WO2020125230A1 - 天线对准方法、装置、相控阵天线系统及可读存储介质 - Google Patents

天线对准方法、装置、相控阵天线系统及可读存储介质 Download PDF

Info

Publication number
WO2020125230A1
WO2020125230A1 PCT/CN2019/114782 CN2019114782W WO2020125230A1 WO 2020125230 A1 WO2020125230 A1 WO 2020125230A1 CN 2019114782 W CN2019114782 W CN 2019114782W WO 2020125230 A1 WO2020125230 A1 WO 2020125230A1
Authority
WO
WIPO (PCT)
Prior art keywords
phased array
antenna
array antenna
local
remote
Prior art date
Application number
PCT/CN2019/114782
Other languages
English (en)
French (fr)
Inventor
姚玮
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020125230A1 publication Critical patent/WO2020125230A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Definitions

  • the present invention relates to the field of communication technology, and in particular, to an antenna alignment method and device, a phased array antenna system, and a readable storage medium.
  • the most important one for microwave is how to align the antenna.
  • the geographic location information of the one-hop microwave site can often be obtained by (Such as GPS, compass, etc.), and then rely on manpower to adjust the direction of the antenna main lobe on the tower, the most important involves manual adjustment of the antenna azimuth and pitch angle, during which the relevant engineers under the tower need to perform Relevant received power and other indicators are monitored and timely feedback.
  • this process is time-consuming, labor-intensive, and has low efficiency. Therefore, in microwave communication systems, the antenna alignment efficiency needs to be improved.
  • the main purpose of the present invention is to provide an antenna alignment method, device, phased array antenna system and readable storage medium, aiming to solve the problem of low alignment efficiency of the antenna in the prior art.
  • the present invention proposes an antenna alignment method, which is applied to microwave communication equipment.
  • the antenna alignment method includes the following steps: when receiving an automatic antenna alignment instruction, the local phased array antenna and the remote phase control
  • the array antenna enters the transmission mode and the reception mode, respectively, the local phased array antenna and the remote phased array antenna are arranged by the array of antenna elements, and the PS directional device and ATT connected to the antenna element through the RF wiring
  • the attenuator structure the remote phased array antenna performs a three-dimensional space step scan to obtain the first direction corresponding to the maximum RSL received signal level, and points the direction of the main radiation lobe of the remote phased array antenna to the first direction, And lock the PS and ATT numerical values of the antenna elements of the remote phased array antenna; after the direction of the main radiation lobe of the remote phased array antenna points to the first direction, the local phased array antenna performs three-dimensional space Step scan to obtain the second direction corresponding to the maximum RSL, point the direction of the main radiation lobe of
  • the antenna alignment device includes: a setting module for receiving the local phased array antenna and the remote end when receiving an automatic antenna alignment instruction
  • the phased array antenna enters the transmit mode and the receive mode, respectively, where the local phased array antenna and the remote phased array antenna are arranged by the array of antenna elements, and the PS directional device is connected to the antenna element through the RF wiring It is composed of an ATT attenuator;
  • the first control module is used for the stepwise scanning of the remote phased array antenna in three-dimensional space to obtain the first direction corresponding to the maximum RSL received signal level, and the main radiation of the remote phased array antenna The direction of the lobe points to the first direction, and the PS and ATT numerical values of the antenna elements of the remote phased array antenna are locked;
  • the second control module is used to point the direction of the radiation main lobe of the remote phased array antenna to the After the first direction is described, the local phased array antenna performs a three-dimensional space step scan
  • the present invention also provides a phased array antenna system
  • the phased array antenna system includes an antenna element, PS shifter, ATT attenuator, FPGA field programmable gate array module, MUC micro Control unit, temperature sensor, mux data selector, Telementry telemetry module and power supply module
  • the antenna element, PS and ATT are connected via RF wiring
  • the temperature sensor is located in the vicinity of the antenna element for the PS and ATT temperature compensation
  • the control ends of the PS and ATT are connected under the FPGA module
  • the FPGA module, the temperature sensor and the Telementry module are connected to the MUC
  • the mux are respectively connected to the Telementry module and the power supply Module
  • the power supply module is used to power each component.
  • the present invention also provides a computer-readable storage medium on which an antenna alignment program is stored, and the antenna alignment program is implemented as described above when executed by a processor Steps of the antenna alignment method.
  • the present invention also provides a computer program product, the computer program product includes a computer program stored on a non-transitory computer-readable storage medium, the computer program includes program instructions, when the program When the instructions are executed by a computer, the computer is caused to perform the methods described in the above aspects.
  • FIG. 1 is a schematic structural diagram of an antenna alignment device in a hardware operating environment according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of the first embodiment of the antenna alignment method of the present invention.
  • FIG. 3 is a schematic diagram of the basic principle of microwave antenna alignment
  • FIG. 5 is a schematic diagram of the architecture of a generalized phased array antenna in the receiving direction
  • FIG. 6 is a schematic diagram of the architecture of a generalized phased array antenna in the transmission direction
  • FIG. 7 is a schematic structural diagram of an optional N-element linear array phased array antenna involved in the embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a second embodiment of the antenna alignment method of the present invention.
  • FIG. 9 is a schematic diagram of an optional spatial electromagnetic interference scanning principle involved in the solution of the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an optional separated minimum phased array antenna array involved in the solution of the embodiment of the present invention.
  • FIG. 11 is a schematic diagram of seamless docking between an optional flat array antenna and microwave equipment according to the embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an optional LoSMIMO implementation using a phased array antenna according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of the system structure of the phased array antenna system of the present invention.
  • FIG. 14 is a schematic diagram of an optional microwave phased array antenna and microwave system topology framework involved in the embodiment of the present invention.
  • 15 is a schematic diagram of functional modules of an embodiment of an antenna alignment device of the present invention.
  • the solution of the embodiment of the present invention is mainly to enter the transmit mode through the local phased array antenna and the remote phased array antenna into the receive mode, and then, the remote phased array antenna performs a three-dimensional space step scan to obtain the maximum RSL In the first direction corresponding to the received signal level, point the direction of the radiation main lobe of the remote phased array antenna to the first direction, and lock the PS and ATT numerical values of the antenna elements of the remote phased array antenna; After the direction of the radiation main lobe of the phased array antenna points to the first direction, the local phased array antenna performs a step scan of the three-dimensional space to obtain the second direction corresponding to the maximum RSL, and the direction of the radiation main lobe of the local phased array antenna Point to the second direction, and lock the PS and ATT numerical values of the antenna elements of the local phased array antenna to complete the automatic antenna alignment, eliminating the manual adjustment operation of the antenna alignment, thus improving the antenna alignment s efficiency.
  • the technical solution of the embodiment of the present invention solves the problem
  • An embodiment of the present invention provides an antenna alignment device.
  • FIG. 1 is a schematic structural diagram of an antenna alignment device in a hardware operating environment according to an embodiment of the present invention.
  • module means for the benefit of the present invention, and has no specific meaning in itself. Therefore, “module”, “component” or “unit” can be used in a mixed manner.
  • the antenna alignment device may include: a processor 1001, a communication bus 1002, a user interface 1003, a network interface 1004, and a memory 1005.
  • the communication bus 1002 is used to implement connection communication between these components.
  • the user interface 1003 may be one or more suitable interfaces such as a display, an input unit such as a keyboard, etc.
  • the user interface 1003 may also be a standard Wired interface, wireless interface, etc.
  • the network interface 1004 may be a standard wired interface, a wireless interface (such as a WI-FI interface), or other interfaces of one or more suitable network devices.
  • the memory 1005 may be a high-speed RAM memory, or may be a non-volatile memory (non-volatile memory), etc., such as a disk memory. In an embodiment, the memory 1005 may also be a storage device independent of the processor 1001.
  • the structure of the antenna alignment device shown in FIG. 1 does not constitute a limitation on the antenna alignment device, and may include more or fewer components than the illustration, or a combination of certain components, or different Parts layout.
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, and an antenna alignment program.
  • the antenna alignment device calls the antenna alignment program stored in the memory 1005 through the processor 1001, and performs the following operations: when receiving the antenna automatic alignment instruction, the local phased array antenna and the remote phased array
  • the antenna enters the transmit mode and the receive mode, respectively, where the local phased array antenna and the remote phased array antenna are arranged by the array of antenna elements, and the PS shifter and ATT attenuation of the antenna elements connected by the RF trace
  • the remote phased array antenna performs a three-dimensional space step scan to obtain a first direction corresponding to the maximum RSL received signal level, and directs the radiation main lobe direction of the remote phased array antenna to the first direction, and Lock the PS and ATT numerical values of the antenna elements of the remote phased array antenna; after the direction of the main radiation lobe of the remote phased array antenna points to the first direction, the local phased array antenna performs a three-dimensional step Scan ahead to obtain the second direction corresponding to the maximum RSL, point the direction of the main radiation lobe of the local phase
  • the processor 1001 can call the antenna alignment program stored in the memory 1005, and also perform the following operations: determine the direction of the radiation main lobe of the local phased array antenna to point to the center of the corresponding plane of the local phased array antenna Line direction; after the direction of the main radiation lobe of the local phased array antenna points to the central normal direction, the remote phased array antenna performs a three-dimensional space step scan to obtain the first direction corresponding to the maximum RSL.
  • the processor 1001 may call the antenna alignment program stored in the memory 1005, and also perform the following operations: sequentially replace the radiation main lobe direction of the remote phased array antenna, and calculate the current radiation main lobe at each replacement RSL corresponding to the direction; comparing the calculated RSLs to obtain the maximum RSL, and taking the direction of the main radiation lobe corresponding to the maximum RSL as the first direction.
  • the processor 1001 may call the antenna alignment program stored in the memory 1005, and also perform the following operations: according to the actual RSL corresponding to the operation of the local phased array antenna, perform an error calculation with the budget value to calculate based on the error Carry out the local phased array antenna fine-tuning; according to the actual RSL corresponding to the operation of the remote phased array antenna, calculate the error with the budget value, so as to fine-tune the remote phased array antenna according to the error calculation.
  • the processor 1001 can call the antenna alignment program stored in the memory 1005, and also perform the following operations: the local phased array antenna and the remote phased array antenna perform closed-loop control channel building; remote phase control The array antenna sends the error angle between the received alignment angle and the ideal angle to the local phased array antenna through the established closed-loop control channel; after receiving the error angle, the local phased array antenna receives the error angle according to the error angle Adjust the phase shift angle of the corresponding antenna element to fine-tune the direction of the main radiation lobe of the local phased array antenna in minimal steps.
  • the processor 1001 may call the antenna alignment program stored in the memory 1005, and also perform the following operations: issue corresponding instructions to the control module of the local phased array antenna according to the error angle, and pass the control The module adjusts the phase shift angle of the corresponding antenna array, where the antenna array is composed of multiple antenna elements, and the phase and amplitude information of the antenna elements of each antenna element is consistent.
  • the local phased array antenna enters the transmit mode, and the remote phased array antenna enters the receive mode.
  • the remote phased array antenna performs a three-dimensional space step scan to obtain the maximum RSL received signal power.
  • the local phased array antenna performs a three-dimensional step scan to obtain the second direction corresponding to the maximum RSL, and the direction of the main radiation lobe of the local phased array antenna points to the second Direction, and lock the PS and ATT numerical values of the antenna elements of the local phased array antenna to complete the automatic antenna alignment, eliminating the manual adjustment operation of the antenna alignment, thus improving the efficiency of antenna alignment.
  • FIG. 2 is a schematic flowchart of a first embodiment of an antenna alignment method of the present invention.
  • the antenna alignment method includes the following steps: Step S10, when receiving the antenna automatic alignment instruction, the local phased array antenna and the remote phased array antenna enter the transmission mode and the reception mode, respectively , Where the local phased array antenna and the remote phased array antenna are composed of antenna elements arranged in an array, and a PS shifter and an ATT attenuator connected to the antenna elements via RF traces; step S20, remote The phased array antenna performs a three-dimensional space step scan to obtain the first direction corresponding to the maximum RSL received signal level, points the direction of the radiation main lobe of the remote phased array antenna to the first direction, and controls the remote phase The PS and ATT numerical values of the antenna elements of the array antenna are locked; step S30, after the direction of the main radiation lobe of the remote phased array antenna points to the first direction, the local phased array antenna performs a step scan in three dimensions To obtain the second direction corresponding to the maximum RSL, point the direction of the main radiation lobe of the local phased array antenna to
  • the traditional microwave antenna alignment method uses third-party simulation software that integrates engineering survey data and terrain map information for link budgeting. For example, as shown in Figure 3, Figure 3 is a schematic diagram of a conventional microwave antenna alignment.
  • the coordinates of the double-sided sites for A1 and A2 have been acquired by GPS equipment during the engineering survey stage, and after corresponding calibration in the relevant MW network planning software, the terrain and geomorphology of the microwave link can be reflected.
  • building 1 and tower 2 are one-hop microwave link dual-sided antennas A2 and A1, respectively, and the beam adjustment sent from tower 2 to the end of building 1
  • the main lobe TL of the A1 antenna needs to be pointed in the three-dimensional direction of the corresponding main lobe of the A2 antenna.
  • the antennas A1 and A2 both have the main radiation lobe and the side radiation lobe, and the center of the antenna structure does not necessarily point to the main radiation lobe, in the actual external field, the antenna alignment problem has evolved into In the three-dimensional space, the radiation of the main lobe of the double-sided antenna is directed to overlap each other.
