WO2018103677A1 - 一种微波天线阵列通信系统及通信方法 - Google Patents

一种微波天线阵列通信系统及通信方法 Download PDF

Info

Publication number
WO2018103677A1
WO2018103677A1 PCT/CN2017/114881 CN2017114881W WO2018103677A1 WO 2018103677 A1 WO2018103677 A1 WO 2018103677A1 CN 2017114881 W CN2017114881 W CN 2017114881W WO 2018103677 A1 WO2018103677 A1 WO 2018103677A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
antenna array
antenna
radio frequency
frequency signal
Prior art date
Application number
PCT/CN2017/114881
Other languages
English (en)
French (fr)
Inventor
姚玮
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17878581.2A priority Critical patent/EP3553887A4/en
Publication of WO2018103677A1 publication Critical patent/WO2018103677A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays

Definitions

  • the present application relates to the field of microwave communications, such as a microwave antenna array communication system and a communication method.
  • Microwave transmission has the advantages of high speed, high stability and low land resource occupation.
  • Microwave transmission usually uses Light of Sight (LoS for short).
  • Microwave spatial multiplexing mainly uses multi-antenna technology, also known as Multiple Input Multiple Output (MIMO) technology.
  • MIMO Multiple Input Multiple Output
  • MIMO Line of Sight
  • MIMO referred to as LoS MIMO
  • LoS MIMO technology dramatically increases system throughput at the relevant bandwidth.
  • the most manufacturers do 2x2 LoS MIMO (here 2x2 can be understood as a generalized unipolar antenna array, and for a bipolar antenna array in the narrow sense, 4x4 MIMO).
  • 4x4 8x8 MIMO for bipolar antenna arrays) has been gradually applied to NxN LoS MIMO.
  • the transmission capacity C of the MIMO system is:
  • is the signal-to-noise ratio on the receiving side
  • H' is a normalized matrix of channel transmission characteristics.
  • ( ⁇ ) H represents the Hermitian transform.
  • the maximum transmission capacity of the system is equivalent to maximizing the determinant of H'H' H. That is, in the case of the maximum capacity of the system, the channel matrix needs to satisfy the Vandermonde matrix, and any ⁇ transformation can guarantee the maximum transmission capacity.
  • the channel matrix van der od array is expressed as:
  • Tx will send a corresponding Tx signal to one receiving end Rx of the opposite end, and send a Tx signal with a phase delay of 90° to the other receiving end Rx.
  • the transmitting end Tx1 simultaneously transmits a Tx signal and a Tx' signal to the receiving ends Rx1 and Rx2, respectively, and the Tx' signal is delayed by 90° with respect to the Tx signal.
  • the final representation is the layout spacing requirement between the transmitting and receiving antennas, or the 2x2 LoS MIMO in Figure 1 is taken as an example. In this case, accurate measurement is performed on the dual-polarized antenna spacing h and antenna layout is performed to determine the corresponding phase shift angle.
  • the correspondence between h and D is as follows:
  • is a wavelength.
  • Correlated bipolar antenna array implements the 2x2 LoS MIMO pair in Figure 1.
  • the architecture of the related bipolar array 4x4 MIMO design scheme is shown in Figure 2-1 and Figure 2-2.
  • Site 1 (Site 1) and Site 2 (Site 2) are one-hop 4x4 MIMO links.
  • Site1 is used as an example.
  • H0, V0, H1, and V1 represent four microwave transmissions.
  • the device (H stands for the device connected to the horizontally polarized antenna, V stands for the device connected to the vertically polarized antenna), all working at the same RF frequency point, H0 and V0 form an XPIC (Cross-polarisation Interference counteracter)
  • the polarization interference canceller corresponding to the TX1) group in FIG. 1, is connected to an OMT (Orth-Mode Transducer), and is connected to a double-polarized antenna, a dual-polarized antenna. Installed on the tower shown in Figure 2-2, it is laid in the way of high/low station, and the double-polarized antenna spacing h satisfies the requirements in the above formula (2).
  • H1 and V1 form another XPIC group (corresponding to TX2 in Figure 1), and the connection is similar.
  • the two XPIC working groups are combined into a 4x4 MIMO working group.
  • the situation of Site2 is similar.
  • FDD Frequency Division Dual
  • the microwave device adopts FDD (Frequency Division Dual, The frequency division duplex mode works, you can know that the sending and receiving frequencies of Site1 and Site2 are reciprocal. It can be seen that in order to achieve the normal operation of the microwave 4x4 MIMO transmission, the center spacing of the two-sided dual-polarized antenna on the Site1 side is required to satisfy the formula (2), which is reflected in the actual deployment, and the tower (the pole) on the Site1 side and the Site2 side is required.
  • the two-sided dual-polarized antennas are correctly mounted to the appropriate spacing. This not only requires the structure and height of the tower (clamping rod) on which the antenna is installed, but also increases the cost of the communication system. At the same time, it is affected by factors such as the accuracy of the distance measurement and the accuracy of the antenna installation, which has a great influence on the antenna performance. The reliability is poor, and even the advantages claimed by the MIMO antenna are not achieved.
  • Embodiments of the present disclosure provide a microwave antenna array communication system and a communication method, which solve the problem that a related microwave antenna array has a hard requirement for installation physical distance and installation precision between dual-polarized antennas, resulting in high cost, difficulty in installation, and poor reliability. The problem.
  • Embodiments of the present disclosure provide a microwave antenna array communication system, including: a phased array antenna array and For a microwave transmission device, the N is an order of a bipolar antenna array having a value greater than or equal to 4;
  • the phased array antenna array includes a controller and One-to-one correspondence to microwave transmission equipment Pair of polarized antenna arrays;
  • the controller is configured to configure, by a phase shifter of each antenna sub-array in the horizontally polarized antenna array, a phase of a horizontally polarized radio frequency signal transmitted by each of the antenna sub-arrays, and configured to pass through the vertically polarized antenna
  • a phase shifter of each antenna sub-array in the array configures a phase of a vertically polarized radio frequency signal transmitted by each of the antenna sub-arrays.
  • the embodiment of the present disclosure further provides a communication method of a microwave antenna array communication system as described above, including:
  • the controller controls phase shifters of each antenna sub-array of the horizontally polarized antenna array to configure a phase of a horizontally polarized radio frequency signal transmitted by each antenna sub-array, and control the vertical polarization day
  • a phase shifter of each antenna sub-array of the line array configures a phase of a vertically polarized radio frequency signal transmitted by each of the antenna sub-arrays;
  • the horizontally polarized radio frequency signal transmission device in the microwave transmission device transmits to the opposite end through each antenna sub-array in the corresponding horizontally polarized antenna array a horizontally polarized radio frequency signal
  • the vertically polarized radio frequency signal transmission device transmits to the opposite end through each antenna sub-array in the corresponding vertically polarized antenna array Vertically polarized RF signals.
  • Embodiments of the present disclosure also provide a computer readable storage medium storing computer executable instructions configured to perform the above method.
  • each phase-polarized RF signal transmission device in the microwave transmission device is directly connected to the phase by replacing the relevant double-sided bipolar antenna by the phased array antenna array.
  • Each antenna sub-array in the corresponding horizontally polarized antenna array in the array antenna array is connected to be sent to the opposite end a horizontally polarized radio frequency signal, connecting each vertically polarized radio frequency signal transmission device in the microwave transmission device to each antenna sub-array in the corresponding vertically polarized antenna array to transmit to the opposite end Vertically polarized RF signals; issued by a horizontally polarized antenna array and a vertically polarized antenna array
  • the relationship between the phases of the radio frequency signals is directly configured by the controller of the phased array antenna array to control the antenna subarrays of the horizontally polarized antenna array and the phase shifters of the antenna subarrays of the vertically polarized antenna array.
  • Figure 1 is a schematic diagram of a 2x2 LoS MIMO architecture
  • Figure 2-1 is a schematic diagram of a related double-sided bipolar 4x4 MIMO architecture
  • Figure 2-2 is a schematic diagram of a related double-sided bipolar 4x4 MIMO tower
  • Embodiment 3 is a schematic diagram of radiation of an antenna element in Embodiment 2 of the present disclosure.
  • FIG. 4 is a schematic diagram of a phase shifter connection of an antenna element in Embodiment 2 of the present disclosure
  • 5-1 is a schematic diagram of an NxN MIMO antenna array in Embodiment 2 of the present disclosure.
  • FIG. 6 is a schematic diagram of a 4 ⁇ 4 MIMO antenna array in Embodiment 2 of the present disclosure.
  • FIG. 7 is a schematic structural diagram of an antenna carrier board according to Embodiment 2 of the present disclosure.
  • FIG. 8 is a schematic diagram of a vertically polarized antenna array connection in Embodiment 2 of the present disclosure.
  • FIG. 9 is a schematic diagram of a signal transmitted by a local vertical polarization antenna array according to Embodiment 2 of the present disclosure.
  • FIG. 10 is a schematic diagram of a phase control flow in Embodiment 2 of the present disclosure.
  • FIG. 11 is a schematic diagram of 4x4 MIMO signal transmission in Embodiment 3 of the present disclosure.
  • FIG. 13 is a schematic diagram of a minimum phased array antenna array in Embodiment 4 of the present disclosure.
  • FIG. 14 is a schematic diagram of a minimum phased array antenna array connection in Embodiment 4 of the present disclosure.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides a microwave bipolar antenna array communication system. It should be understood that the microwave bipolar antenna array communication system in this embodiment may be deployed at the transmitting end, or at the receiving end, or directly at the transmitting end. Both ends and receivers are deployed at the same time. In the FDD mode, the transmitting end and the receiving end are opposite. When the transmitting end sends a radio frequency signal to the opposite end, it also receives the radio frequency signal sent by the opposite end as the receiving end. Therefore, the present embodiment exemplifies the local end and the opposite end (also referred to as a remote end) instead of the transmitting end and the receiving end.
  • the microwave bipolar antenna array communication system in this embodiment can be deployed at the same time on the local end and the opposite end.
  • the phased array antenna array in this embodiment includes a controller and One-to-one correspondence to microwave transmission equipment For polarized antenna arrays.
  • One pair of microwave transmission devices includes a horizontally polarized RF signal transmission device and a vertically polarized RF signal transmission device;
  • a pair of polarized antenna arrays includes a a horizontally polarized antenna array composed of antenna subarrays and one by A vertically polarized antenna array formed by an array of antenna sub-arrays, an antenna sub-array comprising at least one antenna element and a phase shifter for controlling the phase of the antenna element.
  • each antenna element (ie, the radiating element) in the antenna sub-array in this embodiment may use a phase shifter separately, or a plurality of antenna elements may share a phase shifter, depending on the requirements.
  • Flexible settings For example, an antenna sub-array is configured by a plurality of antenna elements, and each antenna element uses a phase shifter, that is, the antenna elements are in one-to-one correspondence with the phase shifters.
  • each horizontally polarized radio frequency signal transmission device in each pair of microwave transmission devices is respectively connected to each antenna sub-array in the corresponding horizontally polarized antenna array to send to the opposite end.
  • a horizontally polarized radio frequency signal, each vertically polarized radio frequency signal transmission device in each pair of microwave transmission devices is respectively connected with each antenna sub-array in the corresponding vertically polarized antenna array to transmit to the opposite end Vertically polarized RF signals.
  • the controller of the phased array antenna array is configured to configure the phase of the horizontally polarized RF signal emitted by each antenna sub-array of each horizontally polarized antenna array by a phase shifter of each antenna sub-array of each horizontally polarized antenna array, such that one Horizontally polarized antenna array
  • the phase difference between the horizontally polarized RF signals satisfies the requirements of the NxN MIMO bipolar antenna array; likewise, for a vertically polarized antenna array
  • the phase difference between the vertically polarized RF signals is also configured by the controller to control the phase of the vertically polarized RF signal emitted by each antenna sub-array by the phase shifter of each antenna sub-array of the vertically polarized antenna array, so that a vertical Polarized antenna array
  • the phase difference between the vertically polarized RF signals satisfies the requirements of the NxN MIMO bipolar antenna array.
  • phase difference between vertically polarized RF signals and a horizontally polarized antenna array Phase difference between vertically polarized RF signals and a horizontally polarized antenna array
  • the specific value of the phase difference between the horizontally polarized RF signals is confirmed according to the specific order of the NxN MIMO bipolar antenna array.
  • the following is an example of a generalized unipolar antenna array combined with a channel matrix van der od array.
