WO2018105003A1 - 高強度鋼板 - Google Patents

高強度鋼板 Download PDF

Info

Publication number
WO2018105003A1
WO2018105003A1 PCT/JP2016/086060 JP2016086060W WO2018105003A1 WO 2018105003 A1 WO2018105003 A1 WO 2018105003A1 JP 2016086060 W JP2016086060 W JP 2016086060W WO 2018105003 A1 WO2018105003 A1 WO 2018105003A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
steel sheet
martensite
area ratio
Prior art date
Application number
PCT/JP2016/086060
Other languages
English (en)
French (fr)
Inventor
幸一 佐野
力 岡本
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to MX2019006392A priority Critical patent/MX2019006392A/es
Priority to JP2017518277A priority patent/JP6213696B1/ja
Priority to US16/466,981 priority patent/US20200087764A1/en
Priority to BR112019010681A priority patent/BR112019010681A2/pt
Priority to PCT/JP2016/086060 priority patent/WO2018105003A1/ja
Priority to CN201680091418.5A priority patent/CN110036128A/zh
Priority to EP16923381.4A priority patent/EP3550047A4/en
Priority to KR1020197019298A priority patent/KR20190092491A/ko
Publication of WO2018105003A1 publication Critical patent/WO2018105003A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a high-strength steel plate, and particularly to a high-strength steel plate excellent in formability.
  • Patent Documents 1 and 2 propose that bainite or tempered martensite be the main structure in order to enhance the hole expansibility and local elongation of the TRIP steel sheet.
  • Non-Patent Document 1 proposes a steel added with an amount of Mn exceeding 3.0%.
  • Patent Document 5 discloses that a tempering process is utilized to improve hole expansibility. Since martensite is harder than other structures, there is a large difference in hardness from the surrounding structure, and local elongation and hole expandability deteriorate. By tempering martensite at a low temperature of 500 ° C. or lower, the hole expandability is improved.
  • Residual austenite can be obtained by concentrating C and Mn in austenite and stabilizing the austenite even at room temperature.
  • C is concentrated in austenite during the bainite transformation, and austenite can be further stabilized.
  • Patent Documents 1 and 2 are based on the above idea. If the amount of C to be added is large, the retained austenite can be increased, and as a result, a steel plate having a good balance between strength and uniform elongation can be obtained. However, since it is a steel sheet containing a hard structure with soft ferrite as the main phase, the hardness difference becomes large, voids are easily generated, and local elongation cannot be increased.
  • Patent Document 4 when the method disclosed in Patent Document 4 is used, it becomes difficult to secure a predetermined amount of retained austenite in the obtained steel sheet, and thus the uniform elongation becomes insufficient.
  • Non-Patent Document 1 is a composite structure of soft tempered martensite and a hard structure, it is difficult to improve the hole expandability like the steel sheets of Patent Documents 1 and 2. is there. In addition, since it consists of soft tempered martensite and austenite, a low yield stress is a problem.
  • the size of the retained austenite in the high-temperature tempered martensite cannot be sufficiently reduced, so that high uniform elongation and local elongation, high yield stress and high strength, which are targets in the present invention, are achieved. I can't.
  • PCT / JP2016 / 0667448 for an alloyed hot-dip galvanized steel sheet having excellent uniform and local deformability.
  • PCT / JP2016 / 067448 enables both the product of tensile strength and local elongation and the product of yield stress and uniform elongation, since the C content is relatively high, spot weldability May deteriorate, and it is necessary to devise a current pattern for spot welding.
  • the present invention is a high strength steel sheet containing Mn: 3.50% by mass or more and C: 0.24% by mass or less including residual austenite (hereinafter sometimes referred to as “residual ⁇ ”). It aims at providing the high strength steel plate which has elongation.
  • the present invention has been made to solve the above-mentioned problems, and the gist of the present invention is the following high-strength steel sheet.
  • the chemical composition is mass%, C: 0.10 to 0.24%, Mn: 3.50 to 12.00%, Si: 0.005 to 5.00%, Al: 0.005 to 5.00%, P: 0.15% or less, S: 0.030% or less, N: 0.020% or less, O: 0.010% or less, Cr: 0 to 5.00%, Mo: 0 to 5.00%, Ni: 0 to 5.00%, Cu: 0 to 5.00%, Nb: 0 to 0.50%, Ti: 0 to 0.50%, W: 0 to 0.50%, B: 0 to 0.010%, Ca: 0 to 0.05%, Mg: 0 to 0.05%, Zr: 0 to 0.05%, REM: 0 to 0.05%, Sb: 0 to 0.50%, Sn: 0 to 0.50%, As: 0 to 0.05%, V: 0 to 2.0%, Balance: Fe and impurities,
  • the metal structure at the 1/4 position of the plate thickness is area%, Retained
  • the total area ratio of fresh martensite, pearlite and bainite is 0 to 5.0% in area%.
  • the area ratio of pearlite and bainite is 0%.
  • the steel sheet has a tensile strength of 1180 MPa or more and a sheet thickness of 0.8 to 3.2 mm.
  • the high-strength steel plate according to any one of (1) to (3) above.
  • the chemical composition is mass%, C: 0.13-0.21% Is, The high-strength steel sheet according to any one of (1) to (4) above.
  • the chemical composition is mass%, Mn: 4.0 to 7.0% Is, The high-strength steel plate according to any one of (1) to (5) above.
  • the chemical composition is mass%, Cr: 0 to 1.50% Is, The high-strength steel plate according to any one of (1) to (6) above.
  • the chemical composition is mass%, Mo: 0 to 1.00% Is,
  • the chemical composition is mass%, Ni: 0 to 1.50% Is, The high-strength steel sheet according to any one of (1) to (8) above.
  • the chemical composition is mass%, Cu: 0 to 1.50% Is, The high-strength steel plate according to any one of (1) to (9) above.
  • the chemical composition is mass%, B: 0 to 0.003% Is, The high-strength steel plate according to any one of (1) to (10) above.
  • a hot dip galvanized layer On the surface of the steel sheet, a hot dip galvanized layer, an alloyed hot dip galvanized layer, or a Zn—Ni alloy plated layer is provided.
  • the high-strength steel plate according to any one of (1) to (11) above.
  • the present inventors have intensively studied a method for solving the above problems. As a result, a certain amount or more of residual ⁇ is dispersed in the steel sheet, and furthermore, high-temperature tempered martensite tempered at a high temperature and low-temperature tempered martensite tempered at a low temperature are respectively present in a required amount and in combination. And found that high uniform elongation (uEL) and local elongation (lEL) as well as high yield stress (YS) and tensile strength (TS) can be achieved.
  • uEL uniform elongation
  • lEL local elongation
  • YS high yield stress
  • TS tensile strength
  • the present inventors have increased YS by the presence of high-temperature tempered martensite and a low-temperature tempered martensite excellent in the balance between ductility and hardness, and YS ⁇ uEL, by the presence of residual austenite. It was also found that TS ⁇ lEL can be increased.
  • C 0.10 to 0.24%
  • C is an element necessary for increasing the steel sheet strength and securing retained austenite.
  • C is also an element that contributes to improving the strength of the low-temperature tempered martensite.
  • the C content is less than 0.10%, it is difficult to obtain a sufficient steel sheet strength and a sufficient amount of retained austenite.
  • the C content exceeds 0.24%, a large amount of pearlite and cementite are precipitated, and the local ductility is greatly reduced. Therefore, the C content is 0.10 to 0.24%.
  • the C content is preferably 0.12% or more or 0.13% or more, and more preferably 0.15% or more or 0.17% or more.
  • the C content is preferably 0.24% or less or 0.23% or less, and more preferably 0.22% or less or 0.21% or less.
  • Mn 3.50 to 12.00% Similar to C, Mn is an element necessary for securing retained austenite. When the Mn content is less than 3.50%, the effect of addition is not sufficiently exhibited. On the other hand, if the Mn content exceeds 12.00%, the amount of austenite increases too much, so that low-temperature tempered martensite cannot be obtained, and the tensile strength and yield stress decrease.
  • the Mn content is preferably 3.80% or more or 4.00% or more, and more preferably 4.40% or more, 4.80% or more, or 5.10% or more.
  • the Mn content is preferably 11.00% or less or 10.00% or less, and more preferably 9.00% or less, 8.00% or less, or 7.00% or less.
  • Si and Al are deoxidizers, but are also elements that stabilize ferrite during annealing and suppress the precipitation of cementite. If the content of both Si and Al is less than 0.005%, the effect of addition is not sufficiently exhibited. On the other hand, if both Si and Al exceed 5.00%, the surface properties, paintability, and weldability deteriorate. Therefore, the Si and Al contents are both 0.005 to 5.00%.
  • the content of any element is preferably 0.010% or more, more preferably 0.020% or more, and further preferably 0.030% or more.
  • Si may be 0.50% or more, 0.90% or more, or 1.05% or more.
  • the content of any element is preferably 3.50% or less, more preferably 2.50% or less, and further preferably 2.10% or less.
  • Al may be 1.00% or less.
  • delta ferrite remains at room temperature.
  • the delta ferrite becomes a ferrite stretched by hot rolling.
  • Al is made 5.00% or less.
  • Si + Al 0.80% or more is preferable, and 1.00% or more is more preferable.
  • P 0.15% or less
  • P is an impurity element inevitably mixed in from the steel raw material.
  • the P content is preferably 0.10% or less, 0.05% or less, or 0.020% or less.
  • the lower limit is set to 0%, but if the P content is reduced to less than 0.0001%, the manufacturing cost increases significantly, so 0.0001% may be set as the lower limit.
  • S 0.030% or less S is an impurity element inevitably mixed from the steel raw material. If the S content exceeds 0.030%, MnS stretched by hot rolling is generated, and formability such as ductility and hole expansibility is lowered. Therefore, the S content is 0.030% or less.
  • the S content is preferably 0.015% or less or 0.009% or less.
  • the lower limit is set to 0%, but if the S content is reduced to less than 0.0001%, the manufacturing cost increases significantly, so 0.0001% may be set as the lower limit.
  • N 0.020% or less
  • N is an impurity element that is inevitably mixed in from the steel raw material and in the steel making process.
  • the N content is 0.020% or less.
  • the N content is preferably 0.015% or less, 0.010% or less, 0.0070% or less, or 0.0050% or less.
  • the lower limit is set to 0%, but if the N content is reduced to less than 0.0001%, the manufacturing cost greatly increases, so 0.0001% may be set as the lower limit.
  • O 0.010% or less
  • O is an impurity element that inevitably remains after deoxidation. If the O content exceeds 0.010%, the ductility decreases. Therefore, the O content is 0.010% or less.
  • the O content is preferably 0.007% or less, 0.004% or less, or 0.0025% or less.
  • the lower limit is 0%, but if O is reduced to less than 0.0001%, the manufacturing cost will increase significantly, so 0.0001% may be set as the lower limit.
  • the alloyed hot-dip galvanized steel sheet of the present invention has the following amounts of Cr, Mo, Ni, Cu, Nb, Ti, W, B, Ca, Mg, Zr, REM, and Sb.
  • One or more elements selected from Sn, As and V may be contained.
  • Cr 0 to 5.00% Mo: 0 to 5.00% Ni: 0 to 5.00% Cu: 0 to 5.00% Cr, Mo, Ni, and Cu are elements that contribute to improving the strength of the steel sheet, and may be contained as necessary. However, if any of Cr, Mo, Ni and Cu exceeds 5.00%, the strength increases excessively and ductility decreases. Therefore, the contents of Cr, Mo, Ni, and Cu are all 5.00% or less.
  • the content of any element is preferably 4.00% or less or 3.00%, more preferably 2.00% or less or 1.00% or less, and 0.80% or less or 0.50. % Or less is more preferable.
  • the lower limit of these elements is 0%, but in order to obtain the above effect, the content of one or more selected from the above elements may be 0.01% or more. % Or more. In order to reduce alloy costs, the total of these may be 2.00% or less, 1.50% or less, 1.10% or less, 0.7% or less, or 0.40% or less.
  • Nb 0 to 0.50%
  • Ti, and W are elements that form fine carbides, nitrides, or carbonitrides and contribute to improving the strength of the steel sheet, and may be contained as necessary. However, if any of Nb, Ti, and W exceeds 0.50%, the strength increases excessively and ductility decreases. Therefore, the contents of Nb, Ti and W are all 0.50% or less.
  • the content of any element is preferably 0.40% or less or 0.20% or less, and more preferably 0.10% or less or 0.05% or less.
  • the lower limit of these elements is 0%, but in order to obtain the above effect, the content of one or more selected from the above elements may be 0.005% or more. % Or more. In order to reduce alloy costs, the total of these may be 0.50% or less, 0.20% or less, 0.10% or less, or 0.05% or less.
  • B 0 to 0.010%
  • B is an element that delays transformation and contributes to improving the strength of the steel sheet, and segregates at the grain boundary and contributes to strengthening of the grain boundary. Therefore, B may be contained as necessary. However, if the B content exceeds 0.010%, a large amount of the B compound precipitates and the steel plate becomes brittle. Therefore, the B content is 0.010% or less.
  • the B content is preferably 0.005% or less or 0.0030% or less, and more preferably 0.0020% or less or 0.0016% or less.
  • the lower limit of B is 0%, but in order to obtain the above effect, the B content may be 0.0002% or more, and may be 0.0003% or more.
  • Ca, Mg, Zr, and REM are elements that contribute to the improvement of local ductility and hole expansibility by controlling the shapes of sulfides and oxides, and may be contained as necessary. However, if any of Ca, Mg, Zr and REM exceeds 0.05%, the workability deteriorates. Therefore, the contents of Ca, Mg, Zr and REM are all 0.05% or less.
  • the content of any element is preferably 0.03% or less or 0.01% or less, and more preferably 0.0060% or less or 0.0040% or less.
  • the total content is preferably 0.05% or less or 0.02% or less. More preferably, the content is not more than 01% or not more than 0.0060%.
  • the lower limit of these elements is 0%, but in order to obtain the above effect, the content of one or more selected from the above elements may be 0.0001% or more, and 0.0002% It is good also as above.
  • REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the content of REM means the total content of these elements.
  • the lanthanoid is industrially added in the form of misch metal.