  • a phased array antenna is used to achieve antenna main lobe beamforming (Beam Forming) and main lobe angle sharpening (antenna gain enhancement), and beamforming technology is used to achieve automatic antenna alignment of microwave equipment during the engineering installation stage Function, and the sharpening of the main lobe angle is conducive to the improvement of link transmission distance.
  • the phased array antenna is composed of antenna elements arranged in independent arrays, and PS (Phase Shifter) and ATT (Attenuator) connected to the antenna elements via RF traces, and the antennas are combined. Together, each vibrator has its own amplitude and phase. After being combined together, the final antenna radiation main lobe and gain characteristics will be much larger than an independent vibrator.
  • the AF antenna factor determines the contribution of each vibrator. It takes the relative position of the vibrating element in the array and the excitation source as a function of variables.
  • a generalized phased array antenna is decomposed from the perspective of the block diagram as shown in Figure 5 below.
  • the subsequent LNA Low Noise Amplifier
  • each PS After the phase adjustment is completed, the conditions for diversity combining in the RF domain are available.
  • the final output IF signal can obtain a high signal-to-noise ratio, the noise is uncorrelated, and the signals can be superimposed in phase after alignment.
  • the corresponding block diagram of the phased array antenna system in the transmission direction is shown in Figure 6.
  • the RF modulated signal from the power splitter in the forward transmission direction needs to be adjusted by the corresponding PS phase.
  • it is assumed that the power division is in phase .
  • the phased array antenna array can realize the radiation main lobe shaping in a specific 3D direction.
  • the phased array antenna is composed of a group of independent antenna elements. Each element has its own amplitude and phase. After being combined together, the final antenna radiation main lobe and gain characteristics will be much larger than an independent element
  • the AF antenna factor determines the contribution of each vibrator element, which takes the relative position of the vibrator element in the array and the excitation source as a function of variables. Take a linear array of arming on the x-y plane as an example, which points to the z-axis.
  • the antenna factor AF can be expressed as:
  • n represents the position of the vibrating element
  • kdsin( ⁇ )cos( ⁇ )+a
  • d is the spacing between the vibrating elements
  • k is the wave number.
  • each antenna element adopts different time-domain delays, the radiation main lobe direction of the phased array antenna is finally formed.
  • the form of AF determines that the amplitude of the in-phase can be superimposed, which is why the phased array antenna can achieve the sharpening of the main lobe angle.
  • the actual example Eband array antenna gain has reached more than 40dBi .
  • the circles and arrows in FIG. 7 correspond to the PS phase shifter. All the vibration elements are non-directional and have the same amplitude in-phase feed. , The phase difference between the excitation currents of adjacent vibrators is ⁇ , and the corresponding radiation direction angle is ⁇ :
  • the radiated field strength of each vibrator element at that location is characterized as (using the 0th vibrator element as the phase reference):
  • represents the observation angle relative to the linear array, when When the components are added in phase, the field intensity radiation is maximized (indicating that the main lobe reaches the maximum in this direction, which means that the direction of the main lobe is electronically adjusted):
  • the receiving antenna also meets the corresponding conclusion. It is extended to a 2-dimensional planar array. By adjusting the phase shift value of each feed reaching the planar array, the main lobe electronic control adjustment such as spatial three-dimensionality can be completed, thereby achieving antenna alignment.
  • the RF working frequency band is 15G frequency band
  • the one-hop communication distance is 5Km
  • the local Site1 is Tx and the remote Site2 is Rx.
  • Site1 and Site2 form an 8x8 array, which is inside the integrated antenna.
  • the antenna alignment method is as follows:
  • the MCU Microcontroller Unit
  • the MCU uses FPGA (Field-Programmable Gate Array) to group 64 antennas.
  • the digital control values of the element's PS and ATT are sent to each controlled device, and the antenna pattern is defaulted to the normal direction of the plane center.
  • the baseband IDU InDoor Unit, indoor unit
  • the MCU confirms that the command is an automatic antenna alignment command
  • the local phased array antenna enters the transmit mode at a hop.
  • the phased array antenna enters the receiving mode.
  • the user selects the manual alignment mode, and can divide the phased array antenna toward the space according to the plane’s center normal as the default radiation direction of the phased array antenna For the area with the smallest spatial resolution angle, it is available for users to choose.
  • the local phased array antenna enters the transmit mode and the remote phased array antenna enters the receive mode.
  • the remote phased array antenna performs a step scan of the three-dimensional space according to its pitch and horizontal angle to obtain the first direction corresponding to the maximum RSL, and directs the direction of the main radiation lobe of the remote phased array antenna to the first direction, and Lock the PS and ATT numerical values of the antenna elements of the remote phased array antenna.
  • the remote phased array antenna performs a step scan in three dimensions according to its pitch and horizontal angle to obtain the first direction corresponding to the maximum RSL.
  • the step S20 includes: step a, sequentially changing the direction of the radiation main lobe of the remote phased array antenna, and calculating the RSL corresponding to the direction of the current radiation main lobe every time it is replaced; step b, each calculated RSL A comparison is performed to obtain the maximum RSL, and the direction of the main radiation lobe corresponding to the maximum RSL is used as the first direction.
  • the radiation main lobe direction of the remote phased array antenna is sequentially changed, and the RSL corresponding to the current radiation main lobe direction is calculated at each replacement After traversing all possible spatial directions, the calculated RSLs are compared, the maximum RSL obtained is recorded, and the direction of the main radiation lobe corresponding to the maximum RSL is used as the first direction.
  • Step scan in 3D space at horizontal angle operate similar to the remote phased array antenna, obtain the second direction corresponding to the maximum RSL, point the direction of the main radiation lobe of the local phased array antenna to the second direction, and point the local end
  • the PS and ATT numerical values of the antenna elements of the phased array antenna are locked.
  • step S30 it also includes: Step c, according to the actual RSL corresponding to the operation of the local phased array antenna, an error calculation is performed with the budget value to fine-tune the local phased array antenna according to the error calculation; step d , According to the actual RSL corresponding to the operation of the remote phased array antenna, calculate the error with the budget value to fine-tune the remote phased array antenna according to the error calculation.
  • the local phased array antenna calculates the error of the actual RSL corresponding to its own operation and the budget value to calculate based on the error Carry out the local phased array antenna fine-tuning; similarly, the remote phased array antenna performs the error calculation with the budget value according to the actual RSL corresponding to its own operation to perform the remote phased array antenna fine-tuning according to the error calculation.
  • the local transmitting side and the remote receiving side achieve the corresponding main lobe focusing and alignment. So far, the transmitting and receiving antennas have completed their own independent 3D beamforming configuration based on geographic location information. It is possible to adjust and fine-tune in real time according to the indicators based on communication quality, which makes the antenna installation engineering installation of microwave equipment into an automated process. Field engineers and installers only need to complete the tightening of the physical equipment tower. The person under the tower can be handed over to the person under the tower to start the automatic alignment process and perform the automatic alignment process of the corresponding microwave communication device antenna.
  • the one-hop single-polarized microwave communication link has completed the local phased array antenna configuration and the remote phased array antenna configuration to ensure that the transmitted signal at the local end meets the requirements set during the link budget period after reaching the remote end Receive power, and then start the baseband modulation and demodulation function.
  • the remote receiver system will complete the acquisition, synchronization and locking of the baseband operation and processing, and then complete the normal reception and demodulation of each channel of data to achieve a key indicator based on communication quality Obtained, if indicators such as bit error rate after demodulation, SNR (SIGNAL-NOISE RATIO, signal-to-noise ratio), etc. do not meet the requirements of link design, you can also trigger fine adjustment of the direction of the radiation main lobe based on the feedback mechanism of the transceiver Complete the optimization.
  • the local phased array antenna enters the transmit mode, and the remote phased array antenna enters the receive mode.
  • the remote phased array antenna performs a three-dimensional step scan to obtain the maximum RSL received signal power.
  • the local phased array antenna performs a three-dimensional step scan to obtain the second direction corresponding to the maximum RSL, and the direction of the main radiation lobe of the local phased array antenna points to the second Direction, and lock the PS and ATT numerical values of the antenna elements of the local phased array antenna to complete the automatic antenna alignment, eliminating the manual adjustment operation of the antenna alignment, thus improving the efficiency of antenna alignment.
  • a second embodiment of the antenna alignment method of the present invention is proposed based on the first embodiment.
  • the method further includes: step S40, the local phase The closed-loop control channel is built by the controlled array antenna and the remote phased array antenna; in step S50, the remote phased array antenna sends the error angle between the received alignment angle and the ideal angle to the local end through the established closed-loop control channel Phased array antenna; Step S60, after receiving the error angle, the local phased array antenna adjusts the phase shift angle of the corresponding antenna element according to the error angle, to radiate the main lobe of the local phased array antenna The direction is fine-tuned in very small steps.
  • the main lobe 3D pointing adjustment of the phased array antenna can be used to complete automatic beamforming, arbitrary space pointing interference strength acquisition and analysis, and finally The electromagnetic field distribution in the three-dimensional space centered on the device can be obtained.
  • a microwave system equipped with an active phased array antenna array at the center is used to scan the spatial radiation situation.
  • the radiation field has three radiation sources, Site1, Site2, and Site3, The position and intensity of its radiation are unknown.
  • four groups of phased array antenna arrays are integrated.
  • Each array can be composed of an NxN array structure.
  • the specific N value depends on the system accuracy and Cost requirements, generally speaking, the larger the value of N, the higher the cost, but the more beneficial it is in terms of spatial angular resolution.
  • the four groups of phased array antennas are placed at intervals of 90° horizontal azimuth, that is, the sky is equally divided into 4 quarter hemispheres from a spatial perspective, and the corresponding antenna array performs the corresponding DBF (Digital Beam Forming, digital beam synthesis) to obtain its electromagnetic field strength distribution in this quarter hemisphere.
  • DBF Digital Beam Forming, digital beam synthesis
  • the space responsible for scanning can divide the 1/4 hemisphere into multiple areas where DBF beams can independently correspond. Each area is determined by a set of phase and power values. This correspondence can be It is preset in the hardware memory in advance, and the corresponding area-by-area scanning is carried out by the software, and the received power obtained in each area is recorded and stored. Finally, the spatial electromagnetic field strength distribution corresponding to this 1/4 hemisphere can be drawn. After all the four hemispheres are completed by a similar method, the electromagnetic distribution inside the 3D space of the spherical center of the entire central site with a certain distance and radius can be obtained.
  • the above-mentioned automatic space scanning process finally draws the full-space electromagnetic distribution field strength map, which can obtain the horizontal angle and pitch angle values including interference and main signal without moving the antenna physical position.
  • This method is first It can provide network planning and network optimization materials, provide space electromagnetic distribution basis for microwave link engineering survey and topology design, and is also suitable for the establishment of a completely blind communication link between sending and receiving sites.
  • the basic operation process is as follows:
  • the one-hop microwave site still uses Figure 9 as an example.
  • the central station needs to establish a one-hop microwave communication link with Site1. Since Site1 and the central station do not know each other's geographic location information (such as GPS location, etc.), they cannot advance. Point the default main lobe of the antenna for rough alignment, but general directional information can still be obtained. For example, Site1 is located in the east direction and the central station is located in the west direction. Then the default main lobe of the antenna array can be adjusted during the installation phase Direction, point the Site1 side to the west and the central station side to the east. Then, you can start the full-space frequency sweep automation process of the central station to obtain the lobe horizontal angle and pitch angle of Site1 relative to the central station.
  • an embodiment in which the residual alignment error is adaptively eliminated through the feedback loop is further considered.
  • the main lobe alignment of the double-sided phased array antenna is completed, and then it is expected that the system will work Under certain modulation methods and bandwidths that require lower SNR, due to non-optimal system indicators, the closed-loop alignment fine-tuning process is started, and the lower modulation method is used within one hop, such as QPSK (Quadrature Phase Shift Keying, orthogonal phase Shift keying), 16QAM (uadrature Amplitude Modulation, quadrature amplitude modulation) and other modulation methods that require lower SNR.
  • QPSK Quadratture Phase Shift Keying, orthogonal phase Shift keying
  • 16QAM uadrature Amplitude Modulation, quadrature amplitude modulation
  • the local phased array antenna and the remote phased array antenna perform closed-loop control channel building.
  • the error between the alignment angle received by the far end and the ideal angle can be estimated (this involves the baseband algorithm, which has not been implemented), and the observable indicators include RSL, MSE, and FEC decoding.
  • the phased array antenna transmits the error angle between the received alignment angle and the ideal angle to the local phased array antenna through the established closed-loop control channel.
  • the local phased array antenna After receiving the error angle, the local phased array antenna adjusts the phase shift angle of the corresponding antenna element according to the distribution of the error angle, so as to step the radiation main lobe direction of the local phased array antenna in a minimum step For fine-tuning.
  • the step S60 includes:
  • the corresponding command is issued to the control module of the local phased array antenna, and the phase shift angle of the corresponding antenna array is adjusted by the control module, wherein the antenna array is composed of multiple antenna elements, each The phase and amplitude information of the antenna element of the antenna element is consistent.
  • the local phased array antenna can issue corresponding commands to the control module of the local phased array antenna according to the error angle, and adjust the phase shift angle of the corresponding antenna array through the control module. Furthermore, the main lobe beam of the local phased array antenna is directed at a very small step for tentative fine-tuning.
  • the phase and power adjustment of all antenna elements are electronically adjustable, the corresponding fine adjustment work can be automatically completed by the software.
  • a stepwise method can be used to wait for the remote end to update its receiver related system again After the performance index, the adjustment is performed again. If the performance index fed back by the far end reaches a certain threshold, the adjustment is stopped, and the closed-loop phase adjustment process of the MIMO system is concluded. Because the transceiver channel is reciprocal, after the local end is adjusted, the link from the remote end to the local end is adjusted by default, and the microwave system enters the state of long-term stable operation.
