WO2018103462A1 - 一种飞行器航向控制方法、装置和电子设备 - Google Patents

一种飞行器航向控制方法、装置和电子设备 Download PDF

Info

Publication number
WO2018103462A1
WO2018103462A1 PCT/CN2017/107377 CN2017107377W WO2018103462A1 WO 2018103462 A1 WO2018103462 A1 WO 2018103462A1 CN 2017107377 W CN2017107377 W CN 2017107377W WO 2018103462 A1 WO2018103462 A1 WO 2018103462A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
heading
angle
console
adjustment
Prior art date
Application number
PCT/CN2017/107377
Other languages
English (en)
French (fr)
Inventor
冯银华
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2018103462A1 publication Critical patent/WO2018103462A1/zh
Priority to US16/434,514 priority Critical patent/US11221635B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • G01C23/005Flight directors

Definitions

  • the present application relates to the field of aircraft control, and in particular, to an aircraft heading control method, apparatus and electronic device.
  • the drone is referred to as the "unmanned aerial vehicle", also known as the unmanned aerial vehicle, and can be operated by its own equipment or wireless remote control.
  • UAVs are now widely used, and more and more consumer drones are being produced.
  • the drone flight control can control the flight attitude and flight altitude of the aircraft, as well as control the takeoff and landing of the aircraft.
  • the person controlling the flight of the aircraft is called the drone flying hand.
  • the drone flying hand needs more professional operation skills to better control the flight direction and posture of the aircraft.
  • UAV flying hands generally use the drone remote control to control the flight of the aircraft.
  • the UAV flying hand control drone flight mainly relies on its own operating experience to operate through the remote controller.
  • operating the aircraft is not an easy task, and Not to mention the general entry level flying hand.
  • the UAV usually wants to fly in front of the flying hand after the take-off.
  • the flying hand will pass the remote control after the aircraft takes off.
  • the current program will appear inconvenient to use in certain circumstances, in each After the second takeoff, the inertia will fly toward the front of the normal situation. If the nose is not facing in front, then pushing the remote lever forward through the remote control will cause the airplane to fly to the left and right. If you don't have the right time, you have to stop and adjust the orientation of the nose, which will affect the flight experience and also affect flight safety.
  • the technical problem to be solved by the embodiments of the present application is to provide an aircraft heading control method, which can conveniently and effectively adjust the heading of the aircraft, including:
  • the embodiment of the present application further provides an aircraft heading control device, which can conveniently and effectively perform aircraft heading adjustment, including:
  • Heading angle acquisition unit used to obtain the heading angle of the aircraft
  • Console position acquisition unit used to obtain the direction angle of the console
  • the angle calculation unit is configured to calculate the aircraft heading adjustment angle according to the heading angle and the direction angle of the console.
  • An embodiment of the present application further provides an electronic device, including: at least one processor;
  • the memory stores a program of instructions executable by the at least one processor, the program of instructions being executed by the at least one processor to cause the at least one processor to be used in the aircraft heading control method described above.
  • the aircraft heading control method, device and electronic device provided by the embodiments of the present application adjust the heading angle of the current aircraft and the direction angle of the current operating platform to adjust the heading of the aircraft, so that the aircraft can be conveniently based on the current console. Heading for heading adjustment.
  • FIG. 1 is a flow chart of an aircraft heading control method according to Embodiment 1 of the present application.
  • FIG. 2 is a flow chart of a method for controlling the heading of an aircraft according to Embodiment 2 of the present application;
  • FIG. 3A is a schematic diagram of an aircraft heading control method according to Embodiment 3 of the present application.
  • FIG. 3B is a schematic diagram of another aircraft heading control method according to Embodiment 3 of the present application.
  • FIG. 3C is a schematic diagram of a third aircraft heading control method provided in Embodiment 3 of the present application.
  • FIG. 4A is a schematic view showing an adjustment angle of an aircraft provided in Embodiment 3.
  • FIG. 4B is a schematic diagram showing an adjustment angle of an aircraft provided in Embodiment 3.
  • 4C is a schematic view showing the adjustment angle of the aircraft provided in Embodiment 3.
  • FIG. 5 is a diagram of an aircraft heading control device according to Embodiment 4 of the present application.
  • Embodiment 6 is a second aircraft heading control device provided by Embodiment 4 of the present application.
  • Embodiment 7 is a third aircraft heading control device provided in Embodiment 4 of the present application.
  • FIG. 8 is a structural diagram of an electronic device according to Embodiment 5 of the present application.
  • the aircraft heading control method provided by the embodiment of the present application may be executed in a user terminal or an operation terminal of any suitable type of processor having a user interaction device and a computing capability, such as a desktop computer, a smart phone, a tablet computer, a remote controller, and the like.
  • a user interaction device such as a desktop computer, a smart phone, a tablet computer, a remote controller, and the like.
  • a computing capability such as a desktop computer, a smart phone, a tablet computer, a remote controller, and the like.
  • the console provided by the embodiment of the present application may be any control terminal used to control the aircraft, such as a desktop computer, a smart phone, a tablet computer, a remote controller, and other user terminals.
  • the aircraft heading control device of the embodiment of the present application may be independently installed in the user terminal as one of the software or hardware function units, or may be used as one of the function modules integrated in the processor to perform the aircraft heading control of the embodiment of the present application. method.