  • Sb and Sn are elements that suppress the formation of oxides by diffusing oxidizable elements such as Mn, Si, and / or Al in the steel sheet to the surface, and enhance the surface properties and plating properties. Therefore, you may make it contain as needed. However, when both elements of Sb and Sn exceed 0.50%, the effect of addition is saturated. Therefore, the contents of Sb and Sn are both 0.50% or less.
  • the content of any element is preferably 0.35% or less or 0.15% or less, and more preferably 0.08% or less or 0.03% or less.
  • the minimum of these elements is 0%, in order to acquire said effect, it is good also considering content of 1 or more types selected from said element as 0.010% or more.
  • oxidizable elements such as Mn, Si, and / or Al in the steel sheet are prevented from diffusing to the surface to form oxides, and surface properties and plating properties are improved. Since it is an element that enhances the function, it may be contained if necessary. However, when the As content exceeds 0.05%, the addition effect is saturated. Therefore, the As content is 0.05% or less.
  • the As content is preferably 0.02% or less, and more preferably 0.01% or less.
  • As content is good also as 0.005% or more. If necessary, the total of Sb, Sn and As may be 0.05% or less, 0.03% or less, or 0.01% or less.
  • V 0 to 2.0%
  • V is an element that forms precipitates to refine crystal grains and contributes to the improvement of strength and toughness. Therefore, V may be contained as necessary. However, if the V content exceeds 0.50%, the above effect is saturated and the manufacturing cost increases. Therefore, the V content is 2.0% or less or 1.0% or less.
  • the V content is preferably 0.50% or less or 0.30 %% or less, more preferably 0.10% or less, and even more preferably 0.06% or less.
  • V content is good also as 0.001% or more or 0.005% or more.
  • the balance is Fe and impurities.
  • impurities are components that are mixed due to various factors of raw materials such as ores and scraps and manufacturing processes when industrially manufacturing steel sheets, and are permitted within a range that does not adversely affect the present invention. Means something.
  • board thickness 1/4 position of the steel plate of this invention is demonstrated.
  • the area ratio of each structure varies depending on the annealing conditions, and affects mechanical properties such as strength, uniform elongation, and local elongation. Since the desired mechanical properties vary depending on, for example, parts for automobiles, the annealing conditions are selected as necessary to control the area ratio of each structure. In the following description, “%” means “area%”.
  • Residual austenite 10.0-55.0%
  • Residual austenite is a structure that increases ductility, particularly uniform elongation, by transformation-induced plasticity.
  • the area ratio of residual ⁇ needs to be 10.0% or more.
  • the area ratio of residual ⁇ is preferably 13.0% or more, 15.0% or more, or 18.0% or more, and more preferably 20.0% or more.
  • the area ratio of residual ⁇ is preferably 50.0% or less, more preferably 45.0% or less, 40.0% or less, 35.0% or less, or 31.0% or less.
  • the metal structure residual ⁇ according to the present invention is mainly in the form of an elongated shape like martensite lath. Its thickness is 1 ⁇ m or less, and most is about 0.02 to 0.1 ⁇ m.
  • the coexistence of the lath-like residual ⁇ and the low-temperature tempered martensite described later is difficult in the conventional method, and can be achieved by adopting the manufacturing method described later.
  • the conventional method is a method of obtaining a residual ⁇ by making austenite single phase, cooling to room temperature, almost martensite, and then heating in a two-phase region to concentrate C and Mn in austenite. (See, for example, Non-Patent Document 1 and Patent Document 4).
  • austenite and martensite exist in the second cooling step.
  • austenite is generated from martensite, and the austenite is formed into a lath-like elongated structure.
  • the structure around austenite is high-temperature tempered martensite. This austenite becomes retained austenite in the course of cooling to room temperature.
  • the austenite after the second cooling step has a relatively coarse structure and becomes martensite in the third cooling step.
  • lath-like austenite and low-temperature tempered martensite can coexist.
  • High temperature tempered martensite 30.0-75.0%
  • High-temperature tempered martensite is martensite tempered mainly at a temperature of about 550 to 700 ° C., and its measurement method will be described later.
  • the area ratio of the high-temperature tempered martensite is 30.0 to 75.0%.
  • the area ratio of the high-temperature tempered martensite is preferably 33.0% or more, 36.0% or more, or 38.0% or more, and 70.0% or less, 65.0% or less, 60.0% or less or It is preferably 55.0% or less.
  • Low temperature tempered martensite 15.0-60.0%
  • the low-temperature tempered martensite is a structure obtained by tempering fresh martensite generated in a third cooling step, which will be described later, mainly at a temperature of 250 to 480 ° C., and its measurement method will be described later.
  • the area ratio of the low-temperature tempered martensite is 15.0% or more.
  • the area ratio of the low-temperature tempered martensite may be set in accordance with a desired strength level, but if it is too much, the uniform elongation is lowered, so that it is 60.0% or less.
  • the lower limit of the low-temperature tempered martensite may be 20.0%, 25.0%, 30.0%, 34.0%, or 38.0%.
  • the upper limit may be 55.0%, 50.0%, 46.0%, or 42.0%.
  • the balance is fresh martensite, pearlite, and bainite.
  • Fresh martensite 0-10.0% In the tempering process, cementite slightly precipitates from austenite, the austenite becomes unstable, and fresh martensite may be generated in the cooling process after the tempering process.
  • the area ratio of fresh martensite exceeds 10.0%, not only YS and local elongation decrease, but also the area ratio of residual ⁇ decreases and the uniform elongation also decreases. Therefore, the area ratio of fresh martensite is set to 10.0% or less.
  • the area ratio of fresh martensite is preferably 5.0% or less, more preferably 3.0% or less, and most preferably a structure having 0%, that is, no fresh martensite.
  • Pearlite may be produced from austenite during cooling during annealing or during alloying treatment of plating. When the area ratio of pearlite exceeds 5.0%, the area ratio of residual ⁇ decreases, and the strength and ductility are greatly reduced. Therefore, the area ratio of pearlite is 5.0% or less.
  • the area ratio of pearlite is preferably as low as possible, preferably 3.0% or less, and most preferably 0%.
  • Bainite 0-5.0% Bainite may be contained in the metal structure of the present invention. Since the bainite transformation is unlikely to proceed with the Mn content of the steel sheet of the present invention, the area ratio of bainite is 5.0% or less. The area ratio of bainite is preferably 3.0% or less, and most preferably 0%.
  • the total area ratio of fresh martensite, pearlite, and bainite may be 5.0% or less, 3.0% or less, or 1.0% or less. It is more preferable that the total area ratio of these remaining metal structures is 0%.
  • a cross section parallel to the rolling direction is cut out, mirror-polished, and then the electrolytically polished sample is separated from the surface by a quarter of the plate thickness by SEM-EBSD (hereinafter referred to as “plate thickness 1/4 position”). ))), A region of 100 ⁇ m ⁇ 100 ⁇ m or more is measured at intervals of 0.1 ⁇ m. Then, using the analysis software of TSL Solutions Inc., the average value of the image quality within each grain (Grain Average Image Quality: GAIQ value) is calculated. And the area ratio of the area
  • the area ratio of fresh martensite is obtained by subtracting the area ratio of residual austenite measured by the above method from the value of the total area ratio of fresh martensite and residual austenite.
  • the fraction of the crystal grains having a GAIQ value of 5000 or less at the 1/4 position of the plate thickness is defined as the total area ratio of low-temperature tempered martensite and fresh martensite.
  • a section perpendicular to the rolling direction is cut out, mirror-polished, and then corroded with nital.
  • SEM observation is performed on the sample.
  • the SEM observation is performed at a magnification of 5000 times, and the measurement area is a 25 ⁇ m ⁇ 20 ⁇ m area at a thickness of 1/4, and has four or more fields of view.
  • the submerged structure without any substructure is made ferrite or high temperature tempered martensite.
  • those having a ratio of the major axis to the minor axis of 2 or more are designated as high temperature tempered martensite.
  • the major axis and minor axis are obtained as follows.
  • the longest line among the lines connecting the grain boundary and another grain boundary is taken as the major axis.
  • the one with the shortest distance is defined as the minor axis.
  • the fraction of the structure in which the ratio of the major axis to the minor axis is 2 or more is defined as the area ratio of the high-temperature tempered martensite, and the ratio of the major axis to the minor axis. Is the area fraction of ferrite.
  • the area of 25 ⁇ m ⁇ 20 ⁇ m at the 1/4 position of the thickness is observed by SEM for 4 or more views, and the fraction of the structure where the lamellar structure can be seen is defined as the area ratio of pearlite.
  • the area of 25 ⁇ m ⁇ 20 ⁇ m at the 1/4 position of the plate thickness was observed by SEM with four or more views, the ratio of the major axis to the minor axis was 2 or more, and The fraction of the structure in which cementite is confirmed by a SEM of 5000 times is defined as the area ratio of bainite.
  • the lower limit of the tensile strength may be 250 MPa.
  • the upper limit of the tensile strength is not particularly limited, but is preferably 1650 MPa or less or 1600 MPa or less.
  • the yield stress (YS) of the steel sheet and the work hardening amount after processing (after yield) are high. The hardness due to deformation increases as the yield stress (YS) increases and the amount of work hardening increases.
  • the work hardening amount can be displayed using the n value as an index, but the n value and uEL are similar values. Therefore, in the steel sheet of the present invention, yield stress (YS) ⁇ uniform elongation (uEL) is used as an index. In the steel sheet of the present invention, YS ⁇ uEL ⁇ 10000 MPa%.
  • the tensile test piece is a JIS Z2241 No. 5 test piece (a plate-like test piece having a parallel part width of 25 mm and a distance between reference points of 50 mm).
  • uEL uniform elongation
  • lEL local elongation
  • the yield stress is an index for guaranteeing the hardness of the steel sheet after forming, the higher the yield ratio (yield stress / tensile strength), the better.
  • the yield ratio is preferably 0.70 or more. More preferably, it is 0.71 or more or 0.72 or more.
  • required in the tensile test of a rolling orthogonal direction is employ
  • the direction perpendicular to rolling refers to a direction perpendicular to the rolling direction and thickness direction of the steel sheet, that is, the width direction.
  • Hot rolling process A steel ingot or slab is heated and subjected to hot rolling to obtain a hot rolled steel sheet.
  • the heating temperature before hot rolling is preferably 1100 to 1170 ° C.
  • the finishing temperature of hot rolling is preferably 880 to 970 ° C. It is preferable to perform rolling under a large pressure of 10% or more at least three times in one pass between the last 1 pass to 6 passes of hot rolling.
  • the heating temperature is less than 1100 ° C., the temperature may be lowered during conveyance until hot rolling, and finishing rolling may not be completed at the required temperature.
  • the heating temperature exceeds 1170 ° C., the austenite at the time of heating may become coarse and the crystals of the steel sheet after rolling may become coarse, so the heating temperature is preferably 1170 ° C. or less.
  • the steel having the chemical composition defined in the present invention is hard, if the finishing temperature is less than 880 ° C., a large load is applied to the rolling mill and hot rolling may be difficult. On the other hand, if the finishing temperature exceeds 970 ° C., the rolled steel sheet may be coarsened.
  • (C) 1st cooling process The hot-rolled steel plate after finish rolling is cooled.
  • the cooling conditions in the first cooling step it is preferable to cool at an average cooling rate of 20 ° C./s or more and stop the cooling in a temperature range of 550 to 650 ° C. If it is the said range, it will be easy to satisfy
  • the hot-rolled steel sheet after the cooling stop is wound.
  • the winding temperature is preferably 450 to 600 ° C.
  • the coiling temperature is less than 450 ° C.
  • the plate shape is deteriorated.
  • the Mn content is high as in the present invention, if the coiling temperature exceeds 600 ° C., the scale becomes thick and pickling becomes difficult.
  • the wound hot-rolled steel sheet is rewound again, pickled, and then cold-rolled to obtain a cold-rolled steel sheet.
  • the rolling reduction is preferably 40 to 65%.
  • the rolling reduction is less than 40%, the plate thickness becomes thick. Therefore, when it is set as an automobile part, the weight tends to increase.
  • the rolling reduction exceeds 65%, it is difficult to finish cold rolling in a short time. Moreover, the ductility after annealing may be lowered.
  • the thickness of the cold rolled steel sheet is preferably in the range of 0.8 to 3.0 mm.
  • (F) First annealing step After the cold rolling step, the cold rolled steel sheet is annealed for 90 seconds or more in a temperature range of 850 to 970 ° C. By holding in the above temperature range, the metal structure is changed to an austenite single phase structure.
  • the annealing temperature is less than 850 ° C. or the holding time is less than 90 s, the amount of austenite decreases, and finally, the required amount of low-temperature tempered martensite cannot be secured, and the yield stress decreases.
  • the holding time in the first annealing step is preferably set to 180 s or less.
  • (G) Second cooling step After the first annealing step, the steel sheet is cooled to a temperature range of 150 to 250 ° C. In this temperature range, the phase transformation hardly occurs.
  • the average cooling rate is preferably 1 to 100 ° C./s.
  • martensite is generated, and this martensite becomes austenite reverse-transformed from the high-temperature tempered martensite in the second annealing step described later.
  • the area ratio of the high-temperature tempered martensite can be adjusted by appropriately selecting the cooling temperature depending on the desired strength or characteristics.
