enabled UEs without going through the public land mobile communication network (Public Land Mobile Mobile Network (PLMN)) including the base station (eNodeB). Allows to communicate.
  • ProSe direct communication may be performed using the same wireless communication technology (E-UTRA technology) as that used to access the base station (eNodeB), or wireless local area network (WLAN) wireless technology (ie, IEEE 802.11 (radio technology) may be used.
  • E-UTRA technology wireless communication technology
  • WLAN wireless local area network
  • ProSe direct discovery and ProSe direct communication are performed at the direct interface between UEs.
  • the direct interface is called a PC5 interface or sidelink. That is, ProSe direct discovery and ProSe direct communication are examples of D2D communication. Note that D2D communication can also be called side link communication, and can also be called peer-to-peer communication.
  • ProSe function communicates with ProSe-enabled UE via the public land mobile communication network (PLMN) to support ProSe discovery and ProSe direct communication (assist).
  • ProSe function is a logical function used for operations related to PLMN necessary for ProSe.
  • the functionality provided by ProSe function is, for example, (a) communication with third-party applications (ProSe Application Server), (b) UE authentication for ProSe discovery and ProSe direct communication, (c) ProSe Including transmission of setting information (for example, EPC-ProSe-User ID) for discovery and ProSe direct communication to the UE, and (d) provision of network level discovery (ie, EPC-level ProSe discovery).
  • ProSe function may be implemented in one or more network nodes or entities. In this specification, one or a plurality of network nodes or entities that execute a ProSe function are referred to as “ProSe function functions” or “ProSe function servers”.
  • 3GPP Release 12 specifies a partial coverage scenario in which one UE is outside the network coverage and the other UE is within the network coverage (for example, Sections 4.4.3 and 4.5 of Non-Patent Document 1). See 4 and 5.4.4).
  • UEs that are out of coverage are called remote UEs
  • UEs that are in coverage and relay between remote UEs and networks are called ProSe UE-to-Network Relays.
  • ProSe UE-to-Network Relay relays traffic (downlink and uplink) between remote UE and network (E-UTRA network (E-UTRAN) and EPC).
  • ProSe UE-to-Network Relay attaches to the network as a UE, establishes a PDN connection to communicate with a ProSe function ⁇ ⁇ entity or other packet Data Network (PDN), and performs ProSe direct communication. Communicate with the ProSe function entity to get started.
  • ProSe UE-to-Network Relay further performs a discovery procedure with remote UE, communicates with remote UE on the direct inter-UE interface (eg, side link or PC5 interface), and between remote UE and network To relay traffic (downlink and uplink).
  • IPv4 Internet Protocol Version 4
  • DHCPv4 Dynamic Host Configuration Configuration Protocol Version 4
  • NAT Network Address Translation
  • IPv6 IPv6
  • ProSe UE-to-UE Relay is a UE that relays traffic between two remote UEs.
  • the distributed relay selection architecture (see, for example, Non-Patent Documents 3-5, 7, and 8) in which the remote UE performs relay selection, and the base station (
  • a centralized relay selection architecture (for example, see Non-Patent Documents 6 and 7) in which elements in a network such as eNodeB (eNB)) perform relay selection
  • the UE-to-Network Relay selection criteria consider the D2D link quality between the remote UE and the relay UE, the backhaul link quality between the relay UE and the eNB, and the D2D link quality and It has been proposed to consider both backhaul link quality (see, for example, Non-Patent Documents 3-8).
  • Non-Patent Document 3-5 describes that both the D2D link quality and the backhaul link quality are considered in distributed relay selection.
  • the remote UE considers both D2D link quality and backhaul link quality using the evaluation formula w * D2D link quality + (1-w) * backhaul link quality, where w is preset It is a constant (see Non-Patent Document 3).
  • the relay UE transmits a discovery message indicating the radio quality of the backhaul link (between the relay UE and the eNB) in order to assist the relay selection by the remote UE (see Non-Patent Document 4). .
  • the relay UE may implicitly indicate the radio quality of the backhaul link to the remote UE in order to assist the relay selection by the remote UE.
  • the radio quality of the backhaul link for example, priority information in the discovery signal is used (see Non-Patent Document 5).
  • Non-Patent Document 6 describes that both D2D link quality and backhaul link quality are considered in centralized relay selection.
  • the remote UE reports the D2D link quality to the eNB, and the eNB selects a relay for the remote UE taking into account the reported D2D link quality and (reported) backhaul link quality.
  • the backhaul link quality may be obtained by measurement by an eNB or measurement report by a relay UE in an existing cellular network.
  • the eNB selects one or a plurality of relay UEs in consideration of the backhaul link quality. Only these relay candidate UEs can be discovered by the remote UE in the relay discovery procedure.
  • the remote UE selects a relay from one or more relay candidates based on the D2D link quality. Since the backhaul link quality is taken into account when selecting relay candidates by the eNB, it is therefore also indirectly taken into account by the relay selection by the remote UE.
  • a radio terminal having D2D communication capability and relay capability such as ProSe UE-to-Network Relay and ProSe UE-to-UE Relay is referred to as a "relay radio terminal” or “relay UE”.
  • a wireless terminal that receives a relay service by the relay UE is referred to as a “remote wireless terminal” or “remote UE”.
  • 3GPP TS 23.303 V13.2.0 (2015-12), “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Proximity-based services (ProSe); Stage 2 (Release 13) '', December 2015 3GPP TR 23.713 V13.0.0 (2015-09), “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on extended architecture support for proximity-based services (Release 13) '', September 3GPP® R1-152778, “Support of UE-Network relays”, Qualcomm Incorporated, May 2015 3GPP S2-150925, “UE-to-Network Relay conclusions”, Qualcomm Incorporated, April 2015 3GPP R1-153087, “Discussion on UE-to-Network Relay measurement”, Sony, May 2015 3GPP R2-152560, “Role of eNB when remote UE is in coverage”, Qualcomm Incorporated, May 2015 3GPP R1-151965, “Views on UE-to-Network
  • the inventors have examined relay selection, found some problems including the three problems specifically shown below, and devised some improvements to deal with these problems.
  • Non-Patent Documents 3-8 describe that either or both of the D2D link quality and the backhaul link quality are considered in relay selection for the remote UE.
  • Non-Patent Document 3 shows downlink (DL) Reference Signal Received Power (RSRP) and DL Signal-to-Interference plus Noise Ratio (SINR) as specific examples of backhaul link quality.
  • RSRP Reference Signal Received Power
  • SINR DL Signal-to-Interference plus Noise Ratio
  • Non-Patent Documents 3-8 do not specify that the quality of uplink transmission from the relay UE to the eNB is considered in the relay selection.
  • Multiple relay UEs may have different uplink transmission capabilities (e.g., maximum transmission power).
  • LTE ProSe defines a high power UE for public safety.
  • the high power UE uses EUTRA Band 14 and has a maximum transmission power of 31 dBm or 33 dBm.
  • a high power UE may be able to provide better uplink throughput than a UE with normal power (i.e., maximum transmission power 23 dBm).
  • the DL quality eg, DL RSRP, DL Signal Received Quality (RSRQ), DL SINR
  • the high-power UE should be preferentially selected for the remote UE. It is difficult.
  • Non-Patent Documents 3-8 do not describe that the load of the relay UE is taken into account in relay selection.
  • the relay UE connects to a plurality of remote UEs and relays data of the plurality of remote UEs.
  • the effective throughput that the relay UE can provide to each remote UE is considered to decrease. Therefore, there is a possibility that the optimum relay UE for the remote UE cannot be selected only by considering the radio quality of the backhaul link and the D2D radio quality in relay selection.
  • Non-Patent Documents 1-8 describe that the remote UE performs relay selection.
  • the remote UE and the relay UE may be more effective for the network (eg, eNB, ProSe function) to perform relay selection than the relay selection by the remote UE. Absent.
  • the network eg, eNB, ProSe function
  • a control procedure is required to arbitrate which of these two relay selection functions is enabled.
  • one of the objects to be achieved by the embodiments disclosed herein is to provide an apparatus, a method, and a program that contribute to facilitating relay selection considering the load of the relay UE. It is. It should be noted that this object is only one of the objects that the embodiments disclosed herein intend to achieve. Other objects or problems and novel features will become apparent from the description of the present specification or the accompanying drawings.
  • the relay selection device includes a memory and at least one processor coupled to the memory.
  • the at least one processor connects at least one specific relay terminal suitable for the first remote terminal to one or more relay terminals connected to or in communication with each relay terminal. It is configured to select in consideration of.
  • Each specific relay terminal is over a device-to-device (D2D) link between each specific relay terminal and the first remote terminal and a backhaul link between each specific relay terminal and the base station. Then, traffic is relayed between the first remote terminal and the base station.
  • D2D device-to-device
  • the relay selection method includes connecting at least one specific relay terminal suitable for the first remote terminal to or from each relay terminal among one or more relay terminals. Including selecting in consideration of the number of remote terminals.
  • each specific relay terminal is a device-to-device (D2D) link between each specific relay terminal and the first remote terminal and a backhaul between each specific relay terminal and the base station. Traffic is relayed between the first remote terminal and the base station via a link.
  • D2D device-to-device
  • the program includes a group of instructions (software code) for causing the computer to perform the method according to the second aspect described above when read by the computer.
  • the plurality of embodiments described below can be implemented independently or in appropriate combinations.
  • the plurality of embodiments have different novel features. Therefore, these multiple embodiments contribute to solving different purposes or problems and contribute to producing different effects.
  • FIG. 1 shows a configuration example of a wireless communication network according to some embodiments including this embodiment.
  • FIG. 1 shows an example related to UE-to-Network Relay. That is, the remote UE 1 has at least one radio transceiver, and D2D communication (eg, ProSe direct discovery and ProSe direct communication) with one or more relay UEs 2 on the D2D link 102 (eg, PC5 interface or side link). Is configured to do.
  • the remote UE 1 is configured to perform cellular communication within the cellular coverage 31 provided by one or a plurality of base stations 3.
  • the relay UE2 has at least one wireless transceiver, performs cellular communication on the cellular link 101 with the base station 3 in the cellular coverage 31, and performs D2D communication with the remote UE1 on the D2D link 102 (eg, ProSe direct discovery). And ProSe direct communication).
  • the base station 3 is an entity arranged in a radio access network (ie, E-UTRAN), provides a cellular coverage 31 including one or more cells, and uses cellular communication technology (eg, E-UTRA technology). Can be used to communicate with the relay UE2 in the cellular link 101. Furthermore, the base station 3 is configured to perform cellular communication with the remote UE 1 when the remote UE 1 is in the cellular coverage 31.
  • E-UTRAN radio access network
  • E-UTRA technology eg, E-UTRA technology
  • EPC 4 consists of multiple user plane entities (eg, Serving Gateway (S-GW) and Packet Data Gateway Network (P-GW)), and multiple control plane entities (Eg, Mobility Management Management Entity (MME) and Home Subscriber Server (HSS)).
  • S-GW Serving Gateway
  • P-GW Packet Data Gateway Network
  • MME Mobility Management Management Entity
  • HSS Home Subscriber Server
  • the plurality of user plane entities relay user data of the remote UE 1 and the relay UE 2 between the radio access network including the base station 3 and the external network.
  • the plurality of control plane entities perform various controls including mobility management, session management (bearer management), subscriber information management, and charging management of the remote UE1 and the relay UE2.
  • the remote UE 1 and the relay UE 2 are configured to communicate with the D2D controller 5 via the base station 3 and the core network 4 in order to use the proximity service (e.g., 3GPP ProSe).
  • the D2D controller 5 corresponds to a ProSe function entity.
  • the remote UE1 and the relay UE2 may use, for example, network level discovery (eg, EPC-level ProSe Discovery) provided by the D2D controller 5, or D2D communication (eg, ProSe direct discovery and ProSe direct communication).
  • the relay UE2 operates as a UE-to-Network Relay, and provides the relay operation between the remote UE1 and the cellular network (the base station 3 and the core network 4) to the remote UE1.
  • the relay UE2 relays the data flow (traffic) related to the remote UE1 between the remote UE1 and the cellular network (base station 3 and core network 4).
  • remote UE1 can communicate with the node 7 in the external network 6 via relay UE2 and a cellular network (base station 3 and core network 4).
  • the remote UE 1 is located outside the cellular coverage 31 (out-of-coverage). However, as already mentioned, the remote UE 1 may be located in the cellular coverage 31. In some implementations, if the remote UE1 cannot connect to the cellular network (base station 3 and core network 4) based on some condition (eg, selection by the user), D2D communication (eg, direct communication) with the relay UE2 ) May be performed. In some implementations, the remote UE 1 may further perform D2D communication with the relay UE 2 while performing cellular communication directly with the base station 3 within the coverage 31 of the base station 3.
  • D2D communication eg, direct communication
  • the remote UE 1 uses either direct cellular communication (referred to as a direct path) with the base station 3 or D2D communication (referred to as a relay path) with any relay UE 2. You may choose.
  • the remote UE 1 may voluntarily switch between the direct path and the relay path, or may perform this in accordance with instructions from the network (e.g., base station 3, D2D controller 5).
  • relay discovery for discovering a relay UE2 that can be used by the remote UE1, and at least one specific relay UE suitable for the remote UE1 among the one or more discovered relays UE2.
  • the relay selection to select is required.
  • Each relay UE2 before relay selection is performed can also be called a relay UE candidate.
  • relay selection is performed by the remote UE 1 in some implementations (ie, distributed relay selection), and in other implementations by network elements such as the base station 3 or the D2D controller 5 ( ie, izedcentralized relay selection).
  • FIG. 2 shows an example of a procedure (process 200) involving distributed relay selection.
  • the remote UE1 and the relay UE2 execute a relay discovery procedure for the remote UE1 to discover the relay UE2 as UE-to-Network Relay or UE-to-UE Relay.
  • the relay UE2 may transmit a discovery signal
  • the remote UE1 may discover the relay UE2 by detecting the discovery signal from the relay UE2.
  • the remote UE1 transmits a discovery signal indicating that it wants to relay
  • the relay UE2 transmits a response message to the discovery signal to the remote UE1.
  • the remote UE1 may discover the relay UE2 by receiving a response message from the relay UE2.
  • step 202 the remote UE1 selects at least one specific relay UE2 appropriate from the one or more relays UE2 discovered in step 201. Details of the relay selection procedure according to this embodiment will be described later.
  • the remote UE1 establishes a connection for one-to-one D2D communication (direct communication) with one of the selected at least one specific relay UE.
  • the remote UE1 may transmit a direct communication request (or relay request) to the relay UE2.
  • the relay UE2 may start a procedure for mutual authentication in response to receiving the direct communication request (or relay request).
  • FIG. 3 shows an example of centralized relay selection (processing 300).
  • the remote UE1 and the relay UE2 execute a relay discovery procedure for the remote UE1 to discover the relay UE2 as UE-to-Network Relay or UE-to-UE Relay. To do.
  • the remote UE 1 transmits a measurement report to the base station 3.
  • the measurement report relates to one or more relay UEs 2 discovered in step 301 and includes, for example, D2D link quality (between the remote UE 1 and the relay UE 2).
  • the D2D link quality may include, for example, at least one of received power, signal-to-interference plus noise ratio (SINR), and data rate (or throughput).
  • the measurement report may include the cellular link quality between the remote UE 1 and the base station 3 as in the existing measurement report.
  • the measurement report may include backhaul link quality (between base station 3 and relay UE2).
  • step 303 the base station 3 selects an appropriate at least one specific relay UE2 from one or a plurality of relays UE2 discovered by the remote UE1. Details of the relay selection procedure according to this embodiment will be described later.
  • step 304 the base station 3 instructs the remote UE1 to connect to the selected specific relay UE2.
  • step 305 the remote UE 1 establishes a connection for one-to-one D2D communication (direct communication) with a specific relay UE according to the instruction from the base station 3.
  • the relay selection (step 303) may be performed by another network element different from the base station 3, for example, the D2D controller 5.
  • FIG. 4 is a flowchart showing an example (process 400) of a relay selection procedure performed by the relay selection entity (e.g., remote UE1, base station 3, or D2D controller 5) according to the present embodiment.
  • the relay selection entity obtains the uplink quality of each of one or more relays UE2.
  • the uplink quality of each relay UE2 means the quality of uplink transmission from each relay UE2 to the base station 3.
  • the uplink quality of each relay UE2 may be an estimated throughput of uplink transmission.
  • the estimated throughput may be calculated by each relay UE2 and sent from each relay UE2 to the relay selection entity.
  • the estimated throughput may be calculated by the relay selection entity using information received from each relay UE2. For example, the relay selection entity is assigned to each relay UE2, the maximum transmission power of each relay UE2, the downlink path loss between each relay UE2 and the base station 3, and each relay UE2 in order to estimate the uplink quality of each relay UE.
  • Uplink radio resources per unit time may be received from each relay UE2.
  • the uplink quality of each relay UE2 may be a Modulation and Coding Scheme (MCS) applied to the uplink transmission of each relay UE2.
  • MCS Modulation and Coding Scheme
  • the relay selection entity may acquire the uplink MCS applied to each relay UE2 from each relay UE2 or the base station 3. Instead, the relay selection entity includes the uplink MCS applied to the remote UE 1, the uplink radio resource allocated to the remote UE 1 per unit time, the maximum transmission power of each relay UE 2, and the downlink power of each relay UE 2.
  • the uplink MCS applied to each relay UE2 may be estimated using path loss or the like.
  • the uplink quality of each relay UE2 may be the uplink MCS itself applied to each relay UE2.
  • the uplink MCS applied to each relay UE2 may be an estimated value obtained by the relay selection entity.
  • the uplink throughput of each relay UE2 can be estimated from the uplink MCS applied to each relay UE2 and the uplink radio resource per unit time. Therefore, the uplink MCS applied to each relay UE2 is closely related to the uplink throughput of each relay UE2.
  • the uplink quality of each relay UE2 may be the uplink transmission power of each relay UE2 after transmission power control.
  • the SINR (uplink SINR) of the uplink signal from each relay UE2 in the base station 3 depends on the magnitude of the uplink transmission power of each relay UE2. Therefore, the uplink transmission power of each relay UE2 is closely related to the uplink throughput of each relay UE2.
  • the uplink quality of each relay UE2 may be power class information representing the maximum transmission power of each relay UE2.
  • LTE ProSe defines a high power UE with a maximum transmission power of 31 dBm or 33 dBm for public safety.
  • a high output UE having a maximum transmission power of 31 dBm or 33 dBm is distinguished from a normal UE having a maximum transmission power of 23 dBm and a UE power class.
  • the UE power class of the high-power UE is “class 1”, and the high-power UE is also called a class 1 UE or a class 1 device.
  • the UE power class of the normal UE is “class 3”, and the normal UE is also called a class 3 UE or a class 3 device.
  • High power UEs can be expected to provide better uplink throughput than UEs with normal power (i.e., maximum transmission power 23 dBm). Therefore, the relay selection entity may obtain the power class information of each relay UE2 and use the power class information of each relay UE2 for relay selection.
  • the relay selection entity selects at least one specific relay UE2 suitable for the remote UE1, considering the uplink quality of each relay UE2.
  • the relay selection entity may select at least one relay UE2 having a relatively high uplink quality among the one or more relays UE2 as a specific relay UE2 for the remote UE1.
  • the uplink quality of each relay UE2 may be (estimated) uplink throughput, (estimated) uplink MCS, maximum transmit power, or UE power class.
  • FIG. 5 is a sequence diagram showing an example (process 500) of relay selection by the remote UE1.
  • each relay UE2 notifies selection UE (selection assistance information) to the remote UE1.
  • Each relay UE2 may transmit selection assistance information in a relay discovery procedure (e.g., step 201 in FIG. 2).
  • each relay UE 2 may transmit a discovery signal including selection assistance information according to a so-called announcement model (model A).
  • model A announcement model
  • remote UE1 can detect each relay UE2 by detecting a discovery signal, and can receive the selection assistance information of the said relay UE2.
  • the selected assistance information includes uplink quality information of each relay UE2.
  • Remote UE1 calculates
  • the selection assistance information may indicate the uplink throughput estimated by each relay UE2. Further or alternatively, the selection assistance information may indicate the maximum transmission power of each relay UE2 or the power class of each relay UE2.
  • the selection assistance information may include the downlink path loss of each relay UE2, the uplink MCS of each relay UE2, or the uplink radio resource per unit time allocated to each relay UE2, or any of these Combinations may be included.
  • the remote UE1 estimates the uplink quality of each relay UE2 using the selection assistance information received from each relay UE2, and performs relay selection in consideration of the estimated uplink quality of each relay UE2.
  • each relay UE2 must frequently transmit a radio signal (eg, discovery signal) in order to inform the remote UE1 of the selected assistance information, and thus the power consumption of each relay UE2 may increase. unknown.