  • Embodiment 1 of the present application provides a method for controlling the heading of an aircraft. As shown in FIG. 1 , the method includes the following steps:
  • Step 101 Obtain a heading angle of the aircraft
  • the aircraft records its own attitude information during take-off or flight.
  • the attitude information is usually included in the GPS information, usually including data in three directions (Yaw, Roll, Pitch).
  • Yaw is rotated around the Y-axis, also called heading.
  • the angle, Roll is rotated around the Z axis, also called the roll angle, and the Pitch is rotated around the X axis, also called the pitch angle.
  • the aircraft will send its own attitude information to the console, which extracts the Yaw data as the navigation angle of the aircraft.
  • the aircraft itself has a compass that records the direction angle of the nose relative to the compass and transmits the angle as a heading angle to the station.
  • the aircraft can transmit its own heading angle to the operating station in a real-time manner. In this way, the operating station can grasp the flight information of the aircraft in real time.
  • the aircraft can transmit its own heading angle to the operation station or adopt a periodic transmission mode.
  • the occupation of the aircraft processor can be saved, the processing efficiency is improved, and energy is saved.
  • the manner in which the aircraft transmits its own heading angle to the operator station can also be requested to transmit.
  • the station sends a heading angle request to the aircraft, and the aircraft receives the heading. After the corner request, return the heading angle to the console. In this way, the heading angle of the aircraft is obtained only when needed, which can reduce the information interaction between the console and the aircraft, and save system resources.
  • Step 102 Obtain a direction angle of the console
  • the direction angle of the console usually refers to the angle at which the front of the console or the flying hand is facing.
  • the console has a built-in GPS or compass, which can directly obtain the direction angle Degree from the GPS information, or obtain the current direction angle Degree according to the compass.
  • Step 103 Calculate the aircraft heading adjustment angle according to the heading angle and the console direction angle;
  • the console obtains both by subtracting the heading angle Yaw of the aircraft from the direction angle of the console.
  • the angle is poor.
  • the angle difference is used as an aircraft heading adjustment angle.
  • the console can also use the direction angle of the console minus the heading angle Yaw of the aircraft to obtain the angular difference between the two.
  • the angle difference is used as an aircraft heading adjustment angle.
  • Step 104 Adjust the heading of the aircraft according to the aircraft heading adjustment angle.
  • the heading adjustment angle of the aircraft it is determined whether the heading of the aircraft needs to be adjusted. When the angle difference is 0, it indicates that the directions of the two are the same, and the heading of the aircraft does not need to be adjusted; when the directions of the two are inconsistent, Then adjust the heading of the aircraft.
  • step 103 the angle difference between the two is subtracted from the heading angle Yaw of the aircraft to obtain the angle difference between the two, then when the aircraft heading adjustment angle is a negative value, the angle is adjusted according to the heading of the aircraft. Adjusting the heading of the aircraft counterclockwise; when the heading adjustment angle of the aircraft is positive, adjusting the angle according to the heading of the aircraft, adjusting the heading of the aircraft clockwise.
  • the embodiment of the present application adjusts the heading angle of the current aircraft and the direction angle of the current console to adjust the heading of the aircraft, so that the aircraft can conveniently adjust the heading based on the orientation of the current console, instead of adjusting based on the current orientation of the aircraft, which is convenient.
  • the operation of the flying hand makes it very convenient to implement common adjustments for the heading of the aircraft.
  • Embodiment 2 of the present application provides another aircraft heading control method, as shown in FIG. 2 . Including the following steps:
  • Step 201 Acquire a target heading angle
  • the aircraft is often used by the flying hand to perform the following flight actions, such as the relative operating platform
  • Common operations such as turning left at 90 degrees to the console, turning 90 degrees to the console, and turning around the console are often based on the current orientation of the flying hand.
  • the console first acquires the target heading angle adjusted by the flying hand desired aircraft.
  • the manner in which the target heading angle is obtained may be a button set in advance on the console, or may be a UI interface that allows the user to input a data target heading angle.
  • the target heading angle is an angular difference that the user desires the aircraft to face toward the orientation of the console.
  • the target heading angle is a positive angle; when it is necessary to adjust counterclockwise
  • the target heading angle is a negative angle.
  • Step 202 Obtain a heading angle of the aircraft
  • the console When the console acquires the target heading angle, it indicates that the operator station needs to adjust the heading of the aircraft, and the heading angle of the aircraft can be obtained by the method in step 101.
  • Step 203 Acquire a direction angle of the console
  • step 102 of Embodiment 1 The operation of this step is exactly the same as that of step 102 of Embodiment 1, and details are not described herein again.
  • Step 204 Calculate the aircraft heading adjustment angle according to the target heading angle, the aircraft heading angle, and the direction angle of the console;
  • the user inputs a target heading angle that is desired to adjust the aircraft in position.
  • the target heading angle needs to be considered. Therefore, the aircraft heading adjustment angle needs to pass the target heading angle plus the heading angle of the aircraft. Subtract the direction angle of the console to get the adjustment angle.
  • Step 205 Determine whether the aircraft heading adjustment angle is less than a preset threshold
  • the heading adjustment information may be judged. When the adjustment value is less than a certain threshold, for example, 5 degrees, no adjustment is made; when the adjustment value is greater than or equal to the set threshold, then Adjustment.