  • austenite and martensite coexist during the cooling process.
  • Most of the austenite in the cooling process becomes martensite by obtaining the second annealing process to the third cooling process, and becomes low temperature tempered martensite in the subsequent tempering process.
  • a part of martensite at the time of the cooling step becomes high-temperature tempered martensite in the second annealing step as described above. Therefore, by adjusting the amount of austenite and the amount of martensite according to the cooling process temperature, the amount of low-temperature tempered martensite and the amount of high-temperature tempered martensite in the final structure can be made within the scope of the present invention.
  • the cooling stop temperature is preferably 180 ° C. or higher, preferably 230 ° C. or lower, and more preferably 220 ° C. or lower.
  • the steel sheet is subjected to annealing for holding more than 120s in a temperature range below 550 ° C. or higher Ac 1 point.
  • a large amount of cementite and pearlite is precipitated and the retained austenite is reduced.
  • the annealing temperature is preferably 580 ° C. or higher.
  • the annealing temperature is at least Ac 1 point
  • the amount of retained austenite obtained is reduced.
  • the reason for this is estimated as follows.
  • the reverse transformation to austenite proceeds excessively, and the austenite during heating becomes excessive.
  • the austenite becomes unstable. And it becomes a martensite at the time of a 2nd cooling process, and it is thought that a retained austenite decreases.
  • Ac 1 point shall be calculated
  • Ac 1 723 + 29.1 ⁇ Si-10.7 ⁇ Mn + 16.9 ⁇ Cr ⁇ 16.9 ⁇ Ni
  • each element symbol in the above formula means the content (% by mass) of each element.
  • the holding time at the above annealing temperature is 120 s or more.
  • the holding time is less than 120 s, the reverse transformation to austenite does not proceed and the retained austenite decreases.
  • the holding time may be appropriately determined in relation to the annealing temperature. However, even if annealing is performed for 8 hours or more, there is no significant change, and the cost increases industrially, so the upper limit is about 8 hours.
  • the second annealing step it may be heated in a preheated furnace or may be heated with IH or the like.
  • the heating rate is less than 10 ° C./s, the amount of retained austenite decreases. It is presumed that a large amount of cementite precipitates occurred during the heating and remained undissolved during the subsequent heating, resulting in a decrease in C in the retained austenite.
  • the upper limit of the substantial heating rate is about 25 ° C./s for temperature control in the second annealing step.
  • the average cooling rate is preferably 8 ° C./s or more. When the average cooling rate is less than 8 ° C./s, bainite is likely to be produced, and YR and YS ⁇ uEL are lowered.
  • (J) Tempering step After the third cooling step, the steel sheet is tempered for 1 s or more in a temperature range of 250 to 480 ° C. In the tempering step, low temperature tempered martensite is generated. When the tempering temperature is less than 250 ° C., a sufficient tempering effect cannot be obtained, and a lot of fresh martensite remains. As a result, YS decreases, TS increases, and the yield ratio decreases.
  • the tempering temperature is preferably 200 ° C. or higher.
  • a temperature range shall be 480 degrees C or less. Preferably it is 460 ° C or 400 ° C or less.
  • holding time shall be 1 h or less.
  • the cooling rate in the fourth cooling step is not particularly limited because the change in the metal structure is small if the cooling rate is equal to or higher than air cooling. However, if the cooling rate is less than 5 ° C./s, bainite may increase as in the third cooling step. On the other hand, when cooling at a cooling rate exceeding 80 ° C./s, uneven cooling tends to occur and the plate shape becomes poor. Therefore, the cooling rate is preferably 5 to 80 ° C./s or less.
  • the steel sheet cooled to room temperature in the fourth cooling step may be subjected to hot dip galvanization, alloyed hot dip galvanization, or Zn—Ni alloy plating.
  • the Zn—Ni alloy plating is performed by electroplating.
  • hot dip galvanization the steel sheet cooled to room temperature in the fourth cooling step may be immersed in a 460 ° C. galvanizing bath.
  • a steel plate may be immersed in a hot dip galvanizing bath and may be plated at the time of a tempering process.
  • the hot dip galvanized steel sheet is heated to 480 to 500 ° C. to perform the alloying treatment. Similarly to the case of the hot-dip galvanized steel sheet, an alloying treatment may be performed during the tempering step.
  • the thickness of the steel sheet targeted by the present invention is mainly 0.8 to 3.0 mm. If necessary, the upper limit of the plate thickness may be 2.8 mm or 2.5 mm.
  • a 240 mm thick slab having the chemical composition shown in Table 1 was produced. This slab was hot-rolled under the conditions shown in Tables 2 and 3 to obtain a hot-rolled steel sheet. At this time, rolling under a large pressure of 10% or more was performed at least three times in one pass. The hot-rolled steel sheet was cooled with a water spray to the coiling temperature and wound up. The manufactured hot-rolled steel sheet was pickled to remove scale, and then cold-rolled under the conditions shown in Tables 2 and 3 to produce a cold-rolled steel sheet having a thickness of 1.2 mm.
  • test material is collected from the obtained cold-rolled steel sheet, the test material is heated to the maximum annealing temperature shown in Tables 2 and 3, and is annealed for the time shown in Tables 2 and 3 (first annealing step), Subsequently, it cooled to the cooling stop temperature with the average cooling rate shown in Table 2 and 3 (2nd cooling process).
  • the second annealing step after the second cooling step was performed by heating to the maximum annealing temperature shown in Tables 2 and 3 at the average heating rate shown in Tables 2 and 3, and holding the annealing time shown in Tables 2 and 3. . Subsequently, it cooled to room temperature with the average cooling rate shown in Table 2 and 3 (3rd cooling process).
  • heating was performed at an average heating rate of 5 ° C./s to the temperatures shown in Tables 2 and 3, and the times shown in Tables 2 and 3 were maintained. Then, it cooled to room temperature at 10 degrees C / s (4th cooling process).
  • Test No. for 57 to 59 the surface was plated.
  • Test No. In 57 after the tempering step was completed, Zn—Ni was deposited by electroplating.
  • Test No. No. 58 was made into a hot dip galvanized steel sheet by immersing the steel in a Zn hot dip zinc bath heated to 460 ° C. after the third cooling step. The molten zinc contains about 0.01% Al as in the conventional case. The tempering process is substituted at the temperature of the plating bath.
  • Test No. 59 is a test no.
  • steel was immersed in a hot dip galvanizing bath, and then reheated and held to alloy Zn with the base material Fe.
  • the timing for applying the plating is not limited to the above. For example, it may be immersed in a plating bath or alloyed during the third cooling step.
  • the metal structure was identified by the following method. A method for obtaining the area ratio of each tissue will be described below.
  • a cross section perpendicular to the rolling direction was cut out, mirror-polished, and then subjected to electrolytic polishing, and a region of 100 ⁇ m ⁇ 100 ⁇ m or more was measured at 0.1 ⁇ m intervals by SEM-EBSD. Thereafter, using the analysis software of TSL Solutions, Inc., the average value of the image quality within each grain (Grain Average Image Quality: GAIQ value) was calculated. And the area ratio of the area
  • the area ratio of fresh martensite was determined by subtracting the area ratio of retained austenite measured by the above method from the value of the total area ratio of fresh martensite and retained austenite.
  • the fraction of crystal grains having a GAIQ value of 5000 or less was defined as the total area ratio of low-temperature tempered martensite and fresh martensite. From this value, the area ratio of low-temperature tempered martensite was determined by subtracting the area ratio of fresh martensite.
  • a cross section perpendicular to the rolling direction was cut out, mirror-polished, then corroded with nital, and SEM observation was performed at a thickness of 1/4.
  • SEM observation was performed at a magnification of 5000 times, and the measurement area was an area of 25 ⁇ m ⁇ 20 ⁇ m with 4 fields of view or more.
  • the fraction having a major axis / minor axis ratio of 2 or more was defined as the area ratio of high-temperature tempered martensite, and the fraction having a ratio of less than 2 was defined as the area ratio of ferrite.
  • the major axis and minor axis were obtained as follows. First, in the photograph taken above, when focusing on one of the crystal grains, the longest line among the lines connecting the grain boundary and another grain boundary is taken as the major axis. Of the lines connecting the grain boundary dividing the major axis into two and another grain boundary, the one with the shortest distance was defined as the minor axis.
  • bainite For pearlite, after performing nital corrosion, an area of 25 ⁇ m ⁇ 20 ⁇ m was observed with 4 views or more in SEM at the 1/4 thickness position, and the fraction of the portion where the lamellar structure was visible was defined as the pearlite area ratio.
  • bainite was similarly subjected to nital corrosion, and thereafter, a region of 25 ⁇ m ⁇ 20 ⁇ m was observed by SEM with four or more fields at a thickness of 1/4, and the ratio of the major axis to the minor axis was 2 or more.
  • bainite was obtained in which cementite was confirmed by SEM of 5000 times.
  • the mechanical properties of the obtained steel plate were measured. JIS No. 5 tensile test specimen was taken from the heat-treated test material so that the direction perpendicular to the rolling direction was the tensile direction, yield strength (YS), tensile strength (TS), uniform elongation (uEL), all Elongation (EL) was measured. The difference between total elongation and uniform elongation was defined as local elongation (lEL). The measured mechanical properties are shown in Tables 6 and 7.
  • TS is 1180 MPa or more
  • TS ⁇ lEL is 6000 MPa% or more
  • YS ⁇ uEL is 10000 MPa% or more.
  • test no. No. 6 has a low annealing temperature in the first annealing step, and therefore has low low-temperature tempered martensite, low strength, and low TS ⁇ lEL.
  • Test No. No. 7 has a short annealing time in the first annealing step, and therefore has low temperature tempered martensite. Similar to 6, the strength is low and TS ⁇ lEL is also low.
  • the stop temperature of the second cooling step is as low as 20 ° C.
  • the second annealing step is performed, which is the same heat treatment condition as the conventional method described in Non-Patent Document 1 and the like.
  • Test No. No. 10 has a high cooling stop temperature of 400 ° C. in the second cooling step. As a result, transformation does not occur and the metal structure is austenite. Subsequent heating produces a slight amount of ferrite, but since the amount is small, C and Mn do not concentrate in austenite.
  • the third cooling step and the tempering step a large amount of low-temperature tempered martensite is generated, and a metal structure with little residual ⁇ is obtained. For this reason, YSxuEL and TSxtEL became low. Test No. The same applies to 51.
  • Test No. No. 11 has a high maximum annealing temperature of 730 ° C. in the second annealing step, so that the metal structure becomes an austenite single phase, and C and Mn do not concentrate in the austenite and become an unstable structure. Therefore, a large amount of tempered martensite is generated by the third cooling step and the tempering step, and the area ratio of residual ⁇ is reduced. As a result, TS ⁇ lEL and YS ⁇ uEL were lowered.
  • Test No. No. 13 has an annealing time of 60 s in the second annealing step, which is a short time, so there is no time for C and Mn to concentrate in the austenite, the austenite becomes unstable, and the area ratio of residual ⁇ decreases. As a result, TS ⁇ lEL and YS ⁇ uEL were lowered.
  • Test No. No. 14 since the temperature of the tempering step is low at 130 ° C., the tempering of martensite generated in the third cooling step does not proceed, and the fresh martensite increases in the metal structure. As a result, YS and YS ⁇ uEL were lowered. Test No. The same applies to 43 and 44.
  • Test No. No. 46 has a low area rate of residual ⁇ because the average heating rate in the second annealing step is as low as 3 ° C./s. As a result, TS ⁇ lEL and YS ⁇ uEL were lowered.
  • Test No. No. 47 has a long retention time in the tempering process, so that the area ratio of residual ⁇ is low. As a result, TS ⁇ lEL and YS ⁇ uEL were lowered.
  • Test No. No. 55 has an inappropriate processing condition in the second cooling step, so that the area ratio of high-temperature tempered martensite and low-temperature tempered martensite is low. As a result, TS ⁇ lEL and YS ⁇ uEL were lowered.
  • Test No. No. 56 had a low average cooling rate of 2 ° C./s in the third cooling step, so that ferrite precipitated and YR and YS ⁇ uEL were low.
  • Test No. No. 36 has a C content lower than the range of the present invention, and the area ratio of residual ⁇ is outside the range of the present invention. As a result, the uniform elongation was lowered and YS ⁇ uEL was lowered. Although the strength also decreases, it is estimated that the decrease in strength is due to softening of tempered martensite due to a decrease in the C content.
  • Test No. No. 37 has a C content higher than the range of the present invention, and the metal structure is a metal structure in which a large amount of pearlite is present and a large amount of cementite is observed. As a result, the local ductility was greatly reduced and TS ⁇ lEL was lowered. Moreover, since it broke early, uniform elongation is also low and YSxuEL is also low.
  • Test No. No. 38 has a Mn content lower than the range of the present invention, and the area ratio of residual ⁇ is outside the range of the present invention. Therefore, the uniform elongation was reduced and YS ⁇ uEL was lowered. Test No. In No. 39, the Mn content was higher than the range of the present invention, austenite was excessively stabilized, a sufficient amount of tempered martensite was not obtained, and YS and TS were low.
  • FIGS. 1 to 6 are plots of the above relationship.
  • the area ratio of low-temperature tempered martensite is 15.0 to 60.0%
  • the area ratio of retained austenite is 10.0 to 55.0%
  • the area ratio of high-temperature tempered martensite is 30.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