  • the generalized unipolar antenna array NxN MIMO corresponding van der od array is:
  • the van der od array of a generalized 4x4 unipolar antenna array (corresponding to a bipolar antenna array of 8x8 MIMO) is as follows:
  • the first line is used as an example. If the first line corresponds to the local end and the opposite end of TX1 and RX1, then 4 lines of Tx are required for Rx1.
  • the interval (that is, the phase difference) can be reached at the end of the antenna.
  • Other high-order MIMO can be constructed according to this method. For example, for the generalized unipolar antenna array NxN MIMO, the phase difference requirement is Converted to a narrowly defined bidirectional antenna array NxN MIMO, the phase difference requirement is
  • the controller configures the horizontal poles of the adjacent antenna sub-arrays of the horizontally polarized antenna array by the phase shifters of the antenna sub-arrays of the horizontally polarized antenna array for each horizontally polarized antenna array.
  • the phase difference of the RF signal is For each vertically polarized antenna array, the phase difference of the vertically polarized radio frequency signals transmitted by the adjacent antenna sub-arrays of the vertically polarized antenna array is configured by a phase shifter of each antenna sub-array of the vertically polarized antenna array.
  • the polarized antenna array is placed on an antenna carrier board, which simplifies the installation procedure and improves the installation efficiency. Can also be based on actual needs Each pair of polarized antenna arrays in the polarized antenna array is respectively disposed on one antenna carrier board, so that the flexibility of antenna installation and application can be improved, and more application scenarios can be satisfied.
  • the controller controls the phase of the radio frequency signal transmitted by each antenna sub-array of each of the horizontally polarized antenna array or the vertically polarized antenna array by adopting an open loop control manner, that is, the configuration is completed according to the foregoing process. can.
  • the phase difference of the configuration is finally used to facilitate the demodulation of the baseband digital signal in the modem, so sometimes only the local and remote antennas are considered.
  • the phase difference requirement may not maximize the system gain, because the waveguide connector and the RF cable used between the microwave device RF unit and the phased array antenna array will cause phase difference, except for the phase difference introduced between the antennas.
  • Each RF transceiver channel is independent of each other, so the maximum gain of MIMO demodulation is guaranteed.
  • the phase difference adaptive adjustment can also be performed through a feedback loop.
  • the coarse adjustment of the phase ensures that the horizontally polarized antenna array or the vertically polarized antenna array corresponding between the local end and the remote antenna is satisfied. Phase requirements, and then it can be expected that the system will work in MIMO mode.
  • the controller is further configured to configure the phase of the horizontally polarized radio frequency signal transmitted by each antenna sub-array of each horizontally polarized antenna array according to the foregoing requirements, and obtain the corresponding level of the horizontally polarized antenna array of the opposite end.
  • the controller may be configured to configure the phase of the vertically polarized radio frequency signal transmitted by each antenna sub-array of each vertically polarized antenna array according to the foregoing process, and obtain the opposite end of the vertically polarized antenna array.
  • Receive phase angle of vertically polarized RF signals emitted by each antenna sub-array of a vertically polarized antenna array When the difference between the two is greater than the preset vertical polarization phase angle deviation threshold, the phase of the vertically polarized RF signal emitted by each antenna sub-array of the vertically polarized antenna array is adjusted according to the difference between the two, until two The difference between the two is less than or equal to the preset vertical phase angle deviation threshold.
  • the phase angle is received and
  • the difference can be calculated at the local end, or can be calculated at the opposite end, and the specific calculation method can adopt any receiving phase angle according to the performance index of the received signal or directly obtain the receiving phase angle and The difference is achieved (that is, the phase angle error is received), and will not be described here.
  • the phase shifter in this embodiment may use a discrete digital phase shifter or a non-discrete analog phase shifter.
  • the controller may adopt a stepping adjustment mode, and after the peer end updates its receiver MIMO performance indicator again, adjust again, when the performance index of the far-end feedback reaches a certain threshold range, That is, the adjustment is stopped, and the closed-loop phase adjustment process of the MIMO system is considered to be finished. Since the transceiver channel is reciprocal, after the local end is adjusted, the link from the default peer to the local end is adjusted, and the MIMO system enters a state of long-term stable operation.
  • the controller can also adjust its transmit power before or after the phase configuration.
  • the adjustment process is as follows:
  • each horizontally polarized antenna array For each horizontally polarized antenna array, obtain the difference between the transmit power of the horizontally polarized antenna array and the received power of the corresponding horizontally polarized antenna array and the path insertion loss to the opposite end as the horizontal polarization power difference, and When the obtained horizontal polarization power difference is greater than or equal to the preset horizontal polarization power difference threshold, the main lobe radiation angle of the horizontally polarized antenna array is adjusted until the horizontal polarization power difference is small. Or equal to the preset horizontal polarization power difference threshold; of course, the transmission power of the horizontally polarized antenna array at the local end may be directly adjusted to achieve the above effect, or the two adjustment modes may be used in combination, or the horizontal pole may be adjusted from other aspects.
  • the transmission power of the antenna array can be achieved as long as the above effects can be achieved.
  • each vertically polarized antenna array For each vertically polarized antenna array, obtain the difference between the transmit power of the vertically polarized antenna array and the received power of the opposite vertical polarized antenna array and the path insertion loss to the opposite end as the vertical polarization power difference, and When the obtained vertical polarization power difference is greater than or equal to the preset vertical polarization power difference threshold, the main lobe radiation angle of the vertically polarized antenna array is adjusted until the vertical polarization power difference is less than or equal to the preset vertical polarization.
  • the power difference threshold of course, the transmission power of the vertically polarized antenna array at the local end may be directly adjusted to achieve the above effect, or the two adjustment methods may be used in combination, or the transmission power of the vertically polarized antenna array may be adjusted from other aspects, as long as Can achieve the above effects.
  • the horizontally polarized RF signal transmission device in the microwave transmission device and the corresponding horizontally polarized antenna array in the phased array antenna array are respectively replaced by the phased array antenna array instead of the related double-sided bipolar antenna.
  • Each antenna sub-array is connected to send a horizontally polarized radio frequency signal to the opposite end, and each vertically polarized radio frequency signal transmission device is respectively connected with each antenna sub-array in the corresponding vertically polarized antenna array to transmit a vertically polarized radio frequency signal to the opposite end.
  • the controllers of the horizontally polarized antenna array can be directly controlled by the controller of the phased array antenna array.
  • the array and the phase shifters of the antenna sub-arrays of the vertically polarized antenna array are configured, and then corresponding signals are transmitted through the antenna arrays of the corresponding horizontally polarized antenna arrays and the opposite ends of the antenna sub-arrays of the vertically polarized antenna arrays.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • this embodiment is exemplified in conjunction with a specific implementation of a phased array antenna array.
  • the horizontally polarized antenna array of the phased array antenna array and the vertically polarized antenna array are generally defined as a set of independent antenna elements, and the relative amplitude and phase relationship can be ensured by the relevant circuit design, thereby achieving a certain expected direction. Focusing on the target of the formation, while the other directions greatly reduce (suppress) the energy of the radiation. Any one of the antenna elements is independently and controllable and evenly distributed on a straight line. For example, as shown in FIG. 3, the upper six rows of antenna elements are distributed on a straight line, and the radiation sequence is from right to left. Radiation, in the end, can form a wavefront with a phase angle of the wave, that is to say the radiation main lobe angle can be adjusted by programming the radiation delay. Therefore, for a phased array antenna, it has the ability to adjust the direction of the main lobe of the radiation.
  • FIG. 1 An implementation of a horizontally polarized antenna array and an antenna sub-array of a vertically polarized antenna array is shown in FIG.
  • the field strength vector sum of the radiation field of each antenna element at a certain point in the ⁇ direction is:
  • the receiving antenna also satisfies the corresponding conclusion. It is extended to the 2-dimensional planar array.
  • the main-valve electronically controlled scanning such as spatial three-dimensionality can be completed.
  • FIG. 5-1 a microwave bipolar antenna array communication system is disposed at the local end and the opposite end.
  • V0 and H0 constitute a pair of microwave transmission devices, wherein V0 is a horizontally polarized radio frequency signal transmission device, and H0 is a vertically polarized radio frequency signal transmission device.
  • At each end there are V0+H0, ..., VN+HN total N pairs of microwave transmission equipment; corresponding antenna carrier board 1 at each end is provided with N pairs of polarized antenna arrays, each pair of polarized antennas
  • the array consists of a horizontally polarized antenna array 21 and a vertically polarized antenna array 20.
  • the bipolar antenna array 2Nx2N MIMO is implemented in Figure 5-1.
  • the installation diagram of the tower is shown in Figure 5-2.
  • the physical distance between the antennas during installation is not as accurate as the related two-sided polar antennas.
  • the phase difference is mainly realized by phase shifter control, so the utility and reliability of the MIMO antenna system can be improved.
  • the horizontally polarized antenna array completes the transmission and reception of the corresponding horizontally polarized RF signal, and the vertical pole The antenna array completes the transmission and reception of the corresponding vertically polarized RF signals.
  • the antenna carrier board 1 is mounted on the iron tower (cage) through a bracket or a structural member, and the antenna carrier board 1 is internally integrated.
  • the phase shifter and the controller can complete the corresponding radiation beam phase adjustment and beamforming through corresponding algorithms or software to meet the requirements of the LoS MIMO for the transmission channel matrix, and finally achieve the transmission capacity and performance multiple improvement.
  • bipolar antenna array 4x4 MIMO on the basis of FIG. 5-1.
  • two pairs of polarized antenna arrays are disposed on the antenna carrier board 1 at both ends of the station 1 and the station 2 in FIG. 6, and two pairs of microwave transmission devices, V0+H0 and V1+H1, are disposed at both ends, wherein each Referring to FIG. 6 for a schematic diagram of the connection between the microwave transmission device and each of the polarized antenna arrays, V0 and V1 are connected to the corresponding vertically polarized antenna array 20, and H0 and H1 are connected to the respective horizontally polarized antenna arrays 21.
  • Each of the horizontally polarized antenna array 21 and the vertically polarized antenna array 20 in FIG. 6 includes two antenna sub-arrays.
  • the specific structure on the antenna carrier board 1 is shown in FIG. 7.
  • the black tiny rectangular module in FIG. 7 represents the antenna element, and the antenna element can be used in various forms of vibration elements, for example, low-cost FR4 (flammable material can be used).
  • the controller completes the radiation main lobe and power adaptive processing for the 4-way signal, specifically the 4-way letter
  • the phase and gain of each radiating element inside the antenna array need to be set accordingly.
  • the dual-polarized antenna must be calculated according to the operating frequency of the device and the spacing between the one-hop microwave links, and the corresponding spatial distance calculated by the corresponding theoretical formula, and then the tower is completed according to the distance.
  • the dual-polarized throwing antenna on the (cage) is installed.
  • the horizontally polarized antenna array 21 and the vertically polarized antenna array 20 in this embodiment have been solidified to the antenna carrier board 1.
  • the physical form is fixed, and the RF signal spacing relationship in the same polarization direction is also fixed.
  • the phased array antenna array can be used without further consideration of the far-reaching problem between the antenna feeders.