  • a certain threshold for example, 5 degrees
  • the threshold value is preset in the system. Of course, the user can also reset the threshold by setting operations.
  • Step 206 Do not operate
  • Step 207 Adjust a heading of the aircraft according to the aircraft heading adjustment angle
  • the heading of the aircraft is adjusted according to the adjustment angle.
  • the specific adjustment manner is similar to step 104, and is not described here.
  • Embodiment 2 of the present application increases the selection of the heading adjustment of the aircraft by increasing the target heading angle, which is more convenient for the operation of the flying hand. At the same time, by setting the adjustment threshold, frequent adjustment of the heading of the aircraft is avoided, and the flight stability of the aircraft is also facilitated.
  • Embodiment 3 of the present application further describes Embodiment 1 and Embodiment 2 in conjunction with practical applications. 3A, 3B, 3C and 4A, 4B and 4C.
  • the console can be a remote controller, such as the operation mode shown in FIG. 3A, including an aircraft and a remote controller, and the remote controller and the aircraft directly establish a connection, and the aircraft is controlled by flight through the remote controller.
  • a remote controller such as the operation mode shown in FIG. 3A, including an aircraft and a remote controller, and the remote controller and the aircraft directly establish a connection, and the aircraft is controlled by flight through the remote controller.
  • the aircraft when the aircraft takes off, when the nose of the aircraft is inconsistent with the direction of the flying hand, the aircraft can automatically adjust and adjust to be in line with the flying hand.
  • the aircraft sends the attitude information of the aircraft to the remote controller, including the heading angle.
  • the remote controller After receiving the heading angle sent by the aircraft, the remote controller acquires its own direction angle.
  • the direction angle of the remote controller obtains its own direction angle through a GPS module or a compass module built in the remote controller.
  • the remote controller determines the heading adjustment angle of the aircraft head according to the heading angle of the aircraft and the direction angle of the aircraft, and determines a heading adjustment angle of the aircraft according to the angle of the aircraft heading, and sends a heading adjustment command to the aircraft according to the aircraft heading adjustment angle to adjust the aircraft.
  • Heading The aircraft heading control process program can be automatically called as a default program after take-off, or can be triggered by the user. For example, by setting an adjustment button on the remote controller, when the user presses the button, the head orientation is automatically adjusted to Consistent with the direction of the flying hand.
  • the user can not only quickly adjust the head orientation to match the direction of the flying hand, but also enable the flying hand to input according to his own needs. I hope that one of the aircraft headings can be achieved with respect to the target angle of the flying hand position adjustment. Key adjustment.
  • the console can be a mobile phone terminal.
  • the mobile terminal establishes a connection with the aircraft through WiFi or other means, and the mobile terminal obtains its own direction angle through the GPS or compass carried by itself.
  • the specific operation mode is similar to that of FIG. 3A, and details are not described herein again.
  • the aircraft is directly operated by the mobile terminal, which is convenient for the user to carry, and the operation is also very convenient.
  • the aircraft control mode can also be completed by the remote controller and the mobile phone terminal, as shown in FIG. 3C.
  • the remote controller is often relatively simple, and no GPS or compass is specifically configured. Therefore, the present embodiment achieves the purpose of the present application by sharing the information of the mobile terminal with the remote controller.
  • the remote controller controls the flight of the aircraft, the connection between the remote controller and the aircraft is established, the mobile terminal does not establish a connection with the aircraft, and the mobile terminal establishes a connection with the remote controller through other means such as Bluetooth, infrared or WiFi.
  • the general remote controller only transmits data between the user and the aircraft. Therefore, this embodiment puts complicated operations on the mobile phone terminal to complete.
  • the aircraft sends its own flight attitude information to the remote controller.
  • the remote controller forwards the flight attitude information to the mobile terminal, and the mobile terminal obtains the heading angle of the aircraft from the flight attitude information, and the mobile terminal passes the GPS carried by itself or Compass, get its own direction angle as the orientation of the console.
  • the mobile terminal calculates an aircraft heading adjustment angle according to the heading angle and its own direction angle, converts the aircraft heading adjustment angle into an aircraft heading adjustment command, and sends the direction to the remote controller, and the remote controller sends the adjustment command to the aircraft. Control the aircraft to make heading adjustments.
  • the target heading angle can also be input on the mobile terminal, which is similar to the operation in other embodiments, and will not be described here.
  • the operator station accurately displays the position and heading of the aircraft on the console through the aircraft position and heading angle, as well as its position and orientation information, as shown in Figure 4A.
  • the console displays the position of the aircraft on the console by acquiring the GPS information of the aircraft.
  • the heading angle of the aircraft is displayed on the console.
  • the heading angle Yaw of the aircraft is 0 degrees
  • the orientation of the operating platform is 90 degrees
  • the heading adjustment angle of the aircraft is the heading angle Yaw0 of the aircraft.
  • Subtracting the console direction angle 90 is equal to minus 90 degrees, the console adjusts the angle of the aircraft by 90 degrees according to the heading of the aircraft, and adjusts the heading of the aircraft counterclockwise by 90 degrees to adjust the heading of the aircraft to be consistent with the direction of the flying hand.
  • the above calculation method may also be that the operating table is 90 degrees minus the aircraft heading angle Yaw0 degree is equal to 90 degrees, and the console adjusts the aircraft heading counterclockwise by 90 degrees.