化学組成が、質量%で、C:0.10~0.24%、Mn:3.50~12.00%、Si:0.005~5.00%、Al:0.005~5.00%、P:0.15%以下、S:0.030%以下、N:0.020%以下、O:0.010%以下、Cr:0~5.00%、Mo:0~5.00%、Ni:0~5.00%、Cu:0~5.00%、Nb:0~0.50%、Ti:0~0.50%、W:0~0.50%、B:0~0.010%、Ca:0~0.05%、Mg:0~0.05%、Zr:0~0.05%、REM:0~0.05%、Sb:0~0.50%、Sn:0~0.50%、As:0~0.05%、V:0~2.0%、残部:Feおよび不純物であり、板厚1/4位置における金属組織が、面積%で、残留オーステナイト:10.0~55.0%、高温焼戻しマルテンサイト:30.0~75.0%、低温焼戻しマルテンサイト:15.0~60.0%、あり、残部がフレッシュマルテンサイト:0~10.0%、パーライト:0~5.0%、ベイナイト:0~5.0%、である、高強度鋼板。

Description

高強度鋼板
 本発明は、高強度鋼板に係り、特に、成形性に優れた高強度鋼板に関する。
 自動車の車体、部品等の軽量化と安全性とを両立させるために、素材である鋼板の高強度化が進められている。一般に、鋼板を高強度化すると、一様伸び、局部伸び、および穴広げ性が低下し、成形性が損なわれる。したがって、自動車用の部材として高強度鋼板を使用するためには、強度(引張強さ、降伏応力)と成形性との適切なバランスが必要である。
 一様伸びの要求に対しては、これまで、残留オーステナイトの変態誘起塑性を利用した、いわゆる、TRIP鋼板が提案されている(例えば、特許文献1および2を参照)。また、例えば、特許文献3および4では、TRIP鋼板の穴広げ性および局部伸びを高めるために、ベイナイトまたは焼戻しマルテンサイトを主な組織とすることが提案されている。
 さらに、残留オーステナイト量がTRIP鋼よりも多く、TRIP鋼を超える延性の高い鋼板として、例えば、非特許文献1では、3.0%を超える量のMnを添加した鋼が提案されている。
 そして、特許文献5には、穴広げ性を高めるために焼戻し処理を活用することが開示されている。マルテンサイトは、他の組織に比較し硬質であるため、周囲の組織と硬度差が大きく、局部伸びおよび穴広げ性が劣化する。マルテンサイトを500℃以下の低温で焼戻すことによって、穴広げ性が向上する。
特開昭61-217529号公報 特開平05-059429号公報 特開2005-330584号公報 特開2011-241474号公報 特開2012-237054号公報
古川敬、松村理:熱処理37号巻4号p204(平成9年)
 残留オーステナイトは、CおよびMnをオーステナイト中に濃化させて、室温でもオーステナイトを安定化させることによって、得ることができる。特に、Si、Al等の炭化物析出抑制元素を添加すると、ベイナイト変態時に、オーステナイト中にCが濃化し、オーステナイトをより安定化させることが可能になる。
 特許文献1および2に記載される技術は、上記思想に基づくものである。添加するC量が多ければ、残留オーステナイトを増やすことができ、その結果、強度と一様伸びとのバランスがよい鋼板を得ることができる。しかし、軟質なフェライトを主相としながら硬質組織を含む鋼板であるため、硬度差が大きくなり、ボイドが発生しやすく、局部伸びを高めることができない。
 また、特許文献3で開示されている鋼板では、延性の低いベイナイトを主相としているため、鋼板全体としても一様伸びが低くなり、複雑な形状の自動車用部材を作製できないことが問題となる。
 さらに、特許文献4で開示される方法を用いた場合、得られる鋼板中に、所定量の残留オーステナイト量を確保することが困難になるため、一様伸びが不十分となる。
 また、非特許文献1に開示される鋼板についても、軟質な焼戻しマルテンサイトと硬質組織との複合組織であるため、特許文献1および2の鋼板と同様に、穴広げ性を高めることが困難である。それに加えて、軟質な焼戻しマルテンサイトおよびオーステナイトからなるため、降伏応力が低いことが問題となる。
 そして、特許文献5に記載される方法では、低温で焼戻されるマルテンサイトの分率を増加させることが困難である。特許文献5の方法は、単純に、Ac点以下で焼鈍を行う焼鈍工程、室温まで冷却する冷却工程、焼戻しを行う焼戻し工程を備える。低温で焼戻したマルテンサイトを増やすためには、上記冷却によって、マルテンサイトを増加させる必要がある。
 しかし、マルテンサイトを増加させるためには、焼鈍工程時のオーステナイトを不安定化させる必要がある。したがって、オーステナイトが不安定化するため、残留オーステナイト分率が減少したり、分率を確保できても安定性が減ったりして、EL(伸び)が著しく低下することが問題である。
 また、後述するように、高温焼戻しマルテンサイト中の残留オーステナイトのサイズを十分に小さくできないため、本発明で目標とする、高い一様伸びおよび局部伸び、ならびに高降伏応力および高強度を達成することができない。
 以上、説明したように、従来の鋼では、引張強さと局部伸びとの積、および、降伏応力と一様伸びとの積を両立させることは困難であった。
 本発明者らは、PCT/JP2016/067448において、均一変形性および局部変形性に優れた合金化溶融亜鉛めっき鋼板について、提案を行った。しかし、PCT/JP2016/067448では、引張強さと局部伸びとの積、および、降伏応力と一様伸びとの積の両立を可能にしているものの、C含有量が比較的高いため、スポット溶接性が悪くなる場合があり、スポット溶接の電流パターンを工夫する必要がある。
 そのため、本発明においては、C含有量を制限しつつ、残留オーステナイトの分率を所定量以上確保する方法について検討を行った。
 本発明は、残留オーステナイト(以下「残留γ」ということがある。)を含む、Mn:3.50質量%以上、C:0.24質量%以下の高強度鋼板において、高い一様伸びおよび局部伸びを有する高強度鋼板を提供することを目的とする。
 本発明は、上記課題を解決するためになされたものであり、下記の高強度鋼板を要旨とする。
 (1)化学組成が、質量%で、
 C:0.10~0.24%、
 Mn:3.50~12.00%、
 Si:0.005~5.00%、
 Al:0.005~5.00%、
 P:0.15%以下、
 S:0.030%以下、
 N:0.020%以下、
 O:0.010%以下、
 Cr:0~5.00%、
 Mo:0~5.00%、
 Ni:0~5.00%、
 Cu:0~5.00%、
 Nb:0~0.50%、
 Ti:0~0.50%、
 W:0~0.50%、
 B:0~0.010%、
 Ca:0~0.05%、
 Mg:0~0.05%、
 Zr:0~0.05%、
 REM:0~0.05%、
 Sb:0~0.50%、
 Sn:0~0.50%、
 As:0~0.05%、
 V:0~2.0%、
 残部:Feおよび不純物であり、
 板厚1/4位置における金属組織が、面積%で、
 残留オーステナイト:10.0~55.0%、
 高温焼戻しマルテンサイト:30.0~75.0%、
 低温焼戻しマルテンサイト:15.0~60.0%、
 であり、残部が
 フレッシュマルテンサイト:0~10.0%、
 パーライト:0~5.0%、
 ベイナイト:0~5.0%、
 である、
 高強度鋼板。
 (2)前記金属組織において、フレッシュマルテンサイト、パーライトおよびベイナイトの合計面積率が、面積%で、0~5.0%である、
 上記(1)に記載の高強度鋼板。
 (3)前記金属組織において、パーライトおよびベイナイトの面積率が、0%である、
 上記(1)または(2)に記載の高強度鋼板。
 (4)前記鋼板の引張強さが1180MPa以上であり、板厚が0.8~3.2mmである、
 上記(1)から(3)までのいずれかに記載の高強度鋼板。
 (5)前記化学組成が、質量%で、
 C:0.13~0.21%
 である、
 上記(1)から(4)までのいずれかに記載の高強度鋼板。
 (6)前記化学組成が、質量%で、
 Mn:4.0~7.0%
 である、
 上記(1)から(5)までのいずれかに記載の高強度鋼板。
 (7)前記化学組成が、質量%で、
 Cr:0~1.50%
 である、
 上記(1)から(6)までのいずれかに記載の高強度鋼板。
 (8)前記化学組成が、質量%で、
 Mo:0~1.00%
 である、
 上記(1)から(7)までのいずれかに記載の高強度鋼板。
 (9)前記化学組成が、質量%で、
 Ni:0~1.50%
 である、
 上記(1)から(8)までのいずれかに記載の高強度鋼板。
 (10)前記化学組成が、質量%で、
 Cu:0~1.50%
 である、
 上記(1)から(9)までのいずれかに記載の高強度鋼板。
 (11)前記化学組成が、質量%で、
 B:0~0.003%
 である、
 上記(1)から(10)までのいずれかに記載の高強度鋼板。
 (12)前記鋼板の表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、または、Zn-Ni合金めっき層を備える、
 上記(1)から(11)までのいずれかに記載の高強度鋼板。
 本発明によれば、高い一様伸びおよび局部伸びを有する高強度鋼板を得ることが可能となる。
低温焼戻しマルテンサイトの面積率とYS×uELとの関係を示す図である。 低温焼戻しマルテンサイトの面積率とYRとの関係を示す図である。 残留オーステナイトの面積率とYS×uELとの関係を示す図である。 残留オーステナイトの面積率とTS×lELとの関係を示す図である。 高温焼戻しマルテンサイトの面積率とYS×uELとの関係を示す図である。 フレッシュマルテンサイトの面積率とTS×lELとの関係を示す図である。
 本発明者らは、上記課題を解決する手法について鋭意研究した。その結果、鋼板中に、一定量以上の残留γを分散させ、さらに、高温で焼戻した高温焼戻しマルテンサイトと、低温で焼戻した低温焼戻しマルテンサイトとを、それぞれ、所要量、複合して存在させると、高い一様伸び(uEL)および局部伸び(lEL)、ならびに、高い降伏応力(YS)および引張強さ(TS)を達成できることを見出した。
 通常のTRIP鋼では、残留オーステナイトを鋼中に存在させて、一様伸びを高めているが、フェライトが存在するので、降伏応力が低くなる。YSを高めるために、ベイナイトまたは焼戻しマルテンサイトを主相とする手法があるが、主相の延性が低いので、この手法では、一様伸びを高くすることができない。
 本発明者らは、延性と硬さとのバランスに優れた高温焼戻しマルテンサイトと、低温焼戻しマルテンサイトとを存在させることによって、YSを高め、さらに、残留オーステナイトを存在させることによって、YS×uEL、および、TS×lELを高めることができることを見いだした。
 本発明は上記の知見に基づいてなされたものである。以下、本発明の各要件について詳しく説明する。
 (A)化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
 C:0.10~0.24%
 Cは、鋼板強度を高め、残留オーステナイトを確保するために必要な元素である。また、Cは、低温焼戻しマルテンサイトの強度の向上に寄与する元素でもある。C含有量が0.10%未満では、十分な鋼板強度と、十分な量の残留オーステナイトを得ることが難しくなる。一方、C含有量が0.24%を超えると、パーライトおよびセメンタイトが多量に析出し、局部延性が大きく低下する。したがって、C含有量は0.10~0.24%とする。C含有量は0.12%以上または0.13%以上であるのが好ましく、0.15%以上または0.17%以上であるのがより好ましい。また、C含有量は0.24%以下または0.23%以下であるのが好ましく、0.22%以下または0.21%以下であるのがより好ましい。
 Mn:3.50~12.00%
 Mnは、Cと同様に、残留オーステナイトを確保するために必要な元素である。Mn含有量が3.50%未満では、添加効果が十分に発現しない。一方、Mn含有量が12.00%を超えると、オーステナイト量が増えすぎて、低温焼戻しマルテンサイトが得られず、引張強さおよび降伏応力が低下する。Mn含有量は3.80%以上または4.00%以上であるのが好ましく、4.40%以上、4.80%以上または5.10%以上であるのがより好ましい。また、Mn含有量は11.00%以下または10.00%以下であるのが好ましく、9.00%以下、8.00%以下または7.00%以下であるのがより好ましい。
 Si:0.005~5.00%
 Al:0.005~5.00%
 SiおよびAlは、脱酸剤であるが、焼鈍時にフェライトを安定化し、セメンタイトの析出を抑制する作用をなす元素でもある。SiおよびAlのいずれも、その含有量が0.005%未満であると、添加効果が十分に発現しない。一方、SiおよびAlのいずれも5.00%を超えると、表面性状、塗装性、および溶接性が低下する。したがって、SiおよびAlの含有量はいずれも0.005~5.00%とする。
 いずれの元素の含有量も0.010%以上であるのが好ましく、0.020%以上であるのがより好ましく、0.030%以上であるのがさらに好ましい。特に、Siについては、0.50%以上、0.90%以上または1.05%以上としてもよい。また、いずれの元素の含有量も3.50%以下であるのが好ましく、2.50%以下であるのがより好ましく、2.10%以下であるのがさらに好ましい。特に、Alについては、1.00%以下としてもよい。
 なお、Al含有量が5.00%を超えると、デルタフェライトが室温で残存する。デルタフェライトは、熱間圧延により延伸したフェライトとなる。そして、引張試験時およびプレス成型時に、該フェライトに応力が集中して、試験片または鋼板が破断しやすくなる。この点でも、Alは5.00%以下とする。鋼板の材質をより高める場合は、Si+Al:0.80%以上とするのが好ましく、1.00%以上とするのがより好ましい。
 P:0.15%以下
 Pは、鋼原料から不可避的に混入する不純物元素である。P含有量が0.15%を超えると、延性および溶接性が低下する。したがって、P含有量は0.15%以下とする。P含有量は0.10%以下、0.05%以下または0.020%以下であるのが好ましい。下限は0%とするが、P含有量を0.0001%未満に低減すると、製造コストが大幅に上昇するので、0.0001%を下限としてもよい。
 S:0.030%以下
 Sは、鋼原料から不可避的に混入する不純物元素である。S含有量が0.030%を超えると、熱間圧延によって伸張したMnSが生成し、延性および穴広げ性などの成形性が低下する。したがって、S含有量は0.030%以下とする。S含有量は0.015%以下または0.009%以下であるのが好ましい。下限は0%とするが、S含有量を0.0001%未満に低減すると、製造コストが大幅に上昇するので、0.0001%を下限としてもよい。
 N:0.020%以下
 Nは、鋼原料から、また、製鋼過程で不可避的に混入する不純物元素である。N含有量が0.020%を超えると、延性が低下する。したがって、N含有量は0.020%以下とする。N含有量は0.015%以下、0.010%以下、0.0070%以下または0.0050%以下であるのが好ましい。下限は0%とするが、N含有量を0.0001%未満に低減すると、製造コストが大幅に上昇するので、0.0001%を下限としてもよい。
 O:0.010%以下
 Oは、脱酸後、不可避的に残留する不純物元素である。O含有量が0.010%を超えると、延性が低下する。したがって、O含有量は0.010%以下とする。O含有量は0.007%以下、0.004%以下または0.0025%以下であるのが好ましい。下限は0%とするが、Oを0.0001%未満に低減すると、製造コストが大幅に上昇するので、0.0001%を下限としてもよい。
 本発明の合金化溶融亜鉛めっき鋼板には、上記の元素に加えてさらに、下記に示す量のCr、Mo、Ni、Cu、Nb、Ti、W、B、Ca、Mg、Zr、REM、Sb、Sn、AsおよびVから選択される1種以上の元素を含有させてもよい。
 Cr:0~5.00%
 Mo:0~5.00%
 Ni:0~5.00%
 Cu:0~5.00%
 Cr、Mo、NiおよびCuは、鋼板強度の向上に寄与する元素であるため、必要に応じて含有させてもよい。しかしながら、Cr、Mo、NiおよびCuのいずれも5.00%を超えると、強度が上昇しすぎて、延性が低下する。したがって、Cr、Mo、NiおよびCuの含有量は、いずれも5.00%以下とする。
 いずれの元素の含有量も4.00%以下または3.00%であるのが好ましく、2.00%以下または1.00%以下であるのがより好ましく、0.80%以下または0.50%以下であるのがさらに好ましい。なお、これらの元素の下限は0%であるが、上記の効果を得るためには、上記の元素から選択される1種以上の含有量を0.01%以上としても差し支えなく、0.02%以上としてもよい。合金コストの削減のため、これらの合計を2.00%以下、1.50%以下、1.10%以下、0.7%以下または0.40%以下としてもよい。
 Nb:0~0.50%
 Ti:0~0.50%
 W:0~0.50%
 Nb、TiおよびWは、微細な炭化物、窒化物、または炭窒化物を形成し、鋼板強度の向上に寄与する元素であるため、必要に応じて含有させてもよい。しかしながら、Nb、TiおよびWのいずれも0.50%を超えると、強度が上昇しすぎて、延性が低下する。したがって、Nb、TiおよびWの含有量は、いずれも0.50%以下とする。
 いずれの元素の含有量も0.40%以下または0.20%以下であるのが好ましく、0.10%以下または0.05%以下であるのがより好ましい。なお、これらの元素の下限は0%であるが、上記の効果を得るためには、上記の元素から選択される1種以上の含有量を0.005%以上としても差し支えなく、0.008%以上としてもよい。合金コストの削減のため、これらの合計を0.50%以下、0.20%以下、0.10%以下または0.05%以下としてもよい。