  • the MIMO transmission channel can be constructed by the ESC phased array, and the baseband is also In this case, since the problem of requiring a specific computing antenna layout is avoided, for an integrated device such as an out-of-town device, an excessively long MIMO mutual transmission channel between devices is avoided, which reduces device complexity and reduces product cost (EMC). , lightning protection, and other aspects are of great benefit. It can be detached from the traditional MIMO device installation from the requirements of high difficulty and high precision, so that MIMO can be quickly deployed, and the relevant one-hop communication distance and frequency point are set to enter the device, and the relevant phase shift is automatically performed by the controller. And MIMO transmission channel implementation.
  • FIG. 8 illustrates an implementation of vertically polarized antenna array 20 as an example.
  • the antenna elements in the two antenna sub-arrays 201 and 202 and the connection of the antenna elements to the phase shifter PS and the power divider are shown in FIG.
  • the controller specifically implements phase shift control and power control.
  • the corresponding phase shift value is determined by the controller, and the power adjustment module of the previous stage completes each power control of the beamforming, in order to achieve After the phase shift, the local RF Tx Lo is subjected to the power division, and is completed by the 90° phase shift to the antenna local oscillator of the lower half array.
  • the horizontally polarized antenna array 21 is implemented in the same manner as that shown in FIG.
  • any one of the vertically polarized antenna arrays 21 is divided into two.
  • the antenna arrays of the same polarization are respectively an antenna sub-array of the radiation lobes 021, which corresponds to the receiving array bit V0 of the opposite end station 2, and the antenna sub-array of the radiation lobes 121, which corresponds to the opposite end station 2 Receive array V1 road.
  • the opposite ends V0 and V1 are two sets of independent vertically polarized antenna array unit groups, which are arranged and fixed in a fixed position inside the integrated antenna, so that beamforming control is performed by two antenna sub-arrays inside the V0 path of the local end.
  • the corresponding main lobe focus and alignment can be achieved, while the most important MIMO channel transmission capacity requires the maximum 90° phase requirement. It can also be set by automatic ESC in the phased array antenna array.
  • the example here requires radiated waves.
  • the 022 is advanced by 90° than the radiation lobes 121 to meet the antenna spacing requirement in the conventional dual-polarized MIMO (the remaining H0, H1, and V1 of the local end also have two antenna sub-arrays, which radiate to the opposite end site.
  • the antenna array 20 transmits the power Ptx (x selects V0, H0, V1, H1), and acquires the path insertion loss Ld from the local end to the opposite end, and sets a corresponding power difference threshold (corresponding to each horizontally polarized antenna array 21).
  • the vertically polarized antenna array 20 may preset a horizontal polarization power difference threshold and a vertical polarization power difference threshold, respectively. It is also possible to use the same power difference threshold).
  • the corresponding polarized antenna arrays of the opposite antennas after the manual alignment are completed (the two horizontally polarized antenna arrays 21 and the vertically polarized antenna arrays 20 corresponding to V0, H0, V1, and H1) receive power Prx.
  • x can be selected as V0, H0, V1, H1), this step can be performed simultaneously with S1001.
  • the main lobe radiation angle of the polarized antenna array corresponding to Ptx is adjusted until Ptx-Ld-Prx is less than or equal to the power difference threshold; and the process proceeds to S1005.
  • phase shifters in each polarized antenna array are adjusted to ensure a 90° phase shift between the opposite end receiving antenna sub-arrays.
  • the one-hop 4x4LoS MIMO completes the phased array antenna configuration of the local end, and the opposite end also completes the corresponding phased array antenna configuration, ensuring that the transmission signals of the local end reach the opposite end and both meet the maximum transmission channel.
  • the 90° phase difference requirement, followed by the baseband MIMO processing function, the receiver system of the opposite end will complete the acquisition, synchronization and locking of the baseband operation and processing, and complete the normal reception and demodulation of each data, thereby achieving double the transmission capacity.
  • the processing mechanism from the peer to the local end is consistent, and is not described here.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the present embodiment provides a closed loop precision control process. This closed-loop control is especially suitable for different one-hop communication distances. Off-device and device operating frequency bands.
  • the bipolar antenna array 4x4 MIMO is taken as an example.
  • the baseband is equivalent to a one-way main channel signal and a three-way slave signal receiver in order to demodulate an arbitrary channel signal.
  • the structure, such as the V0 path of Rx0 shown in FIG. 11, is an explanatory object, and it is necessary to complete the filtering process of the H0, V1, and H1 paths in the main received signal, and then the data of V0 can be recovered, thereby achieving correct demodulation. .
  • Figure 11 is a 4x4 MIMO. If H0 and H1 are removed first in Figure 11, it is a generalized single-polarization considering 2x2 MIMO.
  • MIMO demodulation is to estimate ⁇ 0, and then the closed-loop control channel sends this angle ⁇ 0 to the transmitting side.
  • the transmitter will dynamically adjust the phase to adjust ⁇ 0 to approximately 90°, which is a similar process for ⁇ 1.
  • the ⁇ angle here is the phase angle difference, ideally corresponding to the 90° required in the 4x4 MIMO case described above. Due to this phase difference, the final purpose is to facilitate the demodulation of the baseband digital signal in the modem. Therefore, only considering the 90° phase difference between the local and remote antennas may not maximize the system gain because In addition to introducing a phase difference between the antennas, the waveguide connector and the RF cable used between the RF unit of the microwave device and the phased array antenna array may cause a phase difference, and since each RF transceiver channel is independent of each other, in order to ensure MIMO The maximum gain of the demodulation.
  • the phase difference adaptive adjustment can also be performed through the feedback loop.
  • the coarse adjustment of the 90° phase is first completed according to the configuration in the user interface of the device, that is, the local end is guaranteed.
  • the corresponding array unit group between the opposite antennas satisfies the 90° phase requirement, and then it can be expected that the system will work in the MIMO mode. Since the system index is not optimal, the closed-loop phase fine-tuning process is started, and one hop is followed.
  • Lower modulation methods such as QPSK (Quadrature Phase Shift Keying), 16QAM (Quadrature Amplitude Modulation), etc. require lower SNR (SIGNAL-NOISE RATIO, SNR) modulation Mode)
  • SNR SIGNAL-NOISE RATIO, SNR
  • the error between the phase angle received by the opposite end and the ideal angle can be estimated (the specific algorithm can use any correlation error estimation algorithm, which will not be described here).
  • the indicators include MSE (Mean Square Error) and FEC (Forward Error Correction) decoding, which are sent to the local end through the established closed-loop control channel.
  • the peer receiver After receiving the local end, the peer receiver is calculated according to the error distribution.
  • the actual phase condition after comparison with the ideal 90° phase relationship, can be issued by a specific phase control command.
  • the phased array antenna control module that is informed to the local end performs the phase shift angle adjustment of the corresponding array unit group. Since the circuit structure in FIG.
  • phase adjustments are electronically adjustable, and the phase shift relationship is It can be associated with a specific circuit implementation.
  • a stepping manner can be adopted. After the peer end updates its receiver MIMO performance index again, it is adjusted again, if the performance index of the peer feedback reaches a certain level. Within the threshold range, the adjustment is stopped, and the closed-loop phase adjustment process of the MIMO system is considered to be over. Since the transceiver channel is reciprocal, the link from the peer to the local end is adjusted after the local end is adjusted. The LoS MIMO system enters a state of long-term stable operation.
  • the corresponding polarized antenna arrays corresponding to the opposite antennas are received to receive the power Prx.
  • x can be selected as V0, H0, V1, H1).
  • the main lobe radiation angle of the polarized antenna array corresponding to Ptx is adjusted until Ptx-Ld-Prx is less than or equal to the power difference threshold; and the process proceeds to S1205.
  • phase shifters in each polarized antenna array are adjusted to ensure a 90° phase shift between the opposite end receiving antenna sub-arrays.
  • the local end and the opposite end force the modulation mode to a preset modulation mode (such as QPSK) to enable the closed loop control channel.
  • a preset modulation mode such as QPSK
  • Prx performs 90° phase shift fine adjustment of each polarized antenna array until the phase angle estimation error of each polarized antenna array is less than or equal to a set threshold, and the MSE reaches a MIMO threshold.
  • the local end and the opposite end change the modulation mode back to the original user configuration mode and enter stable operation.
  • the feedback loop provided in this embodiment performs phase difference adaptive adjustment, which can further improve antenna performance. Can ensure the reliability of the MIMO antenna array. After the phase configuration is completed based on the above process, the corresponding signal can be sent to the opposite end, which can reduce engineering cost, installation difficulty, and reliability of the antenna performance, and ensure that the antenna exerts the advantage of the MIMO antenna.
  • modules or steps of the above-described embodiments of the present disclosure may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices. Alternatively, they may be implemented by program code or instructions executable by the computing device such that they may be stored in a computer storage medium (ROM/RAM, disk, optical disk) by a computing device, and at some In some cases, the steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of modules or steps may be fabricated into a single integrated circuit module. .
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a horizontally polarized antenna array and a vertically polarized antenna array of a pair of polarized antenna arrays may be disposed on one antenna carrying board.
  • MIMO systems that is, an integrated phased array antenna array in physical form
  • XPIC and protection it no longer has corresponding multiplexing flexibility.
  • This embodiment proposes another implementation, that is, according to the requirements of the XPIC group, the original NxN antenna array is decomposed into physically independent minimum units, including a pair of polarized antenna arrays (ie, including one horizontal polarization).
  • FIG. 13 includes a horizontally polarized antenna array and a vertically polarized antenna array.
  • the 15K working frequency band and the 5Km one-hop communication distance are still taken as an example (see Figure 6).
  • the theoretical requirement for the dual-polarized antenna is 7.07 meters, considering the iron tower (cage).
  • the two-sided minimum phased array antenna array is installed at a distance of 1 m, because it is not the ideal 7 m spacing, so the first The two-phase phased array antenna is required to perform the 90° phase adjustment and equipment in the second embodiment. As shown in FIG.
  • the antenna spacing between the double-sided antennas is specifically determined by the installation and engineering implementation stages, it is not determined. a fixed value, so it is possible that the phase difference at the receiving end is a random angle distributed around a certain range of 90°.
  • the closed-loop phase adjustment process described in Embodiment 3 is completed, the local end and the opposite end. The phase of the corresponding radiation array unit is automatically adjusted and fine-tuned.
  • the random antenna spacing (determined by the user according to the specific installation situation) has no effect on the bipolar antenna MIMO system in this embodiment, and the system will Automatically adjust and converge to the optimal working state, that is, ensure that the transmission channel matrix satisfies the requirements of Vandermonde array, and the corresponding radiation array units are constructed to have the best phase difference relationship, thereby realizing the maximum gain of the MIMO system and transmitting in the system.
  • Optimized for capacity and system gain the minimum phased array antenna array shown in Figure 13 can flexibly construct microwave applications such as 2+0, 2+2, and 1+0 without MIMO application, and its more compact size and weight will be More optimized in terms of engineering installation.
  • the horizontally polarized RF signal transmission devices in the microwave transmission device are directly directly replaced by the phased array antenna array instead of the related double-sided bipolar antenna.
  • Each antenna sub-array in the corresponding horizontally polarized antenna array in the phased array antenna array is connected to be sent to the opposite end a horizontally polarized radio frequency signal, connecting each vertically polarized radio frequency signal transmission device to each antenna sub-array in the corresponding vertically polarized antenna array to transmit to the opposite end a vertically polarized RF signal; issued by a horizontally polarized antenna array and a vertically polarized antenna array
  • the relationship between the phases of the radio frequency signals is directly configured by the controller of the phased array antenna array to control the antenna subarrays of the horizontally polarized antenna array and the phase shifters of the antenna subarrays of the vertically polarized antenna array.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本文公布微波天线阵列通信系统及通信方法,通过相控阵天线阵列替代相关的双面双极性天线,直接将微波传输设备中的各水平极化射频信号传输设备分别与相控阵天线阵列中对应水平极化天线阵列中的各子阵列连接以向对端发送水平极化射频信号,将各垂直极化射频信号传输设备分别与对应垂直极化天线阵列中的各子阵列连接以向对端发送垂直极化射频信号;对一个水平极化天线阵列和垂直极化天线阵列所发出的多射频信号之间的相位之间的关系,则直接通过相控阵天线阵列的控制器控制水平极化天线阵列各子阵列以及垂直极化天线阵列各子阵列的移相器进行配置,不依赖于天线阵列之间的物理距离以及安装精度。