  • the target heading angle is an angular difference of the target position to be adjusted relative to the position of the console.
  • the target heading angle is a positive angle;
  • the console is adjusted counterclockwise, the target heading angle is a negative angle.
  • the current aircraft nose is oriented at 120 degrees and the console is oriented at 90 degrees. The user wants the aircraft to rotate 90 degrees counterclockwise relative to the console, as shown at 4C.
  • the target heading angle is an angle relative to the console position, which is -90 degrees
  • the aircraft heading angle is 120 degrees
  • the console position is 90 degrees
  • the flying hand adjusts the direction of the aircraft based on the console conveniently, which facilitates the operation of the flying hand and reduces the difficulty of heading adjustment.
  • Embodiment 4 of the present application provides an aircraft heading control device 50, as shown in FIG. 5, FIG. 6, and FIG. 7, including:
  • the heading angle acquisition unit 501 is configured to acquire a heading angle of the aircraft, and send the heading angle to the angle calculation unit 503;
  • the heading angle of the acquiring aircraft includes various manners, such as: the aircraft transmits its own posture information to the heading angle acquiring unit 501 in real time; or the aircraft periodically transmits its own posture information to The heading angle acquisition unit 501; or the aircraft heading control device 50 actively requests the aircraft attitude information from the aircraft, and after receiving the request, the aircraft sends the attitude information to the heading angle acquisition unit 501.
  • the heading angle acquisition unit 501 acquires the heading angle
  • the heading angle is sent to the angle calculation unit 503.
  • the console position obtaining unit 502 is configured to acquire a direction angle of the console and send the direction angle An angle calculation unit 503;
  • the direction angle of the console is obtained by GPS information or a compass module. And sending the direction angle to the angle calculation unit 503;
  • the angle calculation unit 503 is configured to calculate the aircraft heading adjustment angle according to the heading angle and the direction angle of the console.
  • the angle calculation unit 503 obtains the angular difference between the two by subtracting the heading angle Yaw of the aircraft from the direction angle Degree of the console.
  • the angle difference is used as an aircraft heading adjustment angle.
  • the console can also use the direction angle of the console minus the heading angle Yaw of the aircraft to obtain the angular difference between the two.
  • the angle difference is used as an aircraft heading adjustment angle.
  • the aircraft heading control device further includes: a target position setting unit 601: configured to receive a target heading angle, and send the target heading angle to the angle calculating unit 604.
  • a target position setting unit 601 configured to receive a target heading angle, and send the target heading angle to the angle calculating unit 604.
  • the angle calculation unit 604 receives the target heading angle, and calculates the aircraft heading adjustment angle according to the target heading angle, the aircraft heading angle, and the direction angle of the console. Specifically, the angle is adjusted by subtracting the direction angle of the console from the target heading angle plus the heading angle of the aircraft.
  • the aircraft heading control device further includes: a heading adjustment unit 705, configured to receive an aircraft heading adjustment angle sent by the angle calculation unit 704, and send the angle to the aircraft according to the aircraft heading adjustment angle.
  • a heading adjustment command to adjust the heading of the aircraft.
  • the angle calculation unit obtains the angular difference between the two by subtracting the head angle Yaw of the aircraft from the direction angle Degree of the console, when the angle difference is used as the aircraft heading adjustment angle, when the angle difference is positive, The aircraft is adjusted in a clockwise direction, and when the angular difference is negative, the aircraft is adjusted in a counterclockwise direction.
  • the console uses the direction angle Degree of the console minus the head angle Yaw of the aircraft to obtain the angle difference between the two, and when the angle difference is used as the aircraft heading adjustment angle, when the angle difference is negative, Then, the aircraft is adjusted in a clockwise direction, and when the angle difference is positive, the aircraft is adjusted in a counterclockwise direction.
  • the heading adjustment unit further includes: when the aircraft heading adjustment angle is less than a preset threshold, no adjustment is performed; and when the aircraft heading adjustment angle is greater than a preset threshold, the adjustment is performed. For example, within 5 degrees, no adjustment is made.
  • the threshold may be set to a value other than 5 degrees according to a specific application, and is not strictly limited herein.
  • the threshold value is preset in the system.
  • the user can also reset the threshold by setting operations. By setting the threshold, the aircraft's heading can be guaranteed to be adjusted to the maximum extent, ensuring the stability of the flight.
  • the flying hand adjusts the direction of the aircraft based on the console conveniently, which facilitates the operation of the flying hand and reduces the difficulty of heading adjustment.
  • FIG. 8 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • electronic device 80 includes one or more processors 801 and memory 802. Among them, a processor 801 is taken as an example in FIG.
  • the processor 801 and the memory 802 may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 802 is used as a non-volatile computer readable storage medium, and can be used for storing a non-volatile software program, a non-volatile computer executable program, and a module, such as a program corresponding to the aircraft heading control method in the embodiment of the present application. Instructions/modules (eg, the various modules shown in Figures 5, 6, and 7).
  • the processor 801 implements various functional applications and data processing of the aircraft heading control device by running non-volatile software programs, instructions and modules stored in the memory 802, that is, implementing the above-described method embodiments and the respective modules of the above-described device embodiments. The function.