  • a point-to-multipoint microwave communication network based on the mesh network can also be constructed for FIG. 7.
  • the solution provided in this embodiment uses a local phased array antenna and a remote phased array antenna to establish a closed-loop control channel.
  • the remote phased array antenna passes the established closed-loop control channel to adjust the received alignment angle to the ideal
  • the error angle of the angle is sent to the local phased array antenna.
  • the local phased array antenna adjusts the phase shift angle of the corresponding antenna element according to the error angle to control the radiation of the local phased array antenna.
  • the direction of the lobe is finely adjusted in a very small step, and the main lobe 3D pointing adjustment of the phased array antenna is used to complete automatic beamforming, acquisition and analysis of the interference intensity of any space pointing, and finally the device can be obtained in the three-dimensional space. Electromagnetic field distribution.
  • a third embodiment of the antenna alignment method of the present invention is proposed based on the first embodiment or the second embodiment.
  • the local phased array antenna and/or the remote phased array antenna are Dual-polarized phased array antenna, each polarized phased array antenna performs antenna alignment in turn.
  • the original NxN single-polarized phased array antenna array is upgraded to two groups in accordance with the requirements of the XPIC (Cross-polarisation Interference Counteracter) group.
  • the phased array NxN antenna is still a piece of hardware in physical form, and includes a phased array antenna with one horizontally polarized radiation array unit and one vertically polarized radiation array unit.
  • the 15G working frequency band and 5Km one-hop communication distance are still used as an example. Therefore, first, two-phased phased array antenna is required to perform the radiation main lobe alignment processing of the phased array antenna in Example 1, and the horizontal Align the antennas in the polarization direction, and then align the antennas in the vertical polarization direction. For the specific fine adjustment process, you can also refer to the process in Example 2. After the dual-polarized antennas are all aligned, the system You can enter the XPIC state to work.
  • the existing microwave communication system needs to use OMT (Object Modeling Technology, object model), combiner and other high-precision precision mechanical structural parts to achieve, dual-polarization combining, butt matching with the antenna, etc., and in this embodiment
  • OMT Object Modeling Technology, object model
  • the antenna uses standard cables and microwave waveguide interfaces, it can directly and seamlessly install dual-polarized antennas and support the smooth upgrade of existing equipment to active phased array antenna arrays, as shown in Figure 11.
  • the phased array antenna is upgraded to a dual-polarized phased array antenna.
  • the antenna alignment in the horizontal polarization direction is performed first, and then the antenna alignment in the vertical polarization direction is performed.
  • the gain of the system is maximized, and due to its compact size and weight, it is more convenient for engineering installation.
  • the present invention further provides a phased array antenna system.
  • the phased array antenna system includes an antenna element, PS, ATT, FPGA module, MUC, temperature sensor, mux data selector, and Telementry module.
  • the power supply module and other components; the antenna element, PS and ATT are connected by RF wiring, and the temperature sensor is located in the vicinity of the antenna element for temperature compensation of the PS and ATT, the PS and ATT
  • the control terminal is connected to the FPGA module, the FPGA module, the temperature sensor and the Telementry module are connected to the MUC, the mux is respectively connected to the Telementry module and the power supply module, and the power supply module is used to supply power to each component .
  • the black box represents the antenna element for the RF (Radio Frequency) working frequency point. Every four elements (2x2 antenna elements) form an array, which share the same phase and amplitude values. Then copy these fractal structures, and finally rely on the power division network to form an 8x8 array.
  • This array is presented as an antenna that can be docked with the ODU (Outdoor Unit), which uses the central Feed Port to realize the docking with the ODU.
  • ODU Outdoor Unit
  • the -48V power supply from the TNC interface is converted to the required power supply Rail after passing through the power conversion circuit, considering the corresponding EMC (Electro Magnetic Compatibility, electromagnetic compatibility) and lightning protection design
  • the Tele circuit needs to be sent to the uP-MCU for processing through the x circuit of the baseband board.
  • the interface carries the interactive channel between the phased array antenna pointing control and the IDU (InDoor Unit, indoor unit).
  • IDU InDoor Unit, indoor unit.
  • the temperature sensor needs to be placed close to the position close to the array for PS and ATT temperature compensation, to ensure high-precision beamforming and calibration requirements.
  • FPGA mainly completes the x function of the IO baseband board. Devices such as PS and ATT may need to use a parallel bus for adjustment and control. The control terminals of these adjustable devices are connected under the FPGA.
  • the core function module of the phased array antenna system is the phase and amplitude adjustment module.
  • the basic principle is as follows.
  • the FPGA mainly completes the adjustment of the amplitude and phase of each antenna element.
  • the general PS and ATT adopt the parallel control mode, according to the smallest granularity.
  • FPGA adopts the self-loading method. Because it needs to be integrated in the phased array antenna system, the requirement of remote download is avoided, and the specific implementation may depend on the specific situation.
  • An antenna element corresponds to a temperature sensor to obtain the temperature of the current element in time, and then adjust the corresponding phase and amplitude with the temperature change.
  • microwave communication information systems mostly use FDD frequency division multiplexing, so it is necessary to place corresponding phase-amplitude modules on the transceiver channels for corresponding beamforming processing.
  • a single-chip microcomputer or ARM Advanced RISC Machine
  • ARM Advanced RISC Machine
  • the software After the phased array antenna is powered on, the software performs the current user configuration judgment. If it is not automatic alignment, it enters the 3D pattern detection mode to obtain the current antenna pointing distribution, and then the two sides of the link rely on the alignment control interactive protocol to complete the final Precise alignment.
  • Figure 14 shows the block diagram of the integration of the phased array antenna and the microwave system.
  • the -48V and Telementry bypass output near the ODU side
  • the box completes the output (the box can be considered integrated in the antenna array, which will be determined when the subsequent installation is completed).
  • the -48V power supply and Tele signal extraction are completed, the two are sent to the TNC interface of the antenna array.
  • the cost is considered using this interface
  • the existing conveniences such as waterproofing and installation.
  • the waveguide port of the phased array antenna is connected to the ODU by means of waveguides and RF cables.
  • the former is compatible with existing conventional mechanical antenna flange mounting and positioning screws and other structural related designs, which can ensure the docking of the iron tower with the ODU and Tightening requirements.
  • the solution improved in this embodiment may not require manpower to align the microwave antenna on the tower.
  • the integration and docking of the active phased array antenna system and the conventional ODU system it may be the integration and integration in the existing commercial microwave system . Due to the use of active digital adjustable scheme, it can achieve automatic alignment of antenna alignment, automatic scanning of three-dimensional space interference radiation sweep, etc. Compared with traditional schemes, it will greatly reduce costs, and at the same time a new application mode It will also provide new data support and methods for applications such as microwave network planning and optimization.
  • FIG. 15 is a schematic diagram of a functional module of an embodiment of the antenna alignment device of the present invention.
  • the antenna alignment device includes: a setting module 10, configured to enter the transmit mode and the receive mode for the local phased array antenna and the remote phased array antenna respectively when receiving the antenna automatic alignment instruction,
  • the local phased array antenna and the remote phased array antenna are composed of antenna elements arranged in an array, and a PS shifter and an ATT attenuator connected to the antenna elements via radio frequency wiring;
  • the first control module 20 It is used for the step scanning of the remote phased array antenna in three-dimensional space to obtain the first direction corresponding to the maximum RSL received signal level, pointing the direction of the radiation main lobe of the remote phased array antenna to the first direction, and The PS and ATT numerical values of the antenna elements of the remote phased array antenna are locked;
  • the second control module 30 is used to control the local phase after the direction of the main radiation lobe of the remote phased array antenna points to the first direction
  • the array antenna performs a step scan in three-dimensional space to obtain the second direction corresponding to the maximum RSL, directs the radiation main lobe
  • the first control module 20 is specifically configured to: sequentially change the direction of the radiation main lobe of the remote phased array antenna, calculate the RSL corresponding to the direction of the current radiation main lobe at each replacement; By comparison, the maximum RSL is obtained, and the direction of the main radiation lobe corresponding to the maximum RSL is used as the first direction.
  • the antenna alignment device further includes:
  • the first fine-tuning module is used to calculate the error according to the actual RSL corresponding to the operation of the local phased array antenna and the budget value to fine-tune the local phased array antenna according to the error calculation; and to correspond to the operation of the remote phased array antenna
  • the actual RSL is calculated with the budget value in order to fine-tune the remote phased array antenna based on the error calculation.
  • the antenna alignment device further includes: a chain building module for the local phased array antenna and the remote phased array antenna for closed-loop control channel building; a processing module for the remote phased array antenna Through the established closed-loop control channel, the error angle between the received alignment angle and the ideal angle is sent to the local phased array antenna; the second fine-tuning module is used for the local phased array antenna to receive the error angle, The phase shift angle of the corresponding antenna element is adjusted according to the error angle to fine-tune the direction of the main radiation lobe of the local phased array antenna in a very small step.
  • the second fine-tuning module is specifically used to issue a corresponding command to the control module of the local phased array antenna according to the error angle, and adjust the phase-shift angle of the corresponding antenna array through the control module,
  • the antenna element is composed of multiple antenna elements, and the phase and amplitude information of the antenna elements of each antenna element are consistent.
  • the specific implementation of the antenna alignment apparatus of the present invention is basically the same as the above embodiments of the antenna alignment method, and details are not described herein again.
  • the local phased array antenna enters the transmit mode, and the remote phased array antenna enters the receive mode.
  • the remote phased array antenna performs a three-dimensional space step scan to obtain the maximum RSL received signal power.
  • the local phased array antenna performs a three-dimensional step scan to obtain the second direction corresponding to the maximum RSL, and the direction of the main radiation lobe of the local phased array antenna points to the second Direction, and lock the PS and ATT numerical values of the antenna elements of the local phased array antenna to complete the automatic antenna alignment, eliminating the manual adjustment operation of the antenna alignment, thus improving the efficiency of antenna alignment.
  • the present invention also provides a computer-readable storage medium (also called a readable storage medium), the computer-readable storage medium stores an antenna alignment program, and the antenna alignment program may be used by one or more processors Performed to: determine that the direction of the main radiation lobe of the local phased array antenna points to the direction of the center normal of the corresponding plane of the local phased array antenna; the direction of the main radiation lobe of the phased array antenna at the local end points to the center normal After the direction, the remote phased array antenna performs a three-dimensional space step scan to obtain the first direction corresponding to the maximum RSL.
  • a computer-readable storage medium also called a readable storage medium
  • the computer-readable storage medium stores an antenna alignment program
  • the antenna alignment program may be used by one or more processors Performed to: determine that the direction of the main radiation lobe of the local phased array antenna points to the direction of the center normal of the corresponding plane of the local phased array antenna; the direction of the main radiation lobe of the phased array antenna at the local
  • the following operations are also implemented: sequentially changing the direction of the radiation main lobe of the remote phased array antenna, and calculating the RSL corresponding to the direction of the current radiation main lobe at each replacement Comparing each calculated RSL to obtain the maximum RSL, and taking the direction of the main radiation lobe corresponding to the maximum RSL as the first direction.
  • the following operation is also performed: according to the actual RSL corresponding to the operation of the local phased array antenna, an error calculation is performed with the budget value, and the local phase is calculated according to the error calculation Fine adjustment of the array antenna; according to the actual RSL corresponding to the operation of the remote phased array antenna, an error calculation is performed with the budget value to fine tune the remote phased array antenna according to the error calculation.
  • the local phased array antenna and the remote phased array antenna perform closed-loop control channel building; the remote phased array antenna passes the The closed-loop control channel is built to send the error angle between the received alignment angle and the ideal angle to the local phased array antenna; after the local phased array antenna receives the error angle, the corresponding antenna is adjusted according to the error angle
  • the vibrator adjusts the phase shift angle to fine-tune the direction of the main radiation lobe of the local phased array antenna in minimal steps.
  • the following operation is also performed: according to the error angle, a corresponding instruction is issued to a control module of the local phased array antenna, and the corresponding module
  • the antenna elements are adjusted for phase shift angle, where the antenna elements are composed of multiple antenna elements, and the phase and amplitude information of the antenna elements of each antenna element is consistent.
  • the present invention also provides a computer program product, the computer program product includes a computer program stored on a non-transitory computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, Causing the computer to execute the method in any of the above method embodiments.
  • the local phased array antenna enters the transmit mode, and the remote phased array antenna enters the receive mode.
  • the remote phased array antenna performs a three-dimensional space step scan to obtain the maximum RSL received signal power.
  • the local phased array antenna performs a three-dimensional step scan to obtain the second direction corresponding to the maximum RSL, and the direction of the main radiation lobe of the local phased array antenna points to the second Direction, and lock the PS and ATT numerical values of the antenna elements of the local phased array antenna to complete the automatic antenna alignment, eliminating the manual adjustment operation of the antenna alignment, thus improving the efficiency of antenna alignment.
  • the methods in the above embodiments can be implemented by means of software plus a necessary general hardware platform, and of course, can also be implemented by hardware, but in many cases the former is better Implementation.
  • the technical solution of the present invention can be embodied in the form of a software product in essence or part that contributes to the existing technology, and the computer software product is stored in a storage medium (such as ROM/RAM) as described above , Magnetic disks, optical disks), including several instructions to enable a terminal device (which may be a mobile phone, computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.