  • the relay selection procedure (process 600) shown in FIG. 6 may be employed.
  • the remote UE1 transmits a radio signal including a transmission request for selection assistance information.
  • each relay UE2 transmits a radio signal including the selected assistance information to the remote UE1 in response to receiving the transmission request.
  • the remote UE 1 transmits a discovery signal including a transmission request for selection assistance information, and each relay UE 2 includes selection assistance information.
  • a response signal may be transmitted to the remote UE1.
  • remote UE1 can receive the selection assistance information of the said relay UE2, while discovering each relay UE2 by detecting a response signal.
  • step 603 is the same as the processing in step 502 in FIG. That is, remote UE1 estimates the uplink quality of each relay UE2 using the selection assistance information received from each relay UE2, and performs relay selection in consideration of the estimated uplink quality of each relay UE2.
  • the remote UE1 as a relay selection entity may use the following parameters to estimate the uplink quality (eg, uplink throughput, uplink MCS) of each relay UE2: (A) Uplink transmission power of remote UE1; (B) Downlink path loss between the base station 3 and the remote UE 1; (C) MCS (uplink MCS) applied to uplink transmission of remote UE1; (D) Maximum transmission power of each relay UE2; and (e) Downlink path loss between the base station 3 and each relay UE2.
  • uplink quality eg, uplink throughput, uplink MCS
  • the remote UE 1 may estimate the uplink throughput or uplink MCS of each relay UE 2 according to the following first or second procedure using these parameters.
  • the remote UE 1 uses the uplink transmission power (a) of the remote UE 1 and the downlink path loss (b) between the base station 3 and the remote UE 1 to determine the base of the uplink signal from the remote UE 1.
  • the received power at the station 3 (referred to as first received power) is estimated.
  • the remote UE1 calculates an estimated value of interference and noise power (interference and noise power) in the base station 3 based on the first received power and the uplink MCS (c) of the remote UE1.
  • the uplink scheduler of the base station 3 uses an Adaptive Modulation Coding (AMC) table in order to select an optimal uplink MCS from the viewpoint of uplink throughput.
  • AMC table is a lookup table that returns an estimated block error rate (BLER) of each MCS when a received SINR (uplink SINR) at the base station 3 is input.
  • the base station 3 calculates the received SINR of the uplink signal from the remote UE 1, and obtains the estimated BLER of each MCS by inputting the calculated SINR into the AMC table, and the estimated BLER of each MCS and Based on the transport block size of each MCS (Transport Block ⁇ Size (TBS)), the expected instantaneous throughput per TTT (expected instantaneous put pre TTI) is calculated. Then, the base station 3 selects the MCS that maximizes the instantaneous throughput under the constraint that the estimated BLER is equal to or less than the required BLER (required BLER).
  • TSS Transport Block ⁇ Size
  • the remote UE1 maintains an AMC table used for the base station 3 MCS selection algorithm, and estimates the uplink SINR that the uplink MCS (c) of the remote UE1 will yield the maximum instantaneous throughput.
  • Interference and noise power may be derived from the estimated uplink SINR and the first received power described above.
  • the remote UE 1 uses (d) and the downlink path loss (e) of each relay UE 2 to receive the received power (second received power) of the uplink signal from each relay UE 2 in the base station 3. Called).
  • the remote UE 1 determines the uplink signal from each relay UE 2 based on the interference and noise power estimates obtained in the second step and the second received power obtained in the third step.
  • the estimated value of SINR at the base station 3 is obtained.
  • the remote UE 1 estimates the uplink throughput or the uplink MCS of each relay UE 2 based on the estimated value of SINR obtained in the fourth step.
  • BW is an uplink communication band that can be used by the relay UE2.
  • the BW may be based on uplink radio resources (eg, bandwidth, number of resource blocks) allocated to the remote UE 1 per unit time.
  • the remote UE 1 estimates the uplink MCS of each relay UE 2 from the estimated value of SINR obtained in the fourth step, based on the same AMC table as that of the base station 3. May be.
  • the remote UE1 may multiply the uplink MCS of each relay UE2 by the uplink radio resource per unit time of the remote UE1 or each relay UE2, thereby further estimating the uplink throughput of each relay UE2.
  • the first step of the second procedure is the same as the first step of the first procedure described above. That is, in the first step, the remote UE 1 uses the uplink transmission power (a) of the remote UE 1 and the downlink path loss (b) between the base station 3 and the remote UE 1 to use the uplink signal from the remote UE 1.
  • the received power at the base station 3 (referred to as first received power) is estimated.
  • the second step of the second procedure is the same as the third step of the first procedure described above. That is, the remote UE 1 uses (d) and the downlink path loss (e) of each relay UE 2 to receive the uplink signal from each relay UE 2 at the base station 3 (referred to as second received power). Is estimated.
  • the remote UE1 corrects (adjusts) the uplink MCS of the remote UE1 according to the difference (difference) between the first received power and the second received power, thereby estimating the uplink uplink of each relay UE2.
  • the remote UE1 increases the estimated uplink MCS of each relay UE2 by increasing the remote UE1. Determine the same value as the link MCS.
  • increasing MCS here means adopting a higher modulation scheme (a modulation scheme having a smaller inter-symbol distance) or a higher coding rate (a smaller number of redundant bits). ) Or both.
  • the remote UE1 multiplies the uplink radio resource per unit time of the remote UE1 or each relay UE2 by the uplink MCS of each relay UE2 obtained in the third step, thereby further estimating the uplink throughput of each relay UE2. May be.
  • the relay selection entity determines the uplink quality of each relay UE2 in the relay selection for remote UE1.
  • the relay selection entity can select, for example, a relay UE2 that can provide good uplink throughput to the remote UE1 for the remote UE1.
  • Such a relay selection procedure based on the uplink throughput of the backhaul is particularly effective when the uplink transmission capabilities (e.g., maximum transmission power) of the plurality of relay UEs 2 are different from each other.
  • the relay selection entity determines the D2D link quality between the remote UE1 and each relay UE2 in the relay selection for the remote UE1.
  • the D2D link quality may include, for example, at least one of the reception power, SINR, and data rate (or throughput) of the radio signal (e.g., discovery signal) from each relay UE2 measured by the remote UE1.
  • the measurement report may include the cellular link quality between the remote UE 1 and the base station 3 as in the existing measurement report.
  • the measurement report may include backhaul link quality (between base station 3 and relay UE2).
  • the relay selection entity may use the following equation (2) for evaluating the communication quality Q of each relay UE2:
  • Q w * D2D link quality + (1-w) * backhaul link quality (2),
  • w is a preset constant.
  • backhaul link quality” in Equation (2) includes uplink quality.
  • Backhaul link quality” in Equation (2) may further include downlink quality.
  • the relay selection entity may use the following equation (3) for evaluating the communication quality Q of each relay UE2:
  • Q MIN (D2D link quality, backhaul link quality) (3),
  • the MIN function is a function that returns the minimum value of a plurality of arguments.
  • FIG. 7 is a flowchart showing an example of a relay selection procedure (process 700) performed by the relay selection entity (e.g., remote UE1, base station 3, or D2D controller 5) according to the present embodiment.
  • the processing in step 701 is the same as the processing in step 401 in FIG. That is, the relay selection entity obtains the uplink quality of each of one or more relay UE2.
  • the relay selection entity obtains the D2D link quality between each relay UE2 and remote UE1.
  • the relay selection entity selects at least one specific relay UE2 suitable for the remote UE1, considering both the uplink quality and D2D link quality of each relay UE2.
  • the relay selection entity selects one or a plurality of relays UE2 whose communication quality Q calculated based on the above formula (2) or formula (3) is equal to or greater than a predetermined threshold as a specific relay UE2 for the remote UE1. You may choose.
  • the relay selection entity determines the uplink quality of each relay UE2 in the relay selection for remote UE1. And consider D2D link quality. Thereby, in relay selection for remote UE1, for example, the priority of relay UE2 that can provide good uplink quality but can provide only relatively low D2D link quality compared to other relay UE2 can be lowered. .
  • the relay selection entity eg, remote UE1, base station 3, or D2D controller 5
  • the relay selection entity considers the load of each relay UE2 in the relay selection for the remote UE1.
  • the load of each relay UE2 may be the number of remote UE1 connected to each relay UE2 (or communicating with each relay UE2).
  • the relay selection entity may preferentially select for the remote UE 1 as the relay UE 2 has a smaller number of connected or communicating remote UEs 1. Thereby, the relay selection entity can select the relay UE2 that can provide higher effective throughput to the new remote UE1 for the remote UE1.
  • the relay selection entity further considers the number of remote UEs 1 connected to (or communicating with) each relay UE 2 when evaluating the D2D link quality of each relay UE 2. May be. Additionally or alternatively, the relay selection entity evaluates the backhaul link quality of each relay UE2 to determine the number of remote UE1s connected to (or in communication with) each relay UE2. Further consideration may be given.
  • the backhaul link quality may be uplink quality or downlink quality or both.
  • the relay selection entity may evaluate the D2D link quality of each relay UE2 that can be enjoyed by one new remote UE1 by dividing the D2D link quality of each relay UE2 by a divisor (N + 1).
  • N represents the number of remote UEs 1 connected to each relay UE 2 (or communicating with each relay UE 2).
  • the relay selection entity evaluates the backhaul link quality of each relay UE2 that can be enjoyed by a new remote UE1 by dividing the backhaul link quality of each relay UE2 by the divisor (N + 1). Good.
  • FIG. 8 is a flowchart showing an example (process 800) of the relay selection procedure performed by the relay selection entity (e.g., remote UE1, base station 3, or D2D controller 5) according to this embodiment.
  • the relay selection entity obtains the number of remote UEs 1 connected to each relay UE 2 (or communicating with each relay UE 2).
  • the remote UE 1 as a relay selection entity may receive selection assistance information indicating the number of remote UEs 1 connected or communicating with each relay UE 2 on the D2D link 102.
  • the relay selection entity considers the number of remote UE1 connected to (or in communication with) each relay UE2, and determines at least one specific relay UE2 suitable for the remote UE1. select.
  • FIG. 9 is a flowchart showing another example (process 900) of the relay selection procedure performed by the relay selection entity according to the present embodiment.
  • the processing in step 901 is the same as the processing in step 801 in FIG.
  • the processing in step 902 is the same as the processing in step 401 in FIG. That is, the relay selection entity obtains the uplink quality of each of one or more relay UE2.
  • the relay selection entity may simultaneously acquire the number of remote UEs 1 (step 901) and the uplink quality (step 902).
  • the remote UE 1 as a relay selection entity may receive selection assistance information indicating both the number of remote UEs 1 and the uplink quality from each relay UE 2 on the D2D link 102.
  • the relay selection entity selects at least one specific relay UE2 suitable for the remote UE1, considering both the number of remote UE1 and the uplink quality of each relay UE2.
  • the relay selection entity divides the uplink quality of each relay UE2 by the divisor (N + 1) to obtain the backhaul link quality of each relay UE2 that can be enjoyed by a new remote UE1. You may evaluate.
  • the relay selection entity (eg, remote UE 1, base station 3, or D2D controller 5) further takes into account the quality of the direct radio link between the remote UE 1 and the base station 3. Which relay path via the relay UE2 or a direct radio link is used for communication of the remote UE1. Specifically, the relay selection entity is directly connected when the quality of the direct radio link (eg, estimated throughput) is higher than the quality of the relay path (eg, estimated throughput) via any relay UE2. You may decide to use a radio link for communication of remote UE1. Thereby, an optimal path
  • FIG. 10 is a flowchart showing an example (process 1000) of a relay selection procedure performed by the relay selection entity (e.g., remote UE1, base station 3, or D2D controller 5) according to the present embodiment.
  • the relay selection entity obtains the throughput of each relay path.
  • the throughput of the relay path may be the estimated throughput of the D2D link, the estimated throughput of the backhaul link (uplink or downlink or both), or a combination thereof.
  • the relay selection entity obtains the throughput of the direct radio link (direct path) between the remote UE and the base station 3.
  • the direct path throughput may be uplink or downlink throughput or both.
  • the relay selection entity determines whether to use the relay path or the direct path for the remote UE 1 in consideration of the relay path throughput and the direct path throughput. Specifically, the relay selection entity may compare between the estimated throughput of one or more relay paths and the estimated throughput of the direct path and select the path corresponding to the best estimated throughput for the remote UE1.
  • the remote UE 1 can communicate with a plurality of relay UEs 2 simultaneously using a plurality of D2D links.
  • the relay selection entity e.g., remote UE1, base station 3, or D2D controller 5 selects a plurality of specific relay UE2s for remote UE1 in order to achieve the required throughput of remote UE1.
  • the relay selection entity may select two or more paths for the remote UE 1 from among a plurality of paths including one or a plurality of relay paths and a direct path between the remote UE and the base station 3. Thereby, when the throughput of each path is less than the required throughput of the remote UE 1, the required throughput can be achieved by using a plurality of paths simultaneously.
  • FIG. 11 is a flowchart showing an example of a relay selection procedure (processing 1100) performed by the relay selection entity (e.g., remote UE1, base station 3, or D2D controller 5) according to the present embodiment.
  • the relay selection entity obtains the uplink quality of each relay UE2.
  • the relay selection entity selects a plurality of specific relays UE2 for the remote UE1 taking into account the uplink quality of each relay UE2 in order to achieve the required throughput of the remote UE1.
  • the parameters related to the communication quality of each relay UE 2 acquired in step 1101 and considered in step 1102 are uplink quality, downlink quality, D2D link quality, or relay UE 2. Or any combination thereof.
  • the relay selection entity arranged in the network (eg, base station 3, D2D controller 5) is more than the relay selection entity of the remote UE1. Also takes precedence.
  • the relay selection function of the remote UE 1 is activated, and the authority of relay selection is transferred from the network to the remote UE 1.
  • FIG. 12 is a flowchart showing an example of the switching procedure of the relay selection subject (processing 1200).
  • the remote UE1 detects deterioration of downlink quality (e.g., DL RSRP, DL RSRQ, DL SINR). For example, the remote UE 1 may detect that the downlink quality is lower than a predetermined threshold.
  • the remote UE1 validates the autonomous relay selection by the remote UE1, and notifies the base station 3 of the validation of the spontaneous relay selection.
  • the base station 3 may transmit an acknowledgment to the remote UE 1 in response to receiving the notification of step 1202.
  • FIG. 13 is a flowchart showing another example (process 1300) of switching procedures of the relay selection subject.
  • the processing in step 1301 is the same as the treatment in step 1201 of FIG.
  • the remote UE 1 transmits a request message for requesting permission to perform relay selection to the base station 3.
  • the base station 3 determines whether to enable relay selection by the remote UE1.
  • the base station 3 transmits a relay selection execution permission to the remote UE 1 (step 1303).
  • the remote UE1 validates the autonomous relay selection by the remote UE1 in response to receiving the relay selection execution permission.
  • FIG. 14 is a flowchart showing still another example (processing 1400) of the switching procedure of the relay selection subject.
  • the base station 3 detects the deterioration of the uplink quality or the downlink quality of the remote UE1. For example, the base station 3 may detect that the uplink quality or the downlink quality of the remote UE 1 is lower than a predetermined threshold.
  • the base station 3 transmits a relay selection execution permission to the remote UE1 (step 1402).
  • the remote UE1 validates the autonomous relay selection by the remote UE1 in response to receiving the relay selection execution permission.
  • the relay selection subject switching procedure described in the present embodiment arbitrates which of the two relay selection functions arranged in the network (eg, base station 3, D2D controller 5) and the remote UE1 is activated. )can do.
  • FIG. 15 is a block diagram illustrating a configuration example of the remote UE 1.
  • the relay UE2 may also have a configuration similar to that shown in FIG.
  • the Radio Frequency (RF) transceiver 1501 performs analog RF signal processing to communicate with the base station 3.
  • Analog RF signal processing performed by the RF transceiver 1501 includes frequency up-conversion, frequency down-conversion, and amplification.
  • RF transceiver 1501 is coupled with antenna 1502 and baseband processor 1503.
  • the RF transceiver 1501 receives modulation symbol data (or OFDM symbol data) from the baseband processor 1503, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1502. In addition, the RF transceiver 1501 generates a baseband reception signal based on the received RF signal received by the antenna 1502 and supplies this to the baseband processor 1503.
  • the baseband processor 1503 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Digital baseband signal processing consists of (a) data compression / decompression, (b) data segmentation / concatenation, (c) ⁇ transmission format (transmission frame) generation / decomposition, and (d) transmission path encoding / decoding.
  • E modulation (symbol mapping) / demodulation
  • IFFT Inverse Fast Fourier Transform
  • control plane processing includes layer 1 (eg, transmission power control), layer 2 (eg, radio resource management, hybrid automatic repeat request (HARQ) processing), and layer 3 (eg, attach, mobility, and call management). Communication management).
  • the digital baseband signal processing by the baseband processor 1503 includes signal processing of the Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, MAC layer, and PHY layer. But you can.
  • the control plane processing by the baseband processor 1503 may include Non-Access-Stratum (NAS) protocol, RRC protocol, and MAC CE processing.
  • NAS Non-Access-Stratum
  • the baseband processor 1503 includes a modem processor (eg, Digital Signal Processor (DSP)) that performs digital baseband signal processing and a protocol stack processor (eg, Central Processing Unit (CPU), or Micro Processing Unit (CPU) that performs control plane processing. (MPU)).
  • DSP Digital Signal Processor
  • protocol stack processor eg, Central Processing Unit (CPU), or Micro Processing Unit (CPU) that performs control plane processing. (MPU)
  • a protocol stack processor that performs control plane processing may be shared with an application processor 1504 described later.
  • Application processor 1504 is also called a CPU, MPU, microprocessor, or processor core.
  • the application processor 1504 may include a plurality of processors (a plurality of processor cores).
  • the application processor 1504 is a system software program (Operating System (OS)) read from the memory 1506 or a memory (not shown) and various application programs (for example, call application, web browser, mailer, camera operation application, music playback) By executing the application, various functions of the remote UE 1 are realized.
  • OS Operating System
  • the baseband processor 1503 and application processor 1504 may be integrated on a single chip, as indicated by the dashed line (1505) in FIG.
  • the baseband processor 1503 and the application processor 1504 may be implemented as one System on Chip (SoC) device 1505.
  • SoC System on Chip
  • An SoC device is sometimes called a system Large Scale Integration (LSI) or chipset.
  • the memory 1506 is a volatile memory, a nonvolatile memory, or a combination thereof.
  • the memory 1506 may include a plurality of physically independent memory devices.
  • the volatile memory is, for example, Static Random Access Memory (SRAM), Dynamic RAM (DRAM), or a combination thereof.
  • the non-volatile memory is a mask Read Only Memory (MROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, hard disk drive, or any combination thereof.
  • the memory 1506 may include an external memory device accessible from the baseband processor 1503, the application processor 1504, and the SoC 1505.
  • the memory 1506 may include an embedded memory device integrated within the baseband processor 1503, the application processor 1504, or the SoC 1505.
  • the memory 1506 may include a memory in a Universal Integrated Circuit Card (UICC).
  • UICC Universal Integrated Circuit Card
  • the memory 1506 may store a software module (computer program) including an instruction group and data for performing processing by the remote UE 1 described in the plurality of embodiments.
  • the baseband processor 1503 or the application processor 1504 reads the software module from the memory 1506 and executes the software module, thereby performing the process of the remote UE 1 described using the sequence diagram and the flowchart in the above-described embodiment. It may be configured to do.
  • FIG. 16 is a block diagram illustrating a configuration example of the base station 3 according to the above-described embodiment.
  • the base station 3 includes an RF transceiver 1601, a network interface 1603, a processor 1604, and a memory 1605.
  • the RF transceiver 1601 performs analog RF signal processing to communicate with the remote UE1 and the relay UE2.
  • RF transceiver 1601 may include multiple transceivers.
  • RF transceiver 1601 is coupled to antenna 1602 and processor 1604.
  • the RF transceiver 1601 receives modulation symbol data (or OFDM symbol data) from the processor 1604, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1602. Further, the RF transceiver 1601 generates a baseband received signal based on the received RF signal received by the antenna 1602 and supplies this to the processor 1604.
  • the network interface 1603 is used to communicate with network nodes (e.g., Mobility Management Entity (MME) and Serving Gateway (S-GW)).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the network interface 1603 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
  • NIC network interface card