  • Memory 802 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • non-volatile memory such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the program instructions/modules are stored in the memory 802, and when executed by the one or more processors 801, perform an aircraft heading control method in any of the above method embodiments, for example, performing FIG. 1 described above.
  • the various steps shown in Figure 2; each of the methods described in Figures 5, 6 and 7 can also be implemented Modules.
  • the electronic device 80 of the embodiment of the present application exists in various forms, and performs the steps shown in FIG. 1 and FIG. 2 described above; and when the modules described in FIG. 5, FIG. 6 and FIG. 7 can also be implemented, the electronic device 80 includes but is not limited to:
  • Mobile communication devices These devices are characterized by mobile communication functions and are mainly aimed at providing voice and data communication.
  • Such terminals include: smart phones (such as iPhone), multimedia phones, functional phones, and low-end phones.
  • Ultra-mobile personal computer equipment This type of equipment belongs to the category of personal computers, has computing and processing functions, and generally has mobile Internet access.
  • Such terminals include: PDAs, MIDs, and UMPC devices, such as the iPad.
  • Remote control This type of equipment can be used to control the flight of the aircraft.
  • Embodiments of the present application also provide a non-volatile computer storage medium storing computer-executable instructions that are executed by one or more processors, such as one of FIG.
  • the 801 may be configured to cause the one or more processors to perform the aircraft heading control method in any of the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种飞行器航向控制方法,可以方便有效的进行飞行器航向的调整,包括:获取飞行器的航向角(101),获取操作台的方向角(102),根据飞行器的航向角及操作台的方向角计算飞行器航向调整角度(103),根据飞行器航向调整角度,调整飞行器的航向(104)。通过计算当前飞行器的航向角和当前操作台的方向角,调整飞机航向,使飞行器可以方便的基于当前操作台的朝向进行航向调整。

Description

一种飞行器航向控制方法、装置和电子设备
申请要求于2016年12月09日申请的、申请号为201611127903.1、发明名称为“一种飞行器航向控制方法、装置和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本申请涉及飞行器控制领域,特别涉及一种飞行器航向控制方法、装置和电子设备。
【背景技术】
无人驾驶飞机简称“无人机”,也叫无人飞行器,可用自备设备或无线遥控进行操控。现在无人机应用广泛,越来越多的消费级无人机正在产生。无人机飞控可以操控飞机的飞行姿态和飞行高度,也可以控制飞机的起飞降落。
控制飞机飞行的人员叫无人机飞手,对于无人机的操作,需要无人机飞手具有比较专业的操作技巧,才能更好地控制飞机的飞行方向、姿态。无人机飞手一般都是通过无人机遥控器来控制飞行器的飞行。