Description

一种微波天线阵列通信系统及通信方法 技术领域
本申请涉及微波通信领域,例如一种微波天线阵列通信系统及通信方法。
背景技术
现今,无线数据传输的需求增长迅猛,无线通信技术也随之迅速发展。目前常用的用以提高无线通信系统传输容量和传输速率的几种方式为频率分集,空间分集以及使用极化天线。为了说明本公开的技术背景,这里以微波LoSMIMO系统作为实例进行说明。
微波传输具有高速率,高稳定性以及土地资源占用少等优点。微波传输通常采用视距传输(Light of Sight,英文简称为LoS)。微波空间复用主要采用多天线技术,也称为多输入多输出(Multiple Input Multiple Output,简称为MIMO)技术,为区别于一般的MIMO,微波系统的多天线技术称为LoS MIMO(Line of Sight MIMO,简称为LoS MIMO)技术。LoS MIMO技术在相关带宽下极大地提升了系统的吞吐量。目前厂商做的最多的是2x2 LoS MIMO(此处2x2可以理解为广义的单极性天线阵列,对于双极性天线阵列狭义讲则为4x4 MIMO)。随着技术的加强,逐渐应用4x4(对于双极性天线阵列狭义讲为8x8 MIMO)至NxN LoS MIMO。
根据Shannon定理得到MIMO系统的传输容量C为:
Figure PCTCN2017114881-appb-000001
上式(1)中:ρ是接收侧的信噪比,H′是信道传输特性的归一化矩阵,
Figure PCTCN2017114881-appb-000002
为nR阶单位阵,(·)H代表Hermitian变换。系统传输容量最大等效为最大化H′H′H的行列式,即系统最大容量情况下,信道矩阵需要满足范德蒙矩阵,其任意的酉变换,都可以保证最大传输容量。以2x2微波LoS MIMO为例,其信道矩阵范德蒙阵列表示为:
Figure PCTCN2017114881-appb-000003
使用两次酉变换得到:
Figure PCTCN2017114881-appb-000004
对于上述的2x2MIMO说明,即任一路Tx会向对端的一个接收端Rx发送一路对应的Tx信号,并向另一接收端Rx发送相位延迟90°的Tx信号。例如参见图1所示,发射端Tx1同时分别向接收端Rx1和Rx2发送Tx信号和Tx′信号,Tx′信号相对送Tx信号相位延迟90°。推广到其他NxN LoS MIMO,在实现链路传输容量最大化过程中,最终都表现为对于收发天线之间的布局间距要求,还是以图1中2x2 LoS MIMO为例,在已知通信距离D的情况下,针对双极化天线间距h进行精确的测量并进行天线布局,用以实现对应的移相角度确定,h与D的对应关系如下:
Figure PCTCN2017114881-appb-000005
式(2)中λ为波长。相关双极性天线阵列实现图1中的2x2 LoS MIMO对 应为狭义的4x4 MIMO,相关双极性阵列4x4 MIMO设计方案的架构参见图2-1和图2-2所示。图2-1和图2-2中,站点1(Site1)和站点2(Site2)为一跳4x4 MIMO链路,以Site1为例,H0、V0、H1及V1分别代表了其四台微波传输设备(H代表该设备连接到水平极化天线、V代表该设备连接到垂直极化天线),其均工作在相同的射频频点上,H0和V0构成一个XPIC(Cross-polarisation Interference counteracter,交叉极化干扰抵消器,对应图1中的TX1)组,其二者连接到OMT(Orth-Mode Transducer,直接式收发转换器)之后,连接到一面抛面双极化天线上,双极化天线安装在图2-2所示的铁塔上,其按照高/低站的方式进行了布放,双极化天线间距h满足上述公式(2)中的要求。H1和V1构成另外一个XPIC组(对应图1中的TX2),连接方式类似,最终这两个XPIC工作组组合成为一个4x4MIMO工作组,Site2的情况类似,当微波设备采用FDD(Frequency Division Dual,频分双工)工作方式,则可以知道Site1和Site2的收发频率是互易的。可知为了达成微波4x4MIMO传输正常工作的要求,要求Site1侧的两面双极化天线中心间距满足式公式(2),体现在实际部署时,就要求Site1侧和Site2侧的铁塔(抱杆)上,充分考虑MIMO布站的要求,通过精准的测量和计算后,将两面双极化天线正确地安装到合适的间距上。这不但对安装天线的铁塔(抱杆)的结构和高度有要求,提升通信系统成本,同时受距离测量的精准度以及天线安装精度等因素的影响,对天线性能会有较大的影响,导致可靠性差,甚至达不到MIMO天线所宣称的优势。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为限制权利要求的保 护范围。
本公开实施例提供一种微波天线阵列通信系统及通信方法,解决相关微波天线阵列对双极化天线之间的安装物理距离以及安装精度有硬性要求,而导致成本高、安装难度大以及可靠性差的问题。
本公开实施例提供一种微波天线阵列通信系统,包括:相控阵天线阵列以及
Figure PCTCN2017114881-appb-000006
对微波传输设备,所述N为取值大于等于4的双极性天线阵列的阶数;
所述相控阵天线阵列包括控制器以及与所述
Figure PCTCN2017114881-appb-000007
对微波传输设备一一对应的
Figure PCTCN2017114881-appb-000008
对极化天线阵列;
所述微波传输设备中的水平极化射频信号传输设备与对应极化天线阵列中的水平极化天线阵列的
Figure PCTCN2017114881-appb-000009
个天线子阵列连接以向对端发送
Figure PCTCN2017114881-appb-000010
个水平极化射频信号,所述微波传输设备中的垂直极化射频信号传输设备与所述极化天线阵列中的垂直极化天线阵列的
Figure PCTCN2017114881-appb-000011
个天线子阵列连接以向对端发送
Figure PCTCN2017114881-appb-000012
个垂直极化射频信号;
所述控制器配置为通过所述水平极化天线阵列中各天线子阵列的移相器配置所述各天线子阵列发射的水平极化射频信号的相位,以及配置为通过所述垂直极化天线阵列中各天线子阵列的移相器配置所述各天线子阵列发射的垂直极化射频信号的相位。
本公开实施例还提供一种如上所述的微波天线阵列通信系统的通信方法,包括:
所述控制器控制所述水平极化天线阵列各天线子阵列的移相器以对所述各天线子阵列发射的水平极化射频信号的相位进行配置,并控制所述垂直极化天 线阵列各天线子阵列的移相器以对所述各天线子阵列发射的垂直极化射频信号的相位进行配置;
所述微波传输设备中的水平极化射频信号传输设备通过对应水平极化天线阵列中的各天线子阵列向对端发送
Figure PCTCN2017114881-appb-000013
个水平极化射频信号,垂直极化射频信号传输设备通过对应垂直极化天线阵列中的各天线子阵列向对端发送
Figure PCTCN2017114881-appb-000014
个垂直极化射频信号。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令配置成执行上述方法。
有益效果:
根据本公开实施例提供的微波天线阵列通信系统及通信方法,通过相控阵天线阵列替代相关的双面双极性天线,直接将微波传输设备中的各水平极化射频信号传输设备分别与相控阵天线阵列中对应水平极化天线阵列中的各天线子阵列连接以向对端发送
Figure PCTCN2017114881-appb-000015
个水平极化射频信号,将微波传输设备中的各垂直极化射频信号传输设备分别与对应垂直极化天线阵列中的各天线子阵列连接以向对端发送
Figure PCTCN2017114881-appb-000016
个垂直极化射频信号;对一个水平极化天线阵列和垂直极化天线阵列所发出的
Figure PCTCN2017114881-appb-000017
个射频信号之间的相位之间的关系,则直接通过相控阵天线阵列的控制器控制水平极化天线阵列各天线子阵列以及垂直极化天线阵列各天线子阵列的移相器进行配置,而不依赖于天线阵列之间的物理距离以及安装精度,因此可以降低工程成本、安装难度的同时,提升天线性能的可靠性,使得天线尽可能达到MIMO天线的优势,进而可以提升用户通信体验的满意度。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为2x2 LoS MIMO架构示意图;
图2-1为相关双面双极性4x4 MIMO架构示意图;
图2-2为相关双面双极性4x4 MIMO铁塔示意图;
图3为本公开实施例二中的天线振元辐射示意图;
图4为本公开实施例二中的天线振元的移相器连接示意图;
图5-1为本公开实施例二中的NxN MIMO天线阵列示意图;
图5-2为本公开实施例二中的NxN MIMO铁塔示意图;
图6为本公开实施例二中的4x4 MIMO天线阵列示意图;
图7为本公开实施例二中的天线承载板结构示意图;
图8为本公开实施例二中的垂直极化天线阵列连接示意图;
图9为本公开实施例二中的本端垂直极化天线阵列发送信号示意图;
图10为本公开实施例二中的相位控制流程示意图;
图11为本公开实施例三中的4x4 MIMO信号发送示意图;
图12为本公开实施例三中的相位闭环控制流程示意图;
图13为本公开实施例四中的最小相控阵天线阵列示意图;
图14为本公开实施例四中的最小相控阵天线阵列连接示意图。
具体实施方式
下面通过具体实施方式结合附图对本公开实施例作进一步详细说明。
实施例一:
本实施例提供一种微波双极性天线阵列通信系统,应当理解的是,本实施例中的微波双极性天线阵列通信系统可以部署在发射端,也可以部署在接收端,或者直接在发射端和接收端两端同时部署。在FDD工作模式下,发射端和接收端是相对的,即发射端向对端发送射频信号时,也作为接收端接收对端发送过来的射频信号。因此本实施例以本端和对端(也可称为远端)代替发射端和接收端进行示例说明。本实施例中的微波双极性天线阵列通信系统可以在本端和对端同时对应部署。
本实施例中的微波双极性天线阵列通信系统包括相控阵天线阵列以及
Figure PCTCN2017114881-appb-000018
对微波传输设备,其中N为取值大于等于4的双极性天线阵列阶数;例如如果实现4x4 MIMO双极性天线阵列,则N=4,如果实现8x8 MIMO双极性天线阵列,则N取8,以此类推。
本实施例中的相控阵天线阵列包括控制器以及与
Figure PCTCN2017114881-appb-000019
对微波传输设备一一对应的
Figure PCTCN2017114881-appb-000020
对极化天线阵列。其中一对微波传输设备包含一个水平极化射频信号传输设备和一个垂直极化射频信号传输设备;一对极化天线阵列包含一个由
Figure PCTCN2017114881-appb-000021
个天线子阵列构成的水平极化天线阵列和一个由
Figure PCTCN2017114881-appb-000022
个天线子阵列构成的垂直极化天线阵列,一个天线子阵列包括至少一个天线振元以及控制天线振元相位的移相器构成。应当理解的是,本实施例中天线子阵列中的各天线振元(也即辐射单元)可以各自单独使用一个移相器,也可以多个天线阵元共用一个移相器, 具体可以根据需求灵活设定。例如一种设置为一个天线子阵列由多个天线振元构成,每一个天线振元使用一个移相器,也即天线阵元与移相器一一对应。
本实施例中,各对微波传输设备中的各水平极化射频信号传输设备分别与对应水平极化天线阵列中的各天线子阵列连接以向对端发送
Figure PCTCN2017114881-appb-000023
个水平极化射频信号,各对微波传输设备中的各垂直极化射频信号传输设备分别与对应垂直极化天线阵列中的各天线子阵列连接以向对端发送
Figure PCTCN2017114881-appb-000024
个垂直极化射频信号。
相控阵天线阵列的控制器则用于通过各水平极化天线阵列各天线子阵列的移相器配置各水平极化天线阵列之各天线子阵列发射的水平极化射频信号的相位,使得一个水平极化天线阵列发射的
Figure PCTCN2017114881-appb-000025
个水平极化射频信号之间的相位差满足NxN MIMO双极性天线阵列的要求;同样,对于一个垂直极化天线阵列发射的
Figure PCTCN2017114881-appb-000026
个垂直极化射频信号之间的相位差,也通过控制器控制垂直极化天线阵列各天线子阵列的移相器对各天线子阵列发射的垂直极化射频信号的相位进行配置,使得一个垂直极化天线阵列发射的
Figure PCTCN2017114881-appb-000027
个垂直极化射频信号之间的相位差满足NxN MIMO双极性天线阵列的要求。对于一个垂直极化天线阵列发射的
Figure PCTCN2017114881-appb-000028