Abstract

本发明公开了一种天线对准方法,包括:在接收到天线自动对准指令时,本端相控阵天线和远端相控阵天线分别进入发射模式和接收模式;远端相控阵天线进行三维空间的步进扫描,获得最大RSL接收信号电平对应的第一方向,将远端相控阵天线的辐射主瓣方向指向所述第一方向,并将远端相控阵天线的天线振元的PS、ATT数控值锁定;在远端相控阵天线的辐射主瓣方向指向所述第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向所述第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定。本发明还公开了一种天线对准装置、相控阵天线系统及计算机可读存储介质。

Description

天线对准方法、装置、相控阵天线系统及可读存储介质
交叉引用
本发明要求在2018年12月17日提交至中国专利局、申请号为201811547914.4、发明名称为“天线对准方法、装置、相控阵天线系统及可读存储介质”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明涉及通信技术领域,尤其涉及一种天线对准方法、装置、相控阵天线系统及可读存储介质。
背景技术
微波通信系统中,为了提高链路安装质量,对于微波最重要的一条就是如何进行天线的对准,在传统的微波天线对准方法实现过程中,往往可以通过获取一跳微波站点的地理位置信息(如GPS、指北针等工具),进而依靠人力在塔上进行相应的天线主瓣方向调节,最重要的涉及到天线方位角及俯仰角的手动调节,期间还需要位于塔下的相关工程师进行相关接收功率等指标监控和适时反馈,实际应用过程中,此过程耗时费力效率较低,因此,在微波通信系统中,天线的对准效率有待提高。
发明内容
本发明的主要目的是提供一种天线对准方法、装置、相控阵天线系统及可读存储介质,旨在解决现有技术中天线的对准效率不高的问题。
为实现上述目的,本发明提出天线对准方法,应用于微波通信设备,所述天线对准方法包括以下步骤:在接收到天线自动对准指令时,本端相控阵天线和远端相控阵天线分别进入发射模式和接收模式,其中,本端相控阵天线和远端相控阵天线由阵列排布的天线振元、以及经射频走线连接天线振元的PS移向器和ATT衰减器构成;远端相控阵天线进行三维空间的步进扫描,获得最大RSL接收信号电平对应的第一方向,将远端相控阵天线的辐射主瓣方向指向所述第一方向,并将远端相控阵天线的天线振元的PS、ATT数控值锁定;在远端相控阵天线的辐射主瓣方向指向所述第一方向后,本端相控 阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向所述第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定。
此外,为实现上述目的,本发明还提出一种天线对准装置,所述天线对准装置包括:设置模块,用于在接收到天线自动对准指令时,本端相控阵天线和远端相控阵天线分别进入发射模式和接收模式,其中,本端相控阵天线和远端相控阵天线由阵列排布的天线振元、以及经射频走线连接天线振元的PS移向器和ATT衰减器构成;第一控制模块,用于远端相控阵天线进行三维空间的步进扫描,获得最大RSL接收信号电平对应的第一方向,将远端相控阵天线的辐射主瓣方向指向所述第一方向,并将远端相控阵天线的天线振元的PS、ATT数控值锁定;第二控制模块,用于在远端相控阵天线的辐射主瓣方向指向所述第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向所述第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定。
此外,为实现上述目的,本发明还提供一种相控阵天线系统,所述相控阵天线系统包括天线振元、PS移向器、ATT衰减器、FPGA现场可编程门阵列模块、MUC微控制单元、温度传感器、mux数据选择器,Telementry遥测模块和供电模块,所述天线振元、PS和ATT经射频走线连接,所述温度传感器位于天线振元的邻近位置,用以进行所述PS和ATT的温度补偿,所述PS和ATT的控制端挂接在所述FPGA模块下,所述FPGA模块、温度传感器和Telementry模块连接所述MUC,所述mux分别连接所述Telementry模块和供电模块,所述供电模块用于为各元器件供电。
此外,为实现上述目的,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有天线对准程序,所述天线对准程序被处理器执行时实现如上文所述的天线对准方法的步骤。
此外,为实现上述目的,本发明还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行以上各个方面所述的方法。
附图说明
图1是本发明实施例方案涉及的硬件运行环境的天线对准装置结构示意图;
图2是本发明的天线对准方法第一实施例的流程示意图;
图3是微波天线对准基本原理示意图;
图4是传统微波天线对准简化示意图;
图5是广义相控阵天线在接收方向上的架构示意图;
图6是广义相控阵天线在发射方向上的架构示意图;
图7是本发明实施例方案涉及的一个可选的N元线阵相控阵天线的结构示意图;
图8是本发明的天线对准方法第二实施例的流程示意图;
图9本发明实施例方案涉及的一个可选的空间电磁干扰扫描原理示意图;
图10本发明实施例方案涉及的一个可选的分离式最小相控阵天线阵列示意图;
图11本发明实施例方案涉及的一个可选的平板阵列天线与微波设备间的无缝对接示意图;
图12本发明实施例方案涉及的一个可选的使用相控阵天线实现LoSMIMO的架构示意图;
图13是本发明相控阵天线系统的系统结构示意图;
图14本发明实施例方案涉及的一个可选的微波相控阵天线与微波系统拓扑框架示意图;
图15是本发明的天线对准装置实施例的功能模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的解决方案主要是:通过本端相控阵天线进入发射模式,远端相控阵天线进入接收模式,之后,远端相控阵天线进行三维空间的步进扫描,获得最大RSL接收信号电平对应的第一方向,将远端相控阵天线的辐射主瓣方向指向第一方向,并将远端相控阵天线的天线振元的PS、ATT数 控值锁定;在远端相控阵天线的辐射主瓣方向指向第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定,从而完成天线自动对准,省去了天线对准的手动调节操作,因此,提高了天线对准的效率。通过本发明实施例的技术方案,解决了天线的对准效率不高的问题。
本发明实施例提出一种天线对准装置。
参照图1,图1为本发明实施例方案涉及的硬件运行环境的天线对准装置结构示意图。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
如图1所示,该天线对准装置可以包括:处理器1001、通信总线1002、用户接口1003、网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。在一实施方式中,所述用户接口1003可以是显示屏(Display)、输入单元比如键盘(Keyboard)等一个或多个适用的接口,在其他实施方式中,所述用户接口1003也可以是标准的有线接口、无线接口等。所述网络接口1004可以是标准的有线接口、无线接口(如WI-FI接口)等一个或多个适用的网络设备的接口。所述存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory)等,例如磁盘存储器。在一实施方式中,所述存储器1005也可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的天线对准装置结构并不构成对天线对准装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块以及天线对准程序。
本发明中,天线对准装置通过处理器1001调用存储器1005中存储的天线对准程序,并执行以下操作:在接收到天线自动对准指令时,本端相控阵天线和远端相控阵天线分别进入发射模式和接收模式,其中,本端相控阵天线和远端相控阵天线由阵列排布的天线振元、以及经射频走线连接天线振元的PS移向器和ATT衰减器构成;远端相控阵天线进行三维空间的步进扫描, 获得最大RSL接收信号电平对应的第一方向,将远端相控阵天线的辐射主瓣方向指向所述第一方向,并将远端相控阵天线的天线振元的PS、ATT数控值锁定;在远端相控阵天线的辐射主瓣方向指向所述第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向所述第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定。
在一实施方式中,处理器1001可以调用存储器1005中存储的天线对准程序,还执行以下操作:确定本端相控阵天线的辐射主瓣方向指向本端相控阵天线对应平面的中心法线方向;在本端相控阵天线的辐射主瓣方向指向所述中心法线方向后,远端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的所述第一方向。
在一实施方式中,处理器1001可以调用存储器1005中存储的天线对准程序,还执行以下操作:依次更换远端相控阵天线的辐射主瓣方向,在每次更换时计算当前辐射主瓣方向对应的RSL;将计算的各个RSL进行比对,获得所述最大RSL,将所述最大RSL对应的辐射主瓣方向作为所述第一方向。
在一实施方式中,处理器1001可以调用存储器1005中存储的天线对准程序,还执行以下操作:根据本端相控阵天线运行对应的实际RSL,与预算值进行误差计算,以根据误差计算进行本端相控阵天线微调;根据远端相控阵天线运行对应的实际RSL,与预算值进行误差计算,以根据误差计算进行远端相控阵天线微调。
在一实施方式中,处理器1001可以调用存储器1005中存储的天线对准程序,还执行以下操作:本端相控阵天线及远端相控阵天线进行闭环控制通道建链;远端相控阵天线通过已建的闭环控制通道,将接收的对准角度与理想角度的误差角度发送给本端相控阵天线;本端相控阵天线接收到所述误差角度后,根据所述误差角度对相应的天线振元进行移相角度调节,以对本端相控阵天线的辐射主瓣方向在极小步进上进行微调。
在一实施方式中,处理器1001可以调用存储器1005中存储的天线对准程序,还执行以下操作:根据所述误差角度下发相应指令给本端相控阵天线的控制模块,通过所述控制模块对相应的天线阵子进行移相角度调节,其中,天线阵子由多个天线振元构成,每个天线阵子的天线振元的相位及幅度信息一致。
本实施例通过上述方案,通过本端相控阵天线进入发射模式,远端相控 阵天线进入接收模式,之后,远端相控阵天线进行三维空间的步进扫描,获得最大RSL接收信号电平对应的第一方向,将远端相控阵天线的辐射主瓣方向指向第一方向,并将远端相控阵天线的天线振元的PS、ATT数控值锁定;在远端相控阵天线的辐射主瓣方向指向第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定,从而完成天线自动对准,省去了天线对准的手动调节操作,因此,提高了天线对准的效率。
基于上述硬件结构,提出本发明天线对准方法实施例。
参照图2,图2为本发明天线对准方法第一实施例的流程示意图。
在第一实施例中,所述天线对准方法包括以下步骤:步骤S10,在接收到天线自动对准指令时,本端相控阵天线和远端相控阵天线分别进入发射模式和接收模式,其中,本端相控阵天线和远端相控阵天线由阵列排布的天线振元、以及经射频走线连接天线振元的PS移向器和ATT衰减器构成;步骤S20,远端相控阵天线进行三维空间的步进扫描,获得最大RSL接收信号电平对应的第一方向,将远端相控阵天线的辐射主瓣方向指向所述第一方向,并将远端相控阵天线的天线振元的PS、ATT数控值锁定;步骤S30,在远端相控阵天线的辐射主瓣方向指向所述第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向所述第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定。