  • the processor 1604 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • the digital baseband signal processing by the processor 1604 may include PDCP layer, RLC layer, MAC layer, and PHY layer signal processing.
  • the control plane processing by the processor 1604 may include S1 protocol, RRC protocol, and MAC-CE processing.
  • the processor 1604 may include a plurality of processors.
  • the processor 1604 may include a modem processor (e.g., DSP) that performs digital baseband signal processing and a protocol stack processor (e.g., CPU or MPU) that performs control plane processing.
  • DSP digital baseband signal processing
  • protocol stack processor e.g., CPU or MPU
  • the memory 1605 is configured by a combination of a volatile memory and a nonvolatile memory.
  • the volatile memory is, for example, SRAM or DRAM or a combination thereof.
  • the non-volatile memory is, for example, an MROM, PROM, flash memory, hard disk drive, or a combination thereof.
  • Memory 1605 may include storage located remotely from processor 1604. In this case, the processor 1604 may access the memory 1605 via the network interface 1603 or an I / O interface not shown.
  • the memory 1605 may store a software module (computer program) including an instruction group and data for performing processing by the base station 3 described in the above-described embodiments.
  • the processor 1604 is configured to read and execute the software module from the memory 1605 to perform the processing of the base station 3 described in the above-described embodiment using the sequence diagram and the flowchart. Also good.
  • FIG. 17 is a block diagram illustrating a configuration example of the D2D controller 5 according to the above-described embodiment.
  • the D2D controller 5 includes a network interface 1701, a processor 1702, and a memory 1703.
  • the network interface 1701 is used to communicate with the remote UE1 and the relay UE2.
  • the network interface 1701 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
  • NIC network interface card
  • the processor 1702 reads the software (computer program) from the memory 1703 and executes it, thereby performing the processing of the D2D controller 5 described with reference to the sequence diagram and the flowchart in the above-described embodiment.
  • the processor 1702 may be, for example, a microprocessor, MPU, or CPU.
  • the processor 1702 may include a plurality of processors.
  • the memory 1703 is configured by a combination of a volatile memory and a nonvolatile memory.
  • Memory 1703 may include storage located remotely from processor 1702. In this case, the processor 1702 may access the memory 1703 via an I / O interface (not shown).
  • the memory 1703 is used to store a software module group including a control module for D2D communication.
  • the processor 1702 can perform the processing of the D2D controller 5 described in the above-described embodiment by reading these software module groups from the memory 1703 and executing them.
  • each of the processors included in the remote UE 1, the relay UE 2, the base station 3, and the D2D controller 5 uses the algorithm described with reference to the drawings as a computer.
  • One or a plurality of programs including a group of instructions to be executed is executed.
  • the program can be stored and supplied to a computer using various types of non-transitory computer readable media.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • non-transitory computer-readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), Compact Disc Read Only Memory (CD-ROM), CD-ROM R, CD-R / W, semiconductor memory (for example, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)).
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • At least one processor coupled to the memory; With The at least one processor considers the quality of uplink transmission from each of the one or more relay terminals to the base station, and is suitable for at least one suitable for the first remote terminal among the one or more relay terminals. Configured to select one specific relay terminal, Each specific relay terminal has a device-to-device (D2D) link between each specific relay terminal and the first remote terminal and a backhaul link between each specific relay terminal and the base station. Relay traffic between the first remote terminal and the base station via Relay selection device.
  • D2D device-to-device
  • the at least one processor is configured to determine the quality of the uplink transmission using power class information representing a maximum transmission power of each relay terminal;
  • the relay selection device according to appendix A1.
  • the at least one processor uses a maximum transmission power of each relay terminal, a downlink path loss between the base station and each relay terminal, and an uplink radio resource per unit time allocated to each relay terminal, Configured to calculate the quality of the uplink transmission of each relay terminal;
  • the relay selection device according to appendix A1 or A2.
  • the quality of the uplink transmission includes an estimated throughput of the uplink transmission of each relay terminal, The relay selection device according to appendix A1 or A2.
  • the quality of the uplink transmission includes an estimate of Modulation and Coding Scheme (MCS) applied to the uplink transmission of each relay terminal,
  • MCS Modulation and Coding Scheme
  • the at least one processor comprises: (A) uplink transmission power of the first remote terminal; (B) a downlink path loss between the base station and the first remote terminal; (C) Modulation and Coding Scheme (MCS) of the first remote terminal, (D) the maximum transmission power of each relay terminal, and (e) the downlink path loss between the base station and each relay terminal, Is configured to calculate an estimated throughput of the uplink transmission of each relay terminal, or an estimated MCS applied to the uplink transmission of each relay terminal, The relay selection device according to appendix A4 or A5.
  • MCS Modulation and Coding Scheme
  • the at least one processor comprises: Using the uplink transmission power of the first remote terminal, the downlink path loss between the base station and the first remote terminal, and the MCS of the first remote terminal, the interference at the base station and Calculate an estimate of the noise power, The estimated MCS or estimated throughput of each relay terminal is calculated using the interference and noise power estimates, the maximum transmission power of each relay terminal, and the downlink path loss between the base station and each relay terminal.
  • the relay selection device according to attachment A6.
  • the at least one processor comprises: The base station of an uplink signal from the first remote terminal based on an uplink transmission power of the first remote terminal and a downlink path loss between the base station and the first remote terminal Calculating the first received power at Using the maximum transmission power of each relay terminal and the downlink path loss between the base station and each relay terminal, calculate the second received power of the uplink signal from each relay terminal at the base station, Calculating the estimated MCS of each relay terminal by correcting Modulation and Coding Scheme (MCS) of the first remote terminal according to the difference between the first received power and the second received power; Configured as The relay selection device according to attachment A6.
  • MCS Modulation and Coding Scheme
  • the at least one processor is configured to further consider the quality of a D2D link between the first remote terminal and each relay terminal to select the at least one particular relay terminal;
  • the relay selection device according to any one of appendices A1 to A8.
  • the at least one processor further takes into account the quality of direct uplink transmission from the first remote terminal to the base station, the relay path via any of the one or more relay terminals; Configured to determine which direct radio link between a first remote terminal and the base station to use for communication of the first remote terminal; The relay selection device according to any one of appendices A1 to A9.
  • the first remote terminal is configured to communicate using a plurality of D2D links simultaneously;
  • the at least one processor is configured to select a plurality of specific relay terminals to achieve the required throughput of the first remote terminal;
  • the relay selection device according to any one of appendices A1 to A10.
  • the at least one processor is configured to take into account the number of other remote terminals connected or in communication with each relay terminal to select the at least one particular relay terminal.
  • the relay selection device according to any one of appendices A1 to A11.
  • the at least one processor is configured to preferentially select the at least one specific relay terminal for a relay terminal having a smaller number of the other remote terminals.
  • Appendix A12 relay selection device.
  • the at least one processor comprises: Using the estimated throughput of the uplink transmission of each relay terminal and the number of the other remote terminals of each relay terminal, estimate the effective throughput that can be used by the first remote terminal, Configured to select the at least one particular relay terminal based on the effective throughput; The relay selection device according to appendix A12 or A13.
  • the relay selection device is arranged in the first remote terminal; The relay selection device according to any one of appendices A1 to A14.
  • each specific relay terminal is a device-to-device (D2D) link between each specific relay terminal and the first remote terminal and each specific relay terminal and the base station Relay traffic between the first remote terminal and the base station via a backhaul link between Relay selection method.
  • D2D device-to-device
  • the quality of the uplink transmission includes an estimate of Modulation and Coding Scheme (MCS) applied to the uplink transmission of each relay terminal, The relay selection method according to appendix A16 or A17.
  • MCS Modulation and Coding Scheme
  • the relay selection method takes into account the quality of uplink transmission from each of the one or more relay terminals to the base station, and at least one suitable for the first remote terminal among the one or more relay terminals. Selecting a particular relay terminal, wherein each particular relay terminal comprises a device-to-device (D2D) link between each particular relay terminal and the first remote terminal and each particular relay terminal Relay traffic between the first remote terminal and the base station via a backhaul link between a relay terminal and the base station; program.
  • D2D device-to-device
  • a control device arranged in a network including a base station, Memory, At least one processor coupled to the memory; With The at least one processor is configured to transmit a control signal to the wireless terminal to switch which of the network and the wireless terminal performs relay selection;
  • the relay selection includes selecting at least one specific relay terminal suitable for the wireless terminal from one or more relay terminals;
  • Each specific relay terminal is over a device-to-device (D2D) link between each specific relay terminal and the wireless terminal and a backhaul link between each specific relay terminal and the base station, Relay traffic between the wireless terminal and the base station; Control device.
  • D2D device-to-device
  • Appendix B2 The at least one processor is configured to transmit the control signal to the wireless terminal according to an uplink or downlink communication quality between the wireless terminal and the base station; The control device according to appendix B1.
  • Appendix B3 The control signal indicating that the wireless terminal is allowed to perform the relay selection in response to detecting that the uplink or downlink communication quality is lower than a predetermined threshold. Is configured to transmit to the wireless terminal, The control device according to appendix B2.
  • Appendix B4 The at least one processor is configured to transmit the control signal to the wireless terminal in response to receiving a request from the wireless terminal;
  • the control device according to any one of appendices B1 to B3.
  • Appendix B5 A method in a control device arranged in a network including a base station, Transmitting to the wireless terminal a control signal for switching which of the network and the wireless terminal performs relay selection,
  • the relay selection includes selecting at least one specific relay terminal suitable for the wireless terminal from one or more relay terminals;
  • Each specific relay terminal is over a device-to-device (D2D) link between each specific relay terminal and the wireless terminal and a backhaul link between each specific relay terminal and the base station, Relay traffic between the wireless terminal and the base station;
  • D2D device-to-device
  • the transmitting includes transmitting the control signal to the wireless terminal according to uplink or downlink communication quality between the wireless terminal and the base station, The method according to appendix B5.
  • Appendix B7 A program for causing a computer to perform a method in a control device arranged in a network including a base station, The method comprises transmitting a control signal to the wireless terminal for switching which of the network and the wireless terminal performs relay selection,
  • the relay selection includes selecting at least one specific relay terminal suitable for the wireless terminal from one or more relay terminals;
  • Each specific relay terminal is over a device-to-device (D2D) link between each specific relay terminal and the wireless terminal and a backhaul link between each specific relay terminal and the base station, Relay traffic between the wireless terminal and the base station; program.
  • D2D device-to-device
  • the relay selection includes selecting at least one specific relay terminal suitable for the wireless terminal from one or more relay terminals;
  • Each specific relay terminal has a device-to-device (D2D) link between each specific relay terminal and the wireless terminal and a backhaul link between each specific relay terminal and a base station in the network. Relaying traffic between the wireless terminal and the base station via Wireless terminal.
  • D2D device-to-device
  • the at least one processor is configured to determine whether to perform the relay selection at the wireless terminal based on the control signal; The wireless terminal according to Appendix B8.
  • the at least one processor performs the relay selection by the wireless terminal in response to detecting that uplink or downlink communication quality between the wireless terminal and the base station is lower than a predetermined threshold. Sending a request for permission to the network; The wireless terminal according to Appendix B8 or B9.
  • a method in a wireless terminal Receiving from the network a control signal for switching which of the network and the wireless terminal performs relay selection;
  • the relay selection includes selecting at least one specific relay terminal suitable for the wireless terminal from one or more relay terminals;
  • Each specific relay terminal has a device-to-device (D2D) link between each specific relay terminal and the wireless terminal and a backhaul link between each specific relay terminal and a base station in the network. Relaying traffic between the wireless terminal and the base station via Method.
  • D2D device-to-device
  • Appendix B12 Further comprising determining whether to perform the relay selection at the wireless terminal based on the control signal; The method according to appendix B11.
  • Appendix B13 In response to detecting that uplink or downlink communication quality between the wireless terminal and the base station is lower than a predetermined threshold, a request for permission to execute the relay selection by the wireless terminal is made. Further comprising transmitting to the network, The method according to appendix B11 or B12.
  • a program for causing a computer to perform a method in a wireless terminal comprises receiving from the network a control signal for switching whether a network or the wireless terminal performs relay selection;
  • the relay selection includes selecting at least one specific relay terminal suitable for the wireless terminal from one or more relay terminals;
  • Each specific relay terminal has a device-to-device (D2D) link between each specific relay terminal and the wireless terminal and a backhaul link between each specific relay terminal and a base station in the network. Relaying traffic between the wireless terminal and the base station via program.
  • D2D device-to-device
  • a request for or a report indicating that the relay selection is performed by the wireless terminal is configured to be transmitted to a network including the base station;
  • the relay selection includes selecting at least one specific relay terminal suitable for the wireless terminal from one or more relay terminals;
  • Each specific relay terminal has a device-to-device (D2D) link between each specific relay terminal and the wireless terminal and a backhaul link between each specific relay terminal and a base station in the network. Relaying traffic between the wireless terminal and the base station via Wireless terminal.
  • D2D device-to-device
  • the relay selection includes selecting at least one specific relay terminal suitable for the wireless terminal from one or more relay terminals; Each specific relay terminal is over a device-to-device (D2D) link between each specific relay terminal and the wireless terminal and a backhaul link between each specific relay terminal and the base station, Relay traffic between the wireless terminal and the base station; Method.
  • D2D device-to-device
  • a program for causing a computer to perform a method in a wireless terminal The method is a request for permission to perform relay selection by the wireless terminal in response to detecting that uplink or downlink communication quality between the wireless terminal and a base station is lower than a predetermined threshold. Or transmitting a report indicating that the relay selection is performed by the wireless terminal to a network including the base station,
  • the relay selection includes selecting at least one specific relay terminal suitable for the wireless terminal from one or more relay terminals; Each specific relay terminal is over a device-to-device (D2D) link between each specific relay terminal and the wireless terminal and a backhaul link between each specific relay terminal and the base station, Relay traffic between the wireless terminal and the base station; program.
  • D2D device-to-device
  • At least one processor coupled to the memory; With The at least one processor connects at least one specific relay terminal suitable for the first remote terminal to one or more relay terminals connected to or in communication with each relay terminal. Is configured to choose, Each specific relay terminal is over a device-to-device (D2D) link between each specific relay terminal and the first remote terminal and a backhaul link between each specific relay terminal and the base station. Relaying traffic between the first remote terminal and the base station, Relay selection device.
  • D2D device-to-device
  • the at least one processor is configured to preferentially select the at least one specific relay terminal for a relay terminal having a smaller number of the other remote terminals.
  • the relay selection device according to Appendix C1.
  • the at least one processor is configured to further consider the quality of uplink transmission from each relay terminal to the base station to select the at least one particular relay terminal.
  • the relay selection device according to Appendix C1 or C2.
  • the at least one processor comprises: Estimating the effective throughput available to the first remote terminal from the estimated throughput of the uplink transmission of each relay terminal and the number of the other remote terminals of each relay terminal; Configured to select the at least one particular relay terminal based on the effective throughput; The relay selection device according to attachment C3.
  • the at least one processor is configured to determine the quality of the uplink transmission using power class information representing a maximum transmission power of each relay terminal;
  • the relay selection device according to appendix C3 or C4.
  • the quality of the uplink transmission includes an estimate of Modulation and Coding Scheme (MCS) applied to the uplink transmission of each relay terminal,
  • MCS Modulation and Coding Scheme
  • the at least one processor is configured to further consider the quality of a D2D link between the first remote terminal and each relay terminal to select the at least one particular relay terminal;
  • the relay selection device according to any one of appendices C1 to C6.
  • the at least one processor further considers a quality of a direct radio link between the first remote terminal and the base station, and a relay path through any of the one or more relay terminals; Configured to determine which of the direct wireless links to use for communication of the first remote terminal; The relay selection device according to any one of appendices C1 to C7.
  • the first remote terminal is configured to communicate using a plurality of D2D links simultaneously;
  • the at least one processor is configured to select a plurality of specific relay terminals to achieve the required throughput of the first remote terminal;
  • the relay selection device according to any one of appendices C1 to C8.
  • Appendix C10 Selecting at least one specific relay terminal suitable for the first remote terminal from one or more relay terminals in consideration of the number of other remote terminals connected or communicating with each relay terminal Where each specific relay terminal is a device-to-device (D2D) link between each specific relay terminal and the first remote terminal and between each specific relay terminal and the base station Relaying traffic between the first remote terminal and the base station via a backhaul link of Relay selection method.
  • D2D device-to-device
  • the selecting includes preferentially selecting the at least one specific relay terminal for a relay terminal having a smaller number of the other remote terminals.
  • the selecting includes further considering the quality of uplink transmission from each relay terminal to the base station to select the at least one particular relay terminal; The relay selection method according to appendix C10 or C11.
  • the quality of the uplink transmission includes an estimate of Modulation and Coding Scheme (MCS) applied to the uplink transmission of each relay terminal, The relay selection method according to any one of appendices C12 to C14.
  • MCS Modulation and Coding Scheme
  • the selecting includes further considering a quality of a D2D link between the first remote terminal and each relay terminal to select the at least one particular relay terminal;
  • the relay selection method according to any one of appendices C10 to C15.
  • the first remote terminal is configured to communicate using a plurality of D2D links simultaneously;
  • the selecting includes selecting a plurality of specific relay terminals to achieve the required throughput of the first remote terminal;
  • the relay selection method according to any one of appendices C10 to C17.
  • a non-transitory computer-readable medium storing a program for causing a computer to perform a relay selection method,
  • the relay selection method at least one specific relay terminal suitable for the first remote terminal is selected from one or a plurality of relay terminals, and the number of other remote terminals connected or communicating with each relay terminal is determined.
  • Each specific relay terminal is a device-to-device (D2D) link between each specific relay terminal and the first remote terminal and each specific relay terminal Relay traffic between the first remote terminal and the base station via a backhaul link between the base station and the base station;
  • D2D device-to-device
  • D2D device-to-device
  • RF radio frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Computer Security & Cryptography (AREA)