个垂直极化射频信号之间的相位差以及一个水平极化天线阵列发射的
Figure PCTCN2017114881-appb-000029
个水平极化射频信号之间的相位差的具体取值,则根据NxN MIMO双极性天线阵列的具体阶数进行确认。下面以广义的单极性天线阵列结合信道矩阵范德蒙阵列进行示例说明。
广义的单极性天线阵列NxN MIMO对应的范德蒙阵列为:
Figure PCTCN2017114881-appb-000030
广义的4x4单极性天线阵列的(对应双极性天线阵列为8x8 MIMO)的范德蒙阵列如下:
Figure PCTCN2017114881-appb-000031
经过两次酉变换如下:
Figure PCTCN2017114881-appb-000032
Figure PCTCN2017114881-appb-000033
以第一行进行示例说明,假设第一行对应本端以及对端的TX1和RX1,则针对Rx1要求4路Tx按照
Figure PCTCN2017114881-appb-000034
间隔(也即相位差)达到收端天线即可。其他高阶MIMO可以据此方法继续构建,例如对于广义的单极性天线阵列NxN MIMO,相位差要求则为
Figure PCTCN2017114881-appb-000035
换算成狭义的双性天线阵列NxN MIMO,相位差要求则为
Figure PCTCN2017114881-appb-000036
因此,本实施例中,控制器对于每一个水平极化天线阵列,通过该水平极化天线阵列各天线子阵列的移相器配置该水平极化天线阵列的相邻天线子阵列发射的水平极化射频信号的相位差为
Figure PCTCN2017114881-appb-000037
控制器对于每一个垂直极化天线阵列,通过该垂直极化天线阵列各天线子阵列的移相器配置该垂直极化天线阵列的相邻天线子阵列发射的垂直极化射频信号的相位差为
Figure PCTCN2017114881-appb-000038
在本实施例中,对于本端或对端的
Figure PCTCN2017114881-appb-000039
对极化天线阵列,可以将这
Figure PCTCN2017114881-appb-000040
对极化 天线阵列设置于一个天线承载板上,此时可以简化安装程序,提升安装效率。也可以根据实际需求将这
Figure PCTCN2017114881-appb-000041
对极化天线阵列中的各对极化天线阵列分别设置于一个天线承载板上,这样则可以提升天线安装及应用的灵活性,能满足更多应用场景。
本实施例中,控制器对于每一个水平极化天线阵列或垂直极化天线阵列的各天线子阵列发射的射频信号的相位的控制可以采用开环控制的方式,即按照上述过程进行配置完成即可。配置的相位差最终是为了便于基带数字信号在调制解调器(Modem)中进行解调使用的,因此有的时候仅考虑本端和远端天线间
Figure PCTCN2017114881-appb-000042
相位差的要求可能并不能达到系统增益最大化,因为除去天线间引入相位差外,微波设备射频单元与相控阵天线阵列之间使用的波导连接器及射频电缆等都会导致相位差,同时由于各个射频收发通道间是相互独立的,因此为了保证MIMO解调的最大增益。本实施例还可通过反馈环路进行相位差自适应调节。首先按照上述过程,完成
Figure PCTCN2017114881-appb-000043
相位的粗调,即保证本端及远端天线间对应的水平极化天线阵列或垂直极化天线阵列满足
Figure PCTCN2017114881-appb-000044
相位要求,而后可以预期的是,该系统将可以工作在MIMO模式下。此时,控制器还配置为对每一水平极化天线阵列各天线子阵列发射的水平极化射频信号的相位按照上述要求进行配置后,获取对端对应水平极化天线阵列接收本端该水平极化天线阵列各天线子阵列发射的水平极化射频信号的接收相位角与
Figure PCTCN2017114881-appb-000045
之差,判断二者之差大于预设水平极化相位角偏差阈值时,根据二者之差对该水平极化天线阵列各天线子阵列发射的水平极化射频信号的相位进行调整(该过程为相位差精调过程),直到二者之差小于或等于预设水平相位角偏差阈值。
同样地,控制器还可配置为对每一垂直极化天线阵列各天线子阵列发射的 垂直极化射频信号的相位按照上述过程进行配置后,获取对端对应垂直极化天线阵列接收本端该垂直极化天线阵列各天线子阵列发射的垂直极化射频信号的接收相位角与
Figure PCTCN2017114881-appb-000046
之差,判断二者之差大于预设垂直极化相位角偏差阈值时,根据二者之差对该垂直极化天线阵列各天线子阵列发射的垂直极化射频信号的相位进行调整,直到二者之差小于等于预设垂直相位角偏差阈值。
本实施例中,接收相位角与
Figure PCTCN2017114881-appb-000047
之差可以在本端计算完成,也可以在对端计算完成,且具体计算方式可以采用任意能根据接收信号的性能指标得到接收相位角或直接得到接收相位角与
Figure PCTCN2017114881-appb-000048
之差(也即接收相位角误差)的方式实现,在此不再赘述。
本实施例中的移相器可以采用离散式的数字式移相器,也可以采用非离散式的模拟式移相器。控制器在进行上述精调过程中,可以采用步进的调整方式,待对端再次更新其接收机MIMO性能指标之后,再次进行调节,当远端反馈的性能指标达到了一定的阈值范围内,即停止调节,认为该MIMO系统的闭环相位调整过程结束了。由于收发通道是互易的,因此本端调节完毕后,默认对端到本端的链路也就调节完成了,MIMO系统进入到长期稳定工作的状态。
本实施例中,对于每一水平极化天线阵列或垂直极化天线阵列,控制器在对其进行相位配置之前或配置之后,还可以对其发射功率进行调整。该调整过程如下:
对于每一水平极化天线阵列,获取该水平极化天线阵列的发射功率与对端对应水平极化天线阵列的接收功率以及到对端的路径插损之差作为水平极化功率差值,并在获取的水平极化功率差值大于或等于预设水平极化功率差阈值时,对水平极化天线阵列的主瓣辐射角度进行调整,直到水平极化功率差值小 于或等于预设水平极化功率差阈值;当然,也可以直接对本端该水平极化天线阵列的发射功率进行调整达到上述效果,或者两种调整方式结合使用,或者从其他方面调整该水平极化天线阵列的发射功率,只要能达到上述效果即可。
对于每一垂直极化天线阵列,获取该垂直极化天线阵列的发射功率与对端对应垂直极化天线阵列的接收功率以及到对端的路径插损之差作为垂直极化功率差值,并在获取的垂直极化功率差值大于或等于预设垂直极化功率差阈值时,对垂直极化天线阵列的主瓣辐射角度进行调整,直到垂直极化功率差值小于或等于预设垂直极化功率差阈值;当然,也可以直接对本端该垂直极化天线阵列的发射功率进行调整达到上述效果,或者两种调整方式结合使用,或者从其他方面调整该垂直极化天线阵列的发射功率,只要能达到上述效果即可。
但应当理解的是,上述功率调整过程在初始功率就已经设置较好的情况下,也可以直接跳过,或者在后续工作过程中实时调整。另外,本实施例中的各种阈值的具体取值可以根据具体通信环境需求灵活选择。
本实施例直接通过相控阵天线阵列替代相关的双面双极性天线,将微波传输设备中的各水平极化射频信号传输设备分别与相控阵天线阵列中对应水平极化天线阵列中的各天线子阵列连接以向对端发送水平极化射频信号,将各垂直极化射频信号传输设备分别与对应垂直极化天线阵列中的各天线子阵列连接以向对端发送垂直极化射频信号;对一个水平极化天线阵列和垂直极化天线阵列所发出的射频信号之间的相位之间的关系,则可直接先通过相控阵天线阵列的控制器控制水平极化天线阵列各天线子阵列以及垂直极化天线阵列各天线子阵列的移相器进行配置,然后通过对应的水平极化天线阵列各天线子阵列以及垂直极化天线阵列各天线子阵列相对端发送相应的信号即可。可以降低工程成 本、安装难度的同时,提升天线性能的可靠性,保证天线发挥出MIMO天线的优势。
实施例二:
为了更好的理解本公开,本实施例结合相控阵天线阵的具体实现方式进行示例说明。
相控阵天线阵的水平极化天线阵列以及垂直极化天线阵列一般定义为由一组独立的天线振元构成,可以通过相关电路设计保证相对幅度及相位关系,从而实现在某一个预期方向上聚焦成型的目标,而其他方向相较则大大降低(抑制)电波辐射能量。任一个天线振元都是独立可控的均匀分布在直线上,例如参见图3所示,上面一排六个天线振元分布在一条直线上,辐射顺序为从右到左各天线振元依次辐射,最后可以构成一个波前带相角的电波,也就是说辐射主瓣角度可以通过编程辐射延迟进行调整。因此针对相控阵天线,其就具备了可以进行辐射主瓣方向调整的能力。
水平极化天线阵列以及垂直极化天线阵列的一个天线子阵列一种实现方式参见图4所示。
图4中圆圈加上箭头的示意对应移相器,所有的天线振元均为无方向性,等幅同相馈电,相邻天线振元激励电流相位差为
Figure PCTCN2017114881-appb-000049
则对应的辐射方向角为θ:
Figure PCTCN2017114881-appb-000050
各天线振元在θ方向远区某点辐射场的场强矢量和为:
E(θ)=E0+E1+…+Ei+…+EN-1
假设等幅馈电的情况下,各天线振元在该处的辐射场强表征为(以图4中0 号天线振元作为相位基准):
Figure PCTCN2017114881-appb-000051
Figure PCTCN2017114881-appb-000052
时(ψ代表相对于天线阵列的观测角度),各分量同相相加,场强辐射得到最大(说明主瓣在这个方面上达到了最大,也就是实现了电控调节主瓣方向的作用):
|E(θ)|max=NE
改变根据天线收发互易定理可知,接收天线同样满足对应结论。推广到2维平面阵,通过调节到达平面阵各个馈源的移相值,则可以完成诸如空间三维度内的主瓣电控扫描。
本实施例以本端为站点1,对端为站点2为示例进行说明,请参见图5-1所示。图5-1中在本端和对端对应设置有微波双极性天线阵列通信系统。图中V0和H0构成一对微波传输设备,其中V0为水平极化射频信号传输设备,H0为垂直极化射频信号传输设备。图中在每一端都有V0+H0、……、VN+HN共N对微波传输设备;对应的在每一端的天线承载板1上设置有N对极化天线阵列,每一对极化天线阵列由一个水平极化天线阵列21以及一个垂直极化天线阵列20组成。图5-1中实现了双极性天线阵列2Nx2N MIMO。对应图5-1所示的2Nx2N MIMO,其铁塔安装示意图参见图5-2所示,安装时对各天线之间的物理距离并不像相关的双面极性天线必须精确测量以及安装,其相位差主要是通过移相器控制实现,因此可以提升MIMO天线系统的实用性以及可靠性。
图5-1中水平极化天线阵列完成对应的水平极化射频信号的收发,垂直极 化天线阵列完成对应的垂直极化射频信号的收发,图中的垂直和水平关系,相对于大地平面而言,相控阵实际实施中需要根据工作频段及天线增益等设计对应的阵列单元几何组合关系,并不一定完全是图5-1中示例的拓扑,这里仅是一种利于说明的示意。按照图5-1所示微波传输设备分别与对应的垂直或水平极化天线阵列连接后,天线承载板1通过支架或结构件安装在铁塔(抱杆)上,该天线承载板1内部集成了移相器以及控制器,可以通过对应的算法或软件完成对应的辐射波束相位调整及波束成型,用以满足LoS MIMO对于传输信道矩阵的要求,最终实现传输容量及性能倍数提升。
下面在图5-1的基础上,以实现双极性天线阵列4x4 MIMO为例进行示例说明。参见图6所示,图6中站点1和站点2两端的天线承载板1上设置有2对极化天线阵列,且两端设置有V0+H0、V1+H1两对微波传输设备,其中各对微波传输设备与各极化天线阵列的连接示意图参见图6所示,V0和V1与对应的垂直极化天线阵列20连接,H0和H1与各自对应的水平极化天线阵列21连接。图6中的每个水平极化天线阵列21和垂直极化天线阵列20都包含2个天线子阵列。
天线承载板1上的具体结构参见图7所示,图7中黑色的微小矩形模块代表了天线振元,天线振元具体可以采用各种形式的振元,例如可以使用低成本FR4(耐燃材料等级的代号)材质PCB表贴天线辐射振元。两对水平极化天线阵列21及垂直极化天线阵列20分别与对应的V0、H0以及V1、H1连接,水平极化天线阵列21及垂直极化天线阵列20都包含两个天线子阵列,且各天线子阵列的各振元各自对应一个移相器(图中未示出),且各移相器都与控制器连接。控制器完成针对4路信号的辐射主瓣及功率自适应处理,具体而言4路信 号中任一个天线阵列内部的各个辐射振元的相位和增益都需要完成对应的设置。相对传统的双面极化天线阵列必须要将双极化天线按照设备的工作频率及一跳微波链路间的间距,通过对应的理论公式计算出的相应的空间距离,而后据此距离完成铁塔(抱杆)上的双极化抛面天线安装。本实施例中的水平极化天线阵列21及垂直极化天线阵列20都已经固化到天线承载板1了,其物理形态就是固定的了,其同极化方向的射频信号间距关系也就是固定的了,因此使用相控阵天线阵列就可以不再特别考虑天馈之间的远拉问题,针对不同的频率和通信距离,都可以通过电调相控阵进行MIMO传输信道的搭建,另外针对基带而言,由于避免了需要特定计算天线布局的问题,针对一体化全市外设备等应用,就避免了设备间的过长的MIMO互传通道,在减小设备复杂度、降低产品成本方面(EMC、防雷)等方面大有裨益。并可以从传统MIMO设备安装从难度大、精准度高的要求中摆脱出来,使得MIMO可以快速部署,相关的一跳通信距离和频点,设置为进入设备之后,通过控制器自动进行相关移相及MIMO传输信道实现。