微波通信系统中,针对常规频段应用的场景,往往采用的还是机械类的抛物面天线其增益尚未达到Eband可及的量级,天线的对准可以依靠现场安装工人的经验及GPS定位设备、望远镜、激光测距仪等相关辅助手段,进行天线对准调节,但是伴随着Eband的应用需求不断提升,针对微波的网络规划、勘察等要求就提高了,否则现场可能出现诸如无法调节至链路预算RSL(Receive Signal Level,接收信号电平)的情况,传输距离、衰落储备等无法保证。为了提高链路安装质量,对于微波最重要的一条就是如何进行天线的对准,结合近期在业界目前的实际情况,使用万用表进行RSSI(Received Signal Strength Indication,接收信号强度指示)尝试就是目前唯一有效的核心方法,在微波开站过程中,耗时耗力情况不时出现,除去最明显的成本之外,由于最优调节的难度增加,最终结果必然在现场会有一个权衡和退让, 针对未来高调应用、MIMO(Multiple-Input Multiple-Output,多输入多输出系统)涉及到性能指标提升的应用场景都会有一些性能损失。如何将研发在设计、规划设备时的性能最大化发挥,在外场应用阶段如何实现天线对准调节,是首要需要解决的问题。
在传统的微波天线对准方法实现过程中,往往可以通过获取一跳微波站点的地理位置信息(如GPS、指北针等工具),进而依靠人力在塔上进行相应的天线主瓣方向调节,最重要的涉及到天线方位角及俯仰角的手动调节,期间还需要位于塔下的相关工程师进行相关接收功率等指标监控和适时反馈,实际应用过程中,此过程耗时费力效率较低,导致工程安装成本难以下降。具体地传统天线对齐方法,会使用集成工勘数据及地形地图信息的第三方仿真软件进行链路预算,例如,如图3所示,图3是一个常规微波天线对准示意图,可以看出名为A1和A2的双侧站点坐标已经在工勘阶段通过GPS设备进行了获取,相应地在相关MW网络规划软件中进行标定之后,就可以将该跳微波链路的地形、地貌等地理情况反映出来了,首先我们先看下微波天线的对准过程的基本示意:图3中建筑1和铁塔2分别为一跳微波链路双侧天线A2和A1,以铁塔2发送至建筑1端的波束调整为例,需要将A1天线的主瓣TL指向A2天线的对应主瓣三维方向上。在这个对准过程中,由于天线A1和A2都具备辐射主瓣和辐射旁瓣,且天线的结构中心并不一定就是辐射主瓣指向,因此在实际外场中,天线对准问题就演变成了在三维空间中,将双侧天线主瓣辐射指向进行互相重合的问题。
例如,如图4所示,本端Near Side及远端Far Side天线在工程安装完毕之后,其天线的指向就已经确定下来了,除非工程人员进行现场的天线安装夹具(支座)的调整,否则这条微波链路再无他法可以完成天线对准,然后才可以进行建链调测。针对任意侧的天线而言,天线对准的本质就是需要完成天线主瓣3D指向的双向瞄准,该工作在微波开张过程中是难度最大最耗时的操作,往往都是在铁塔上进行,收到天气和环境因素影响较大,导致了该操作成本难以降低。从另外一个角度出发,由于人工因素的介入,最终在人工调整天线对齐之后的效果,往往并不是最佳的,一个最直接的原因是最终的螺钉紧固会导致最佳位置的误差和丢失。目前看常规手段无有效的解决方案。
本实施例中,采用相控阵天线来实现天线主瓣波束成型(Beam Forming)及主波瓣角锐化(天线增益提升),使用波束成型技术实现微波设备在工程 安装阶段的自动天线对准功能,而主瓣角的锐化有利于链路传输距离的提升。
具体地,相控阵天线是由独立的阵列排布的天线振元、以及经射频走线连接天线振元的PS(Phase shifter,移向器)和ATT(Attenuator,衰减器)构成,天线合并在一起,各个振元具有各自幅度和相位,最终组合在一起之后,最终的天线辐射主瓣及增益特性将远大于一个独立的振元,AF天线因子确定了振元每个振元的贡献,其以振元的在阵列中的相对位置及激励源作为变量的函数。
一个广义的相控阵天线从框图角度分解如下图5所示,以接收为例,各个天线振元后继的LNA(Low Noise Amplifier,低噪声放大器)可以实现对于任一路的放大,然后由各个PS完成相位调节后,就具备了在RF域进行分集合并的条件,最终输出的IF信号将可以获取较高的信噪比,噪声是不相关的,而信号对齐之后可以同相叠加。
对应的发射方向的相控阵天线系统框图如图6所示,前向发射方向上来自功分器的RF已调信号,需要经过对应的PS相位调节,图6中假设功分是相位一致的。对比单天线的全向天线辐射方向图,通过相控阵天线阵列就可以实现在特定3D方向的辐射主瓣成型。
相控阵天线是由一组独立的天线振元合并在一起的,各个振元具有各自幅度和相位,最终组合在一起之后,最终的天线辐射主瓣及增益特性将远大于一个独立的振元,AF天线因子确定了每个振元的贡献,其以振元的在阵列中的相对位置及激励源作为变量的函数。以一个布防在x-y平面上的线性阵列为例,其指向z轴向。天线因子AF可以表达为:
Figure PCTCN2019114782-appb-000001
n代表了振元的位置,Ψ=kdsin(θ)cos(φ)+a,d为振元之间的间距,k为波数。
由于各个天线振元采用了不同的时域延迟,最终构成了相控阵天线的辐射主瓣方向。这就是线性阵列天线辐射方向2纬可调的原理,如果可以电控进行传输延迟的调节,则就可以进行辐射主瓣的灵活调节了,如果天线振元从线性阵列演变为平面阵列,则从理论上就具备了可以在三维空间内调节的可能。
从AF的形式就可以发现,其加和的形式决定了同相的幅度可以叠加,这就是相控阵天线可以实现主瓣角度锐化的原因,实际中的例子Eband阵列天线增益已经达到了40dBi以上。
以N元线阵相控阵天线为例,例如,如图7所示,图7中圆圈加上箭头的示意对应PS移相器,所有的振元均为无方向性,等幅同相馈电,相邻振元激励电流相位差为ψ,则对应的辐射方向角为θ:
Figure PCTCN2019114782-appb-000002
各振元在θ方向远区某点辐射场的场强矢量和为:
E(θ)=E 0+E 1+Λ+E i+ΛE N-1
假设等幅馈电的情况下,各振元在该处的辐射场强表征为(以0号振元作为相位基准):
Figure PCTCN2019114782-appb-000003
其中,Ψ代表相对于线阵的观测角度,当
Figure PCTCN2019114782-appb-000004
时,各分量同相相加,场强辐射得到最大(说明主瓣在这个方向上达到了最大,也就是实现了电控调节主瓣方向的作用):
|E(θ)| max=NE
根据天线收发互易定理可知,接收天线,同样满足对应结论。推广到2维平面阵,通过调节到达平面阵各个馈源的移相值,则可以完成诸如空间三维度内的主瓣电控调节,进而实现天线对准。
针对常规微波频带的情况,RF工作频段为15G频带,一跳通信距离为5Km,以本端Site1为Tx、远端Site2为Rx进行说明,Site1和Site2构成8x8阵列,其在一体化天线内部是按照固定位置布放和设计的,天线对准方法如下:
首先MCU(Microcontroller Unit,微控制单元)上电之后,通过I2C总线存储在存储器中的相控阵天线维数,MCU通过FPGA(Field-Programmable Gate Array,现场可编程门阵列)将64组天线振元的PS、ATT数字控制值下发至各个受控器件,将该天线的方向图默认至平面中心法线方向。基带IDU(InDoor Unit,室内单元)通过telementry遥测通道将来自IDU指令下发给相控阵天线,其MCU确认指令是天线自动对准指令后,一跳本端相控阵天线进入发射模式,远端相控阵天线进入接收模式。进一步地,另一种情形,MCU确认指令不是天线自动对准指令时,用户选择手动对准模式,可以按照依据平面中心法线作为相控阵天线默认辐射方向,将相控阵天线面向空间划分为按照最小空间分辨角度的区域,供用户选择使用。当用户设置完毕时,一跳本端相控阵天线进入发射模式,远端相控阵天线进入接收模式。之后, 远端相控阵天线按照其俯仰、水平角进行三维空间的步进扫描,获得最大RSL对应的第一方向,将远端相控阵天线的辐射主瓣方向指向该第一方向,并将远端相控阵天线的天线振元的PS、ATT数控值锁定。
可选地,先确定本端相控阵天线的辐射主瓣方向指向本端相控阵天线对应平面的中心法线方向,在本端相控阵天线的辐射主瓣方向指向所述中心法线方向后,远端相控阵天线按照其俯仰、水平角进行三维空间的步进扫描,获得最大RSL对应的第一方向。
可选地,所述步骤S20包括:步骤a,依次更换远端相控阵天线的辐射主瓣方向,在每次更换时计算当前辐射主瓣方向对应的RSL;步骤b,将计算的各个RSL进行比对,获得所述最大RSL,将所述最大RSL对应的辐射主瓣方向作为所述第一方向。
远端相控阵天线按照其俯仰、水平角进行三维空间的步进扫描过程中,依次更换远端相控阵天线的辐射主瓣方向,在每次更换时计算当前辐射主瓣方向对应的RSL,在遍历完所有的全部可能的空间指向之后,将计算的各个RSL进行比对,记录下获取到的最大RSL,并将该最大RSL对应的辐射主瓣方向作为第一方向。
在远端相控阵天线的辐射主瓣方向指向第一方向后,本端相控阵天线此时的辐射主瓣方向仍处于中心法向方向上,此时,本端相控阵天线按照俯仰、水平角进行三维空间的步进扫描,操作类似远端相控阵天线,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定。
进一步地,所述步骤S30之后,还包括:步骤c,根据本端相控阵天线运行对应的实际RSL,与预算值进行误差计算,以根据误差计算进行本端相控阵天线微调;步骤d,根据远端相控阵天线运行对应的实际RSL,与预算值进行误差计算,以根据误差计算进行远端相控阵天线微调。
进一步地,在将本端相控阵天线的天线振元的PS、ATT数控值锁定后,本端相控阵天线将其自身运行对应的实际RSL,与预算值进行误差计算,以根据误差计算进行本端相控阵天线微调;同样地,远端相控阵天线根据其自身运行对应的实际RSL,与预算值进行误差计算,以根据误差计算进行远端相控阵天线微调。
本端发射侧和远端接收侧实现对应的主瓣聚焦和对准,至此收发天线完成的还是各自基于地理位置信息进行的独立3D波束成型配置,然后由于空 间链路已经可以基本视通,然后就可以实时按照基于通信质量为指标的调整和精调了,这就使得微波设备的天线安装工程安装变成了自动化的过程,现场工程师及安装人员只需要完成物理设备的塔上紧固,剩下的就可以交给塔下的人员启动自动对准流程,进行对应的微波通信设备天线自动对准过程了。
至此,该一跳单极化微波通信链路就完成了本端相控阵天线配置和远端相控阵天线配置,保证本端的发射信号到达远端后均满足在链路预算期间设定的接收功率,随后启动基带调制解调功能,远端的接收机系统将完成捕获、同步及锁定的基带操作和处理后,完成各路数据的正常接收和解调,从而实现基于通信质量的关键指标获取,如果如解调后误码率、SNR(SIGNAL-NOISE RATIO,信噪比)等指标未达到链路设计的要求,此时还可以触发基于收发端反馈机制的辐射主瓣方向精调来完成优化。
本实施例提供的方案,通过本端相控阵天线进入发射模式,远端相控阵天线进入接收模式,之后,远端相控阵天线进行三维空间的步进扫描,获得最大RSL接收信号电平对应的第一方向,将远端相控阵天线的辐射主瓣方向指向第一方向,并将远端相控阵天线的天线振元的PS、ATT数控值锁定;在远端相控阵天线的辐射主瓣方向指向第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定,从而完成天线自动对准,省去了天线对准的手动调节操作,因此,提高了天线对准的效率。