Abstract

リレー選択エンティティ(1、3、5)は、第1のリモート端末(1)に適した少なくとも1つの特定のリレー端末(2)を、1又は複数のリレー端末(2)の中から、各リレー端末(2)と接続又は通信している他のリモート端末の数を考慮して選択するよう構成されている。各特定のリレー端末(2)は、各特定のリレー端末(2)と第1のリモート端末(1)との間のデバイス・ツー・デバイス(D2D)リンク(102)及び各特定のリレー端末と基地局との間のバックホールリンク(101)を介して、第1のリモート端末(1)と基地局(3)との間でトラフィックを中継する。

Description

リレー選択のための装置及び方法
 本開示は、端末間直接通信(device-to-device(D2D)通信)に関し、特にリレー端末の選択に関する。
 いくつかの実装において、無線端末は、他の無線端末と直接的に通信できるよう構成される。このような通信は、device-to-device(D2D)通信と呼ばれる。D2D通信は、ダイレクト通信およびダイレクト・ディスカバリの少なくとも一方を含む。いくつかの実装において、D2D通信をサポートする複数の無線端末は、自律的に又はネットワークの指示に従ってD2D通信グループを形成し、当該D2D通信グループ内の他の無線端末と通信を行う。
 3GPP Release 12は、Proximity-based services(ProSe)について規定している(例えば、非特許文献1を参照)。ProSeは、ProSeディスカバリ(ProSe discovery)及びProSeダイレクト通信(ProSe direct communication)を含む。ProSeディスカバリは、無線端末が近接していること(in proximity)の検出を可能にする。ProSeディスカバリは、ダイレクト・ディスカバリ(ProSe Direct Discovery)及びネットワークレベル・ディスカバリ(EPC-level ProSe Discovery)を含む。
 ProSeダイレクト・ディスカバリは、ProSeを実行可能な無線端末(ProSe-enabled User Equipment(UE))が他のProSe-enabled UEをこれら2つのUEが有する無線通信技術(例えば、Evolved Universal Terrestrial Radio Access (E-UTRA) technology)の能力だけを用いて発見する手順により行われる。これに対して、EPC-level ProSe Discoveryでは、コアネットワーク(Evolved Packet Core (EPC))が2つのProSe-enabled UEsの近接を判定し、これをこれらのUEsに知らせる。ProSeダイレクト・ディスカバリは、3つ以上のProSe-enabled UEsにより行われてもよい。
 ProSeダイレクト通信は、ProSeディスカバリ手順の後に、ダイレクト通信レンジ内に存在する2以上のProSe-enabled UEsの間の通信パスの確立を可能にする。言い換えると、ProSeダイレクト通信は、ProSe-enabled UEが、基地局(eNodeB)を含む公衆地上移動通信ネットワーク(Public Land Mobile Network (PLMN))を経由せずに、他のProSe-enabled UEと直接的に通信することを可能にする。ProSeダイレクト通信は、基地局(eNodeB)にアクセスする場合と同様の無線通信技術(E-UTRA technology)を用いて行われてもよいし、wireless local area network (WLAN)の無線技術(つまり、IEEE 802.11 radio technology)を用いて行われてもよい。
 ProSeダイレクト・ディスカバリ及びProSeダイレクト通信は、UE間のダイレクトインタフェースにおいて行われる。当該ダイレクトインタフェースは、PC5インタフェース又はサイドリンク(sidelink)と呼ばれる。すなわち、ProSeダイレクト・ディスカバリ及びProSeダイレクト通信は、D2D通信の一例である。なお、D2D通信は、サイドリンク通信と呼ぶこともでき、peer-to-peer通信と呼ぶこともできる。
 3GPP Release 12では、ProSe functionが公衆地上移動通信ネットワーク(PLMN)を介してProSe-enabled UEと通信し、ProSeディスカバリ及びProSeダイレクト通信を支援(assist)する。ProSe functionは、ProSeのために必要なPLMNに関連した動作に用いられる論理的な機能(logical function)である。ProSe functionによって提供される機能(functionality)は、例えば、(a)third-party applications(ProSe Application Server)との通信、(b)ProSeディスカバリ及びProSeダイレクト通信のためのUEの認証、(c)ProSeディスカバリ及びProSeダイレクト通信のための設定情報(例えば、EPC-ProSe-User IDなど)のUEへの送信、並びに(d)ネットワークレベル・ディスカバリ(i.e., EPC-level ProSe discovery)の提供、を含む。ProSe functionは、1又は複数のネットワークノード又はエンティティに実装されてもよい。本明細書では、ProSe functionを実行する1又は複数のネットワークノード又はエンティティを“ProSe function エンティティ”又は“ProSe functionサーバ”と呼ぶ。
 さらに、3GPP Release 12は、一方のUEがネットワークカバレッジ外であり、他方のUEがネットワークカバレッジ内であるパーシャルカバレッジ・シナリオについて規定している(例えば、非特許文献1のセクション4.4.3、4.5.4および5.4.4を参照)。パーシャルカバレッジ・シナリオにおいて、カバレッジ外のUEはremote UEと呼ばれ、カバレッジ内かつremote UEとネットワークを中継するUEはProSe UE-to-Network Relayと呼ばれる。ProSe UE-to-Network Relayは、remote UEとネットワーク(E-UTRA  network(E-UTRAN)及びEPC)との間でトラフィック(ダウンリンク及びアップリンク)を中継する。
 より具体的に述べると、ProSe UE-to-Network Relayは、UEとしてネットワークにアタッチし、ProSe function エンティティ又はその他のPacket Data Network(PDN)と通信するためのPDN connectionを確立し、ProSeダイレクト通信を開始するためにProSe function エンティティと通信する。ProSe UE-to-Network Relayは、さらに、remote UEとの間でディスカバリ手順を実行し、UE間ダイレクトインタフェース(e.g., サイドリンク又はPC5インタフェース)においてremote UEと通信し、remote UEとネットワークとの間でトラフィック(ダウンリンク及びアップリンク)を中継する。Internet Protocol version 4(IPv4)が用いられる場合、ProSe UE-to-Network Relayは、Dynamic Host Configuration Protocol Version 4 (DHCPv4) Server及びNetwork Address Translation (NAT) として動作する。IPv6が用いられる場合、ProSe UE-to-Network Relayは、stateless DHCPv6 Relay Agentとして動作する。
 さらに、3GPP Release 13ではProSeの拡張が議論されている(例えば、非特許文献2-8を参照)。当該議論は、ProSe UE-to-Network Relay 及びProSe UE-to-UE Relayを選択するためのリレー選択基準(relay selection criteria)に関する議論、及びリレー選択の配置を含むリレー選択手順に関する議論を含む。ここで、ProSe UE-to-UE Relayは、2つのremote UEの間でトラフィックを中継するUEである。
 UE-to-Network Relayのリレー選択の配置に関しては、リモートUEがリレー選択を行う分散(distributed)リレー選択アーキテクチャ(例えば、非特許文献3-5、7、及び8を参照)と、基地局(eNodeB(eNB))等のネットワーク内の要素がリレー選択を行う集中(centralized)リレー選択アーキテクチャ(例えば、非特許文献6及び7を参照)が提案されている。UE-to-Network Relayのリレー選択基準に関しては、リモートUEとリレーUEの間のD2Dリンク品質を考慮すること、リレーUEとeNBの間のバックホールリンク品質を考慮すること、並びにD2Dリンク品質及びバックホールリンク品質の両方を考慮することが提案されている(例えば、非特許文献3-8を参照)。
 例えば、非特許文献3-5は、分散(distributed)リレー選択においてD2Dリンク品質及びバックホールリンク品質の両方を考慮することを記載している。一例において、リモートUEは、w * D2D link quality + (1-w) * backhaul link qualityという評価式を用いてD2Dリンク品質及びバックホールリンク品質の両方を考慮する、ここでwは予め設定される定数である(非特許文献3を参照)。幾つかの実装において、リレーUEは、リモートUEによるリレー選択をアシストするために、バックホールリンク(リレーUEとeNBの間)の無線品質を示すディスカバリメッセージを送信する(非特許文献4を参照)。これに代えて、リレーUEは、リモートUEによるリレー選択をアシストするために、バックホールリンクの無線品質を暗示的に(implicitly)リモートUEに示してもよい。バックホールリンクの無線品質を暗示的に示すために、例えば、ディスカバリ信号内の優先度情報(priority information)が使用される(非特許文献5を参照)。
 例えば、非特許文献6は、集中(centralized)リレー選択においてD2Dリンク品質及びバックホールリンク品質の両方を考慮することを記載している。一例において、リモートUEはD2Dリンク品質をeNBに報告し、eNBは報告されたD2Dリンク品質と(報告された)バックホールリンク品質を考慮してリモートUEのためのリレーを選択する。バックホールリンク品質は、既存のセルラーネットワークにおけるeNBによる測定又はリレーUEによる測定報告によって取得されてもよい。
 例えば、非特許文献7及び8は、eNBが、バックホールリンク品質を考慮して1又は複数のリレー候補(candidate)UEを選択する。これらのリレー候補UEのみがリレーディスカバリ手順においてリモートUEにより発見されることができる。リモートUEは、D2Dリンク品質に基づいて1又は複数のリレー候補の中からリレーを選択する。バックホールリンク品質はeNBによるリレー候補の選択の際に考慮されているから、したがってリモートUEによるリレー選択にも間接的に考慮されている。
 本明細書では、ProSe UE-to-Network Relay及びProSe UE-to-UE RelayのようなD2D通信能力およびリレー能力を持つ無線端末を「リレー無線端末」、又は「リレーUE」と呼ぶ。また、リレーUEによる中継サービスを受ける無線端末を「リモート無線端末」又は「リモートUE」と呼ぶ。
3GPP TS 23.303 V13.2.0 (2015-12), "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Proximity-based services (ProSe); Stage 2 (Release 13)", December 2015 3GPP TR 23.713 V13.0.0 (2015-09), "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on extended architecture support for proximity-based services (Release 13)", September 2015 3GPP R1-152778, "Support of UE-Network relays", Qualcomm Incorporated, May 2015 3GPP S2-150925, "UE-to-Network Relay conclusions", Qualcomm Incorporated, April 2015 3GPP R1-153087, "Discussion on UE-to-Network Relay measurement", Sony, May 2015 3GPP R2-152560, "Role of eNB when remote UE is in coverage", Qualcomm Incorporated, May 2015 3GPP R1-151965, "Views on UE-to-Network Relay Discovery", NTT DOCOMO, April 2015 3GPP R1-153188, "Discussion on Relay Selection" , NTT DOCOMO, May 2015
 発明者等は、リレー選択に関する検討を行い、以下に具体的に示される3つの課題を含む幾つかの課題を見出し、これらの課題に対処するための幾つかの改良を考案した。
 例えば、非特許文献3-8は、D2Dリンク品質及びバックホールリンク品質のいずれか又は両方がリモートUEのためのリレー選択において考慮されることを記載している。具体的には、非特許文献3は、バックホールリンク品質の具体例としてダウンリンク(DL)Reference Signal Received Power(RSRP)及びDL Signal-to-Interference plus Noise Ratio(SINR)を示し、バックホールリンクのDL RSRP又はDL SINRがリレー選択において考慮されることを記載している。しかしながら、非特許文献3-8は、リレーUEからeNBへのアップリンク送信の品質がリレー選択において考慮されることを明示していない。複数のリレーUEは、アップリンク送信の能力(e.g., 最大送信電力)が異なるかもしれない。例えば、LTE ProSeは、public safetyのために高出力(high power)UEを規定している。高出力UEは、EUTRA Band 14を使用し、31 dBm又は33 dBmの最大送信電力を持つ。高出力UEは、通常出力(i.e., 最大送信電力23 dBm)のUEに比べて、良好なアップリンク・スループットを提供できるかもしれない。しかしながら、リレー選択においてバックホールリンクのDL品質(e.g., DL RSRP、DL Reference Signal Received Quality(RSRQ)、DL SINR)を考慮するのみでは、高出力UEを優先的にリモートUEのために選択することは困難である。
 また、非特許文献3-8は、リレーUEの負荷がリレー選択において考慮されることを記載していない。リレーUEは、複数のリモートUEと接続し、これら複数のリモートUEのデータを中継する。リレーUEに接続されているリモートUE数が増加するにつれて、そのリレーUEが各リモートUEに提供できる実効スループットは低下すると考えられる。したがって、リレー選択においてバックホールリンクの無線品質及びD2Dの無線品質を考慮するのみでは、リモートUEに最適なリレーUEを選択できない可能性がある。
 また、非特許文献1-8は、リモートUEがリレー選択を行うことを記載している。しかしながら、例えば、リモートUE及びリレーUEが共にカバレッジ内(in-coverage)であるときは、ネットワーク(e.g., eNB、ProSe function)がリレー選択を行うほうがリモートUEによるリレー選択よりも有効であるかもしれない。しかしながら、eNB及びリモートUEの双方がリレー選択機能を持つ場合、これら2つのリレー選択機能のどちらが有効化されるかを仲裁(arbitrate)するための制御手順が必要である。
 したがって、本明細書に開示される実施形態が達成しようとする目的の1つは、リレーUEの負荷が考慮されたリレー選択を容易にすることに寄与する装置、方法、及びプログラムを提供することである。なお、この目的は、本明細書に開示される複数の実施形態が達成しようとする複数の目的の1つに過ぎないことに留意されるべきである。その他の目的又は課題と新規な特徴は、本明細書の記述又は添付図面から明らかにされる。
 第1の態様では、リレー選択装置は、メモリと、前記メモリに結合された少なくとも1つのプロセッサとを含む。前記少なくとも1つのプロセッサは、第1のリモート端末に適した少なくとも1つの特定のリレー端末を、1又は複数のリレー端末の中から、各リレー端末と接続又は通信している他のリモート端末の数を考慮して選択するよう構成される。各特定のリレー端末は、各特定のリレー端末と前記第1のリモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記第1のリモート端末と前記基地局との間でトラフィックを中継する。
 第2の態様では、リレー選択方法は、第1のリモート端末に適した少なくとも1つの特定のリレー端末を、1又は複数のリレー端末の中から、各リレー端末と接続又は通信している他のリモート端末の数を考慮して選択することを含む。ここで、各特定のリレー端末は、各特定のリレー端末と前記第1のリモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記第1のリモート端末と前記基地局との間でトラフィックを中継する。
 第3の態様では、プログラムは、コンピュータに読み込まれた場合に、上述の第2の態様に係る方法をコンピュータに行わせるための命令群(ソフトウェアコード)を含む。
 上述の態様によれば、リレーUEの負荷が考慮されたリレー選択を容易にすることに寄与する装置、方法、及びプログラムを提供できる。
いくつかの実施形態に係る無線通信ネットワークの構成例を示す図である。 いくつかの実施形態に係るリレーを開始するための手順の一例を示すシーケンス図である。 いくつかの実施形態に係るリレーを開始するための手順の一例を示すシーケンス図である。 第1の実施形態に係るリレー選択手順の一例を示すフローチャートである。 第1の実施形態に係るリレー選択手順の一例を示すシーケンス図である。 第1の実施形態に係るリレー選択手順の一例を示すシーケンス図である。 第2の実施形態に係るリレー選択手順の一例を示すフローチャートである。 第3の実施形態に係るリレー選択手順の一例を示すフローチャートである。 第3の実施形態に係るリレー選択手順の一例を示すフローチャートである。 第4の実施形態に係るリレー選択手順の一例を示すフローチャートである。 第5の実施形態に係るリレー選択手順の一例を示すフローチャートである。 第6の実施形態に係るリレー選択主体の切り替え手順の一例を示すシーケンス図である。 第6の実施形態に係るリレー選択主体の切り替え手順の一例を示すシーケンス図である。 第6の実施形態に係るリレー選択主体の切り替え手順の一例を示すシーケンス図である。 いくつかの実施形態に係る無線端末の構成例を示すブロック図である。 いくつかの実施形態に係る基地局の構成例を示すブロック図である。 いくつかの実施形態に係るD2Dコントローラの構成例を示すブロック図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
 以下に説明される複数の実施形態は、独立に実施されることもできるし、適宜組み合わせて実施されることもできる。これら複数の実施形態は、互いに異なる新規な特徴を有している。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し、互いに異なる効果を奏することに寄与する。
<第1の実施形態>
 図1は、本実施形態を含むいくつかの実施形態に係る無線通信ネットワークの構成例を示している。具体的には、図1は、UE-to-Network Relayに関する例を示している。すなわち、リモートUE1は、少なくとも1つの無線トランシーバを有し、D2Dリンク102(e.g., PC5インタフェース又はサイドリンク)上で1又は複数のリレーUE2とD2D通信(e.g., ProSeダイレクト・ディスカバリ及びProSeダイレクト通信)を行うよう構成されている。また、図1には示されていないが、リモートUE1は、1又は複数の基地局3により提供されるセルラーカバレッジ31内においてセルラー通信を行うよう構成されている。
 リレーUE2は、少なくとも1つの無線トランシーバを有し、セルラーカバレッジ31内において基地局3とのセルラーリンク101においてセルラー通信を行うとともに、D2Dリンク102上でリモートUE1とD2D通信(e.g., ProSeダイレクト・ディスカバリ及びProSeダイレクト通信)を行うよう構成されている。
 基地局3は、無線アクセスネットワーク(i.e., E-UTRAN)内に配置されたエンティティであり、1又は複数のセルを含むセルラーカバレッジ31を提供し、セルラー通信技術(e.g., E-UTRA technology)を用いてリレーUE2とセルラーリンク101において通信することができる。さらに、基地局3は、リモートUE1がセルラーカバレッジ31内にいる場合に、リモートUE1とセルラー通信を行うよう構成されている。
 コアネットワーク(i.e., Evolved Packet Core(EPC))4は、複数のユーザープレーン・エンティティ(e.g., Serving Gateway (S-GW)及びPacket Data Network Gateway (P-GW))、及び複数のコントロールプレーン・エンティティ(e.g., Mobility Management Entity(MME)及びHome Subscriber Server(HSS))を含む。複数のユーザープレーン・エンティティは、基地局3を含む無線アクセスネットワークと外部ネットワークとの間でリモートUE1及びリレーUE2のユーザデータを中継する。複数のコントロールプレーン・エンティティは、リモートUE1及びリレーUE2のモビリティ管理、セッション管理(ベアラ管理)、加入者情報管理、及び課金管理を含む様々な制御を行う。
 いくつかの実装において、近接サービス(e.g., 3GPP ProSe)を利用するために、リモートUE1及びリレーUE2は、基地局3及びコアネットワーク4を介してD2Dコントローラ5と通信するよう構成される。例えば、3GPP ProSeの場合、D2Dコントローラ5は、ProSe function エンティティに相当する。リモートUE1及びリレーUE2は、例えば、D2Dコントローラ5によって提供されるネットワークレベル・ディスカバリ(e.g., EPC-level ProSe Discovery)を利用してもよいし、D2D通信(e.g., ProSeダイレクト・ディスカバリ及びProSeダイレクト通信)のリモートUE1及びリレーUE2における起動(有効化、activation)を許可することを示すメッセージをD2Dコントローラ5から受信してもよいし、セルラーカバレッジ31におけるD2D通信に関する設定情報をD2Dコントローラ5から受信してもよい。
 図1の例では、リレーUE2は、UE-to-Network Relayとして動作し、リモートUE1とセルラーネットワーク(基地局3及びコアネットワーク4)の間でのリレー動作をリモートUE1に提供する。言い換えると、リレーUE2は、リモートUE1に関するデータフロー(トラフィック)をリモートUE1とセルラーネットワーク(基地局3及びコアネットワーク4)との間で中継する。これにより、リモートUE1は、リレーUE2及びセルラーネットワーク(基地局3及びコアネットワーク4)を経由して外部ネットワーク6内のノード7と通信することができる。