对于每一个水平极化天线阵列21及垂直极化天线阵列20,其具体实现的一种示例图参见图8所示。图8以垂直极化天线阵列20的实现方式为示例进行说明。其两个天线子阵列201以及202中的天线振元以及天线振元与移相器PS的以及功分器的连接参见图8所示。控制器具体实现移相控制和功率控制。由控制器确定对应的相位移动值,前级的功率调整模块完成波束成型的各路功率控制,为了实现
Figure PCTCN2017114881-appb-000054
的移相,本端RF Tx Lo经过功分之后,经过90°移相完成到下半部阵列的天线本振提供。水平极化天线阵列21的实现方式与图8所示方式相同。
假设图6所示4x4MIMO,其RF工作频段为15G频带,一跳通信距离为5Km,以本端站点1为例说明,参见图9所示,任意一个垂直极化天线阵列21内部,分为两个同极化的天线子阵列,分别为辐射波瓣021的天线子阵列,其对应对端站点2的接收阵列位V0路,及为辐射波瓣121的天线子阵列,其对应对端站点2的接收阵列V1路。对端V0及V1路为两组独立的垂直极化天线阵列单元组,其在一体天线内部是按照固定位置布防和设计的,这样通过本端的V0路内部两个天线子阵列进行波束成型控制就可以实现对应的主瓣聚焦和对准,同时最重要的MIMO信道传输容量最大要求的90°相位要求,也可以通过在相控阵天线阵列中进行自动化电调设置,这里的示例就要求辐射波瓣021比辐射波瓣121超前90°,用以满足传统双极化MIMO中的天线间距要求(本端剩下的H0、H1、V1也都具备两个天线子阵列,其辐射到对端站点2对应的阵列的波瓣物理要求与上述V0的行为关系一致),即此处通过相控阵天线阵列中的移相器实现了传统方案中需要空间摆放实现的电波传输路径相位差为90°的LoS MIMO工作必要条件,并且这种移相关系,可以实时按照用户要求进行调整和精调,使得微波设备的LoS MIMO天线工程安装变成了与传统单极化1+0单极化微波同样简单的工作。本实施例中对各水平极化天线阵列21、垂直极化天线阵列20的功率以及相位的控制过程参见图10所示的步骤。
在S1001中:设本端和对端一跳间距D、频点F已确定,获取各极化天线阵列对应(V0、H0、V1、H1对应的两个水平极化天线阵列21、垂直极化天线阵列20)发射功率Ptx(x可选V0、H0、V1、H1),以及获取本端到对端的路径插损Ld,并设定好对应的功率差阈值(对应各水平极化天线阵列21、垂直极化天线阵列20可以分别预设水平极化功率差阈值和垂直极化功率差阈值,当然 也可以使用同一个功率差阈值)。
在S1002中:获取对端天线在人工对准完毕后的各极化天线阵列对应(V0、H0、V1、H1对应的两个水平极化天线阵列21、垂直极化天线阵列20)接收功率Prx(x可选V0、H0、V1、H1),该步骤可以与S1001同时执行。
在S1003中:判断Ptx-Ld-Prx是否小于或等于功率差阈值,如是,转至S1005;否则,转至S1004。
在S1004中:对Ptx对应的极化天线阵列的主瓣辐射角度进行调整,直到Ptx-Ld-Prx小于或等于功率差阈值;转至S1005。
在S1005中:结束当前Ptx主瓣调整,通过转至S1003遍历下一个极化天线阵列,直到遍历完毕;
在S1006中:调整各极化天线阵列内的移相器,保证相对对端接收天线子阵列间的90°移相。
至此,该一跳4x4LoS MIMO就完成了本端的相控阵天线配置,同理对端也完成对应的相控阵天线配置,保证本端的各路发射信号到达对端后均满足构造最大传输信道的90°相差要求,随后启动基带MIMO处理功能,对端的接收机系统将完成捕获、同步及锁定的基带操作和处理后,完成各路数据的正常接收和解调,从而实现传输容量的翻倍。对端到本端的处理机制对应一致,在此不再赘述。
实施例三:
除了实施例所示对各极化天线阵列内的移相器进行开环控制外,本实施例提供一种闭环精准控制过程。这种闭环控制尤其适用于针对不同的一跳通信距 离和设备工作频段。
本实施例仍以双极性天线阵列4x4 MIMO为例,由于MIMO解调过程中,基带为了解调出任意路信号,实现上等效为一个一路主路信号,三路从路信号的接收机结构,比如图11所示的Rx0的V0路接收为说明对象,其需要完成在主接收信号中H0、V1和H1路的滤除处理之后,才能恢复出V0的数据,从而实现正确的解调。
图11是一个4x4 MIMO,如果把图11中H0和H1先去掉,就是一个广义的单极化考虑下2x2 MIMO的情况,第一路接收信号为R0=V0+V1*e^j(θ0),第二路接收信号为R1=V1+V0*e^j(θ1),以第一路接收为例,MIMO解调就是要将θ0估计出来,而后闭环控制信道将这个角度θ0发送给发射侧,发射机将动态地进行相位调整,将θ0调整到大约90°,这对于θ1也是类似的处理过程。最终Rx1会把自己的接收送给Rx0,则有在第一路最终的解调信号为:R0-e^j(θ0)*(V1+V0*e^j(θ1))=V0-V0*e^j(θ0+θ1),理想情况下θ0=θ1=90°,因此最终应解调出2R0。
此处的θ角度即为相位角差,理想情况下对应上述介绍的4x4 MIMO情况下要求的90°。由于这个相位差,最终是为了便于基带数字信号在调制解调器(Modem)中进行解调使用的,因此仅考虑本端和远端天线间90°相位差的要求可能并不能达到系统增益最大化,因为除去天线间引入相位差外,微波设备射频单元与相控阵天线阵列之间使用的波导连接器及射频电缆等都会导致相位差,同时由于各个射频收发通道间是相互独立的,因此为了保证MIMO解调的最大增益。还可通过反馈环路进行相位差自适应调节,首先按照实施例二所示的过程,根据在设备用户界面中的配置首先完成90°相位的粗调,即保证本端 及对端天线间对应的阵列单元组满足90°相位要求,而后可以预期的是,该系统将可以工作在MIMO模式下,由于系统指标非最优,启动闭环相位精调流程,一跳间按照较低的调制方式(如QPSK(Quadrature Phase Shift Keying,正交相移键控)、16QAM(Quadrature Amplitude Modulation,正交幅度调制)等需要较低SNR(SIGNAL-NOISE RATIO,信噪比)的调制方式)进行闭环控制通道的建链,一旦建链后,可以将对端接收的相位角度与理想角度的误差估算出来(具体算法可以采用任意相关误差估算算法,在此不再赘述),可以观测的指标包括MSE(Mean Square Error)及FEC(Forward Error Correction)解码情况,通过已经建立的闭环控制通道,发送给本端,本端接收之后,根据误差的分布情况,计算出对端接收机的相位实际情况,与理想要求的90°相位关系进行对比之后,就可以通过下发特定相位调控指令的方式,告知给本端的相控阵天线控制模块进行对应的阵列单元组进行移相角度调节了,由于使用了图8中的电路结构,所有的相位调节都是电控可调的,相位移动关系就可以和具体的电路实现对应起来的,调节过程中,可以采用步进的方式,待对端再次更新其接收机MIMO性能指标之后,再次进行调节,如果对端反馈的性能指标达到了一定的阈值范围内,即停止调节,认为该MIMO系统的闭环相位调整过程结束了。由于收发通道是互易的,因此本端调节完毕后,默认对端到本端的链路也就调节完成了,LoS MIMO系统进入到长期稳定工作的状态。
以上闭环控制过程参见图12所示的步骤。
在S1201中:设本端和对端一跳间距D、频点F已确定,获取各极化天线阵列对应(V0、H0、V1、H1对应的两个水平极化天线阵列21、垂直极化天线阵列20)发射功率Ptx(x可选V0、H0、V1、H1),以及获取本端到对端的路 径插损Ld,并设定好对应的功率差阈值(对应各水平极化天线阵列21、垂直极化天线阵列20可以分别预设水平极化功率差阈值和垂直极化功率差阈值,当然也可以使用同一个功率差阈值)。
在S1202中:获取对端天线在人工对准完毕后的各极化天线阵列对应(V0、H0、V1、H1对应的两个水平极化天线阵列21、垂直极化天线阵列20)接收功率Prx(x可选V0、H0、V1、H1)。
在S1203中:判断Ptx-Ld-Prx是否小于或等于功率差阈值,如是,转至S1205;否则,转至S1204。
在S1204中:对Ptx对应的极化天线阵列的主瓣辐射角度进行调整,直到Ptx-Ld-Prx小于或等于功率差阈值;转至S1205。
在S1205中:结束当前Ptx主瓣调整,通过转至S1203遍历下一个极化天线阵列,直到遍历完毕。
在S1206中:调整各极化天线阵列内的移相器,保证相对对端接收天线子阵列间的90°移相。
在S1207中:本端及对端将调制方式强制到预设调制方式(如QPSK),使能闭环控制通道。
在S1208中:Prx进行各极化天线阵列90°移相精调整,直到各极化天线阵列相角估值误差小于或等于设定阈值,MSE达到MIMO阈值。
在S1209中:本端和对端将调制方式改回原始的用户配置方式,进入稳定运行。
本实施例提供的反馈环路进行相位差自适应调节,可以进一步提升天线性 能,保证MIMO天线阵列的可靠性。基于上述过程对相位配置完毕之后,即可向对端发送相应的信号,既能降低工程成本、安装难度,又能提升天线性能的可靠性,保证天线发挥出MIMO天线的优势。
本领域的技术人员应该明白,上述本公开实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码或指令来实现,从而,可以将它们存储在计算机存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
实施例四:
如实施例一分析,本实施例中可以将一对极化天线阵列的水平极化天线阵列和垂直极化天线阵列设置在一个天线承载板上。例如针对用户的应用,可能并不是要求所有的场景都是MIMO系统,即物理形态上为一体化的相控阵天线阵列,在诸如XPIC及保护场景下,其就不再具备对应的复用灵活性的问题.本实施例提出了另一种实现情况,即按照XPIC组的要求,将原来NxN天线阵列分解为物理上独立的最小单元,包含一对极化天线阵列(即包含一个水平极化天线阵列和垂直极化天线阵列),参见图13所示,图13中包含一个水平极化天线阵列和一个垂直极化天线阵列。在一种应用场景中,仍旧按照15G工作频段,5Km一跳通信距离为例(参见图6所示),理论要求的双极化天线的间距为7.07米,考虑到铁塔(抱杆)上的安装要求,两面最小相控阵天线阵列被安装在间距为1米的距离上,由于并不是按照理想要求的7米间距,因此首先还 是需要两面相控阵天线进行实施例二中的90°相位调整和设备,如图14所示,由于双面天线之间的天线间距是具体到安装及工程实施阶段才最后确定的,并不是固定的数值,因此有可能会导致最终表现在接收端的相位差是围绕在90°一定范围内分布的随机角度,此时进行实施例三中所述的闭环相位调整过程完成,本端与对端对应的辐射阵列单元间的相位自动调整和精调,最终调整完毕后,这个随机天线间距(用户依据具体安装时的情况确定)对本实施例中的双极性天线MIMO系统并无影响,系统将自动调整并收敛到最佳工作状态,即保证传输信道矩阵满足范德蒙阵的要求,对应的各个辐射阵列单元间构造为最佳的相位差关系,从而实现MIMO系统的增益最大化,在系统的传输容量及系统增益方面实现优化。同时,图13所示的最小相控阵天线阵列,在不进行MIMO应用时,还可以灵活的构建2+0、2+2、1+0等微波应用,其更紧凑的尺寸及重量,将在工程安装等方面更具优化。
以上内容是结合具体的实施方式对本公开实施例所作的进一步详细说明,不能认定本公开的具体实施只局限于这些说明。
工业实用性
根据本公开的实施例提供的微波天线阵列通信系统及通信方法,通过相控阵天线阵列替代相关的双面双极性天线,直接将微波传输设备中的各水平极化射频信号传输设备分别与相控阵天线阵列中对应水平极化天线阵列中的各天线子阵列连接以向对端发送
Figure PCTCN2017114881-appb-000055
个水平极化射频信号,将各垂直极化射频信号传输设备分别与对应垂直极化天线阵列中的各天线子阵列连接以向对端发送
Figure PCTCN2017114881-appb-000056
个垂 直极化射频信号;对一个水平极化天线阵列和垂直极化天线阵列所发出的
Figure PCTCN2017114881-appb-000057
个射频信号之间的相位之间的关系,则直接通过相控阵天线阵列的控制器控制水平极化天线阵列各天线子阵列以及垂直极化天线阵列各天线子阵列的移相器进行配置,而不依赖于天线阵列之间的物理距离以及安装精度,因此可以降低工程成本、安装难度的同时,提升天线性能的可靠性,使得天线尽可能达到MIMO天线的优势,进而可以提升用户通信体验的满意度。