在一实施方式中,基于第一实施例提出本发明天线对准方法第二实施例,在本实施例中,如图8所示,所述步骤S30之后,还包括:步骤S40,本端相控阵天线及远端相控阵天线进行闭环控制通道建链;步骤S50,远端相控阵天线通过已建的闭环控制通道,将接收的对准角度与理想角度的误差角度发送给本端相控阵天线;步骤S60,本端相控阵天线接收到所述误差角度后,根据所述误差角度对相应的天线振元进行移相角度调节,以对本端相控阵天线的辐射主瓣方向在极小步进上进行微调。
针对微波通信产品在网规网优及链路开通阶段需要获取空间辐射情况的需求,可以采用相控阵天线的主瓣3D指向调整,完成自动化波束成型、任意空间指向干扰强度获取及分析,最终可以获取以设备为中心在三维空间上的电磁场分布情况。
例如,以图9为例,位于中心位置的是用来扫描空间辐射情况的,配置 了有源相控阵天线阵列的微波系统,其辐射场范围内有Site1、Site2及Site3三个辐射源,其辐射的位置和强度未知,首先在中心站点内部的圆柱形天线保护罩内,集成了4组相控阵天线阵列,每个阵列可以由NxN阵子结构构成,具体的N值取决于系统精度和成本要求,一般来说N值越大,成本高但在空间角度分辨率上将更有益。
这四组相控阵天线按照90°的水平方位角间隔放置,即从空间角度将天空等分为4个1/4半球,而在每个半球内部由对应的天线阵列进行对应的DBF(Digital Beam Forming,数字波束合成),从而获取其在这个1/4半球内的电磁场强分布。
以A1相控阵天线阵列为例,其负责扫描的空间内部可以将1/4半球划分为多个DBF波束可以独立对应的区域,每个区域由一组相位及功率值确定,这个对应关系可以提前预设在硬件存储器中,由软件调取继而进行对应的逐个区域扫描,每个区域获取的接收功率进行记录存储之后,最终可以绘制出这个1/4半球对应的空间电磁场强分布情况,据此4个半球采用类似的方法全部完成以后,就可以获取整个中心站点为球心,一定距离为半径的球面3D空间内部的电磁分布情况。
上述这个空间自动扫描过程,最终绘制出的全空间电磁分布场强图,将可以在不移动天线物理位置的情况下,获取包括干扰和主信号的水平角和俯仰角值,这种方法首先是可以提供网规网优素材,为微波链路工勘和拓扑设计提供空间电磁分布依据,同时也适合收发站点之间全盲的通信链路建链过程,其基本操作流程如下:
一跳微波站点仍旧以图9为例,中心站此时需要与Site1建立起一跳微波通信链路,由于Site1与中心站均不知道对方的地理位置信息(如GPS位置等),因此无法提前把天线的默认主瓣指向进行大致的粗对准,但是一般概念上的方向性信息还是可以获取的,比如Site1位于东向、中心站位于西向,那么可以在安装阶段将天线阵列的默认主瓣方向,将Site1侧指向西方向,将中心站侧指向东方向。随后可以启动中心站的全空间扫频自动化流程,获取Site1相对于中心站的波瓣水平角度和俯仰角度,此时可以将中心站的发射机功放关闭,仅作为接收机完成被动接收即可,同理由于中心站获取了其主瓣应该指向的三维方向,随后显然Site1也可以将其主瓣进行同样的操作和处理,获取Site1侧主瓣最优指向,从而避免一跳链路中,单方向上对准而双向未对准的问题,至此Site1与中心站完成了双侧各自相控阵天线主 瓣的互相对准。
本实施例中,进一步考虑一种通过反馈环路进行残余对准误差自适应消除的实施例,首先完成双侧相控阵天线主瓣的对准,而后可以预期的是,该系统将可以工作在一定的要求较低SNR的调制方式及带宽下,由于系统指标非最优,启动闭环对准精调流程,一跳间按照较低的调制方式,如QPSK(Quadrature Phase Shift Keying,正交相移键控)、16QAM(uadrature Amplitude Modulation,正交幅度调制)等需要较低SNR的调制方式,本端相控阵天线及远端相控阵天线进行闭环控制通道建链。一旦建链后,可以将远端接收的对准角度与理想角度的误差估算出来(此处涉及基带算法,已经实现不在容恕),可以观测的指标包括RSL、MSE及FEC解码情况,远端相控阵天线通过已建的闭环控制通道,将接收的对准角度与理想角度的误差角度发送给本端相控阵天线。
本端相控阵天线接收到该误差角度后,根据该误差角度的分布情况,对相应的天线振元进行移相角度调节,以对本端相控阵天线的辐射主瓣方向在极小步进上进行微调。可选地,所述步骤S60包括:
根据所述误差角度下发相应指令给本端相控阵天线的控制模块,通过所述控制模块对相应的天线阵子进行移相角度调节,其中,天线阵子由多个天线振元构成,每个天线阵子的天线振元的相位及幅度信息一致。
可选地,本端相控阵天线通过下发相应指令的方式,根据误差角度下发相应指令给本端相控阵天线的控制模块,通过控制模块对相应的天线阵子进行移相角度调节,进而将本端相控阵天线的主瓣波束指向在极小步进上进行试探性的微调。
由于所有天线阵子的相位及功率调节都是电控可调的,可以由软件自动完成对应精调工作,在此调节过程中,可以采用步进的方式,待远端再次更新其接收机相关系统性能指标之后,再次进行调节,如果远端反馈的性能指标达到了一定的阈值范围内,即停止调节,认为该MIMO系统的闭环相位调整过程结束了。由于收发通道是互易的,因此本端调节完毕后,默认远端到本端的链路也就调节完成了,微波系统进入到长期稳定工作的状态。
当获取完毕空间3D干扰分布情况之后,对于图7还可以构建基于mesh网络的点对多点微波通信网络。
本实施例提供的方案,通过本端相控阵天线及远端相控阵天线进行闭环控制通道建链,远端相控阵天线通过已建的闭环控制通道,将接收的对准角 度与理想角度的误差角度发送给本端相控阵天线,本端相控阵天线接收到误差角度后,根据误差角度对相应的天线振元进行移相角度调节,以对本端相控阵天线的辐射主瓣方向在极小步进上进行微调,并且,采用相控阵天线的主瓣3D指向调整,完成自动化波束成型、任意空间指向干扰强度获取及分析,最终可以获取以设备为中心在三维空间上的电磁场分布情况。
在一实施方式中,基于第一实施例或第二实施例提出本发明天线对准方法第三实施例,在本实施例中,本端相控阵天线和/或远端相控阵天线为双极化相控阵天线,每一极化相控阵天线依次进行天线对准。
在本实施例中,例如,如图10所示,按照XPIC(Cross-polarisation Interference counteracter,交叉极化干扰抵消器)组的要求,将原来的NxN单极化相控阵天线阵列升级为2组相控阵NxN天线,其在物理形态上仍旧是一个硬件,其包含一路水平极化辐射阵列单元及一路垂直极化辐射阵列单元的相控阵天线。
在实现过程中,仍旧按照15G工作频段,5Km一跳通信距离为例,因此首先还是需要两面相控阵天线进行实施例1中的相控阵天线的辐射主瓣对准处理工作,先进行水平极化方向上的天线对准,而后再进行垂直极化方向上的天线对准,具体的精调过程也可以参考实施例2中的过程,最终双极化天线均完成天线对准之后,系统就可以进入XPIC状态下进行工作了。
现有的微波通信系统需要使用OMT(Object Modeling Technique,对象模型)、合路器等成本较高的精密机械结构件实现,双极化合路、与天线对接匹配等工作,而本实施例中的天线由于其采用了标准的线缆及微波波导接口,可以实现双极化天线的直接无缝安装,支持现有设备的平滑升级天线至有源相控阵天线阵列,如图11所示。
针对微波Los(Line of Sight,视距)MIMO通信系统而言,需要构造对应的各个辐射阵列单元间构造为最佳的相位差关系,从而实现MIMO系统的增益最大化,例如,如图12所示,在系统的传输容量及系统增益方面实现优化因此该分离式最小相控阵天线阵列,其更紧凑的尺寸及重量,将在工程安装等方面更具优势。
本实施例提供的方案,相控阵天线升级为双极化相控阵天线,先进行水平极化方向上的天线对准,而后再进行垂直极化方向上的天线对准,针对微波Los MIMO通信系统而言,实现系统的增益最大化,并且,由于其紧凑的尺寸及重量,更便于工程安装。
本发明进一步提供一种相控阵天线系统,例如,如图13所示,相控阵天线系统包括天线振元、PS、ATT、FPGA模块、MUC、温度传感器、mux数据选择器,Telementry模块和供电模块等各元器件;天线振元、PS和ATT经射频走线连接,所述温度传感器位于天线振元的邻近位置,用以进行所述PS和ATT的温度补偿,所述PS和ATT的控制端挂接在所述FPGA模块下,所述FPGA模块、温度传感器和Telementry模块连接所述MUC,所述mux分别连接所述Telementry模块和供电模块,所述供电模块用于为各元器件供电。
图13中,黑色方框代表了对于RF(Radio Frequency,射频)工作频点的天线振元,每四个振元(2x2天线振元)构成一个阵子,其共享一个相同的相位及幅度值,而后复制这些分形结构,最终依靠功分网络构成8x8阵子阵列,这个阵列呈现为可以与ODU(Outdoor Unit,室外单元)对接的天线,其使用居于中心的Feed Port实现与ODU对接。
回到相控阵天线内部,来自与TNC接口的-48V供电经过电源转换电路后,转换为对应所需的各路供电Rail,考虑相应的EMC(Electro Magnetic Compatibility,电磁兼容性)及防雷设计,Tele电路需要经过基带板x电路后送uP-MCU进行处理,该接口承载了相控阵天线指向控制与IDU(InDoor Unit,室内单元)之间的交互通道实现,在实现诸如天线自动校准及空间扫频、天线初始化、校准等功能时,完成相关控制、交互数据的传输。温度传感器需要紧密放置在靠近阵子的位置附近,用以进行PS及ATT的温度补偿,用以保证高精度的波束成型及校准要求。FPGA主要完成IO基带板x功能,如PS及ATT等器件均可能需要使用并行总线进行调节和控制,这些可调器件的控制端挂接在FPGA下面。
相控阵天线系统中核心功能模块为相位及幅度调节模块,其基本原理如下,FPGA主要完成针对各个天线振元的幅度及相位调节,一般的PS及ATT采用并行控制方式,按照最小的粒度进行对应的相位值及衰减值调节。FPGA采用自加载方式,由于其需要集成在相控阵天线系统内部,就避免了远程下载的需求,具体实现时可以视具体情况而定。一个天线振元对应有温度传感器用以适时获取当前振元的温度,进而进行对应的相位、幅度随温度变化调节。
目前微波通信息系统多采用FDD频分复用方式,则在收发通道上都需要放置对应的相幅模块进行相应的波束成型处理。
软件方面,在天线阵列内部使用一颗单片机或者ARM(Advanced RISC Machine),其需要解析并完成Telementry通道,并完成针对对应PS及ATT的并行控制。
相控阵天线上电完毕之后,软件进行当前用户的配置判断,如果不是自动对齐则进入到3D方向图检测模式,获取当前天线指向的分布,而后链路两侧依靠对齐控制交互协议完成最终的精准对齐。
图14中展示了相控阵天线与微波系统进行整合的框图,以分体式为例,基带板单板通过既有的IF电缆连接到ODU之后,在靠近ODU侧的-48V及Telementry旁路输出盒子完成输出(该盒子可以考虑集成在天线阵列内部,后续祥设时确定),完成针对-48V供电及Tele信号的提取后,将二者送天线阵列的TNC接口,使用该接口考虑的是成本和现有实现诸如防水及安装的便利性。相控阵天线的波导口与ODU之间依靠波导、RF电缆等形式连接,前者兼容现有常规机械式天线的法兰安装及定位螺钉等结构相关设计,可以保证在铁塔上与ODU的对接及紧固需求。
本实施例提高的方案,可以不需要人力进行塔上的微波天线对齐工作,借助有源相控阵天线系统与常规ODU系统的整合和对接,可以是现在现有商用微波系统中的集成和整合,由于采用了有源数字化可调节方案,可以实现天线对准自动对准、三维空间干扰辐射扫频自动扫描等场景下发挥作用,相较于传统的方案将大大降低成本,同时全新的应用模式还将对于微波网络的规划和优化等应用提供新的数据支撑和方法。
本发明进一步提供一种天线对准装置,如图15所示,图15为本发明天线对准装置实施例的功能模块示意图。