 図1の例では、リモートUE1は、セルラーカバレッジ31の外に位置している(アウト・オブ・カバレッジ)。しかしながら、既に述べたように、リモートUE1は、セルラーカバレッジ31内に位置してもよい。幾つかの実装において、リモートUE1は、何らかの条件(e.g., ユーザーによる選択)に基づいてセルラーネットワーク(基地局3及びコアネットワーク4)に接続できない場合に、リレーUE2とのD2D通信(e.g., ダイレクト通信)を行ってもよい。また、幾つかの実装において、リモートUE1は、基地局3のカバレッジ31内において基地局3と直接的にセルラー通信を行いながら、リレーUE2とのD2D通信をさらに行ってもよい。また、幾つかの実装において、リモートUE1は、基地局3との直接的なセルラー通信(ダイレクトパスと呼ぶ)といずれかのリレーUE2とのD2D通信(リレーパスと呼ぶ)のどちらを使用するかを選択してもよい。リモートUE1は、ダイレクトパスとリレーパスとの間の切り替えを自発的に行ってもよいし、ネットワーク(e.g., 基地局3、D2Dコントローラ5)の指示に従ってこれを行ってもよい。
 続いて以下では、本実施形態を含むいくつかの実施形態に係るリレーを開始するための手順について図2及び図3を用いて説明する。リレーを開始するためには、リモートUE1が利用できるリレーUE2を発見するための“リレーディスカバリ”と、発見された1又は複数のリレーUE2の中からリモートUE1に適した少なくとも1つの特定のリレーUEを選択するリレー選択が必要である。リレー選択が行われる前の各リレーUE2は、リレーUE候補と呼ぶこともできる。既に説明したように、リレー選択は、幾つかの実装においてリモートUE1により行われ(i.e., 分散(distributed)リレー選択)、他の実装において基地局3又はD2Dコントローラ5などのネットワーク要素により行われる(i.e., 集中(centralized)リレー選択)。
 図2は、分散リレー選択を伴う手順の一例(処理200)を示している。ステップ201では、リモートUE1及びリレーUE2は、リモートUE1がUE-to-Network Relay又はUE-to-UE RelayとしてのリレーUE2を発見するためのリレーディスカバリ手順を実行する。例えば、いわゆるアナウンスメント・モデル(モデルA)に従って、リレーUE2がディスカバリ信号を送信し、リモートUE1はリレーUE2からのディスカバリ信号を検出することによってリレーUE2を発見してもよい。これに代えて、いわゆる依頼(solicitation)/応答(response)モデル(モデルB)に従って、リモートUE1がリレーを希望すること示すディスカバリ信号を送信し、リレーUE2が当該ディスカバリ信号に対する応答メッセージをリモートUE1に送信し、リモートUE1はリレーUE2からの応答メッセージを受信することによってリレーUE2を発見してもよい。
 ステップ202では、リモートUE1は、ステップ201で発見された1又は複数のリレーUE2の中から、適切な少なくとも1つの特定のリレーUE2を選択する。本実施形態に係るリレー選択手順の詳細については後述する。
 ステップ203では、リモートUE1は、選択された少なくとも1つの特定のリレーUEのいずれかとone-to-one D2D通信(ダイレクト通信)のためのコネクションを確立する。例えば、リモートUE1は、ダイレクト通信要求(又はリレー要求)をリレーUE2に送信してもよい。リレーUE2は、ダイレクト通信要求(又はリレー要求)の受信に応答して、相互認証(mutual authentication)のための手順を開始してもよい。
 一方、図3は、集中リレー選択の一例(処理300)を示している。ステップ301では、図2のステップ201と同様に、リモートUE1及びリレーUE2は、リモートUE1がUE-to-Network Relay又はUE-to-UE RelayとしてのリレーUE2を発見するためのリレーディスカバリ手順を実行する。
 ステップ302では、リモートUE1は、測定報告を基地局3に送信する。測定報告は、ステップ301で発見された1又は複数のリレーUE2に関し、例えば、D2Dリンク品質(リモートUE1とリレーUE2の間)を含む。D2Dリンク品質は、例えば、受信電力、signal-to-interference plus noise ratio(SINR)、及びデータレート(又はスループット)のうち少なくとも1つを含んでもよい。さらに、測定報告は、既存の測定報告と同様に、リモートUE1と基地局3の間のセルラーリンク品質を含んでもよい。さらに、測定報告は、バックホールリンク品質(基地局3とリレーUE2の間)を含んでもよい。
 ステップ303では、基地局3は、リモートUE1により発見された1又は複数のリレーUE2の中から、適切な少なくとも1つの特定のリレーUE2を選択する。本実施形態に係るリレー選択手順の詳細については後述する。
 ステップ304では、基地局3は、選択された特定のリレーUE2への接続をリモートUE1に指示する。ステップ305では、リモートUE1は、基地局3から指示に従って、特定のリレーUEとone-to-one D2D通信(ダイレクト通信)のためのコネクションを確立する。
 なお、図3の例において、リレー選択(ステップ303)は、基地局3とは異なる他のネットワーク要素、例えばD2Dコントローラ5により行われてもよい。
 続いて以下では、本実施形態に係るリレー選択手順の具体例について説明する。図4は、本実施形態に係るリレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)によって行われるリレー選択手順の一例(処理400)を示すフローチャートである。ステップ401では、リレー選択エンティティは、1又は複数のリレーUE2の各々のアップリンク品質を取得する。
 各リレーUE2のアップリンク品質は、各リレーUE2から基地局3へのアップリンク送信の品質を意味する。いくつかの実装において、各リレーUE2のアップリンク品質は、アップリンク送信の推定スループットであってもよい。当該推定スループットは、各リレーUE2によって計算され、各リレーUE2からリレー選択エンティティに送られてもよい。これに代えて、当該推定スループットは、各リレーUE2から受信した情報を用いて、リレー選択エンティティによって計算されてもよい。例えば、リレー選択エンティティは、各リレーUEのアップリンク品質を推定するために、各リレーUE2の最大送信電力、各リレーUE2と基地局3の間のダウンリンク・パスロス、及び各リレーUE2に割り当てられる単位時間当たりのアップリンク無線リソースを、各リレーUE2から受信してもよい。
 いくつかの実装において、各リレーUE2のアップリンク品質は、各リレーUE2のアップリンク送信に適用されるModulation and Coding Scheme(MCS)であってもよい。リレー選択エンティティは、各リレーUE2に適用されるアップリンクMCSを各リレーUE2又は基地局3から取得してもよい。これに代えて、リレー選択エンティティは、リモートUE1に適用されるアップリンクMCS、リモートUE1に割り当てられる単位時間当たりのアップリンク無線リソース、各リレーUE2の最大送信電力、及び各リレーUE2のダウンリンク・パスロス等を用いて、各リレーUE2に適用されるアップリンクMCSを推定してもよい。
 いくつかの実装において、各リレーUE2のアップリンク品質は、各リレーUE2に適用されるアップリンクMCSそれ自体であってもよい。上述したように、各リレーUE2に適用されるアップリンクMCSは、リレー選択エンティティによって得られた推定値であってもよい。各リレーUE2に適用されるアップリンクMCS及び単位時間当たりのアップリンク無線リソースから各リレーUE2のアップリンク・スループットを推定できる。したがって、各リレーUE2に適用されるアップリンクMCSは、各リレーUE2のアップリンク・スループットと密接に関係している。
 いくつかの実装において、各リレーUE2のアップリンク品質は、送信電力制御の後の各リレーUE2のアップリンク送信電力であってもよい。各リレーUE2からのアップリンク信号の基地局3におけるSINR(アップリンクSINR)は、各リレーUE2のアップリンク送信電力の大きさに依存する。したがって、各リレーUE2のアップリンク送信電力は、各リレーUE2のアップリンク・スループットと密接に関係する。
 いくつかの実装において、各リレーUE2のアップリンク品質は、各リレーUE2の最大送信電力を表すパワークラス情報であってもよい。既に説明したように、LTE ProSeは、public safetyのために31 dBm又は33 dBmの最大送信電力を持つ高出力(high power)UEを規定している。最大送信電力31 dBm又は33 dBmの高出力UEは、最大送信電力23 dBmの通常UEとUEパワークラスによって区別される。具体的には、高出力UEのUEパワークラスは“クラス1”であり、高出力UEは、クラス1UE又はクラス1デバイスとも呼ばれる。これに対して、通常UEのUEパワークラスは“クラス3”であり、通常UEは、クラス3UE又はクラス3デバイスとも呼ばれる。高出力UEは、通常出力(i.e., 最大送信電力23 dBm)のUEに比べて、良好なアップリンク・スループットを提供できることが期待できる。したがって、リレー選択エンティティは、各リレーUE2のパワークラス情報を取得し、各リレーUE2のパワークラス情報をリレー選択のために使用してもよい。
 図4に戻り説明を続ける。ステップ402では、リレー選択エンティティは、各リレーUE2のアップリンク品質を考慮して、リモートUE1に適した少なくとも1つの特定のリレーUE2を選択する。リレー選択エンティティは、1又は複数のリレーUE2の中でアップリンク品質が相対的に高い少なくとも1つのリレーUE2を、リモートUE1のための特定のリレーUE2に選択してもよい。上述のように、例えば、各リレーUE2のアップリンク品質は、(推定された)アップリンク・スループット、(推定された)アップリンクMCS、最大送信電力、又はUEパワークラス、であってもよい。
 リレー選択がリモートUE1によって行われる場合のリモートUE1と各リレーUE2とのシグナリングの例について説明する。図5は、リモートUE1によるリレー選択の一例(処理500)を示すシーケンス図である。ステップ501では、各リレーUE2は、選択アシスタンス情報(selection assistance information)をリモートUE1に通知する。各リレーUE2は、リレーディスカバリ手順(e.g., 図2のステップ201)において選択アシスタンス情報を送信してもよい。
 具体的には、各リレーUE2は、いわゆるアナウンスメント・モデル(モデルA)に従って、選択アシスタンス情報を包含するディスカバリ信号を送信してもよい。これにより、リモートUE1は、ディスカバリ信号を検出することによって各リレーUE2を発見するとともに、当該リレーUE2の選択アシスタンス情報を受信することができる。
 選択アシスタンス情報は、各リレーUE2のアップリンク品質情報を含む。リモートUE1は、各リレーUE2から受信した選択アシスタンス情報を用いて、各リレーUE2のアップリンク品質を求める。いくつかの実装において、選択アシスタンス情報は、各リレーUE2によって推定されたアップリンク・スループットを示してもよい。さらに又はこれに代えて、選択アシスタンス情報は、各リレーUE2の最大送信電力、又は各リレーUE2のパワークラスを示してもよい。さらに又はこれに代えて、選択アシスタンス情報は、各リレーUE2のダウンリンク・パスロス、各リレーUE2のアップリンクMCS、若しくは各リレーUE2に割り当てられる単位時間当たりのアップリンク無線リソース、又はこれらの任意の組合せを含んでもよい。
 ステップ502では、リモートUE1は、各リレーUE2から受信した選択アシスタンス情報を用いて各リレーUE2のアップリンク品質を推定し、推定された各リレーUE2のアップリンク品質を考慮してリレー選択を行う。
 図5の例では、各リレーUE2は、選択アシスタンス情報をリモートUE1に知らせるために頻繁に無線信号(e.g., ディスカバリ信号)を送信しなければならず、したがって各リレーUE2の電力消費が大きくなるかもしれない。各リレーUE2による選択アシスタンス情報の送信頻度を低減するために、図6に示されたリレー選択手順(処理600)が採用されてもよい。ステップ601では、リモートUE1は、選択アシスタンス情報の送信要求を包含する無線信号を送信する。ステップ602では、各リレーUE2は、当該送信要求を受信したことに応答して、選択アシスタンス情報を包含する無線信号をリモートUE1に送信する。
 具体的には、いわゆる依頼(solicitation)/応答(response)モデル(モデルB)に従って、リモートUE1が選択アシスタンス情報の送信要求を包含するディスカバリ信号を送信し、各リレーUE2が選択アシスタンス情報を包含する応答信号をリモートUE1に送信してもよい。これにより、リモートUE1は、応答信号を検出することによって各リレーUE2を発見するとともに、当該リレーUE2の選択アシスタンス情報を受信することができる。
 ステップ603における処理は、図5のステップ502における処理と同様である。すなわち、リモートUE1は、各リレーUE2から受信した選択アシスタンス情報を用いて各リレーUE2のアップリンク品質を推定し、推定された各リレーUE2のアップリンク品質を考慮してリレー選択を行う。
 続いて以下では、各リレーUE2のアップリンク品質をリモートUE1において推定する方法のいくつかの具体例を説明する。いくつかの実装において、リレー選択エンティティとしてのリモートUE1は、各リレーUE2のアップリンク品質(e.g., アップリンク・スループット、アップリンクMCS)を推定するために以下のパラメータを使用してもよい:
(a)リモートUE1のアップリンク送信電力;
(b)基地局3とリモートUE1との間のダウンリンク・パスロス;
(c)リモートUE1のアップリンク送信に適用されるMCS(アップリンクMCS);
(d)各リレーUE2の最大送信電力;及び
(e)基地局3と各リレーUE2との間のダウンリンク・パスロス。
 より具体的には、リモートUE1は、これらのパラメータを用いる以下の第1又は第2の手順に従って、各リレーUE2のアップリンク・スループット又はアップリンクMCSを推定してもよい。
(第1の手順)
 第1ステップでは、リモートUE1は、リモートUE1のアップリンク送信電力(a)及び基地局3とリモートUE1との間のダウンリンク・パスロス(b)を用いて、リモートUE1からのアップリンク信号の基地局3における受信電力(第1の受信電力と呼ぶ)を推定する。
 第2ステップでは、リモートUE1は、第1の受信電力とリモートUE1のアップリンクMCS(c)とに基づいて、基地局3における干渉及び雑音電力(interference and noise power)の推定値を計算する。なお、一般的に、基地局3のアップリンク・スケジューラは、アップリンク・スループットの観点で最適なアップリンクMCSを選択するためにAdaptive Modulation Coding(AMC)テーブルを使用する。いくつかの実装において、当該AMCテーブルは、基地局3における受信SINR(アップリンクSINR)が入力されると各MCSの推定block error rate(BLER)を返すルックアップ・テーブルである。例えば、基地局3は、リモートUE1からのアップリンク信号の受信SINRを計算し、当該計算されたSINRを当該AMCテーブルに入力することで各MCSの推定BLERを取得し、各MCSの推定BLER及び各MCSのトランスポートブロックサイズ(Transport Block Size(TBS))に基づいて、TTT当たりの想定される瞬時スループット(expected instantaneous throughput pre TTI)を計算する。そして、基地局3は、推定BLERが所要BLER(required BLER)以下であるとの制約条件(constraint)のもとで、 瞬時スループットを最大化するMCSを選択する。したがって、リモートUE1は、基地局3のMCS選択アルゴリズムのために使用されるAMCテーブルを保持し、リモートUE1のアップリンクMCS(c)が最大の瞬時スループットをもたらすであろうアップリンクSINRを推定し、推定アップリンクSINRと上述の第1の受信電力とから干渉及び雑音電力(interference and noise power)を導出してもよい。
 第3ステップでは、リモートUE1は、(d)、及び各リレーUE2のダウンリンク・パスロス(e)を用いて、各リレーUE2からのアップリンク信号の基地局3における受信電力(第2の受信電力と呼ぶ)を推定する。
 第4ステップでは、リモートUE1は、第2ステップで得られた干渉及び雑音電力の推定値と、第3ステップで得られた第2の受信電力とに基づいて、各リレーUE2からのアップリンク信号の基地局3におけるSINRの推定値を求める。
 第5のステップでは、リモートUE1は、第4ステップで得られたSINRの推定値に基づいて、各リレーUE2のアップリンク・スループット又はアップリンクMCSを推定する。
 当該第5のステップでは、いくつかの実装において、リモートUE1は、以下のシャノン容量式(Shannon capacity formula)に従って、スループットの推定値Cを求めてもよい:
C = BW log2(1+SINR)   (1),  
ここで、BWはリレーUE2が使用可能なアップリンク通信帯域である。簡単化のために、BWは、リモートUE1に単位時間当たりに割り当てられるアップリンク無線リソース(e.g., 帯域幅、リソースブロック数)に基づいてもよい。
 これに代えて、当該第5のステップでは、リモートUE1は、基地局3と同様のAMCテーブルに基づいて、第4ステップで得られたSINRの推定値から各リレーUE2のアップリンクMCSを推定してもよい。リモートUE1は、各リレーUE2のアップリンクMCSをリモートUE1又は各リレーUE2の単位時間当たりアップリンク無線リソースに乗算し、これにより各リレーUE2のアップリンク・スループットをさらに推定してもよい。
(第2の手順)
 第2の手順の第1ステップは、上述の第1の手順の第1ステップと同様である。すなわち、第1ステップでは、リモートUE1は、リモートUE1のアップリンク送信電力(a)及び基地局3とリモートUE1との間のダウンリンク・パスロス(b)を用いて、リモートUE1からのアップリンク信号の基地局3における受信電力(第1の受信電力と呼ぶ)を推定する。
 第2の手順の第2のステップは、上述の第1の手順の第3ステップと同様である。すなわち、リモートUE1は、(d)、及び各リレーUE2のダウンリンク・パスロス(e)を用いて、各リレーUE2からのアップリンク信号の基地局3における受信電力(第2の受信電力と呼ぶ)を推定する。
 第3ステップでは、リモートUE1は、第1の受信電力と第2の受信電力の違い(difference)に応じてリモートUE1のアップリンクMCSを補正(調整)することによって、各リレーUE2の推定アップリンクMCSを計算する。具体的には、第2の受信電力が第1の受信電力よりも第1の閾値を超えて大きい場合、リモートUE1は、リモートUE1のアップリンクMCSを増加することによって、各リレーUE2の推定アップリンクMCSを求める。これと反対に、第2の受信電力が第1の受信電力よりも第2の閾値を超えて小さい場合、リモートUE1は、リモートUE1のアップリンクMCSを減少することによって、各リレーUE2の推定アップリンクMCSを求める。また、第2の受信電力が第1の受信電力と同等レベル(第1の閾値と第2の閾値の間)である場合、リモートUE1は、各リレーUE2の推定アップリンクMCSをリモートUE1のアップリンクMCSと同じ値に決定する。なお、ここで、MCSを増加することは、より高い変調方式(より小さいシンボル間距離(iner-symbol distance)を持つ変調方式)を採用すること、若しくはより高い符号化率(より小さい冗長ビット数)を採用すること、又はこれら両方を含む。
 リモートUE1は、第3ステップで得られた各リレーUE2のアップリンクMCSをリモートUE1又は各リレーUE2の単位時間当たりアップリンク無線リソースに乗算し、これにより各リレーUE2のアップリンク・スループットをさらに推定してもよい。
 以上の説明から理解されるように、本実施形態では、リレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)は、リモートUE1のためのリレー選択において各リレーUE2のアップリンク品質を考慮する。したがって、本実施形態に係るリレー選択エンティティは、例えば、良好なアップリンク・スループットをリモートUE1に提供できるリレーUE2をリモートUE1のために選択することができる。このようなバックホールのアップリンクスループットに基づくリレー選択手順は、特に、複数のリレーUE2のアップリンク送信能力(e.g., 最大送信電力)が互いに異なる場合に有効である。
<第2の実施形態>
 本実施形態では、第1の実施形態で説明されたリレー選択手順の変形例が説明される。本実施形態に係る無線通信ネットワークの構成例およびリレー開始手順例は、図1~図3と同様である。
 本実施形態では、リレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)は、リモートUE1のためのリレー選択において、リモートUE1と各リレーUE2との間のD2Dリンク品質を各リレーUE2のアップリンク品質に加えてさらに考慮する。D2Dリンク品質は、例えば、リモートUE1によって測定された各リレーUE2からの無線信号(e.g., ディスカバリ信号)の受信電力、SINR、及びデータレート(又はスループット)のうち少なくとも1つを含んでもよい。さらに、測定報告は、既存の測定報告と同様に、リモートUE1と基地局3の間のセルラーリンク品質を含んでもよい。さらに、測定報告は、バックホールリンク品質(基地局3とリレーUE2の間)を含んでもよい。
 例えば、リレー選択エンティティは、各リレーUE2の通信品質Qの評価のために以下の式(2)を用いてもよい:
Q = w * D2D link quality + (1-w) * backhaul link quality    (2),
ここで、wは予め設定される定数である。また、式(2)における“backhaul link quality”は、アップリンク品質を含む。式(2)における“backhaul link quality”は、ダウンリンク品質をさらに含んでもよい。
 これに代えて、リレー選択エンティティは、各リレーUE2の通信品質Qの評価のために以下の式(3)を用いてもよい:
Q = MIN (D2D link quality, backhaul link quality)    (3),
ここで、MIN関数は、複数の引数のうちの最小値を返す関数である。
 図7は、本実施形態に係るリレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)によって行われるリレー選択手順の一例(処理700)を示すフローチャートである。ステップ701における処理は、図4のステップ401における処理と同様である。すなわち、リレー選択エンティティは、1又は複数のリレーUE2の各々のアップリンク品質を取得する。ステップ702では、リレー選択エンティティは、各リレーUE2とリモートUE1の間のD2Dリンク品質を取得する。ステップ703では、リレー選択エンティティは、各リレーUE2のアップリンク品質及びD2Dリンク品質を共に考慮して、リモートUE1に適した少なくとも1つの特定のリレーUE2を選択する。リレー選択エンティティは、上述の式(2)又は式(3)に基づいて計算された通信品質Qが所定の閾値以上である1又は複数のリレーUE2を、リモートUE1のための特定のリレーUE2に選択してもよい。
 以上の説明から理解されるように、本実施形態では、リレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)は、リモートUE1のためのリレー選択において各リレーUE2のアップリンク品質及びD2Dリンク品質を考慮する。これにより、リモートUE1のためのリレー選択において、例えば、良好なアップリンク品質を提供できるが他のリレーUE2に比べて相対的に低いD2Dリンク品質しか提供できないリレーUE2の優先度を下げることができる。