现有技术中,无人机飞手控制无人机的飞行主要依靠自己的操作经验通过遥控器进行操作,对于专业的无人机飞手来说,操作飞行器也不是一件容易的事情,更别说对于一般的入门级飞手。
发明人在实现本申请实施例的过程中发现:在实际飞行过程中,用户对无人机的调整往往是以自己站的位置为基准来进行调整的,而且经常会进行一些常用操作,比如左右直角转弯、掉头等等,目前没有办法能够让用户可以非常方便的进行上述操作。
另外,在实际飞行过程中,无人机的一般在起飞后,飞手都希望其朝飞手的正前方飞行,当无人机机头方向不正时,飞手会在飞机起飞后通过遥控器来调整飞机的机头朝向,目前的方案,在一定的环境下会出现使用不方便,在每 次起飞后正常情况下惯性的会朝自己的正前方飞行,如果机头的朝向不是正前方,那么通过遥控器往前推动遥杆,就会引起飞机的向左右后方飞行,当飞手发现方向不对时就得停下来调整机头的朝向,从而影响飞行体验,也会影响飞行安全。
【申请内容】
本申请实施例要解决的技术问题是提供一种飞行器航向控制方法,可方便有效的进行飞行器航向的调整,包括:
获取飞行器的航向角;
获取操作台的方向角;
根据所述飞行器的航向角及操作台的方向角计算所述飞行器航向调整角度;
根据所述飞行器航向调整角度,调整所述飞行器的航向。
本申请实施例还提出一种飞行器航向控制装置,可方便有效的进行飞行器航向调整,包括:
航向角获取单元:用于获取飞行器的航向角;
操作台位置获取单元:用于获取操作台的方向角;
角度计算单元:用于根据所述航向角及操作台的方向角计算所述飞行器航向调整角度。
本申请实施例还提出一种电子设备,包括:至少一个处理器;以及
与所述至少一个处理器连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令程序,所述指令程序被所述至少一个处理器执行,以使所述至少一个处理器用于上述飞行器航向控制方法。
与现有技术相比,本申请实施例提供的飞行器航向控制方法、装置和电子设备通过计算当前飞行器的航向角和当前操作台的方向角,调整飞机航向,使飞行器可以方便的基于当前操作台的朝向进行航向调整。
【附图说明】
图1是本申请实施例1提供的一种飞行器航向控制方法流程图;
图2是本申请实施例2提供的一种飞行器航向控制方法流程图;
图3A是本申请实施例3提供的一种飞行器航向控制方法示意图;
图3B是本申请实施例3提供的另外一种飞行器航向控制方法示意图;
图3C是本申请实施例3提供的第三种飞行器航向控制方法示意图;
图4A是本申请是实施例3提供的飞行器调整角度示意图;
图4B是本申请是实施例3提供的飞行器调整角度示意图;
图4C是本申请是实施例3提供的飞行器调整角度示意图;
图5是本申请实施例4提供的一种飞行器航向控制设备图;
图6是本申请实施例4提供的第二种飞行器航向控制装置图;
图7是本申请实施例4提供的第三种飞行器航向控制装置图;
图8是本申请实施例5提供的一种电子设备的结构图。
【具体实施方式】
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请实施例提供的飞行器航向控制方法,可以在任何合适类型、具有用户交互装置和运算能力的处理器的用户终端或操作终端中执行,例如台式计算机、智能手机、平板电脑、遥控器以及其他用户终端中。
本申请实施例提供的操作台,可以是用来控制飞行器的任何控制终端,例如台式计算机、智能手机、平板电脑、遥控器以及其他用户终端。
本申请实施例的飞行器航向控制设备可以作为其中一个软件或者硬件功能单元独立设置在上述用户终端中,也可以作为整合在处理器中的其中一个功能模块,以执行本申请实施例的飞行器航向控制方法。
实施例1:
本申请实施例1提供了一种飞行器航向控制方法,如图1所示,包括如下步骤:
步骤101:获取飞行器的航向角;
飞行器在起飞或飞行过程中会记录自身的姿态信息,所述姿态信息通常包含在GPS信息中,通常包括(Yaw,Roll,Pitch)三个方向的数据,Yaw是围绕Y轴旋转,也叫航向角,Roll是围绕Z轴旋转,也叫翻滚角,Pitch是围绕X轴旋转,也叫做俯仰角。
飞行器会将自身的姿态信息发送给操作台,操作台提取Yaw数据作为飞行器的航行角。
或者,飞行器自身具有指南针,会记录机头相对于指南针的方向角,将所述角度作为航向角发送给操作台。
所述飞行器将自身的航向角发送给操作台可以采用实时发送的方式,采用这种方式时,操作台可以实时掌握飞行器的飞行信息。
所述飞行器将自身的航向角发送给操作台也可以采用周期性发送的方式,采用这种方式时,能够节省飞行器处理器的占用,提高处理效率,也节约能源。
所述飞行器将自身的航向角发送给操作台也可以请求式发送的方式,采用这种方式时,用户触发航向调整请求时,操作台向飞行器发送航向角请求,所述飞行器接收到所述航向角请求后,向操作台返回航向角。采用这种方式只有在需要的时候,才获取飞行器的航向角,能够减少操作台和飞行器之间的信息交互,节约系统资源。
步骤102:获取操作台的方向角;
操作台的方向角通常指操作台或飞手的正面朝向的角度。操作台内置GPS或指南针,可以从GPS信息中直接获取方向角Degree,也可以根据指南针获取当前的方向角Degree。
步骤103:根据所述航向角及操作台方向角计算所述飞行器航向调整角度;
操作台通过将飞行器的航向角Yaw减去操作台的方向角Degree得到两者的 角度差。将所述角度差作为飞行器航向调整角度。
当然,操作台也可以采用操作台的方向角Degree减去飞行器的航向角Yaw得到两者的角度差。将所述角度差作为飞行器航向调整角度。
任何一种计算方式,都不会对调整带来影响,只是在调整的时候,调整的方向有所不同而已。
步骤104:根据所述飞行器航向调整角度,调整所述飞行器的航向。