在本实施例中,该天线对准装置包括:设置模块10,用于在接收到天线自动对准指令时,本端相控阵天线和远端相控阵天线分别进入发射模式和接收模式,其中,本端相控阵天线和远端相控阵天线由阵列排布的天线振元、以及经射频走线连接天线振元的PS移向器和ATT衰减器构成;第一控制模块20,用于远端相控阵天线进行三维空间的步进扫描,获得最大RSL接收信号电平对应的第一方向,将远端相控阵天线的辐射主瓣方向指向所述第一方向,并将远端相控阵天线的天线振元的PS、ATT数控值锁定;第二控制模块30,用于在远端相控阵天线的辐射主瓣方向指向所述第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向所述第二方向,并将本端相控阵天线的天 线振元的PS、ATT数控值锁定。
可选地,所述第一控制模块20具体用于:依次更换远端相控阵天线的辐射主瓣方向,在每次更换时计算当前辐射主瓣方向对应的RSL;将计算的各个RSL进行比对,获得所述最大RSL,将所述最大RSL对应的辐射主瓣方向作为所述第一方向。
可选地,所述天线对准装置还包括:
第一微调模块,用于根据本端相控阵天线运行对应的实际RSL,与预算值进行误差计算,以根据误差计算进行本端相控阵天线微调;以及根据远端相控阵天线运行对应的实际RSL,与预算值进行误差计算,以根据误差计算进行远端相控阵天线微调。
可选地,所述天线对准装置还包括:建链模块,用于本端相控阵天线及远端相控阵天线进行闭环控制通道建链;处理模块,用于远端相控阵天线通过已建的闭环控制通道,将接收的对准角度与理想角度的误差角度发送给本端相控阵天线;第二微调模块,用于本端相控阵天线接收到所述误差角度后,根据所述误差角度对相应的天线振元进行移相角度调节,以对本端相控阵天线的辐射主瓣方向在极小步进上进行微调。
可选地,所述第二微调模块具体用于:根据所述误差角度下发相应指令给本端相控阵天线的控制模块,通过所述控制模块对相应的天线阵子进行移相角度调节,其中,天线阵子由多个天线振元构成,每个天线阵子的天线振元的相位及幅度信息一致。
本发明天线对准装置具体实施方式与上述天线对准方法各实施例基本相同,在此不再赘述。
本实施例通过上述方案,通过本端相控阵天线进入发射模式,远端相控阵天线进入接收模式,之后,远端相控阵天线进行三维空间的步进扫描,获得最大RSL接收信号电平对应的第一方向,将远端相控阵天线的辐射主瓣方向指向第一方向,并将远端相控阵天线的天线振元的PS、ATT数控值锁定;在远端相控阵天线的辐射主瓣方向指向第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定,从而完成天线自动对准,省去了天线对准的手动调节操作,因此,提高了天线对准的效率。
本发明还提供了一种计算机可读存储介质(又称可读存储介质),所述 计算机可读存储介质存储有天线对准程序,所述天线对准程序可被一个或者一个以上的处理器执行以用于:确定本端相控阵天线的辐射主瓣方向指向本端相控阵天线对应平面的中心法线方向;在本端相控阵天线的辐射主瓣方向指向所述中心法线方向后,远端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的所述第一方向。
在一实施方式中,所述天线对准程序被处理器执行时还实现如下操作:依次更换远端相控阵天线的辐射主瓣方向,在每次更换时计算当前辐射主瓣方向对应的RSL;将计算的各个RSL进行比对,获得所述最大RSL,将所述最大RSL对应的辐射主瓣方向作为所述第一方向。
在一实施方式中,所述天线对准程序被处理器执行时还实现如下操作:根据本端相控阵天线运行对应的实际RSL,与预算值进行误差计算,以根据误差计算进行本端相控阵天线微调;根据远端相控阵天线运行对应的实际RSL,与预算值进行误差计算,以根据误差计算进行远端相控阵天线微调。
在一实施方式中,所述天线对准程序被处理器执行时还实现如下操作:本端相控阵天线及远端相控阵天线进行闭环控制通道建链;远端相控阵天线通过已建的闭环控制通道,将接收的对准角度与理想角度的误差角度发送给本端相控阵天线;本端相控阵天线接收到所述误差角度后,根据所述误差角度对相应的天线振元进行移相角度调节,以对本端相控阵天线的辐射主瓣方向在极小步进上进行微调。
在一实施方式中,所述天线对准程序被处理器执行时还实现如下操作:根据所述误差角度下发相应指令给本端相控阵天线的控制模块,通过所述控制模块对相应的天线阵子进行移相角度调节,其中,天线阵子由多个天线振元构成,每个天线阵子的天线振元的相位及幅度信息一致。
本发明计算机可读存储介质具体实施方式与上述天线对准方法各实施例基本相同,在此不再赘述。
本发明还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任意方法实施例中的方法。
本实施例通过上述方案,通过本端相控阵天线进入发射模式,远端相控阵天线进入接收模式,之后,远端相控阵天线进行三维空间的步进扫描,获得最大RSL接收信号电平对应的第一方向,将远端相控阵天线的辐射主瓣方 向指向第一方向,并将远端相控阵天线的天线振元的PS、ATT数控值锁定;在远端相控阵天线的辐射主瓣方向指向第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定,从而完成天线自动对准,省去了天线对准的手动调节操作,因此,提高了天线对准的效率。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种天线对准方法,应用于微波通信设备,其中,所述天线对准方法包括:
    在接收到天线自动对准指令时,本端相控阵天线和远端相控阵天线分别进入发射模式和接收模式,其中,本端相控阵天线和远端相控阵天线由阵列排布的天线振元、以及经射频走线连接天线振元的PS移向器和ATT衰减器构成;
    远端相控阵天线进行三维空间的步进扫描,获得最大RSL接收信号电平对应的第一方向,将远端相控阵天线的辐射主瓣方向指向所述第一方向,并将远端相控阵天线的天线振元的PS、ATT数控值锁定;
    在远端相控阵天线的辐射主瓣方向指向所述第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向所述第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定。
  2. 如权利要求1所述的天线对准方法,其中,所述远端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第一方向的步骤包括:
    确定本端相控阵天线的辐射主瓣方向指向本端相控阵天线对应平面的中心法线方向;
    在本端相控阵天线的辐射主瓣方向指向所述中心法线方向后,远端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的所述第一方向。
  3. 如权利要求1所述的天线对准方法,其中,所述远端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第一方向的步骤包括:
    依次更换远端相控阵天线的辐射主瓣方向,在每次更换时计算当前辐射主瓣方向对应的RSL;
    将计算的各个RSL进行比对,获得所述最大RSL,将所述最大RSL对应的辐射主瓣方向作为所述第一方向。
  4. 如权利要求1所述的天线对准方法,其中,所述在远端相控阵天线的辐射主瓣方向指向所述第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向所述第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定的步骤之后,还包括:
    根据本端相控阵天线运行对应的实际RSL,与预算值进行误差计算,以根据误差计算进行本端相控阵天线微调;
    根据远端相控阵天线运行对应的实际RSL,与预算值进行误差计算,以根据误差计算进行远端相控阵天线微调。
  5. 如权利要求1所述的天线对准方法,其中,所述在远端相控阵天线的辐射主瓣方向指向所述第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向所述第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定的步骤之后,还包括:
    本端相控阵天线及远端相控阵天线进行闭环控制通道建链;
    远端相控阵天线通过已建的闭环控制通道,将接收的对准角度与理想角度的误差角度发送给本端相控阵天线;
    本端相控阵天线接收到所述误差角度后,根据所述误差角度对相应的天线振元进行移相角度调节,以对本端相控阵天线的辐射主瓣方向在极小步进上进行微调。
  6. 如权利要求5所述的天线对准方法,其中,所述根据所述误差角度对相应的天线振元进行移相角度调节的步骤包括:
    根据所述误差角度下发相应指令给本端相控阵天线的控制模块,通过所述控制模块对相应的天线阵子进行移相角度调节,其中,天线阵子由多个天线振元构成,每个天线阵子的天线振元的相位及幅度信息一致。
  7. 如权利要求1-6任一项所述的天线对准方法,其中,所述本端相控阵天线和/或远端相控阵天线为双极化相控阵天线,每一极化相控阵天线依次进行天线对准。
  8. 一种天线对准装置,其中,所述天线对准装置包括:
    设置模块,用于在接收到天线自动对准指令时,本端相控阵天线和远端相控阵天线分别进入发射模式和接收模式,其中,本端相控阵天线和远端相控阵天线由阵列排布的天线振元、以及经射频走线连接天线振元的PS移向器和ATT衰减器构成;
    第一控制模块,用于远端相控阵天线进行三维空间的步进扫描,获得最大RSL接收信号电平对应的第一方向,将远端相控阵天线的辐射主瓣方向指向所述第一方向,并将远端相控阵天线的天线振元的PS、ATT数控值锁定;
    第二控制模块,用于在远端相控阵天线的辐射主瓣方向指向所述第一方向后,本端相控阵天线进行三维空间的步进扫描,获得最大RSL对应的第二方向,将本端相控阵天线的辐射主瓣方向指向所述第二方向,并将本端相控阵天线的天线振元的PS、ATT数控值锁定。
  9. 一种相控阵天线系统,其中,所述相控阵天线系统包括天线振元、PS移向器、ATT衰减器、FPGA现场可编程门阵列模块、MUC微控制单元、温度传感器、mux数据选择器,Telementry遥测模块和供电模块,所述天线振元、PS和ATT经射频走线连接,所述温度传感器位于天线振元的邻近位置,用以进行所述PS和ATT的温度补偿,所述PS和ATT的控制端挂接在所述FPGA模块下,所述FPGA模块、温度传感器和Telementry模块连接所述MUC,所述mux分别连接所述Telementry模块和供电模块,所述供电模块用于为各元器件供电。
  10. 如权利要求9所述的相控阵天线系统,其中,所述相控阵天线系统与微波系统平滑整合继承,所述微波系统包括ODU室外单元,所述相控阵天线系 统的波导口与所述ODU之间通过波导/线缆连接。
  11. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有天线对准程序,所述天线对准程序被处理器执行时实现如权利要求1-7中任一项所述的天线对准方法的步骤。
PCT/CN2019/114782 2018-12-17 2019-10-31 天线对准方法、装置、相控阵天线系统及可读存储介质 WO2020125230A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811547914.4A CN111327371A (zh) 2018-12-17 2018-12-17 天线对准方法、装置、相控阵天线系统及可读存储介质
CN201811547914.4 2018-12-17