Claims (11)

  1. 一种微波天线阵列通信系统,包括:相控阵天线阵列以及
    Figure PCTCN2017114881-appb-100001
    对微波传输设备,所述N为取值大于或等于4的双极性天线阵列的阶数;其中,
    所述相控阵天线阵列包括控制器以及与所述
    Figure PCTCN2017114881-appb-100002
    对微波传输设备一一对应的
    Figure PCTCN2017114881-appb-100003
    对极化天线阵列;
    所述微波传输设备中的水平极化射频信号传输设备与对应极化天线阵列中的水平极化天线阵列的
    Figure PCTCN2017114881-appb-100004
    个天线子阵列连接以向对端发送
    Figure PCTCN2017114881-appb-100005
    个水平极化射频信号,垂直极化射频信号传输设备与所述极化天线阵列中的垂直极化天线阵列的
    Figure PCTCN2017114881-appb-100006
    个天线子阵列连接以向对端发送
    Figure PCTCN2017114881-appb-100007
    个垂直极化射频信号;
    所述控制器配置为通过所述水平极化天线阵列中各天线子阵列的移相器配置所述各天线子阵列发射的水平极化射频信号的相位,以及配置为通过所述垂直极化天线阵列中各天线子阵列的移相器配置所述各天线子阵列发射的垂直极化射频信号的相位。
  2. 如权利要求1所述的微波天线阵列通信系统,其中,所述控制器配置为通过所述水平极化天线阵列各天线子阵列的移相器配置该水平极化天线阵列的相邻天线子阵列发射的水平极化射频信号的相位差为
    Figure PCTCN2017114881-appb-100008
    以及配置为通过所述垂直极化天线阵列各天线子阵列的移相器配置该垂直极化天线阵列的相邻天线子阵列发射的垂直极化射频信号的相位差为
    Figure PCTCN2017114881-appb-100009
  3. 如权利要求1所述的微波天线阵列通信系统,其中,所述
    Figure PCTCN2017114881-appb-100010
    对极化天线阵列位于一个天线承载板上;
    或,
    所述
    Figure PCTCN2017114881-appb-100011
    对极化天线阵列中的各对极化天线阵列分别位于一个天线承载板上。
  4. 如权利要求2所述的微波天线阵列通信系统,其中,所述控制器还配置为对所述水平极化天线阵列各天线子阵列发射的水平极化射频信号的相位进行配置后,获取对端对应水平极化天线阵列接收该水平极化天线阵列各天线子阵 列发射的水平极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100012
    之差,在确定所述水平极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100013
    之差大于预设水平极化相位角偏差阈值时,根据所述水平极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100014
    之差对该水平极化天线阵列各天线子阵列发射的水平极化射频信号的相位进行调整,直到所述水平极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100015
    之差小于或等于预设水平相位角偏差阈值;
    所述控制器还配置为对所述垂直极化天线阵列各天线子阵列发射的垂直极化射频信号的相位进行配置后,获取对端对应垂直极化天线阵列接收所述垂直极化天线阵列各天线子阵列发射的垂直极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100016
    之差,在确定所述垂直极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100017
    之差大于预设垂直极化相位角偏差阈值时,根据所述垂直极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100018
    之差对该垂直极化天线阵列各天线子阵列发射的垂直极化射频信号的相位进行调整,直到所述垂直极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100019
    之差小于等于预设垂直相位角偏差阈值。
  5. 如权利要求1-4任一项所述的微波天线阵列通信系统,其中,所述控制器还配置为获取所述水平极化天线阵列的发射功率Pht、与对端对应水平极化天线阵列的接收功率Phr、以及到所述对端的路径插损Lhd,根据公式ΔPh=Pht-Phr-Lhd计算水平极化功率差值ΔPh,并在所述水平极化功率差值大于或等于预设水平极化功率差阈值时,对所述水平极化天线阵列的主瓣辐射角度进行调整,直到所述水平极化功率差值小于所述预设水平极化功率差阈值;
    所述控制器还配置为获取所述垂直极化天线阵列的发射功率Pvt、与对端对应垂直极化天线阵列的接收功率Pvr、以及到所述对端的路径插损Lvd,根据公式ΔPv=Pvt-Pvr-Lvd计算垂直极化功率差值ΔPv,并在所述垂直极化功率差值大于或等于预设垂直极化功率差阈值时,对所述垂直极化天线阵列的主瓣辐射角度进行调整,直到所述垂直极化功率差值小于所述预设垂直极化功率差阈值。
  6. 如权利要求1-4任一项所述的微波天线阵列通信系统,其中,所述天线子阵列包括多个天线振元,以及与各所述天线振元一一对应的移相器。
  7. 一种根据权利要求1-6任一项所述的微波天线阵列通信系统的通信方法,包括:
    所述控制器控制所述水平极化天线阵列各天线子阵列的移相器以对所述各天线子阵列发射的水平极化射频信号的相位进行配置,并控制所述垂直极化天线阵列各天线子阵列的移相器以对所述各天线子阵列发射的垂直极化射频信号的相位进行配置;
    所述微波传输设备中的水平极化射频信号传输设备通过对应水平极化天线阵列中的各天线子阵列向对端发送
    Figure PCTCN2017114881-appb-100020
    个水平极化射频信号,垂直极化射频信号传输设备通过对应垂直极化天线阵列中的各天线子阵列向对端发送
    Figure PCTCN2017114881-appb-100021
    个垂直极化射频信号。
  8. 如权利要求7所述的微波天线阵列通信系统之通信方法,其中,所述控制器控制所述水平极化天线阵列各天线子阵列的移相器以将该水平极化天线阵列的相邻天线子阵列发射的水平极化射频信号的相位差配置为
    Figure PCTCN2017114881-appb-100022
    以及控制所述垂直极化天线阵列各天线子阵列的移相器以将该垂直极化天线阵列的相邻天线子阵列发射的水平极化射频信号的相位差配置为
    Figure PCTCN2017114881-appb-100023
  9. 如权利要求8所述的微波天线阵列通信系统之通信方法,还包括:
    所述控制器对所述水平极化天线阵列各天线子阵列发射的水平极化射频信号的相位进行配置后,获取对端对应水平极化天线阵列接收该水平极化天线阵列各天线子阵列发射的水平极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100024
    之差,在确定所述水平极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100025
    大于预设水平极化相位角偏差阈值时,根据所述水平极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100026
    之差对该水平极化天线阵列各天线子阵列发射的水平极化射频信号的相位进行调整,直到所述水平极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100027
    之差小于或等于预设水平相位角偏差阈值;
    以及,所述控制器对所述垂直极化天线阵列各天线子阵列发射的垂直极化射频信号的相位进行配置后,获取对端对应的垂直极化天线阵列接收所述垂直 极化天线阵列各天线子阵列发射的垂直极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100028
    之差,在确定所述垂直极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100029
    之差大于预设垂直极化相位角偏差阈值时,根据所述垂直极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100030
    之差对该垂直极化天线阵列各天线子阵列发射的垂直极化射频信号的相位进行调整,直到所述垂直极化射频信号的接收相位角与所述
    Figure PCTCN2017114881-appb-100031
    之差小于等于预设垂直相位角偏差阈值。
  10. 如权利要求7-9任一项所述的微波天线阵列通信系统之通信方法,其特征在于,还包括:
    所述控制器获取所述水平极化天线阵列的发射功率Pht、与对端对应水平极化天线阵列的接收功率Phr、以及到所述对端的路径插损Lhd,,根据公式ΔPh=Pht-Phr-Lhd计算水平极化功率差值ΔPh,并在所述水平极化功率差值大于或等于预设水平极化功率差阈值时,对所述水平极化天线阵列的主瓣辐射角度进行调整,直到所述水平极化功率差值小于所述预设水平极化功率差阈值;
    以及,获取所述垂直极化天线阵列的发射功率Pvt、与对端对应垂直极化天线阵列的接收功率Pvr、以及到所述对端的路径插损Lvd,根据公式ΔPv=Pvt-Pvr-Lvd计算垂直极化功率差值ΔPv,并在所述垂直极化功率差值大于或等于预设垂直极化功率差阈值时,对所述垂直极化天线阵列的主瓣辐射角度进行调整,直到所述垂直极化功率差值小于所述预设垂直极化功率差阈值。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令配置成执行权利要求7-10中任一项所述的方法。
PCT/CN2017/114881 2016-12-06 2017-12-06 一种微波天线阵列通信系统及通信方法 WO2018103677A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17878581.2A EP3553887A4 (en) 2016-12-06 2017-12-06 COMMUNICATION SYSTEM AND COMMUNICATION METHOD WITH MICROWAVE GROUP ANTENNA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611113452.6 2016-12-06
CN201611113452.6A CN108155479B (zh) 2016-12-06 2016-12-06 一种微波天线阵列通信系统及通信方法