根据所述飞行器的航向调整角度,判断是否需要对飞行器的航向进行调整,当角度差为0时,则说明两者的方向一致,则不需要对飞行器航向进行调整;当两者方向不一致时,则对飞行器的航向进行调整。
当在步骤103中,通过飞行器的航向角Yaw减去操作台的方向角Degree得到两者的角度差时,则当所述飞行器航向调整角度为负值时,则根据所述飞行器航向调整角度,逆时针调整所述飞行器的航向;当所述飞行器航向调整角度为正值时,则根据所述飞行器航向调整角度,则顺时针调整所述飞行器的航向。
当在步骤103中,通过操作台的方向角Degree减去飞行器的航向角Yaw得到两者的角度差时,则当所述飞行器航向调整角度为正值时,则根据所述飞行器航向调整角度,逆时针调整所述飞行器的航向;当所述飞行器航向调整角度为负值时,则根据所述飞行器航向调整角度,则顺时针调整所述飞行器的航向。
本申请实施例通过计算当前飞行器的航向角和当前操作台的方向角,调整飞机航向,使飞行器可以方便的基于当前操作台的朝向进行航向调整,而不是基于飞行器当前的朝向进行调整,方便了飞手的操作,非常方便的实现了对于飞行器航向的常用调整。
实施例2:
本申请实施例2提供了另外一种飞行器航向控制方法,如图2所示。包括如下步骤:
步骤201:获取目标航向角;
飞行器在飞行过程中,经常会被飞手执行以下飞行动作,如相对操作台直 行、相对操作台左转90度、相对操作台右转90度、相对操作台掉头等常见操作,这些操作往往是基于飞手当前朝向来进行调整的。这时候,操作台首先获取飞手希望飞行器调整的目标航向角。所述的目标航向角的获取方式,可以是通过预先设置在操作台上的按钮,也可以是通过一个UI界面,允许用户输入数据目标航向角。
所述目标航向角为用户希望飞行器朝向相对于操作台朝向的角度差,在系统中,当需要朝操作台顺时针方向调整时,所述目标航向角为正角度;当需要朝逆时针方向调整时,所述目标航向角为负角度。
步骤202:获取飞行器的航向角;
当操作台获取到目标航向角时,表明操作台需要对飞行器的航向进行调整,可以采用步骤101中的方式获取飞行器航向角。
步骤203:获取操作台的方向角;
该步骤的操作同实施例1的步骤102完全一样,在这里不再赘述。
步骤204:根据所述目标航向角、飞行器航向角及操作台的方向角计算所述飞行器航向调整角度;
在该实施例中,用户输入了希望将该飞行器调整到位的目标航向角,计算飞行器航向调整角度时,需要考虑目标航向角,因此,飞行器航向调整角度需要通过目标航向角加上飞行器的航向角减去操作台的方向角得到调整角度。
步骤205:判断飞行器航向调整角度是否小于预先设定的阈值;
为了避免飞行器航向频繁的进行调整,可以对航向调整信息进行判断,当其调整值小于一定的阈值时,比如5度,则不进行调整;当调整值大于或等于设定的阈值时,则进行调整。
所述的阈值会预先设定在系统中,当然用户也可以通过设置操作,对该阈值进行重设。
步骤206:不做操作;
当飞行器航向调整角度小于预先设定的阈值时,则取消调整,不做任何操作。
步骤207:根据所述飞行器航向调整角度,调整所述飞行器的航向;
当飞行器航向调整角度大于预先设定的阈值时,则按照调整角度,对飞行器的航向进行调整。具体的调整方式和步骤104类似,在这里不再赘述。
本申请实施例2通过增加目标航向角,增加了飞行器航向调整的选择,更方便了飞手的操作。同时,通过设置调整阈值,避免了飞行器航向的频繁调整,也有利于飞行器的飞行稳定性。
实施例3:
本申请实施例3结合实际应用进一步对实施例1和实施例2进行说明。如图3A、图3B、图3C和图4A、图4B和图4C所示。
在实际操作中,操作台可以为遥控器,如图3A所示的操作方式,包括飞行器和遥控器,所述遥控器和飞行器直接建立连接,通过遥控器对飞行器进行飞行控制。
可选的,作为一种方便飞手进行飞行器控制的方式,在飞行器起飞时,当飞行器的机头朝向和飞手的朝向不一致时,飞行器可以自动进行调整,调整为和飞手朝向一致。当飞行器起飞时或起飞前,飞行器向遥控器发送飞行器的姿态信息,其中包括了航向角,遥控器接收到飞行器发送的航向角后,获取自身的方向角。所述遥控器的方向角通过内置在遥控器内部的GPS模块或者指南针模块得到自身的方向角。遥控器根据所述飞行器的航向角和自身的方向角,判断机头和飞手朝向相差的角度确定飞行器航向调整角度,根据所述飞行器航向调整角度,向飞行器发送航向调整指令,调整所述飞行器的航向。该飞行器航向控制过程程序可以作为起飞后的默认程序进行自动调用,也可以通过用户进行触发,比如:通过在遥控器上设置一个调整按钮,当用户按下按钮时,自动将机头朝向调整为和飞手方向一致。
更进一步的,也可以通过在遥控器上设置目标航向角输入框或输入按钮,可以使用户不仅仅能快速使机头朝向调整为和飞手方向一致,更能够让飞手根据自己的需要输入希望相对于飞手位置调整的目标角度,实现飞行器航向的一 键调整。
在实际操作中,操作台可以为手机终端,如图3B所示,所述手机终端通过WiFi或者其他方式建立和飞行器的连接,手机终端通过自身携带的GPS或指南针,获取自身的方向角。具体的操作方式和图3A类似,在这里不再赘述。通过手机终端直接操作飞行器,方便用户携带,操作也很方便。