<第3の実施形態>
 本実施形態に係る無線通信ネットワークの構成例およびリレー開始手順例は、図1~図3と同様である。本実施形態では、リレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)は、リモートUE1のためのリレー選択において、各リレーUE2の負荷を考慮する。各リレーUE2の負荷は、各リレーUE2に接続している(又は各リレーUE2と通信している)リモートUE1の数であってもよい。
 1つのリレーUE2に接続している(又は各リレーUE2と通信している)リモートUE1の数が増加するにつれて、そのリレーUE2が各リモートUE1に提供できる実効スループットは低下すると考えられる。したがって、リレー選択エンティティは、接続している又は通信しているリモートUE1の数が小さいリレーUE2ほど、リモートUE1のために優先的に選択してもよい。これにより、リレー選択エンティティは、より高い実効スループットを新たなリモートUE1に提供できるリレーUE2を、当該リモートUE1のために選択することができる。
 より具体的には、リレー選択エンティティは、各リレーUE2のD2Dリンク品質を評価する際に、各リレーUE2に接続している(又は各リレーUE2と通信している)リモートUE1の数をさらに考慮してもよい。さらに又はこれに代えて、リレー選択エンティティは、各リレーUE2のバックホールリンク品質を評価する際に、各リレーUE2に接続している(又は各リレーUE2と通信している)リモートUE1の数をさらに考慮してもよい。ここで、バックホールリンク品質は、アップリンク品質若しくはダウンリンク品質又はこれら両方であってもよい。
 例えば、リレー選択エンティティは、各リレーUE2のD2Dリンク品質を除数 (N+1)で割ることによって、新たな1つのリモートUE1が享受できる各リレーUE2のD2Dリンク品質を評価してもよい。ここで、Nは、各リレーUE2に接続している(又は各リレーUE2と通信している)リモートUE1の数を表す。同様に、リレー選択エンティティは、各リレーUE2のバックホールリンク品質を除数 (N+1)で割ることによって、新たな1つのリモートUE1が享受できる各リレーUE2のバックホールリンク品質を評価してもよい。
 図8は、本実施形態に係るリレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)によって行われるリレー選択手順の一例(処理800)を示すフローチャートである。ステップ801では、リレー選択エンティティは、各リレーUE2に接続している(又は各リレーUE2と通信している)リモートUE1の数を取得する。例えば、リレー選択エンティティとしてのリモートUE1は、接続している又は通信しているリモートUE1の数を示す選択アシスタンス情報をD2Dリンク102上で各リレーUE2から受信してもよい。
 ステップ802では、リレー選択エンティティは、各リレーUE2に接続している(又は各リレーUE2と通信している)リモートUE1の数を考慮して、リモートUE1に適した少なくとも1つの特定のリレーUE2を選択する。
 図9は、本実施形態に係るリレー選択エンティティによって行われるリレー選択手順の他の例(処理900)を示すフローチャートである。ステップ901における処理は、図8のステップ801における処理と同様である。ステップ902における処理は、図4のステップ401における処理と同様である。すなわち、リレー選択エンティティは、1又は複数のリレーUE2の各々のアップリンク品質を取得する。なお、リレー選択エンティティは、リモートUE1の数(ステップ901)及びアップリンク品質(ステップ902)を同時に取得してもよい。例えば、リレー選択エンティティとしてのリモートUE1は、リモートUE1の数及びアップリンク品質を共にを示す選択アシスタンス情報をD2Dリンク102上で各リレーUE2から受信してもよい。
 ステップ903では、リレー選択エンティティは、各リレーUE2のリモートUE1の数及びアップリンク品質を共に考慮して、リモートUE1に適した少なくとも1つの特定のリレーUE2を選択する。既に説明したように、例えば、リレー選択エンティティは、各リレーUE2のアップリンク品質を除数 (N+1)で割ることによって、新たな1つのリモートUE1が享受できる各リレーUE2のバックホールリンク品質を評価してもよい。
<第4の実施形態>
 本実施形態に係る無線通信ネットワークの構成例およびリレー開始手順例は、図1~図3と同様である。本実施形態では、リレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)は、リモートUE1と基地局3との間の直接的な無線リンクの品質をさらに考慮して、いずれかのリレーUE2を介するリレー経路と直接的な無線リンクのどちらをリモートUE1の通信のために使用するかを決定する。具体的には、リレー選択エンティティは、いずれかのリレーUE2を介するリレー経路の品質(e.g., 推定スループット)よりも直接的な無線リンクの品質(e.g., 推定スループット)が高い場合に、直接的な無線リンクをリモートUE1の通信のために使用することを決定してもよい。これにより、複数のリレー経路及び直接的な無線リンクのうちリモートUE1のために最適な経路を選択することができる。
 図10は、本実施形態に係るリレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)によって行われるリレー選択手順の一例(処理1000)を示すフローチャートである。ステップ1001では、リレー選択エンティティは、各リレー経路のスループットを取得する。リレー経路のスループットは、D2Dリンクの推定スループット、バックホールリンク(アップリンク若しくはダウンリンク又は両方)の推定スループット、又はこれらの組合せであってもよい。ステップ1002では、リレー選択エンティティは、リモートUEと基地局3との間の直接的な無線リンク(ダイレクトパス)のスループットを取得する。ダイレクトパスのスループットは、アップリンク若しくはダウンリンク又は両方のスループットであってもよい。
 ステップ1003では、リレー選択エンティティは、リレーパスのスループット及びダイレクトパスのスループットを考慮して、リレーパスとダイレクトパスのどちらをリモートUE1のために使用するかを決定する。具体的には、リレー選択エンティティは、1又は複数のリレーパスの推定スループット及びダイレクトパスの推定スループットの間で比較し、最良の推定スループットに対応するパスをリモートUE1のために選択してもよい。
<第5の実施形態>
 本実施形態では、第1~第4の実施形態で説明されたリレー選択手順の変形例が説明される。本実施形態に係る無線通信ネットワークの構成例およびリレー開始手順例は、図1~図3と同様である。
 本実施形態では、リモートUE1は、複数のD2Dリンクを同時に用いて、複数のリレーUE2と通信できる。さらに、リレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)は、リモートUE1の要求スループットを達成するために、複数の特定のリレーUE2をリモートUE1のために選択する。なお、リレー選択エンティティは、1又は複数のリレーパス及びリモートUEと基地局3との間のダイレクトパスを含む複数のパスの中から、2以上のパスをリモートUE1のために選択してもよい。これにより、各パスのスループットがリモートUE1の要求スループットに満たない場合に、複数のパスを同時に使用することで要求スループットを達成できる。
 図11は、本実施形態に係るリレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)によって行われるリレー選択手順の一例(処理1100)を示すフローチャートである。ステップ1101では、リレー選択エンティティは、各リレーUE2のアップリンク品質を取得する。ステップ1102では、リレー選択エンティティは、リモートUE1の要求スループットを達成するために、各リレーUE2のアップリンク品質を考慮して、複数の特定のリレーUE2をリモートUE1のために選択する。なお、これまでの説明から理解されるように、ステップ1101で取得され且つステップ1102で考慮される各リレーUE2の通信品質に関するパラメータは、アップリンク品質、ダウンリンク品質、D2Dリンク品質、若しくはリレーUE2の負荷、又はこれらの任意の組合せであってもよい。
<第6の実施形態>
 本実施形態に係る無線通信ネットワークの構成例およびリレー開始手順例は、図1~図3と同様である。本実施形態では、リモートUE1及びネットワーク(e.g., 基地局3、D2Dコントローラ5)の両方がセル選択機能を持つ場合に、これら2つのリレー選択機能のどちらが有効化されるかを仲裁(arbitrate)するための制御手順が説明される。
 本実施形態では、リモートUE1が基地局3のセルラーカバレッジ31内に存在する場合に、ネットワーク(e.g., 基地局3、D2Dコントローラ5)に配置されたリレー選択エンティティが、リモートUE1のリレー選択エンティティよりも優先される。リモートUE1と基地局3の間の無線リンク品質が低下した場合、リモートUE1のリレー選択機能が有効化され、リレー選択の権限がネットワークからリモートUE1に移される。
 図12は、リレー選択主体の切り替え手順の一例(処理1200)を示すフローチャートである。ステップ1201では、リモートUE1は、ダウンリンク品質(e.g., DL RSRP、DL RSRQ、DL SINR)の劣化を検出する。例えば、リモートUE1は、ダウンリンク品質が所定の閾値より低いことを検出してもよい。ステップ1202では、リモートUE1は、リモートUE1による自発的な(autonomous)リレー選択を有効化し、当該自発的なリレー選択の有効化を基地局3に通知する。ステップ1203では、基地局3は、ステップ1202の通知を受信したことに応答して、受取通知(acknowledgement)をリモートUE1に送信してもよい。
 図13は、リレー選択主体の切り替え手順の他の例(処理1300)を示すフローチャートである。ステップ1301における処理は、図12のステップ1201における処置と同様である。ステップ1302では、リモートUE1は、リレー選択を行うことの許可を求める要求メッセージを基地局3に送信する。基地局3は、リモートUE1からの受信に応答して、当該リモートUE1によるリレー選択を有効化するか否かを決定する。リレー選択の有効化を認める場合、基地局3は、リレー選択の実行許可をリモートUE1に送信する(ステップ1303)。リモートUE1は、リレー選択の実行許可を受信したことに応答して、リモートUE1による自発的な(autonomous)リレー選択を有効化する。
 図14は、リレー選択主体の切り替え手順のさらに他の例(処理1400)を示すフローチャートである。ステップ1401では、基地局3は、リモートUE1のアップリンク品質又はダウンリンク品質の劣化を検出する。例えば、基地局3は、リモートUE1のアップリンク品質又はダウンリンク品質が所定の閾値より低いことを検出してもよい。リモートUE1のアップリンク品質又はダウンリンク品質の劣化を検出したことに応答して、基地局3は、リレー選択の実行許可をリモートUE1に送信する(ステップ1402)。リモートUE1は、リレー選択の実行許可を受信したことに応答して、リモートUE1による自発的な(autonomous)リレー選択を有効化する。
 本実施形態で説明されたリレー選択主体の切り替え手順は、ネットワーク(e.g., 基地局3、D2Dコントローラ5)及びリモートUE1に配置された2つのリレー選択機能のどちらが有効化されるかを仲裁(arbitrate)することができる。
 最後に、上述の複数の実施形態に係るリモートUE1、リレーUE2、基地局3、及びD2Dコントローラ5の構成例について説明する。図15は、リモートUE1の構成例を示すブロック図である。リレーUE2も、図15に示されているのと同様の構成を有してもよい。Radio Frequency(RF)トランシーバ1501は、基地局3と通信するためにアナログRF信号処理を行う。RFトランシーバ1501により行われるアナログRF信号処理は、周波数アップコンバージョン、周波数ダウンコンバージョン、及び増幅を含む。RFトランシーバ1501は、アンテナ1502及びベースバンドプロセッサ1503と結合される。すなわち、RFトランシーバ1501は、変調シンボルデータ(又はOFDMシンボルデータ)をベースバンドプロセッサ1503から受信し、送信RF信号を生成し、送信RF信号をアンテナ1502に供給する。また、RFトランシーバ1501は、アンテナ1502によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをベースバンドプロセッサ1503に供給する。
 ベースバンドプロセッサ1503は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。デジタルベースバンド信号処理は、(a) データ圧縮/復元、(b) データのセグメンテーション/コンカテネーション、(c) 伝送フォーマット(伝送フレーム)の生成/分解、(d) 伝送路符号化/復号化、(e) 変調(シンボルマッピング)/復調、及び(f) Inverse Fast Fourier Transform(IFFT)によるOFDMシンボルデータ(ベースバンドOFDM信号)の生成などを含む。一方、コントロールプレーン処理は、レイヤ1(e.g., 送信電力制御)、レイヤ2(e.g., 無線リソース管理、及びhybrid automatic repeat request(HARQ)処理)、及びレイヤ3(e.g., アタッチ、モビリティ、及び通話管理に関するシグナリング)の通信管理を含む。
 例えば、LTEおよびLTE-Advancedの場合、ベースバンドプロセッサ1503によるデジタルベースバンド信号処理は、Packet Data Convergence Protocol(PDCP)レイヤ、Radio Link Control(RLC)レイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、ベースバンドプロセッサ1503によるコントロールプレーン処理は、Non-Access Stratum(NAS)プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。
 ベースバンドプロセッサ1503は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., Digital Signal Processor(DSP))とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., Central Processing Unit(CPU)、又はMicro Processing Unit(MPU))を含んでもよい。この場合、コントロールプレーン処理を行うプロトコルスタック・プロセッサは、後述するアプリケーションプロセッサ1504と共通化されてもよい。
 アプリケーションプロセッサ1504は、CPU、MPU、マイクロプロセッサ、又はプロセッサコアとも呼ばれる。アプリケーションプロセッサ1504は、複数のプロセッサ(複数のプロセッサコア)を含んでもよい。アプリケーションプロセッサ1504は、メモリ1506又は図示されていないメモリから読み出されたシステムソフトウェアプログラム(Operating System(OS))及び様々なアプリケーションプログラム(例えば、通話アプリケーション、WEBブラウザ、メーラ、カメラ操作アプリケーション、音楽再生アプリケーション)を実行することによって、リモートUE1の各種機能を実現する。
 いくつかの実装において、図15に破線(1505)で示されているように、ベースバンドプロセッサ1503及びアプリケーションプロセッサ1504は、1つのチップ上に集積されてもよい。言い換えると、ベースバンドプロセッサ1503及びアプリケーションプロセッサ1504は、1つのSystem on Chip(SoC)デバイス1505として実装されてもよい。SoCデバイスは、システムLarge Scale Integration(LSI)またはチップセットと呼ばれることもある。
 メモリ1506は、揮発性メモリ若しくは不揮発性メモリ又はこれらの組合せである。メモリ1506は、物理的に独立した複数のメモリデバイスを含んでもよい。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、マスクRead Only Memory(MROM)、Electrically Erasable Programmable ROM(EEPROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。例えば、メモリ1506は、ベースバンドプロセッサ1503、アプリケーションプロセッサ1504、及びSoC1505からアクセス可能な外部メモリデバイスを含んでもよい。メモリ1506は、ベースバンドプロセッサ1503内、アプリケーションプロセッサ1504内、又はSoC1505内に集積された内蔵メモリデバイスを含んでもよい。さらに、メモリ1506は、Universal Integrated Circuit Card(UICC)内のメモリを含んでもよい。
 メモリ1506は、上述の複数の実施形態で説明されたリモートUE1による処理を行うための命令群およびデータを含むソフトウェアモジュール(コンピュータプログラム)を格納してもよい。いくつかの実装において、ベースバンドプロセッサ1503又はアプリケーションプロセッサ1504は、当該ソフトウェアモジュールをメモリ1506から読み出して実行することで、上述の実施形態でシーケンス図及びフローチャートを用いて説明されたリモートUE1の処理を行うよう構成されてもよい。
 図16は、上述の実施形態に係る基地局3の構成例を示すブロック図である。図16を参照すると、基地局3は、RFトランシーバ1601、ネットワークインターフェース1603、プロセッサ1604、及びメモリ1605を含む。RFトランシーバ1601は、リモートUE1及びリレーUE2と通信するためにアナログRF信号処理を行う。RFトランシーバ1601は、複数のトランシーバを含んでもよい。RFトランシーバ1601は、アンテナ1602及びプロセッサ1604と結合される。RFトランシーバ1601は、変調シンボルデータ(又はOFDMシンボルデータ)をプロセッサ1604から受信し、送信RF信号を生成し、送信RF信号をアンテナ1602に供給する。また、RFトランシーバ1601は、アンテナ1602によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをプロセッサ1604に供給する。
 ネットワークインターフェース1603は、ネットワークノード(e.g., Mobility Management Entity (MME)およびServing Gateway (S-GW))と通信するために使用される。ネットワークインターフェース1603は、例えば、IEEE 802.3 seriesに準拠したネットワークインターフェースカード(NIC)を含んでもよい。
 プロセッサ1604は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。例えば、LTEおよびLTE-Advancedの場合、プロセッサ1604によるデジタルベースバンド信号処理は、PDCPレイヤ、RLCレイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、プロセッサ1604によるコントロールプレーン処理は、S1プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。
 プロセッサ1604は、複数のプロセッサを含んでもよい。例えば、プロセッサ1604は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., DSP)とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., CPU又はMPU)を含んでもよい。
 メモリ1605は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、SRAM若しくはDRAM又はこれらの組み合わせである。不揮発性メモリは、例えば、MROM、PROM、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの組合せである。メモリ1605は、プロセッサ1604から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1604は、ネットワークインターフェース1603又は図示されていないI/Oインタフェースを介してメモリ1605にアクセスしてもよい。
 メモリ1605は、上述の複数の実施形態で説明された基地局3による処理を行うための命令群およびデータを含むソフトウェアモジュール(コンピュータプログラム)を格納してもよい。いくつかの実装において、プロセッサ1604は、当該ソフトウェアモジュールをメモリ1605から読み出して実行することで、上述の実施形態でシーケンス図及びフローチャートを用いて説明された基地局3の処理を行うよう構成されてもよい。
 図17は、上述の実施形態に係るD2Dコントローラ5の構成例を示すブロック図である。図17を参照すると、D2Dコントローラ5は、ネットワークインターフェース1701、プロセッサ1702、及びメモリ1703を含む。ネットワークインターフェース1701は、リモートUE1及びリレーUE2と通信するために使用される。ネットワークインターフェース1701は、例えば、IEEE 802.3 seriesに準拠したネットワークインタフェースカード(NIC)を含んでもよい。
 プロセッサ1702は、メモリ1703からソフトウェア(コンピュータプログラム)を読み出して実行することで、上述の実施形態においてシーケンス図及びフローチャートを用いて説明されたD2Dコントローラ5の処理を行う。プロセッサ1702は、例えば、マイクロプロセッサ、MPU、又はCPUであってもよい。プロセッサ1702は、複数のプロセッサを含んでもよい。
 メモリ1703は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ1703は、プロセッサ1702から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1702は、図示されていないI/Oインタフェースを介してメモリ1703にアクセスしてもよい。
 図17の例では、メモリ1703は、D2D通信のための制御モジュールを含むソフトウェアモジュール群を格納するために使用される。プロセッサ1702は、これらのソフトウェアモジュール群をメモリ1703から読み出して実行することで、上述の実施形態において説明されたD2Dコントローラ5の処理を行うことができる。
 図15~図17を用いて説明したように、上述の実施形態に係るリモートUE1、リレーUE2、基地局3、及びD2Dコントローラ5が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
<その他の実施形態>
 上述の実施形態は、各々独立に実施されてもよいし、適宜組み合わせて実施されてもよい。
 さらに、上述した実施形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。
 例えば、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記A1)
 メモリと、
 前記メモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、1又は複数のリレー端末の各々から基地局へのアップリンク送信の品質を考慮して、前記1又は複数のリレー端末の中から第1のリモート端末に適した少なくとも1つの特定のリレー端末を選択するよう構成されている、