 B:0~0.010%
 Bは、変態を遅らせて、鋼板強度の向上に寄与し、また、粒界に偏析して粒界の強化に寄与する元素であるため、必要に応じて含有させてもよい。しかしながら、B含有量が0.010%を超えると、B化合物が多量に析出し、鋼板が脆化する。したがって、B含有量は0.010%以下とする。B含有量は0.005%以下または0.0030%以下であるのが好ましく、0.0020%以下または0.0016%以下であるのがより好ましい。なお、Bの下限は0%であるが、上記の効果を得るためには、B含有量は0.0002%以上としても差し支えなく、0.0003%以上としてもよい。
 Ca:0~0.05%
 Mg:0~0.05%
 Zr:0~0.05%
 REM:0~0.05%
 Ca、Mg、ZrおよびREM(希土類元素)は、硫化物および酸化物の形状を制御して局部延性および穴広げ性の向上に寄与する元素であるため、必要に応じて含有させてもよい。しかしながら、Ca、Mg、ZrおよびREMのいずれも0.05%を超えると、加工性が低下する。したがって、Ca、Mg、ZrおよびREMの含有量は、いずれも0.05%以下とする。
 いずれの元素の含有量も0.03%以下または0.01%以下であるのが好ましく、0.0060%以下または0.0040%以下であるのがより好ましい。また、Ca、Mg、ZrおよびREMから選択される2種以上を複合的に含有させる場合には、その合計含有量は0.05%以下または0.02%以下とするのが好ましく、0.01%以下または0.0060%以下とするのがより好ましい。なお、これらの元素の下限は0%であるが、上記の効果を得るためには、上記の元素から選択される1種以上の含有量を0.0001%以上としてもよく、0.0002%以上としてもよい。
 ここで、本発明において、REMはSc、Yおよびランタノイドの合計17元素を指し、前記REMの含有量はこれらの元素の合計含有量を意味する。なお、ランタノイドは、工業的には、ミッシュメタルの形で添加される。
 Sb:0~0.50%
 Sn:0~0.50%
 SbおよびSnは、鋼板中のMn、Si、および/または、Al等の易酸化性元素が表面に拡散して酸化物を形成するのを抑制し、表面性状およびめっき性を高める作用をなす元素であるため、必要に応じて含有させてもよい。しかしながら、SbおよびSnのいずれの元素も0.50%を超えると、添加効果が飽和する。したがって、SbおよびSnの含有量は、いずれも0.50%以下とする。
 いずれの元素の含有量も0.35%以下または0.15%以下であるのが好ましく、0.08%以下または0.03%以下であるのがより好ましい。なお、これらの元素の下限は0%であるが、上記の効果を得るためには、上記の元素から選択される1種以上の含有量を0.010%以上としてもよい。
 As:0~0.05%
 Asは、SbおよびSnと同様に、鋼板中のMn、Si、および/または、Al等の易酸化性元素が表面に拡散して酸化物を形成するのを抑制し、表面性状およびめっき性を高める作用をなす元素であるため、必要に応じて含有させてもよい。しかしながら、As含有量が0.05%を超えると、添加効果は飽和する。したがって、As含有量は0.05%以下とする。As含有量は0.02%以下であるのが好ましく、0.01%以下であるのがより好ましい。なお、Asの下限は0%であるが、上記の効果を得るためには、As含有量は0.005%以上としてもよい。必要に応じて、Sb、SnおよびAsの合計を0.05%以下、0.03%以下または0.01%以下としてもよい。
 V:0~2.0%
 Vは、析出物を形成して結晶粒を微細化し、強度および靱性の向上に寄与する元素であるため、必要に応じて含有させてもよい。しかし、V含有量が0.50%を超えると、上記の効果が飽和し、製造コストが上昇する。そのため、V含有量は2.0%以下または1.0%以下とする。V含有量は0.50%以下または0.30%%以下であるのが好ましく、0.10%以下であるのがより好ましく、0.06%以下であるのがさらに好ましい。なお、Vの下限は0%であるが、上記の効果を得るためには、V含有量は0.001%以上または0.005%以上としてもよい。
 本発明の鋼板の化学組成において、残部はFeおよび不純物である。
 ここで「不純物」とは、鋼板を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 (B)鋼板の金属組織
 本発明の鋼板の板厚1/4位置における金属組織について説明する。各組織の面積率は、焼鈍条件によって変化し、強度、一様伸び、局部伸びなどの機械特性に影響を与える。所望の機械特性は、例えば、自動車用の部品により変化するため、必要に応じて焼鈍条件を選択して、各組織の面積率を制御する。なお、以下の説明において「%」は、「面積%」を意味する。
 残留オーステナイト:10.0~55.0%
 残留オーステナイト(以下、「残留γ」ともいう。)は、変態誘起塑性によって、延性、特に、一様伸びを高める組織である。本発明の鋼板において優れた一様伸びを得るため、残留γの面積率は10.0%以上とする必要がある。一方、残留γの面積率が55.0%を超えると、降伏応力が低下するので、残留γの面積率は55.0%以下とする。残留γの面積率は、13.0%以上、15.0%以上または18.0%以上であるのが好ましく、20.0%以上であるのがより好ましい。また、残留γの面積率は、50.0%以下であるのが好ましく、45.0%以下、40.0%以下、35.0%以下または31.0%以下であるのがより好ましい。
 本発明に係る金属組織の残留γは、マルテンサイトのラスのように細長い形態のものが主体である。その厚みは1μm以下で、多くは0.02~0.1μm程度である。このラス状の残留γと後述する低温焼戻しマルテンサイトとを共存させることは、従来法では困難であり、後述する製造方法を採用することにより達成することができる。なお、従来法は、オーステナイト単相とした後、室温まで冷却して、ほぼマルテンサイトにし、その後、2相域で加熱して、オーステナイト中にCおよびMnを濃化させ、残留γを得る方法である(例えば、非特許文献1および特許文献4を参照)。
 本発明においては、後述するように、第2冷却工程で、オーステナイトとマルテンサイトとが存在する組織状態を形成させる必要がある。そして、第2焼鈍工程で、マルテンサイトからオーステナイトを生成させ、そのオーステナイトをラス状の細長い組織とする。オーステナイト周辺の組織は、高温焼戻しマルテンサイトである。このオーステナイトは、室温までの冷却過程で残留オーステナイトとなる。
 第2冷却工程後のオーステナイトは比較的粗大な組織であり、第3冷却工程で、マルテンサイトとなる。上記の工程を経ることで、ラス状のオーステナイトと低温焼戻しマルテンサイトとを共存させることができる。
 高温焼戻しマルテンサイト:30.0~75.0%
 高温焼戻しマルテンサイトは、主に550~700℃程度の温度で焼戻されたマルテンサイトであり、その測定方法は後述する。成形性の向上のため、高温焼戻しマルテンサイトの面積率は、30.0~75.0%とする。高温焼戻しマルテンサイトの面積率は、33.0%以上、36.0%以上または38.0%以上であるのが好ましく、70.0%以下、65.0%以下、60.0%以下または55.0%以下であるのが好ましい。
 低温焼戻しマルテンサイト:15.0~60.0%
 低温焼戻しマルテンサイトは、後述する第3冷却工程で生じたフレッシュマルテンサイトを主に250~480℃の温度で焼戻された組織であり、その測定方法は後述する。
 低温焼戻しマルテンサイトは、一様伸びは低いものの、後述するフレッシュマルテンサイトと比較して、局部伸びを低下させにくく、降伏応力および引張強さに優れる。そのため、低温焼戻しマルテンサイトの面積率は、15.0%以上とする。低温焼戻しマルテンサイトの面積率は、所望の強度レベルに応じて設定すればよいが、多すぎると一様伸びが低下するため、60.0%以下とする。成形性向上のため、低温焼戻しマルテンサイトの下限を、20.0%、25.0%、30.0%、34.0%または38.0%としてもよい。一様伸びの向上のため、その上限を55.0%、50.0%、46.0%または42.0%としてもよい。
 本発明の鋼板の板厚1/4位置での金属組織において、残部はフレッシュマルテンサイト、パーライトおよびベイナイトである。
 フレッシュマルテンサイト:0~10.0%
 焼戻し工程において、オーステナイトから、僅かにセメンタイトが析出して、オーステナイトが不安定化し、焼戻し工程後の冷却工程で、フレッシュマルテンサイトが生成することがある。フレッシュマルテンサイトの面積率が10.0%を超えると、YSおよび局部伸びが低下するだけでなく、残留γの面積率が減少して、一様伸びも低下する。そのため、フレッシュマルテンサイトの面積率は10.0%以下とする。フレッシュマルテンサイトの面積率は5.0%以下であるのが好ましく、3.0%以下であるのがより好ましく、0%つまりフレッシュマルテンサイトがない組織が最も好ましい。
 パーライト:0~5.0%
 パーライトは、焼鈍時の冷却途中、または、めっきの合金化処理中に、オーステナイトから生成する場合がある。パーライトの面積率が5.0%を超えると、残留γの面積率が減少し、強度および延性を大きく低下させる。そのため、パーライトの面積率は、5.0%以下とする。パーライトの面積率はできるだけ低い方が好ましく、3.0%以下であるのが好ましく、0%であることが最も好ましい。
 ベイナイト:0~5.0%
 本発明の金属組織中には、ベイナイトが含まれていてもよい。本発明の鋼板のMn含有量では、ベイナイト変態は進行しにくいので、ベイナイトの面積率は、5.0%以下とする。ベイナイトの面積率は、3.0%以下であるのが好ましく、0%であることが最も好ましい。
 なお、フレッシュマルテンサイト、パーライトおよびベイナイトの面積率の合計を、5.0%以下、3.0%以下、1.0%以下としてもよい。これらの残部の金属組織の面積率の合計が0%であることがより好ましい。
 本発明において、上記の各組織の面積率を求める方法について以下に説明する。
 まず、圧延方向に平行な断面を切り出し、鏡面研磨した後、電解研磨したサンプルを、SEM-EBSDで表面から板厚の1/4だけ離れた位置(以下、「板厚1/4位置」という。))での100μm×100μm以上の領域を0.1μm間隔で測定する。その後、株式会社TSLソリューションズの解析ソフトを用い、各々の結晶粒における粒内のImage Qualityの平均値(Grain Average Image Quality:GAIQ値)を算出する。そして、FCCと判定される領域の面積率を、残留オーステナイトの面積率とする。
 次に、F.S.Lepera: Journal of Metals 32,No.3,(1980)38-39に記載の方法で、圧延方向に平行な断面を腐食して、フレッシュマルテンサイトおよび残留オーステナイトを現出させる。その後、板厚1/4位置において、光学顕微鏡を用いて倍率1000倍で観察し、組織写真を画像処理して、フレッシュマルテンサイトおよび残留オーステナイトの合計面積率(%)を測定する。ただし、腐食液は、蒸留水に4%のNaを溶解させた溶液と、エタノールに4%の[C(NO)OH]を溶解させた溶液とを1:1で混合させたものとする。
 そして、フレッシュマルテンサイトおよび残留オーステナイトの合計面積率の値から、上述の方法によって測定した残留オーステナイトの面積率を差し引くことによって、フレッシュマルテンサイトの面積率を求める。
 そして、板厚1/4位置におけるGAIQ値が5000以下である結晶粒の分率を低温焼戻しマルテンサイトとフレッシュマルテンサイトとの合計面積率とする。この値から、フレッシュマルテンサイトの面積率を差し引くことによって、低温焼戻しマルテンサイトの面積率を求める。
 また、圧延方向に垂直な断面を切り出し、鏡面研磨した後、ナイタールにて腐食を行う。当該サンプルについてSEM観察を行う。SEM観察は倍率5000倍で行い、測定領域は、板厚1/4位置の25μm×20μmの領域を4視野以上とする。ナイタール腐食を行った後、SEMで観察し、下部組織がなく、抉れている組織をフェライトまたは高温焼戻しマルテンサイトとする。このうち、長軸と短軸との比が2以上のものを高温焼戻しマルテンサイトとする。長軸と短軸は以下のようにして求める。まず、上記で撮影した写真において、結晶粒の1つに着目したとき、粒界と別の粒界とを結んだ線のうちで、一番長い線を長軸とする。そして、その長軸を2分割する粒界と別の粒界とを結んだ線のうち、距離が一番短いものを短軸とする。つまり、下部組織がなく、抉れている組織の中で、長軸と短軸との比が2以上の組織の分率を高温焼戻しマルテンサイトの面積率とし、長軸と短軸との比が2未満の組織の分率をフェライトの面積率とする。
 パーライトについては、ナイタール腐食を行った後、板厚1/4位置の25μm×20μmの領域を4視野以上SEMで観察し、ラメラー組織が見える組織の分率をパーライトの面積率とする。また、ベイナイトは、同様にナイタール腐食を行った後、板厚1/4位置の25μm×20μmの領域を4視野以上SEMで観察し、長軸と短軸との比が2以上であり、かつ、5000倍のSEMでセメンタイトが確認される組織の分率をベイナイトの面積率とする。
 (C)機械特性
 引張強さ(TS)は、高いほどよく、1180MPa以上とする。例えば、鋼板を自動車の素材として使用する場合、高強度化によって、鋼板の板厚を減少し、自動車を軽量化することができる。引張強さの下限を250MPaとしてもよい。引張強さの上限については特に制限を設ける必要はないが、1650MPa以下または1600MPa以下とすることが好ましい。上記の軽量化効果を得るためには、鋼板の降伏応力(YS)と、加工後(降伏後)の加工硬化量が高いことが好ましい。変形による硬さは、降伏応力(YS)が高く、かつ、加工硬化量が多いほど上昇する。
 加工硬化量は、n値を指標として表示できるが、n値とuELは似た値となる。そこで、本発明鋼板においては、降伏応力(YS)×一様伸び(uEL)を指標とする。本発明鋼板においては、YS×uEL≧10000MPa%とする。ただし、引張試験片はJIS Z2241の5号試験片(平行部の幅25mm、原標点間距離50mmの板状試験片)とする。
 鋼板をプレス成形するためには、一様伸び(uEL)および局部伸び(lEL)が優れていることが望ましい。鋼板が局部変形するころには、鋼板強度が引張強さ(TS)に達しているので、この状態を表示する指標として、引張強さ(TS)×局部伸び(lEL)を採用する。本発明鋼板においては、TS×lEL≧6000MPa%とする。
 降伏応力は、成形後の鋼板の硬さを保証する指標となるので、降伏比(降伏応力/引張強さ)は高いほど好ましい。降伏比は0.70以上が好ましい。より好ましくは0.71以上または0.72以上である。
 なお、本発明においては、引張強さおよび降伏応力として、圧延直角方向の引張試験において求められる値を採用する。圧延直角方向とは、鋼板の圧延方向および厚さ方向に垂直な方向を指し、すなわち幅方向を意味する。
 (D)製造方法
 本発明に係る鋼板は、例えば、以下に示す製造方法を用いることにより、製造することができる。以下の製造方法では、下記の(a)から(m)までの工程を順に行う。各工程について詳しく説明する。
 (a)溶製工程
 上述の化学組成を有する鋼塊またはスラブを溶製する。溶製工程における条件については特に制限はなく、通常の方法を用いればよい。
 (b)熱延工程
 鋼塊またはスラブを加熱して熱間圧延を施し、熱延鋼板とする。熱間圧延前の加熱温度を1100~1170℃とし、熱間圧延の仕上げ温度を880~970℃とするのが好ましい。熱間圧延の最終1パスから6パスの間で、1回のパスで10%以上の大圧下の圧延を少なくとも3回以上行うことが好ましい。
 加熱温度が1100℃未満では、熱間圧延までの搬送の間に温度が低下して、所要の温度で仕上げ圧延を終了できないおそれがある。一方、加熱温度が1170℃を超えると、加熱時のオーステナイトが粗大化し圧延後の鋼板の結晶が粗大になるおそれがあるため、加熱温度は1170℃以下であるのが好ましい。
 また、本発明で規定される化学組成を有する鋼は硬いため、仕上げ温度が880℃未満であると、圧延機に大きな負荷がかかり、熱間圧延が困難になるおそれがある。一方、仕上げ温度が970℃を超えると、圧延後の鋼板の結晶が粗大になるおそれがある。
 (c)第1冷却工程
 仕上げ圧延終了後の熱延鋼板を冷却する。第1冷却工程における冷却条件について特に制限は設けないが、20℃/s以上の平均冷却速度で冷却し、550~650℃の温度範囲で冷却を停止することが好ましい。上記範囲なら巻取工程での温度範囲を満たしやすい。
 (d)巻取工程
 冷却停止後の熱延鋼板を巻き取る。巻取温度は、450~600℃であるのが好ましい。巻取温度が450℃未満では、板形状が悪くなる。また、本発明のように、Mn含有量が高い場合には、巻取温度が600℃を超えると、スケールが厚くなり、酸洗しにくくなる。
 (e)冷延工程
 巻き取られた熱延鋼板を再び巻き戻して、酸洗した後、冷間圧延を施し、冷延鋼板とする。圧下率は40~65%とするのが好ましい。圧下率が40%未満では、板厚が厚くなる。そのため、自動車部品とした際に、重量が重くなりやすい。一方、圧下率が65%を超えると、冷間圧延を短時間で終了することが難しくなる。また、焼鈍後の延性が低くなることがある。冷延鋼板の厚さは0.8~3.0mmの範囲とすることが好ましい。
 (f)第1焼鈍工程
 冷延工程の後、冷延鋼板に、850~970℃の温度域で90s以上保持する焼鈍を施す。上記温度域での保持により、金属組織を、オーステナイト単相の組織とする。焼鈍温度が850℃未満、または、保持時間が90s未満であると、オーステナイトの量が少なくなり、最終的に、所要量の低温焼戻しマルテンサイトを確保できず、降伏応力が低下する。