Publications (1)

Publication Number Publication Date
WO2018103677A1 true WO2018103677A1 (zh) 2018-06-14

Family

ID=62468537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114881 WO2018103677A1 (zh) 2016-12-06 2017-12-06 一种微波天线阵列通信系统及通信方法

Country Status (3)

Country Link
EP (1) EP3553887A4 (zh)
CN (1) CN108155479B (zh)
WO (1) WO2018103677A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799538A (zh) * 2018-12-29 2019-05-24 清华大学 安检设备及其控制方法
CN110109082A (zh) * 2019-04-17 2019-08-09 天津大学 一种共天线的太赫兹主动雷达成像阵列
WO2020200418A1 (en) * 2019-04-01 2020-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Transmitter for a point-to-point microwave system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018413769A1 (en) * 2018-03-21 2020-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Antenna arrangement for dual-polarization beamforming
CN109828160B (zh) * 2019-03-13 2021-02-26 北京遥感设备研究所 一种基于dsp高频相移的自动测试系统及方法
CN110730044A (zh) * 2019-09-18 2020-01-24 深圳市艾特讯科技有限公司 射频测试通道定位方法、装置及射频测试系统、控制终端
CN110708097B (zh) * 2019-10-17 2021-06-01 成都锐芯盛通电子科技有限公司 一种多波束天线接收方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542841A (zh) * 2007-04-12 2009-09-23 日本电气株式会社 双极化天线
CN102148425A (zh) * 2010-02-10 2011-08-10 雷凌科技股份有限公司 用于智慧型天线的馈入装置
WO2012125190A1 (en) * 2011-03-15 2012-09-20 Intel Corporation Mm-wave multiple-input multiple-output antenna system with polarization diversity
CN105226400A (zh) * 2015-09-16 2016-01-06 哈尔滨工业大学(威海) 一种宽带双极化相控阵天线及全极化波束形成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2038162B1 (en) * 2006-07-07 2011-04-27 Hydro-Gear Limited Partnership Electronic steering control apparatus
CN101316130B (zh) * 2007-06-01 2014-06-11 中国移动通信集团公司 闭环模式下共用天线系统和方法
CN101772904B (zh) * 2007-08-02 2014-11-19 日本电气株式会社 具有确定性信道的mimo通信系统及其天线布置方法
CN101916918A (zh) * 2010-07-01 2010-12-15 中国电子科技集团公司第五十四研究所 一种自动极化调整天线系统及其极化校准方法
JP5809482B2 (ja) * 2011-08-15 2015-11-11 株式会社Nttドコモ 無線通信システム、無線基地局及び無線通信方法
US8861646B2 (en) * 2011-10-10 2014-10-14 Lg Innotek Co., Ltd. Terminal comprising multi-antennas and method of processing received frequency
CN103491621B (zh) * 2012-06-12 2017-04-12 华为技术有限公司 多天线系统功率分配及波束赋形方法、基站及多天线系统
WO2014033669A1 (en) * 2012-08-30 2014-03-06 Mimotech (Pty) Ltd. A method of and system for providing diverse point to point communication links
EP2926408B1 (en) * 2012-12-03 2019-03-13 Telefonaktiebolaget LM Ericsson (publ) A wireless communication node with 4tx/4rx triple band antenna arrangement
CN105308883B (zh) * 2013-06-18 2020-02-14 瑞典爱立信有限公司 一种收发机装置、无线电系统及用于通过收发机装置来发送并接收无线电信号的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542841A (zh) * 2007-04-12 2009-09-23 日本电气株式会社 双极化天线
CN102148425A (zh) * 2010-02-10 2011-08-10 雷凌科技股份有限公司 用于智慧型天线的馈入装置
WO2012125190A1 (en) * 2011-03-15 2012-09-20 Intel Corporation Mm-wave multiple-input multiple-output antenna system with polarization diversity
CN105226400A (zh) * 2015-09-16 2016-01-06 哈尔滨工业大学(威海) 一种宽带双极化相控阵天线及全极化波束形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3553887A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799538A (zh) * 2018-12-29 2019-05-24 清华大学 安检设备及其控制方法
WO2020200418A1 (en) * 2019-04-01 2020-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Transmitter for a point-to-point microwave system
CN110109082A (zh) * 2019-04-17 2019-08-09 天津大学 一种共天线的太赫兹主动雷达成像阵列

Also Published As

Publication number Publication date
CN108155479A (zh) 2018-06-12
EP3553887A1 (en) 2019-10-16
EP3553887A4 (en) 2020-07-29
CN108155479B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2018103677A1 (zh) 一种微波天线阵列通信系统及通信方法
JP4542141B2 (ja) スマートアンテナを備えた衛星通信加入者デバイスおよびその関連方法
US8811525B2 (en) Dual polarization antenna and method for transmitting and receiving signal using the same
US9520914B2 (en) Full-duplex wireless communication system using polarization
KR101407016B1 (ko) 빔형성 방법, 프레임 포맷 사용 방법, 빔형성 및 결합 가중치 선택 방법, 빔 형성 장치, 가입자 디바이스, 피코넷 컨트롤러 및 컴퓨터 판독 가능한 매체
US10205235B2 (en) Wireless communication system node with re-configurable antenna devices
US9397383B2 (en) System and method for mast vibration compensation
US20150195001A1 (en) Antenna system with enhanced inter-sector interference mitigation
US20160087349A1 (en) Method and apparatus for forming beam in antenna array
CN102217141A (zh) 天线装置和基站装置
EP3556026A1 (en) Beam management techniques for beam calibration
US8077111B2 (en) Optimized radiation patterns
CN109980362B (zh) 一种天线装置及波束状态切换方法
WO2014142514A1 (ko) 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
KR101563309B1 (ko) 액티브 위상 배열 안테나를 이용한 통신 시스템 및 방법
KR20050083785A (ko) 모바일 무선 기지국
WO2017063132A1 (zh) 多扇区mimo有源天线系统和通信设备
RU2729211C1 (ru) Выбор луча для приемо-передающего радиоустройства
TW201911765A (zh) 毫米波強波器、毫米波傳輸系統及毫米波傳輸方法
US20240014883A1 (en) Adjusting polarization states for wireless transmission
WO2020125230A1 (zh) 天线对准方法、装置、相控阵天线系统及可读存储介质
CN102780522A (zh) 一种天线阵列、基于该天线阵列的通信系统以及通信方法
CN108550990B (zh) 一种5g大规模天线波束控制系统及方法
EP3048665B1 (en) Point to point network node beam steering
JP5367408B2 (ja) 携帯電話機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017878581

Country of ref document: EP

Effective date: 20190708