 各特定のリレー端末は、各特定のリレー端末と前記第1のリモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と前記基地局との間のバックホールリンクを介して、前記第1のリモート端末と前記基地局との間でトラフィックを中継する、
リレー選択装置。
(付記A2)
 前記少なくとも1つのプロセッサは、各リレー端末の最大送信電力を表すパワークラス情報を用いて、前記アップリンク送信の品質を判定するよう構成されている、
付記A1に記載のリレー選択装置。
(付記A3)
 前記少なくとも1つのプロセッサは、各リレー端末の最大送信電力、前記基地局と各リレー端末との間のダウンリンク・パスロス、及び各リレー端末に割り当てられる単位時間当たりのアップリンク無線リソースを用いて、各リレー端末の前記アップリンク送信の品質を計算するよう構成されている、
付記A1又はA2に記載のリレー選択装置。
(付記A4)
 前記アップリンク送信の品質は、各リレー端末の前記アップリンク送信の推定スループットを含む、
付記A1又はA2に記載のリレー選択装置。
(付記A5)
 前記アップリンク送信の品質は、各リレー端末の前記アップリンク送信に適用されるModulation and Coding Scheme(MCS)の推定値を含む、
付記A1、A2、又はA4に記載のリレー選択装置。
(付記A6)
 前記少なくとも1つのプロセッサは、
(a)前記第1のリモート端末のアップリンク送信電力、
(b)前記基地局と前記第1のリモート端末との間のダウンリンク・パスロス、
(c)前記第1のリモート端末のModulation and Coding Scheme(MCS)、
(d)各リレー端末の最大送信電力、及び
(e)前記基地局と各リレー端末との間のダウンリンク・パスロス、
を用いて、各リレー端末の前記アップリンク送信の推定スループット、又は各リレー端末の前記アップリンク送信に適用される推定MCSを計算するよう構成されている、
付記A4又はA5に記載のリレー選択装置。
(付記A7)
 前記少なくとも1つのプロセッサは、
 前記第1のリモート端末のアップリンク送信電力、前記基地局と前記第1のリモート端末との間のダウンリンク・パスロス、及び前記第1のリモート端末のMCSを用いて、前記基地局における干渉及び雑音電力の推定値を計算し、
 前記干渉及び雑音電力の推定値、各リレー端末の最大送信電力、及び前記基地局と各リレー端末との間のダウンリンク・パスロスを用いて、各リレー端末の前記推定MCS又は前記推定スループットを計算する、
よう構成されている、
付記A6に記載のリレー選択装置。
(付記A8)
 前記少なくとも1つのプロセッサは、
 前記第1のリモート端末のアップリンク送信電力、及び前記基地局と前記第1のリモート端末との間のダウンリンク・パスロスに基づいて、前記第1のリモート端末からのアップリンク信号の前記基地局における第1の受信電力を計算し、
 各リレー端末の最大送信電力、及び前記基地局と各リレー端末との間のダウンリンク・パスロスを用いて、各リレー端末からのアップリンク信号の前記基地局における第2の受信電力を計算し、
 前記第1の受信電力と前記第2の受信電力の違いに応じて前記第1のリモート端末のModulation and Coding Scheme(MCS)を補正することによって、各リレー端末の前記推定MCSを計算する、
よう構成されている、
付記A6に記載のリレー選択装置。
(付記A9)
 前記少なくとも1つのプロセッサは、前記少なくとも1つの特定のリレー端末を選択するために、前記第1のリモート端末と各リレー端末との間のD2Dリンクの品質をさらに考慮するよう構成されている、
付記A1~A8のいずれか1項に記載のリレー選択装置。
(付記A10)
 前記少なくとも1つのプロセッサは、前記第1のリモート端末から前記基地局への直接的なアップリンク送信の品質をさらに考慮して、前記1又は複数のリレー端末のいずれかを介するリレー経路と、前記第1のリモート端末と前記基地局との間の直接的な無線リンクのどちらを前記第1のリモート端末の通信のために使用するかを決定するよう構成されている、
付記A1~A9のいずれか1項に記載のリレー選択装置。
(付記A11)
 前記第1のリモート端末は、複数のD2Dリンクを同時に用いて通信できるよう構成され、
 前記少なくとも1つのプロセッサは、前記第1のリモート端末の要求スループットを達成するために、複数の特定のリレー端末を選択するよう構成されている、
付記A1~A10のいずれか1項に記載のリレー選択装置。
(付記A12)
 前記少なくとも1つのプロセッサは、前記少なくとも1つの特定のリレー端末を選択するために、各リレー端末と接続又は通信している他のリモート端末の数を考慮するよう構成されている、
付記A1~A11のいずれか1項に記載のリレー選択装置。
(付記A13)
 前記少なくとも1つのプロセッサは、前記他のリモート端末の数が小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に優先的に選択するよう構成されている、
付記A12のリレー選択装置。
(付記A14)
 前記少なくとも1つのプロセッサは、
 各リレー端末の前記アップリンク送信の推定スループット及び各リレー端末の前記他のリモート端末の数を用いて、前記第1のリモート端末が利用できる実効スループットを推定し、
 前記実効スループットに基づいて前記少なくとも1つの特定のリレー端末を選択するよう構成されている、
付記A12又はA13に記載のリレー選択装置。
(付記A15)
 前記リレー選択装置は、前記第1のリモート端末に配置される、
付記A1~A14のいずれか1項に記載のリレー選択装置。
(付記A16)
 1又は複数のリレー端末の各々から基地局へのアップリンク送信の品質を考慮して、前記1又は複数のリレー端末の中から第1のリモート端末に適した少なくとも1つの特定のリレー端末を選択することを備え、ここで、各特定のリレー端末は、各特定のリレー端末と前記第1のリモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と前記基地局との間のバックホールリンクを介して、前記第1のリモート端末と前記基地局との間でトラフィックを中継する、
リレー選択方法。
(付記A17)
 各リレー端末の最大送信電力を表すパワークラス情報を用いて、前記アップリンク送信の品質を判定することをさらに備える、
付記A16に記載のリレー選択方法。
(付記A18)
 各リレー端末の最大送信電力、前記基地局と各リレー端末との間のダウンリンク・パスロス、及び各リレー端末に割り当てられる単位時間当たりのアップリンク無線リソースを用いて、各リレー端末の前記アップリンク送信の品質を計算することをさらに備える、
付記A16に記載のリレー選択方法。
(付記A19)
 前記アップリンク送信の品質は、各リレー端末の前記アップリンク送信に適用されるModulation and Coding Scheme(MCS)の推定値を含む、
付記A16又はA17に記載のリレー選択方法。
(付記A20)
 リレー選択方法をコンピュータに行わせるためのプログラムであって、
 前記リレー選択方法は、1又は複数のリレー端末の各々から基地局へのアップリンク送信の品質を考慮して、前記1又は複数のリレー端末の中から第1のリモート端末に適した少なくとも1つの特定のリレー端末を選択することを備え、ここで、各特定のリレー端末は、各特定のリレー端末と前記第1のリモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と前記基地局との間のバックホールリンクを介して、前記第1のリモート端末と前記基地局との間でトラフィックを中継する、
プログラム。
(付記B1)
 基地局を含むネットワークに配置される制御装置であって、
 メモリと、
 前記メモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、前記ネットワークと無線端末のどちらがリレー選択を実行するかを切り替えるための制御信号を前記無線端末に送信するよう構成され、
 前記リレー選択は、1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択することを含み、
 各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と前記基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継する、
制御装置。
(付記B2)
 前記少なくとも1つのプロセッサは、前記無線端末と前記基地局との間のアップリンク又はダウンリンク通信品質に応じて、前記制御信号を前記無線端末に送信するよう構成されている、
付記B1に記載の制御装置。
(付記B3)
 前記少なくとも1つのプロセッサは、前記アップリンク又はダウンリンク通信品質が所定の閾値より低いことを検出したことに応答して、前記リレー選択の実行が前記無線端末に許可されることを示す前記制御信号を前記無線端末に送信するよう構成されている、
付記B2に記載の制御装置。
(付記B4)
 前記少なくとも1つのプロセッサは、前記無線端末から要求を受信したことに応答して、前記制御信号を前記無線端末に送信するよう構成されている、
付記B1~B3のいずれか1項に記載の制御装置。
(付記B5)
 基地局を含むネットワークに配置される制御装置における方法であって、
 前記ネットワークと無線端末のどちらがリレー選択を実行するかを切り替えるための制御信号を前記無線端末に送信することを備え、
 前記リレー選択は、1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択することを含み、
 各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と前記基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継する、
方法。
(付記B6)
 前記送信することは、前記無線端末と前記基地局との間のアップリンク又はダウンリンク通信品質に応じて、前記制御信号を前記無線端末に送信することを含む、
付記B5に記載の方法。
(付記B7)
 基地局を含むネットワークに配置される制御装置における方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、前記ネットワークと無線端末のどちらがリレー選択を実行するかを切り替えるための制御信号を前記無線端末に送信することを備え、
 前記リレー選択は、1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択することを含み、
 各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と前記基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継する、
プログラム。
(付記B8)
 無線端末であって、
 メモリと、
 前記メモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、ネットワークと前記無線端末のどちらがリレー選択を実行するかを切り替えるための制御信号を前記ネットワークから受信するよう構成され、
 前記リレー選択は、1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択することを含み、
 各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と前記ネットワーク内の基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継する、
無線端末。
(付記B9)
 前記少なくとも1つのプロセッサは、前記リレー選択を前記無線端末において行うか否かを前記制御信号に基づいて決定するよう構成されている、
付記B8に記載の無線端末。
(付記B10)
 前記少なくとも1つのプロセッサは、前記無線端末と前記基地局との間のアップリンク又はダウンリンク通信品質が所定の閾値より低いことを検出したことに応答して、前記無線端末による前記リレー選択の実行の許可を求める要求を前記ネットワークに送信する、
付記B8又はB9に記載の無線端末。
(付記B11)
 無線端末における方法であって、
 ネットワークと前記無線端末のどちらがリレー選択を実行するかを切り替えるための制御信号を前記ネットワークから受信することを備え、
 前記リレー選択は、1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択することを含み、
 各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と前記ネットワーク内の基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継する、
方法。
(付記B12)
 前記リレー選択を前記無線端末において行うか否かを前記制御信号に基づいて決定することをさらに備える、
付記B11に記載の方法。
(付記B13)
 前記無線端末と前記基地局との間のアップリンク又はダウンリンク通信品質が所定の閾値より低いことを検出したことに応答して、前記無線端末による前記リレー選択の実行の許可を求める要求を前記ネットワークに送信することをさらに備える、
付記B11又はB12に記載の方法。
(付記B14)
 無線端末における方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、ネットワークと前記無線端末のどちらがリレー選択を実行するかを切り替えるための制御信号を前記ネットワークから受信することを備え、
 前記リレー選択は、1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択することを含み、
 各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と前記ネットワーク内の基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継する、
プログラム。
(付記B15)
 無線端末であって、
 メモリと、
 前記メモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、前記無線端末と基地局との間のアップリンク又はダウンリンク通信品質が所定の閾値より低いことを検出したことに応答して、前記無線端末によるリレー選択の実行の許可を求める要求又は前記リレー選択が前記無線端末により行われることを示す報告を、前記基地局を含むネットワークに送信するよう構成され、
 前記リレー選択は、1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択することを含み、
 各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と前記ネットワーク内の基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継する、
無線端末。
(付記B16)
 無線端末における方法であって、
 前記無線端末と基地局との間のアップリンク又はダウンリンク通信品質が所定の閾値より低いことを検出したことに応答して、前記無線端末によるリレー選択の実行の許可を求める要求又は前記リレー選択が前記無線端末により行われることを示す報告を、前記基地局を含むネットワークに送信することを備え、
 前記リレー選択は、1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択することを含み、
 各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と前記基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継する、
方法。
(付記B17)
 無線端末における方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、前記無線端末と基地局との間のアップリンク又はダウンリンク通信品質が所定の閾値より低いことを検出したことに応答して、前記無線端末によるリレー選択の実行の許可を求める要求又は前記リレー選択が前記無線端末により行われることを示す報告を、前記基地局を含むネットワークに送信することを備え、
 前記リレー選択は、1又は複数のリレー端末の中から前記無線端末に適した少なくとも1つの特定のリレー端末を選択することを含み、
 各特定のリレー端末は、各特定のリレー端末と前記無線端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と前記基地局との間のバックホールリンクを介して、前記無線端末と前記基地局との間でトラフィックを中継する、
プログラム。
(付記C1)
 メモリと、
 前記メモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、第1のリモート端末に適した少なくとも1つの特定のリレー端末を、1又は複数のリレー端末の中から、各リレー端末と接続又は通信している他のリモート端末の数を考慮して選択するよう構成され、
 各特定のリレー端末は、各特定のリレー端末と前記第1のリモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記第1のリモート端末と前記基地局との間でトラフィックを中継する、
リレー選択装置。
(付記C2)
 前記少なくとも1つのプロセッサは、前記他のリモート端末の数が小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に優先的に選択するよう構成されている、
付記C1に記載のリレー選択装置。
(付記C3)
 前記少なくとも1つのプロセッサは、前記少なくとも1つの特定のリレー端末を選択するために、各リレー端末から前記基地局へのアップリンク送信の品質をさらに考慮するよう構成されている、
付記C1又はC2に記載のリレー選択装置。
(付記C4)
 前記少なくとも1つのプロセッサは、
 各リレー端末の前記アップリンク送信の推定スループット及び各リレー端末の前記他のリモート端末の数から前記第1のリモート端末が利用できる実効スループットを推定し、
 前記実効スループットに基づいて前記少なくとも1つの特定のリレー端末を選択するよう構成されている、
付記C3に記載のリレー選択装置。
(付記C5)
 前記少なくとも1つのプロセッサは、各リレー端末の最大送信電力を表すパワークラス情報を用いて、前記アップリンク送信の品質を判定するよう構成されている、
付記C3又はC4に記載のリレー選択装置。
(付記C6)
 前記アップリンク送信の品質は、各リレー端末の前記アップリンク送信に適用されるModulation and Coding Scheme(MCS)の推定値を含む、
付記C3~C5のいずれか1項に記載のリレー選択装置。
(付記C7)
 前記少なくとも1つのプロセッサは、前記少なくとも1つの特定のリレー端末を選択するために、前記第1のリモート端末と各リレー端末との間のD2Dリンクの品質をさらに考慮するよう構成されている、
付記C1~C6のいずれか1項に記載のリレー選択装置。
(付記C8)
 前記少なくとも1つのプロセッサは、前記第1のリモート端末と前記基地局との間の直接的な無線リンクの品質をさらに考慮して、前記1又は複数のリレー端末のいずれかを介するリレー経路と、前記直接的な無線リンクのどちらを前記第1のリモート端末の通信のために使用するかを決定するよう構成されている、
付記C1~C7のいずれか1項に記載のリレー選択装置。
(付記C9)
 前記第1のリモート端末は、複数のD2Dリンクを同時に用いて通信できるよう構成され、
 前記少なくとも1つのプロセッサは、前記第1のリモート端末の要求スループットを達成するために、複数の特定のリレー端末を選択するよう構成されている、
付記C1~C8のいずれか1項に記載のリレー選択装置。
(付記C10)
 第1のリモート端末に適した少なくとも1つの特定のリレー端末を、1又は複数のリレー端末の中から、各リレー端末と接続又は通信している他のリモート端末の数を考慮して選択することを備え、ここで、各特定のリレー端末は、各特定のリレー端末と前記第1のリモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記第1のリモート端末と前記基地局との間でトラフィックを中継する、
リレー選択方法。
(付記C11)
 前記選択することは、前記他のリモート端末の数が小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に優先的に選択することを含む、
付記C10に記載のリレー選択方法。
(付記C12)
 前記選択することは、前記少なくとも1つの特定のリレー端末を選択するために、各リレー端末から前記基地局へのアップリンク送信の品質をさらに考慮することを含む、
付記C10又はC11に記載のリレー選択方法。
(付記C13)
 各リレー端末の前記アップリンク送信の推定スループット及び各リレー端末の前記他のリモート端末の数から前記第1のリモート端末が利用できる実効スループットを推定することをさらに備え、
 前記選択することは、前記実効スループットに基づいて前記少なくとも1つの特定のリレー端末を選択することを含む、
付記C12に記載のリレー選択方法。
(付記C14)
 各リレー端末の最大送信電力を表すパワークラス情報を用いて、前記アップリンク送信の品質を判定することをさらに備える、
付記C12又はC13に記載のリレー選択方法。
(付記C15)
 前記アップリンク送信の品質は、各リレー端末の前記アップリンク送信に適用されるModulation and Coding Scheme(MCS)の推定値を含む、
付記C12~C14のいずれか1項に記載のリレー選択方法。
(付記C16)
 前記選択することは、前記少なくとも1つの特定のリレー端末を選択するために、前記第1のリモート端末と各リレー端末との間のD2Dリンクの品質をさらに考慮することを含む、
付記C10~C15のいずれか1項に記載のリレー選択方法。
(付記C17)
 前記第1のリモート端末と前記基地局との間の直接的な無線リンクの品質をさらに考慮して、前記1又は複数のリレー端末のいずれかを介するリレー経路と、前記直接的な無線リンクのどちらを前記第1のリモート端末の通信のために使用するかを決定することをさらに備える、
付記C10~C16のいずれか1項に記載のリレー選択方法。
(付記C18)
 前記第1のリモート端末は、複数のD2Dリンクを同時に用いて通信できるよう構成され、
 前記選択することは、前記第1のリモート端末の要求スループットを達成するために、複数の特定のリレー端末を選択することを含む、
付記C10~C17のいずれか1項に記載のリレー選択方法。
(付記C19)
 リレー選択方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
 前記リレー選択方法は、第1のリモート端末に適した少なくとも1つの特定のリレー端末を、1又は複数のリレー端末の中から、各リレー端末と接続又は通信している他のリモート端末の数を考慮して選択することを備え、ここで、各特定のリレー端末は、各特定のリレー端末と前記第1のリモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記第1のリモート端末と前記基地局との間でトラフィックを中継する、
非一時的なコンピュータ可読媒体。
 この出願は、2016年1月25日に出願された日本出願特願2016-011686を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 リモートUE
2 リレーUE
3 基地局
4 コアネットワーク
5 device-to-device(D2D)コントローラ
6 外部ネットワーク
7 ノード
1501 radio frequency(RF)トランシーバ
1503 ベースバンドプロセッサ
1504 アプリケーションプロセッサ
1506 メモリ
1604 プロセッサ
1605 メモリ
1702 プロセッサ
1703 メモリ