 焼鈍温度が970℃を超えると、加熱炉が損傷するおそれがあるだけでなく、鋼板表面に多量のスケールが発生して、酸洗後、鋼板表面に凹凸が残り、自動車用鋼板として好ましくない。なお、保持時間が180sを超えても、鋼板表面に多量のスケールが発生して、酸洗後、鋼板表面に凹凸が残り、自動車用鋼板として好ましくない。そのため、第1焼鈍工程における保持時間は180s以下とするのが好ましい。
 (g)第2冷却工程
 第1焼鈍工程の後、鋼板を150~250℃の温度域まで冷却する。この温度域で、相変態は起きにくい。冷却速度は、平均で、1~100℃/sが好ましい。第2冷却工程で、マルテンサイトが生成し、このマルテンサイトが、後述の第2焼鈍工程で高温焼戻しマルテンサイトと逆変態したオーステナイトとなる。所望の強度または特性により、冷却温度を適宜選択して、高温焼戻しマルテンサイトの面積率を調整することができる。
 また、当該冷却工程時に、オーステナイトとマルテンサイトを共存させることが重要となる。当該冷却工程時のオーステナイトの大部分が、第2焼鈍工程~第3冷却工程を得てマルテンサイトとなり、その後の焼戻し工程で低温焼戻しマルテンサイトとなる。一方、当該冷却工程時のマルテンサイトの一部が、前述のように、第2焼鈍工程で高温焼戻しマルテンサイトとなる。したがって、当該冷却工程温度によって、オーステナイト量とマルテンサイト量とを調整することによって、最終組織の低温焼戻しマルテンサイト量および高温焼戻しマルテンサイト量を、本発明の範囲にすることができる。
 冷却停止温度が150℃未満であると冷却工程でのオーステナイトが少なくなるため、最終組織における低温焼戻しマルテンサイトが少なくなる。一方、冷却温度が250℃を超えると、マルテンサイトの量が少なくなり、最終的に、高温焼戻しマルテンサイトを、30.0%以上確保することが困難となる。冷却停止温度は180℃以上であるのが好ましく、230℃以下であるのが好ましく、220℃以下であるのがより好ましい。
 (h)第2焼鈍工程
 第2冷却工程の後、鋼板に、550℃以上Ac点未満の温度域で120s以上保持する焼鈍を施す。焼鈍温度が550℃未満であると、セメンタイトおよびパーライトが多量に析出し、残留オーステナイトが減少する。焼鈍温度は580℃以上であるのが好ましい。
 一方、焼鈍温度がAc点以上であると、得られる残留オーステナイト量が少なくなる。この理由は以下のように推定される。オーステナイトへの逆変態が過度に進行し、加熱時のオーステナイトが過剰となる。すると、オーステナイト中のCおよびMnの含有量が少なくなるため、オーステナイトが不安定化する。そして、第2冷却工程時にマルテンサイトとなり、残留オーステナイトが少なくなるものと考えられる。
 なお、Ac点は、下記式によって求めるものとする。
 Ac=723+29.1×Si-10.7×Mn+16.9×Cr-16.9×Ni
 但し、上記式中の各元素記号は、各元素の含有量(質量%)を意味する。
 上記焼鈍温度での保持時間は120s以上とする。保持時間が120s未満であると、オーステナイトへの逆変態が進行せず、残留オーステナイトが少なくなる。保持時間は、焼鈍温度との関係で適宜定めればよいが、8時間以上焼鈍しても、大きな変化はなく、工業的にコストが高くなるばかりなので、上限は8時間程度となる。
 第2焼鈍工程においては、あらかじめ熱せられた炉に入れ加熱してもよいし、IH等で加熱してもよい。加熱速度が10℃/s未満では、残留オーステナイト量が少なくなる。加熱途中でセメンタイト析出が多量に生じ、その後の加熱時にも溶け残り、その結果、残留オーステナイト中のCが少なくなったためと推定される。一方、第2焼鈍工程の温度制御のため、実質的な加熱速度の上限は25℃/s程度となる。
 (i)第3冷却工程
 第2焼鈍工程の後、鋼板を室温まで冷却する。鋼板を、室温まで冷却しないと、後述する焼戻し工程で、フレッシュマルテンサイトが生成して、YSが低下するおそれがある。平均冷却速度は、8℃/s以上とするのが好ましい。平均冷却速度が8℃/s未満では、ベイナイトが出やすくなり、YRおよびYS×uELが低くなる。
 (j)焼戻し工程
 第3冷却工程の後、鋼板に、250~480℃の温度域で1s以上保持する焼戻しを施す。焼戻し工程において、低温焼戻しマルテンサイトを生成させる。焼戻し温度が250℃未満であると、焼戻し効果が十分に得られず、フレッシュマルテンサイトが多く残る。その結果、YSが低くなり、TSが高くなり、降伏比が低下する。焼戻し温度は200℃以上であるのが好ましい。
 一方、焼戻し温度が480℃を超えると、低温焼戻しマルテンサイトが柔らかくなりすぎて、YSおよびTSが極端に低下し、また、残留オーステナイトがパーライトに変態して、uELも低下するので、焼戻し工程の温度域は480℃以下とする。好ましくは460℃または400℃以下である。なお、保持時間が1hを超えると、残留オーステナイトが少なくなるため、保持時間は1h以下とするのが好ましい。
 鋼板の(Si+Al)量が0.8質量%以上であると、焼戻しで、TS×uELがより向上する。この理由は明らかではないが、マルテンサイト中のCがセメンタイトに分解せず、残留オーステナイト中に濃化することによるものと推定される。(Si+Al)量が1.0質量%以上であることがより好ましい。
 (k)第4冷却工程
 焼戻し工程の後、鋼板を室温まで冷却する。第4冷却工程での冷却速度は、空冷以上の冷却速度であれば、金属組織の変化は小さいので、特に限定はしない。ただし、冷却速度が5℃/s未満では、第3冷却工程と同様に、ベイナイトが多くなる可能性がある。一方、80℃/sを超える冷却速度で冷却する場合、冷却ムラが発生しやすく、板形状が悪くなる。そのため、冷却速度は5~80℃/s以下とするのが好ましい。
 (l)めっき工程
 焼戻し工程の後、第4冷却工程で室温まで冷却した鋼板に、溶融亜鉛めっき、合金化溶融亜鉛めっき、または、Zn-Ni合金めっきを施してもよい。Zn-Ni合金めっきは、電気めっきで施す。溶融亜鉛めっきは、第4冷却工程で室温まで冷却した鋼板を、460℃の亜鉛めっき浴に浸漬すればよい。また、第3冷却工程の後、鋼板を溶融亜鉛めっき浴に浸漬し、焼戻し工程時にめっきを施してもよい。
 (m)合金化工程
 合金化溶融亜鉛めっきは、溶融亜鉛めっきを施した鋼板を、480~500℃に加熱して、合金化処理を行なえばよい。溶融亜鉛めっき鋼板の場合と同様に、焼戻し工程時に合金化処理を行なってもよい。
 なお、本発明が対象とする鋼板の板厚は、主に0.8~3.0mmである。必要に応じて、板厚の上限を2.8mmまたは2.5mmとしてもよい。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1に示す化学組成を有する厚さ240mmのスラブを製造した。このスラブを、表2および3に示す条件で熱間圧延して熱延鋼板とした。この際、1回のパスで10%以上の大圧下の圧延を少なくとも3回以上行った。熱延鋼板を、巻取温度まで水スプレーで冷却して巻き取った。製造された熱延鋼板を、酸洗してスケールを除去した後、表2および3に示す条件で冷間圧延し、厚さ1.2mmの冷延鋼板を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 得られた冷延鋼板から試験材を採取し、試験材を、表2および3に示す最高焼鈍温度まで加熱し、表2および3に示す時間で保持する焼鈍を行い(第1焼鈍工程)、次いで、表2および3に示す平均冷却速度で冷却停止温まで冷却した(第2冷却工程)。
 第2冷却工程の後の第2焼鈍工程は、表2および3に示す平均加熱速度で、表2および3に示す最高焼鈍温度まで加熱し、表2および3に示す焼鈍時間保持して行った。次いで、表2および3に示す平均冷却速度で、室温まで冷却した(第3冷却工程)。
 焼戻し工程は、平均加熱速度5℃/sで、表2および3に示す温度まで加熱し、表2および3に示す時間保持した。その後、10℃/sで室温まで冷却した(第4冷却工程)。
 試験No.57~59については、表面にめっき処理した。試験No.57は、焼戻し工程終了した後、電気めっきにより、Zn-Niを付着させた。試験No.58は、第3冷却工程の後、460℃に加熱したZnの溶融亜鉛の浴に鋼を浸すことにより、溶融亜鉛めっき鋼板とした。上記溶融亜鉛中には、従来と同様に、Alが0.01%程度含まれる。当該めっき浴の温度で焼戻し工程を代用したこととなる。また。試験No.59は、試験No.58と同様に第3冷却工程の後、溶融亜鉛めっき浴に鋼を浸し、さらにその後、再加熱し保持することによってZnと母材のFeを合金化させた。なお、めっきを付けるタイミングは上記に限られるものではない。例えば、第3冷却工程中にめっき浴に浸したり、合金化したりしてもよい。
 上記手順で製造した各鋼板について、以下の方法により金属組織の同定を行った。各組織の面積率を求める方法について以下に説明する。
 まず、圧延方向に垂直な断面を切り出し、鏡面研磨した後、電解研磨したサンプルを、SEM-EBSDで100μm×100μm以上の領域を0.1μm間隔で測定した。その後、株式会社TSLソリューションズの解析ソフトを用い、各々の結晶粒における粒内のImage Qualityの平均値(Grain Average Image Quality:GAIQ値)を算出した。そして、板厚1/4位置におけるFCCと判定される領域の面積率を、残留γの面積率とした。
 次に、F.S.Lepera: Journal of Metals 32,No.3,(1980)38-39に記載の方法で、圧延方向の断面を腐食して、フレッシュマルテンサイトおよび残留γを現出させた。その後、板厚1/4位置において、光学顕微鏡を用いて倍率1000倍で観察し、組織写真を画像処理して、フレッシュマルテンサイトおよび残留オーステナイトの合計面積率(%)を測定した。ただし、腐食液として、蒸留水に4%のNaを溶解させた溶液と、エタノールに4%の[C(NO)OH]を溶解させた溶液とを1:1で混合させたものを用いた。
 そして、フレッシュマルテンサイトおよび残留オーステナイトの合計面積率の値から、上述の方法によって測定した残留オーステナイトの面積率を差し引くことによって、フレッシュマルテンサイトの面積率を求めた。
 そして、GAIQ値が5000以下である結晶粒の分率(板厚1/4位置)を低温焼戻しマルテンサイトとフレッシュマルテンサイトとの合計面積率とした。この値から、フレッシュマルテンサイトの面積率を差し引くことによって、低温焼戻しマルテンサイトの面積率を求めた。
 また、圧延方向に垂直な断面を切り出し、鏡面研磨した後、ナイタールにて腐食を行い、板厚1/4位置にてSEM観察を行った。SEM観察は倍率5000倍で行い、測定領域は、25μm×20μmの領域を4視野以上とした。ナイタール腐食を行った後、SEMで観察し、下部組織がなく、抉れている組織をフェライトまたは高温焼戻しマルテンサイトとした。このうち、長軸と短軸との比が2以上のものの分率を高温焼戻しマルテンサイトの面積率とし、この比が2未満のものの分率をフェライトの面積率とした。長軸と短軸は以下のようにして求めた。まず、上記で撮影した写真において、結晶粒の1つに着目したとき、粒界と別の粒界とを結んだ線のうちで、一番長い線を長軸とする。そして、その長軸を2分割する粒界と別の粒界とを結んだ線のうち、距離が一番短いものを短軸とした。
 パーライトについては、ナイタール腐食を行った後、板厚1/4位置にて25μm×20μmの領域を4視野以上SEMで観察し、ラメラー組織が見えるものの分率をパーライトの面積率とした。また、ベイナイトは、同様にナイタール腐食を行った後、板厚1/4位置にて25μm×20μmの領域を4視野以上SEMで観察し、長軸と短軸との比が2以上であり、かつ、5000倍のSEMでセメンタイトが確認されるものをベイナイトとした。
 各組織の面積率の測定結果を表4および5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 得られた鋼板の機械特性を測定した。熱処理を施した試験材から、圧延方向に直角の方向が引張方向となるようにJIS5号引張試験片を採取し、降伏強度(YS)、引張強度(TS)、一様伸び(uEL)、全伸び(EL)を測定した。全伸びと一様伸びの差を、局部伸び(lEL)とした。測定した機械特性を、表6および7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本発明の規定を全て満足する、試験No.1~5、8、16~35、40~42、48~50、52~54および57~59では、TSが1180MPa以上であり、TS×lELが6000MPa%以上かつYS×uELが10000MPa%以上であり、高い強度と優れた成形性とを示す結果となった。
 これに対し、試験No.6は、第1焼鈍工程の焼鈍温度が低いため、低温焼戻しマルテンサイトが少なく、強度が低く、また、TS×lELも低い。試験No.7は、第焼鈍工程の焼鈍時間が短いため、低温焼戻しマルテンサイトが少なく、試験No.6と同様に、強度が低く、また、TS×lELも低い。
 試験No.9は、第2冷却工程の停止温度が20℃と低い。冷却後、第2焼鈍工程を行うが、これは、非特許文献1などに記載の従来法と同様の熱処理条件となる。試験No.9においては、低温焼戻しマルテンサイトが2.0%で、本発明の範囲より低いため、TSが低くなった。試験No.45についても同様である。
 試験No.10は、第2冷却工程の冷却停止温度が400℃と高い。その結果、変態が起きず、金属組織はオーステナイトである。その後の加熱で、僅かにフェライトが生成するが、量が少ないので、オーステナイト中にCおよびMnが濃化しない。第3冷却工程と焼戻し工程により、低温焼戻しマルテンサイトが多量に生成し、残留γが少ない金属組織となる。このため、YS×uELおよびTS×tELが低くなった。試験No.51についても同様である。
 試験No.11は、第2焼鈍工程の最高焼鈍温度が730℃で高いため、金属組織は、オーステナイト単相となり、オーステナイト中にCおよびMnが濃化せず、不安定な組織となる。それ故、第3冷却工程と焼戻し工程とにより、焼戻しマルテンサイトが多量に生成し、残留γの面積率が減少する。その結果、TS×lELおよびYS×uELが低くなった。
 試験No.12は、第2焼鈍工程の最高加熱温度が530℃で低いため、セメンタイトの析出およびパーライト変態が起こり、残留γの面積率が大きく減少する。その結果、TS×lELとYS×uELが低くなった。
 試験No.13は、第2焼鈍工程の焼鈍時間が60sで、短時間であるため、オーステナイト中にCおよびMnが濃化する時間がなく、オーステナイトが不安定となり、残留γの面積率が低くなる。その結果、TS×lELおよびYS×uELが低くなった。
 試験No.14は、焼戻し工程の温度が130℃で低いため、第3冷却工程で生成したマルテンサイトの焼戻しが進行せず、金属組織中にフレッシュマルテンサイトが多くなる。その結果、YSおよびYS×uELが低くなった。試験No.43および44ついても同様である。
 試験No.15は、焼戻し工程の温度が600℃で、本発明の範囲より高いので、セメンタイトが析出して、残留γの面積率が低く、また、パーライトも生成して、低温焼戻しマルテンサイトの面積率が低くなる。その結果、YS、TS、および、TS×lELが低くなった。
 試験No.46は、第2焼鈍工程における平均加熱速度が3℃/sと低いため、残留γの面積率が低くなる。その結果、TS×lELおよびYS×uELが低くなった。
 試験No.47は、焼戻し工程における保持時間が長いため、残留γの面積率が低くなる。その結果、TS×lELおよびYS×uELが低くなった。
 試験No.55は、第2冷却工程での処理条件が不適切であるため、高温焼戻しマルテンサイトおよび低温焼戻しマルテンサイトの面積率が低くなる。その結果、TS×lELおよびYS×uELが低くなった。
 試験No.56は、第3冷却工程における平均冷却速度が2℃/sと低いため、フェライトが析出し、YRおよびYS×uELが低くなった。
 試験No.36は、C含有量が本発明の範囲より低く、残留γの面積率が本発明の範囲外である。その結果、一様伸びが低くなり、YS×uELが低下した。強度も低下するが、強度の低下は、C含有量の低下による焼戻しマルテンサイトの軟化によると推定される。
 試験No.37は、C含有量が本発明の範囲より高く、金属組織は、パーライトが多く存在し、また、セメンタイトも多量に観察される金属組織である。その結果、局部延性が大きく低下し、TS×lELが低くなった。また、早期に破断したため、一様伸びも低く、YS×uELも低い。
 試験No.38は、Mn含有量が本発明の範囲より低く、残留γの面積率が本発明の範囲外である。そのため、一様伸びが低くなり、YS×uELが低下した。試験No.39は、Mn含有量が本発明の範囲より高く、オーステナイトが安定化しすぎて、十分な量の焼戻しマルテンサイトが得られず、YSおよびTSが低くなった。
 合金成分による影響を排除し、金属組織と機械的性質との関係を理解するため、前記実施例の中で複数の製造条件で製造された鋼種Aおよび鋼種Eについて、金属組織と機械的性質との関係をプロットした図が、図1~6である。図1~6から分かるように、低温焼戻しマルテンサイトの面積率を15.0~60.0%、残留オーステナイトの面積率を10.0~55.0%、高温焼戻しマルテンサイトの面積率を30.0~75.0%、フレッシュマルテンサイトの面積率を0~10.0%の範囲に制御することによって、優れた機械的特性が得られる。
 本発明によれば、1180MPa以上という高い引張強さを有しながら、高い一様伸びおよび局部伸びを有する高強度鋼板を得ることが可能となる。