Publications (1)

Publication Number Publication Date
WO2020125230A1 true WO2020125230A1 (zh) 2020-06-25

Family

ID=71101073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114782 WO2020125230A1 (zh) 2018-12-17 2019-10-31 天线对准方法、装置、相控阵天线系统及可读存储介质

Country Status (2)

Country Link
CN (1) CN111327371A (zh)
WO (1) WO2020125230A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220407612A1 (en) * 2022-08-22 2022-12-22 David E. Newman Phased Beam-Alignment Pulse for Rapid Localization in 5G and 6G

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824512B (zh) * 2021-09-13 2023-10-10 中信科移动通信技术股份有限公司 大规模天线调测方法、测试设备及计算机设备
CN114336051A (zh) * 2021-11-23 2022-04-12 中国电子科技集团公司第五十四研究所 无线通信天线的对准方法及控制装置
CN115839685A (zh) * 2022-04-22 2023-03-24 上海交通大学 扫描式微波振动与形变测量方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253658A (zh) * 2013-06-28 2014-12-31 华为技术有限公司 一种天线对准方法及系统
CN104617390A (zh) * 2015-02-11 2015-05-13 中国电子科技集团公司第三十八研究所 一种星载大型相控阵天线波束控制装置
WO2015096079A1 (zh) * 2013-12-26 2015-07-02 华为技术有限公司 一种天线对准方法、装置及其系统
CN108011660A (zh) * 2017-11-21 2018-05-08 湖南瓴星空间信息技术有限公司 一种全球实时物联网星座系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7561851B2 (en) * 2004-04-01 2009-07-14 Harris Stratex Networks, Inc. System and method for calibrating modules of a wide-range transceiver
CN102571242B (zh) * 2012-02-24 2015-03-11 华为技术有限公司 用于天线对准的方法和系统
US20140226740A1 (en) * 2013-02-13 2014-08-14 Magnolia Broadband Inc. Multi-beam co-channel wi-fi access point
CN104407626B (zh) * 2014-10-16 2017-09-22 中国科学院深圳先进技术研究院 一种相控阵天线的控制方法、装置、系统及频谱检测设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253658A (zh) * 2013-06-28 2014-12-31 华为技术有限公司 一种天线对准方法及系统
WO2015096079A1 (zh) * 2013-12-26 2015-07-02 华为技术有限公司 一种天线对准方法、装置及其系统
CN104617390A (zh) * 2015-02-11 2015-05-13 中国电子科技集团公司第三十八研究所 一种星载大型相控阵天线波束控制装置
CN108011660A (zh) * 2017-11-21 2018-05-08 湖南瓴星空间信息技术有限公司 一种全球实时物联网星座系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220407612A1 (en) * 2022-08-22 2022-12-22 David E. Newman Phased Beam-Alignment Pulse for Rapid Localization in 5G and 6G
US11782119B2 (en) * 2022-08-22 2023-10-10 Ultralogic 6G, Llc Phased beam-alignment pulse for rapid localization in 5G and 6G

Also Published As

Publication number Publication date
CN111327371A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2020125230A1 (zh) 天线对准方法、装置、相控阵天线系统及可读存储介质
CN109088158B (zh) 小型小区波束形成天线
US9391688B2 (en) System and method of relay communication with electronic beam adjustment
US11671167B2 (en) System, panel device and method for passive reflection of RF signals
CN102037606B (zh) 用于桅杆振动补偿的系统和方法
US10283861B2 (en) Device and a method for antenna alignment
EP3813196B1 (en) Microwave device and network system
EP3440784B1 (en) Method and apparatus for antenna sub-array switching based on channel capacity
CN102217141A (zh) 天线装置和基站装置
Rajagopal et al. Self-interference mitigation for in-band mmWave wireless backhaul
CN106159461B (zh) 天线阵列系统及控制方法
WO2018103677A1 (zh) 一种微波天线阵列通信系统及通信方法
US20200228211A1 (en) Device and method for calibrating phased array antenna
CN109449609A (zh) 一种应用于室内基站的双模弧形偶极子阵列天线
Tu et al. Analysis of millimeter wave cellular networks with simultaneous wireless information and power transfer
CN211669282U (zh) 一种毫米波天线测试系统
TWI648960B (zh) 毫米波段無線通訊基地台天線的新式架構設計
US20190115957A1 (en) Rotatable antenna arrangement for los-mimo
CN114389011A (zh) 一种天线、信道状态信息传输方法和相关装置
Scarborough et al. Beamforming in millimeter wave systems: Prototyping and measurement results
WO2023216595A1 (zh) 有源天线的测试系统
CN116318450A (zh) 一种圆极化共形相控阵天线自校准方法
CN108352619A (zh) 一种反射面天线及天线对准方法
CN112994768B (zh) 一种基于矩阵求逆的短距离并行无线传输系统及方法
CN213026480U (zh) 一种天线装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19898623

Country of ref document: EP

Kind code of ref document: A1