Claims (19)

  1.  メモリと、
     前記メモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、第1のリモート端末に適した少なくとも1つの特定のリレー端末を、1又は複数のリレー端末の中から、各リレー端末と接続又は通信している他のリモート端末の数を考慮して選択するよう構成され、
     各特定のリレー端末は、各特定のリレー端末と前記第1のリモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記第1のリモート端末と前記基地局との間でトラフィックを中継する、
    リレー選択装置。
  2.  前記少なくとも1つのプロセッサは、前記他のリモート端末の数が小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に優先的に選択するよう構成されている、
    請求項1に記載のリレー選択装置。
  3.  前記少なくとも1つのプロセッサは、前記少なくとも1つの特定のリレー端末を選択するために、各リレー端末から前記基地局へのアップリンク送信の品質をさらに考慮するよう構成されている、
    請求項1又は2に記載のリレー選択装置。
  4.  前記少なくとも1つのプロセッサは、
     各リレー端末の前記アップリンク送信の推定スループット及び各リレー端末の前記他のリモート端末の数から前記第1のリモート端末が利用できる実効スループットを推定し、
     前記実効スループットに基づいて前記少なくとも1つの特定のリレー端末を選択するよう構成されている、
    請求項3に記載のリレー選択装置。
  5.  前記少なくとも1つのプロセッサは、各リレー端末の最大送信電力を表すパワークラス情報を用いて、前記アップリンク送信の品質を判定するよう構成されている、
    請求項3又は4に記載のリレー選択装置。
  6.  前記アップリンク送信の品質は、各リレー端末の前記アップリンク送信に適用されるModulation and Coding Scheme(MCS)の推定値を含む、
    請求項3~5のいずれか1項に記載のリレー選択装置。
  7.  前記少なくとも1つのプロセッサは、前記少なくとも1つの特定のリレー端末を選択するために、前記第1のリモート端末と各リレー端末との間のD2Dリンクの品質をさらに考慮するよう構成されている、
    請求項1~6のいずれか1項に記載のリレー選択装置。
  8.  前記少なくとも1つのプロセッサは、前記第1のリモート端末と前記基地局との間の直接的な無線リンクの品質をさらに考慮して、前記1又は複数のリレー端末のいずれかを介するリレー経路と、前記直接的な無線リンクのどちらを前記第1のリモート端末の通信のために使用するかを決定するよう構成されている、
    請求項1~7のいずれか1項に記載のリレー選択装置。
  9.  前記第1のリモート端末は、複数のD2Dリンクを同時に用いて通信できるよう構成され、
     前記少なくとも1つのプロセッサは、前記第1のリモート端末の要求スループットを達成するために、複数の特定のリレー端末を選択するよう構成されている、
    請求項1~8のいずれか1項に記載のリレー選択装置。
  10.  第1のリモート端末に適した少なくとも1つの特定のリレー端末を、1又は複数のリレー端末の中から、各リレー端末と接続又は通信している他のリモート端末の数を考慮して選択することを備え、ここで、各特定のリレー端末は、各特定のリレー端末と前記第1のリモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記第1のリモート端末と前記基地局との間でトラフィックを中継する、
    リレー選択方法。
  11.  前記選択することは、前記他のリモート端末の数が小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に優先的に選択することを含む、
    請求項10に記載のリレー選択方法。
  12.  前記選択することは、前記少なくとも1つの特定のリレー端末を選択するために、各リレー端末から前記基地局へのアップリンク送信の品質をさらに考慮することを含む、
    請求項10又は11に記載のリレー選択方法。
  13.  各リレー端末の前記アップリンク送信の推定スループット及び各リレー端末の前記他のリモート端末の数から前記第1のリモート端末が利用できる実効スループットを推定することをさらに備え、
     前記選択することは、前記実効スループットに基づいて前記少なくとも1つの特定のリレー端末を選択することを含む、
    請求項12に記載のリレー選択方法。
  14.  各リレー端末の最大送信電力を表すパワークラス情報を用いて、前記アップリンク送信の品質を判定することをさらに備える、
    請求項12又は13に記載のリレー選択方法。
  15.  前記アップリンク送信の品質は、各リレー端末の前記アップリンク送信に適用されるModulation and Coding Scheme(MCS)の推定値を含む、
    請求項12~14のいずれか1項に記載のリレー選択方法。
  16.  前記選択することは、前記少なくとも1つの特定のリレー端末を選択するために、前記第1のリモート端末と各リレー端末との間のD2Dリンクの品質をさらに考慮することを含む、
    請求項10~15のいずれか1項に記載のリレー選択方法。
  17.  前記第1のリモート端末と前記基地局との間の直接的な無線リンクの品質をさらに考慮して、前記1又は複数のリレー端末のいずれかを介するリレー経路と、前記直接的な無線リンクのどちらを前記第1のリモート端末の通信のために使用するかを決定することをさらに備える、
    請求項10~16のいずれか1項に記載のリレー選択方法。
  18.  前記第1のリモート端末は、複数のD2Dリンクを同時に用いて通信できるよう構成され、
     前記選択することは、前記第1のリモート端末の要求スループットを達成するために、複数の特定のリレー端末を選択することを含む、
    請求項10~17のいずれか1項に記載のリレー選択方法。
  19.  リレー選択方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記リレー選択方法は、第1のリモート端末に適した少なくとも1つの特定のリレー端末を、1又は複数のリレー端末の中から、各リレー端末と接続又は通信している他のリモート端末の数を考慮して選択することを備え、ここで、各特定のリレー端末は、各特定のリレー端末と前記第1のリモート端末との間のデバイス・ツー・デバイス(D2D)リンク及び各特定のリレー端末と基地局との間のバックホールリンクを介して、前記第1のリモート端末と前記基地局との間でトラフィックを中継する、
    非一時的なコンピュータ可読媒体。
PCT/JP2016/087341 2016-01-25 2016-12-15 リレー選択のための装置及び方法 WO2017130593A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017563736A JPWO2017130593A1 (ja) 2016-01-25 2016-12-15 リレー選択のための装置及び方法
US16/071,924 US20190036595A1 (en) 2016-01-25 2016-12-15 Apparatus and method for relay selection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-011686 2016-01-25
JP2016011686 2016-01-25

Publications (1)

Publication Number Publication Date
WO2017130593A1 true WO2017130593A1 (ja) 2017-08-03

Family

ID=59397910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087341 WO2017130593A1 (ja) 2016-01-25 2016-12-15 リレー選択のための装置及び方法

Country Status (3)

Country Link
US (1) US20190036595A1 (ja)
JP (1) JPWO2017130593A1 (ja)
WO (1) WO2017130593A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031269A1 (ja) * 2018-08-07 2020-02-13 株式会社Nttドコモ 無線ノード、及び、無線通信方法
JPWO2019229925A1 (ja) * 2018-05-31 2021-02-12 株式会社Fuji 部品実装ライン
CN112470506A (zh) * 2018-08-01 2021-03-09 高通股份有限公司 用于选择回程节点以连接到集成接入和回程网络的技术
CN114007204A (zh) * 2020-07-28 2022-02-01 华为技术有限公司 基于中继通信与直连通信的通信选择方法和设备
WO2022190313A1 (ja) 2021-03-11 2022-09-15 ソニーグループ株式会社 通信装置及び通信方法
WO2023248662A1 (ja) * 2022-06-22 2023-12-28 株式会社Jvcケンウッド 基地局装置および端末装置
JP7433455B2 (ja) 2020-02-13 2024-02-19 中興通訊股▲ふん▼有限公司 リンク切替、リンク切替構成方法、装置、通信ノード及び媒体

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108770074B (zh) * 2014-12-22 2022-09-30 中兴通讯股份有限公司 实现设备直通中继选择的方法、网络控制节点和用户设备
US11166149B2 (en) * 2016-03-28 2021-11-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device-to-device communication method, terminal device, and network device
KR20180125439A (ko) * 2016-03-28 2018-11-23 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 장치 대 장치 통신 방법, 단말 장치 및 네트워크 장치
CN107404701A (zh) * 2016-05-19 2017-11-28 索尼公司 电子装置、信息处理设备和信息处理方法
JP6809027B2 (ja) * 2016-08-08 2021-01-06 ソニー株式会社 通信装置及び通信方法
ES2958557T3 (es) * 2016-08-29 2024-02-09 Guss Automation Llc Sistema y método agrícola robótico
US11197177B2 (en) * 2016-08-29 2021-12-07 Signify Holding B.V. Outdoor lighting network as a contingency connectivity infrastructure
WO2018194390A1 (en) * 2017-04-20 2018-10-25 Lg Electronics Inc. Method for forwarding system information for a remote ue by a relay ue in wireless communication system and a device therefor
CN107105465A (zh) * 2017-04-21 2017-08-29 中车株洲电力机车研究所有限公司 一种轨道交通通信方法及系统
CN109890014A (zh) * 2019-04-03 2019-06-14 成都中科微信息技术研究院有限公司 一种基于终端直接通信的电力无线专网的中继传输方法
CN113055985B (zh) * 2019-12-27 2022-08-12 大唐移动通信设备有限公司 一种信息处理方法、装置、设备及计算机可读存储介质
CN113259916A (zh) * 2020-02-12 2021-08-13 阿里巴巴集团控股有限公司 一种基于蓝牙网络的通信方法、及其节点和通信系统
US20210409937A1 (en) * 2020-06-29 2021-12-30 Asustek Computer Inc. Method and apparatus for user equipment (ue) reporting sidelink ue capability information in a wireless communication system
CN113938981B (zh) * 2020-06-29 2023-11-14 华硕电脑股份有限公司 无线通信系统中中继报告侧链路用户设备能力信息的方法和设备
US11611472B2 (en) * 2021-02-26 2023-03-21 Qualcomm Incorporated Techniques for activating and deactivating user equipment relays
WO2023087907A1 (zh) * 2021-11-22 2023-05-25 Oppo广东移动通信有限公司 侧行链路的切换方法、装置、终端、存储介质及程序产品

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015242A1 (en) * 2013-07-30 2015-02-05 Sony Corporation Terminal device having a relay function and method of providing information related to a relay function

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291935A1 (en) * 2009-05-15 2010-11-18 Rudrapatna Ashok N Multi-stream wireless relay
EP2790456B1 (en) * 2013-04-10 2015-10-21 Fujitsu Limited D2D communication in wireless networks
WO2015128537A1 (en) * 2014-02-27 2015-09-03 Nokia Technologies Oy Device-to-device based user equipment to network relay
WO2016076107A1 (ja) * 2014-11-14 2016-05-19 株式会社Nttドコモ ユーザ装置及びd2d通信方法
US9585159B2 (en) * 2014-12-19 2017-02-28 Qualcomm Incorporated Opportunistic dual-band relay
CN112887003B (zh) * 2015-05-15 2022-12-06 索尼公司 移动通信系统、通信终端和方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015242A1 (en) * 2013-07-30 2015-02-05 Sony Corporation Terminal device having a relay function and method of providing information related to a relay function

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: "Views on UE-to-Network Relay Discovery", 3GPP TSG RAN WG1 MEETING #80BIS , RI-151965, 11 April 2015 (2015-04-11), Belgrade, Serbia, XP050950258 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019229925A1 (ja) * 2018-05-31 2021-02-12 株式会社Fuji 部品実装ライン
CN112470506A (zh) * 2018-08-01 2021-03-09 高通股份有限公司 用于选择回程节点以连接到集成接入和回程网络的技术
WO2020031269A1 (ja) * 2018-08-07 2020-02-13 株式会社Nttドコモ 無線ノード、及び、無線通信方法
CN112534875A (zh) * 2018-08-07 2021-03-19 株式会社Ntt都科摩 无线节点以及无线通信方法
JP7433455B2 (ja) 2020-02-13 2024-02-19 中興通訊股▲ふん▼有限公司 リンク切替、リンク切替構成方法、装置、通信ノード及び媒体
CN114007204A (zh) * 2020-07-28 2022-02-01 华为技术有限公司 基于中继通信与直连通信的通信选择方法和设备
WO2022190313A1 (ja) 2021-03-11 2022-09-15 ソニーグループ株式会社 通信装置及び通信方法
WO2023248662A1 (ja) * 2022-06-22 2023-12-28 株式会社Jvcケンウッド 基地局装置および端末装置

Also Published As

Publication number Publication date
US20190036595A1 (en) 2019-01-31
JPWO2017130593A1 (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2017130593A1 (ja) リレー選択のための装置及び方法
JP6933225B2 (ja) リレー選択のための装置及び方法
JP6673350B2 (ja) リレー選択のための装置及び方法
US11452118B2 (en) Apparatus and method for controlling device-to-device communication
JP6610656B2 (ja) 近接サービス通信のための装置及び方法
US11071119B2 (en) Apparatus for controlling device-to-device communication, base station, radio terminal, and method therefor
KR101754007B1 (ko) 무선 통신 시스템에서의 디바이스간 통신을 위한 송신 전력 조절
JP5981172B2 (ja) 無線通信システム、通信方法、基地局装置、および通信端末
JP6687024B2 (ja) D2d通信制御装置、無線端末、及び中継無線端末候補選択方法
US20200296745A1 (en) Apparatus and method for resource scheduling related to device-to-device communication
US11012168B2 (en) Apparatus, method and non-transitory computer readable medium storing program, for wireless communication
EP2910053A1 (en) User admission for co-existence wireless systems
JP6601495B2 (ja) 無線端末装置、d2dコントローラ、及び方法
JP2020025364A (ja) Ue、移動管理ノード、及び通信方法
JP2017175348A (ja) デバイス・ツー・デバイス通信に関するリソーススケジューリングのための装置及び方法
JP6822558B2 (ja) 無線端末装置及びその方法
JP6696504B2 (ja) 無線端末装置、ネットワークノード、及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017563736

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888177

Country of ref document: EP

Kind code of ref document: A1