Claims (12)

  1.  化学組成が、質量%で、
     C:0.10~0.24%、
     Mn:3.50~12.00%、
     Si:0.005~5.00%、
     Al:0.005~5.00%、
     P:0.15%以下、
     S:0.030%以下、
     N:0.020%以下、
     O:0.010%以下、
     Cr:0~5.00%、
     Mo:0~5.00%、
     Ni:0~5.00%、
     Cu:0~5.00%、
     Nb:0~0.50%、
     Ti:0~0.50%、
     W:0~0.50%、
     B:0~0.010%、
     Ca:0~0.05%、
     Mg:0~0.05%、
     Zr:0~0.05%、
     REM:0~0.05%、
     Sb:0~0.50%、
     Sn:0~0.50%、
     As:0~0.05%、
     V:0~2.0%、
     残部:Feおよび不純物であり、
     板厚1/4位置における金属組織が、面積%で、
     残留オーステナイト:10.0~55.0%、
     高温焼戻しマルテンサイト:30.0~75.0%、
     低温焼戻しマルテンサイト:15.0~60.0%、
     であり、残部が
     フレッシュマルテンサイト:0~10.0%、
     パーライト:0~5.0%、
     ベイナイト:0~5.0%、
     である、
     高強度鋼板。
  2.  前記金属組織において、フレッシュマルテンサイト、パーライトおよびベイナイトの合計面積率が、面積%で、0~5.0%である、
     請求項1に記載の高強度鋼板。
  3.  前記金属組織において、パーライトおよびベイナイトの面積率が、0%である、
     請求項1または請求項2に記載の高強度鋼板。
  4.  前記鋼板の引張強さが1180MPa以上であり、板厚が0.8~3.2mmである、
     請求項1から請求項3までのいずれかに記載の高強度鋼板。
  5.  前記化学組成が、質量%で、
     C:0.13~0.21%
     である、
     請求項1から請求項4までのいずれかに記載の高強度鋼板。
  6.  前記化学組成が、質量%で、
     Mn:4.0~7.0%
     である、
     請求項1から請求項5までのいずれかに記載の高強度鋼板。
  7.  前記化学組成が、質量%で、
     Cr:0~1.50%
     である、
     請求項1から請求項6までのいずれかに記載の高強度鋼板。
  8.  前記化学組成が、質量%で、
     Mo:0~1.00%
     である、
     請求項1から請求項7までのいずれかに記載の高強度鋼板。
  9.  前記化学組成が、質量%で、
     Ni:0~1.50%
     である、
     請求項1から請求項8までのいずれかに記載の高強度鋼板。
  10.  前記化学組成が、質量%で、
     Cu:0~1.50%
     である、
     請求項1から請求項9までのいずれかに記載の高強度鋼板。
  11.  前記化学組成が、質量%で、
     B:0~0.003%
     である、
     請求項1から請求項10までのいずれかに記載の高強度鋼板。
  12.  前記鋼板の表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、または、Zn-Ni合金めっき層を備える、
     請求項1から請求項11までのいずれかに記載の高強度鋼板。
PCT/JP2016/086060 2016-12-05 2016-12-05 高強度鋼板 WO2018105003A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2019006392A MX2019006392A (es) 2016-12-05 2016-12-05 Placa de acero de resistencia alta.
JP2017518277A JP6213696B1 (ja) 2016-12-05 2016-12-05 高強度鋼板
US16/466,981 US20200087764A1 (en) 2016-12-05 2016-12-05 High-strength steel sheet
BR112019010681A BR112019010681A2 (pt) 2016-12-05 2016-12-05 chapa de aço de alta resistência
PCT/JP2016/086060 WO2018105003A1 (ja) 2016-12-05 2016-12-05 高強度鋼板
CN201680091418.5A CN110036128A (zh) 2016-12-05 2016-12-05 高强度钢板
EP16923381.4A EP3550047A4 (en) 2016-12-05 2016-12-05 HIGH MECHANICAL STRENGTH SHEET
KR1020197019298A KR20190092491A (ko) 2016-12-05 2016-12-05 고강도 강판

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086060 WO2018105003A1 (ja) 2016-12-05 2016-12-05 高強度鋼板

Publications (1)

Publication Number Publication Date
WO2018105003A1 true WO2018105003A1 (ja) 2018-06-14

Family

ID=60107416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086060 WO2018105003A1 (ja) 2016-12-05 2016-12-05 高強度鋼板

Country Status (8)

Country Link
US (1) US20200087764A1 (ja)
EP (1) EP3550047A4 (ja)
JP (1) JP6213696B1 (ja)
KR (1) KR20190092491A (ja)
CN (1) CN110036128A (ja)
BR (1) BR112019010681A2 (ja)
MX (1) MX2019006392A (ja)
WO (1) WO2018105003A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004661A1 (ja) * 2018-06-29 2020-01-02 日本製鉄株式会社 高強度鋼板およびその製造方法
WO2020017609A1 (ja) * 2018-07-18 2020-01-23 日本製鉄株式会社 鋼板
CN111868283A (zh) * 2018-07-18 2020-10-30 日本制铁株式会社 钢板
US20210054476A1 (en) * 2018-01-05 2021-02-25 The University Of Hong Kong Automotive steel and a method for the fabrication of the same
JPWO2021200164A1 (ja) * 2020-04-03 2021-10-07
WO2021200169A1 (ja) * 2020-04-02 2021-10-07 日本製鉄株式会社 鋼板
EP3848479A4 (en) * 2018-09-04 2021-10-20 Posco ULTRA HIGH STRENGTH AND DUCTILITY STEEL SHEET WITH EXCELLENT PERFORMANCE RATIO AND MANUFACTURING PROCESS
CN113544296A (zh) * 2019-03-20 2021-10-22 日本制铁株式会社 热冲压成形体
US20220127709A1 (en) * 2019-02-06 2022-04-28 Nippon Steel Corporation Hot dip galvanized steel sheet and method for producing same
WO2023032339A1 (ja) * 2021-08-31 2023-03-09 日本製鉄株式会社 鋼板及びその製造方法
WO2024053736A1 (ja) * 2022-09-09 2024-03-14 日本製鉄株式会社 鋼板及びその製造方法
JP7541123B2 (ja) 2020-07-24 2024-08-27 アルセロールミタル 冷間圧延焼鈍され、焼戻された鋼板及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2019008167A (es) * 2017-01-16 2019-09-06 Nippon Steel Corp Lamina de acero y proceso para producir la misma.
WO2019111028A1 (en) * 2017-12-05 2019-06-13 Arcelormittal Cold rolled and annealed steal sheet and method of manufacturing the same
KR102222244B1 (ko) * 2018-03-12 2021-03-05 연세대학교 산학협력단 마르텐사이트계 석출 경화형 경량철강 및 그 제조방법
WO2019209933A1 (en) 2018-04-24 2019-10-31 Nucor Corporation Aluminum-free steel alloys and methods for making the same
CN109321927B (zh) * 2018-11-21 2020-10-27 天津市华油钢管有限公司 防腐马氏体螺旋埋弧焊管及其制备工艺
MX2021008617A (es) 2019-01-18 2021-08-19 Jfe Steel Corp Lamina de acero galvanizada de alta resistencia y metodo para la fabricacion de la misma.
WO2021123888A1 (en) * 2019-12-19 2021-06-24 Arcelormittal Cold rolled and heat-treated steel sheet and method of manufacturing the same
CN111996446B (zh) * 2020-08-03 2021-10-22 鞍钢股份有限公司 一种基于界面控制的高延伸冷轧镀锌钢带及其生产方法
WO2023007833A1 (ja) 2021-07-28 2023-02-02 Jfeスチール株式会社 亜鉛めっき鋼板および部材、ならびに、それらの製造方法
KR102600957B1 (ko) * 2021-09-24 2023-11-09 서울과학기술대학교 산학협력단 저온인성이 우수한 알루미늄 첨가 경량 중망간강 및 그 제조방법
KR102600974B1 (ko) * 2021-09-24 2023-11-09 서울과학기술대학교 산학협력단 저온인성이 우수한 저탄소 중망간강 및 그 제조방법
CN114645197B (zh) * 2022-02-25 2023-02-28 山东钢铁集团日照有限公司 一种复合强化防护用特种钢及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217529A (ja) 1985-03-22 1986-09-27 Nippon Steel Corp 延性のすぐれた高強度鋼板の製造方法
JPH0559429A (ja) 1991-09-03 1993-03-09 Nippon Steel Corp 加工性に優れた高強度複合組織冷延鋼板の製造方法
JP2005330584A (ja) 2004-04-22 2005-12-02 Kobe Steel Ltd 成形性に優れた高強度冷延鋼板およびめっき鋼板
JP2011241474A (ja) 2010-04-20 2011-12-01 Kobe Steel Ltd 延性に優れた高強度冷延鋼板の製造方法
JP2012237054A (ja) 2011-04-25 2012-12-06 Jfe Steel Corp 加工性と材質安定性に優れた高強度鋼板およびその製造方法
WO2013061545A1 (ja) * 2011-10-24 2013-05-02 Jfeスチール株式会社 加工性に優れた高強度鋼板の製造方法
WO2016158159A1 (ja) * 2015-03-31 2016-10-06 株式会社神戸製鋼所 加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法
WO2016199922A1 (ja) * 2015-06-11 2016-12-15 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3857939B2 (ja) * 2001-08-20 2006-12-13 株式会社神戸製鋼所 局部延性に優れた高強度高延性鋼および鋼板並びにその鋼板の製造方法
EP2671961A1 (en) * 2005-03-31 2013-12-11 Kabushiki Kaisha Kobe Seiko Sho High strength cold-rolled steel sheet and automobile components of steel having excellent properties in coating film adhesion, workability, and hydrogen embrittlement resistivity
JP4725973B2 (ja) * 2006-10-18 2011-07-13 株式会社神戸製鋼所 伸びフランジ性に優れた高強度鋼板並びにその製造方法
MX360965B (es) * 2009-11-30 2018-11-23 Nippon Steel & Sumitomo Metal Corp Placa de acero de alta resistencia con resistencia a la tracción final de 900 mpa o mas, excelente en resistencia a la fragilizacion por hidrógeno y método de producción de la misma.
JP5136609B2 (ja) * 2010-07-29 2013-02-06 Jfeスチール株式会社 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5141811B2 (ja) * 2010-11-12 2013-02-13 Jfeスチール株式会社 均一伸びとめっき性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5764549B2 (ja) * 2012-03-29 2015-08-19 株式会社神戸製鋼所 成形性および形状凍結性に優れた、高強度冷延鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、ならびにそれらの製造方法
JP6163197B2 (ja) * 2012-03-30 2017-07-12 フォエスタルピネ スタール ゲゼルシャフト ミット ベシュレンクテル ハフツングVoestalpine Stahl Gmbh 高強度冷間圧延鋼板およびそのような鋼板を作製する方法
CN103147020A (zh) * 2013-03-20 2013-06-12 钢铁研究总院 低温回火马氏体超高强度钢
CN105940134B (zh) * 2014-01-29 2018-02-16 杰富意钢铁株式会社 高强度冷轧钢板及其制造方法
JP6380659B2 (ja) * 2015-04-08 2018-08-29 新日鐵住金株式会社 熱処理鋼板部材およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217529A (ja) 1985-03-22 1986-09-27 Nippon Steel Corp 延性のすぐれた高強度鋼板の製造方法
JPH0559429A (ja) 1991-09-03 1993-03-09 Nippon Steel Corp 加工性に優れた高強度複合組織冷延鋼板の製造方法
JP2005330584A (ja) 2004-04-22 2005-12-02 Kobe Steel Ltd 成形性に優れた高強度冷延鋼板およびめっき鋼板
JP2011241474A (ja) 2010-04-20 2011-12-01 Kobe Steel Ltd 延性に優れた高強度冷延鋼板の製造方法
JP2012237054A (ja) 2011-04-25 2012-12-06 Jfe Steel Corp 加工性と材質安定性に優れた高強度鋼板およびその製造方法
WO2013061545A1 (ja) * 2011-10-24 2013-05-02 Jfeスチール株式会社 加工性に優れた高強度鋼板の製造方法
WO2016158159A1 (ja) * 2015-03-31 2016-10-06 株式会社神戸製鋼所 加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法
WO2016199922A1 (ja) * 2015-06-11 2016-12-15 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板およびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
F. S. LEPERA, JOURNAL OF METALS, vol. 32, no. 3, 1980, pages 38 - 39
See also references of EP3550047A4 *
TAKASHI FURUKAWAOSAMU MATSUMURA, JOURNAL OF THE JAPAN SOCIETY FOR HEAT TREATMENT, vol. 37, no. 4, 1997, pages 204

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12054816B2 (en) * 2018-01-05 2024-08-06 The University Of Hong Kong Automotive steel and a method for the fabrication of the same
US20210054476A1 (en) * 2018-01-05 2021-02-25 The University Of Hong Kong Automotive steel and a method for the fabrication of the same
CN112154222A (zh) * 2018-06-29 2020-12-29 日本制铁株式会社 高强度钢板及其制造方法
WO2020004661A1 (ja) * 2018-06-29 2020-01-02 日本製鉄株式会社 高強度鋼板およびその製造方法
JP6690793B1 (ja) * 2018-06-29 2020-04-28 日本製鉄株式会社 高強度鋼板およびその製造方法
CN112154222B (zh) * 2018-06-29 2022-04-01 日本制铁株式会社 高强度钢板及其制造方法
JPWO2020017609A1 (ja) * 2018-07-18 2020-07-27 日本製鉄株式会社 鋼板
CN111868282A (zh) * 2018-07-18 2020-10-30 日本制铁株式会社 钢板
CN111868283A (zh) * 2018-07-18 2020-10-30 日本制铁株式会社 钢板
CN111868283B (zh) * 2018-07-18 2022-01-07 日本制铁株式会社 钢板
WO2020017609A1 (ja) * 2018-07-18 2020-01-23 日本製鉄株式会社 鋼板
CN111868282B (zh) * 2018-07-18 2021-12-31 日本制铁株式会社 钢板
EP3848479A4 (en) * 2018-09-04 2021-10-20 Posco ULTRA HIGH STRENGTH AND DUCTILITY STEEL SHEET WITH EXCELLENT PERFORMANCE RATIO AND MANUFACTURING PROCESS
US20220127709A1 (en) * 2019-02-06 2022-04-28 Nippon Steel Corporation Hot dip galvanized steel sheet and method for producing same
CN113544296A (zh) * 2019-03-20 2021-10-22 日本制铁株式会社 热冲压成形体
CN113544296B (zh) * 2019-03-20 2023-01-10 日本制铁株式会社 热冲压成形体
WO2021200169A1 (ja) * 2020-04-02 2021-10-07 日本製鉄株式会社 鋼板
WO2021200164A1 (ja) * 2020-04-03 2021-10-07 日本製鉄株式会社 鋼板およびその製造方法
CN115362280A (zh) * 2020-04-03 2022-11-18 日本制铁株式会社 钢板及其制造方法
CN115362280B (zh) * 2020-04-03 2023-10-17 日本制铁株式会社 钢板及其制造方法
JP7364963B2 (ja) 2020-04-03 2023-10-19 日本製鉄株式会社 鋼板およびその製造方法
JPWO2021200164A1 (ja) * 2020-04-03 2021-10-07
JP7541123B2 (ja) 2020-07-24 2024-08-27 アルセロールミタル 冷間圧延焼鈍され、焼戻された鋼板及びその製造方法
WO2023032339A1 (ja) * 2021-08-31 2023-03-09 日本製鉄株式会社 鋼板及びその製造方法
WO2024053736A1 (ja) * 2022-09-09 2024-03-14 日本製鉄株式会社 鋼板及びその製造方法

Also Published As

Publication number Publication date
KR20190092491A (ko) 2019-08-07
BR112019010681A2 (pt) 2019-09-17
CN110036128A (zh) 2019-07-19
EP3550047A4 (en) 2020-06-17
JP6213696B1 (ja) 2017-10-18
JPWO2018105003A1 (ja) 2018-12-06
US20200087764A1 (en) 2020-03-19
EP3550047A1 (en) 2019-10-09
MX2019006392A (es) 2019-08-01

Similar Documents

Publication Publication Date Title
JP6213696B1 (ja) 高強度鋼板
JP5141811B2 (ja) 均一伸びとめっき性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2020162560A1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
KR20180120210A (ko) 박 강판 및 도금 강판, 그리고, 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박 강판의 제조 방법 및 도금 강판의 제조 방법
KR20100099748A (ko) 성형성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
KR101989726B1 (ko) 고강도 강판 및 그 제조 방법
JP4501699B2 (ja) 深絞り性と伸びフランジ性に優れた高強度鋼板およびその製造方法
EP2753725A1 (en) Low density high strength steel and method for producing said steel
WO2018092817A1 (ja) 高強度鋼板およびその製造方法
US11208705B2 (en) High-strength cold-rolled steel sheet
JP6384623B2 (ja) 高強度鋼板およびその製造方法
JP6264506B1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6750771B1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
KR101999910B1 (ko) 고강도 강판 및 그 제조 방법
JP6187730B1 (ja) 鋼板
WO2018092816A1 (ja) 高強度鋼板およびその製造方法
TW201821629A (zh) 高強度鋼板
JP6541504B2 (ja) 製造安定性に優れた高強度高延性鋼板、及びその製造方法、並びに高強度高延性鋼板の製造に用いられる冷延原板
JP5988000B1 (ja) 高強度鋼板およびその製造方法
JP5987999B1 (ja) 高強度鋼板およびその製造方法
JPWO2020017606A1 (ja) 鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017518277

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923381

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019010681

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197019298

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016923381

Country of ref document: EP

Effective date: 20190705

ENP Entry into the national phase

Ref document number: 112019010681

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190524