在实际操作中,该飞行器控制方式也可以通过遥控器和手机终端配合完成,如图3C所示。在实际中,遥控器往往比较简单,没有专门配置GPS或指南针,所以,本实施例通过将手机终端的信息和遥控器进行共享,来实现本申请目的。在图3C中,遥控器来控制飞行器的飞行,遥控器和飞行器之间建立连接,手机终端不和飞行器建立连接,手机终端通过蓝牙、红外或WiFi等其他方式,和遥控器建立连接。同时,由于遥控器的功能有限,一般遥控器仅仅用户和飞行器的数据传输,因此,本实施例将复杂的操作放到手机终端上来完成。飞行器发送自身的飞行姿态信息给遥控器,遥控器接收到飞行姿态信息后,将其转发给手机终端,手机终端从所述飞行姿态信息中获取飞行器的航向角,手机终端通过自身携带的GPS或指南针,获取自身的方向角,作为操作台的朝向。手机终端根据所述航向角和自身的方向角,计算出飞行器航向调整角度,将所述飞行器航向调整角度转换为飞行器航向调整指令,发送给遥控器,遥控器将所述调整指令发送给飞行器,控制飞行器进行航向调整。当然,也可以在手机终端上输入目标航向角,跟其他实施例中的操作类似,在这里不再赘述。
该种方式,通过手机终端来进行航向调整的计算,最大程度的不改变现有遥控器和飞行器的结构,实现起来非常方便。
在实际中,操作台通过飞行器位置和航向角,以及自身的位置和朝向信息,会将飞行器的位置和航向在操作台上进行精确的显示,如图4A所示。我们假设坐标中心的黑点为操作台的位置,操作台的朝向为正北方。操作台通过获取飞行器的GPS信息将飞行器的位置在操作台上进行显示,通过获取飞行器的航向角,将飞行器的航向在操作台上进行显示。如图4B中所示,飞行器的航向角Yaw为0度,操作台的朝向为90度,则飞行器航向调整角度为飞行器航向角Yaw0 减去操作台方向角90等于负90度,操作台根据所述飞行器航向调整角度负90度,将飞行器的航向逆时针调整90度,可以将飞行器的航向调整为和飞手方向一致。当然,上述计算方式,也可以是操作台朝向90度减去飞行器航向角Yaw0度等于正90度,操作台将飞行器航向逆时针调整90度。
当用户输入目标航向角时,所述目标航向角为待调整目标位置相对于操作台位置的角度差,当需要朝操作台顺时针方向调整时,所述目标航向角为正角度;当需要朝操作台逆时针方向调整时,所述目标航向角为负角度。比如:当前飞行器机头朝向为120度,操作台朝向为90度,用户希望飞行器朝相对于操作台逆时针旋转90度,如4C所示。因用户希望朝相对于操作台逆时针旋转90度,则目标航向角为相对于操作台位置的角度,为-90度,飞行器航向角为120度,操作台位置为90度,则飞行器航向调整角度为:-90+120-90=-60度,即将飞行器机头朝逆时针方向旋转60度,如图4C所示,达到用户希望的机头朝向。
通过本申请实施例3,方便的实现了飞手对飞行器基于操作台的方向进行调整,方便了飞手的操作,降低了航向调整的难度。
实施例4:
本申请实施例4提供一种飞行器航向控制设备50,如图5、图6、图7所示,包括:
航向角获取单元501:用于获取飞行器的航向角,并将所述航向角发送给角度计算单元503;
如实施例1中所描述的,所述获取飞行器的航向角包括多种方式,比如:飞行器将自身的姿态信息实时发送给航向角获取单元501;或飞行器周期性的将自身的姿态信息发送给航向角获取单元501;或者飞行器航向控制设备50主动向飞行器请求飞行器姿态信息,飞行器接收到请求后,将姿态信息发给航向角获取单元501。所述航向角获取单元501获取航向角后,将航向角发给角度计算单元503。
操作台位置获取单元502:用于获取操作台的方向角,并将所述方向角发送 给角度计算单元503;
所述操作台的方向角通过GPS信息或指南针模块获取。并将所述方向角发送给角度计算单元503;
角度计算单元503:用于根据所述航向角及操作台的方向角计算所述飞行器航向调整角度。
如实施例1中的描述,角度计算单元503通过将飞行器的航向角Yaw减去操作台的方向角Degree得到两者的角度差。将所述角度差作为飞行器航向调整角度。
当然,操作台也可以采用操作台的方向角Degree减去飞行器的航向角Yaw得到两者的角度差。将所述角度差作为飞行器航向调整角度。
任何一种计算方式,都不会对调整带来影响,只是在调整的时候,调整的方向有所不同而已。
可选的,如图6所示,该飞行器航向控制设备,进一步包括:目标位置设置单元601:用于接收目标航向角,并将所述目标航向角发给所述角度计算单元604。
所述角度计算单元604接收所述目标航向角,并根据所述目标航向角、飞行器航向角和操作台的方向角,计算所述飞行器航向调整角度。具体为:通过将目标航向角加上飞行器的航向角减去操作台的方向角得到调整角度。
可选的,如图7所示,该飞行器航向控制设备,进一步包括:航向调整单元705,用于接收角度计算单元704发送的飞行器航向调整角度,并根据所述飞行器航向调整角度,向飞行器发送航向调整指令以调整所述飞行器的航向。
当角度计算单元通过将飞行器的航向角Yaw减去操作台的方向角Degree得到两者的角度差,将所述角度差作为飞行器航向调整角度时,当所述角度差为正值时,则将飞行器按顺时针方向进行调整,当所述角度差为负值时,则将飞行器按逆时针方向进行调整。
当操作台采用操作台的方向角Degree减去飞行器的航向角Yaw得到两者的角度差,将所述角度差作为飞行器航向调整角度时,当所述角度差为负值时, 则将飞行器按顺时针方向进行调整,当所述角度差为正值时,则将飞行器按逆时针方向进行调整。
可选的,所述航向调整单元进一步包括:当所述飞行器航向调整角度小于预先设定的阈值时,则不进行调整;当飞行器航向调整角度大于预先设定的某一阈值时,才进行调整,比如:5度以内,不进行调整,可以理解,所述阈值还可以根据具体应用场合设定为5度以外的其他值,这里不作严格限制。所述的阈值会预先设定在系统中,当然用户也可以通过设置操作,对该阈值进行重设。通过设定阈值,能最大程度的保证飞机航向不做频繁的调整,保证了飞行的稳定性。
通过本申请实施例4,方便的实现了飞手对飞行器基于操作台的方向进行调整,方便了飞手的操作,降低了航向调整的难度。
实施例5
图8是本申请实施例提供的一种电子设备的结构示意图。如图8所示,电子设备80包括一个或多个处理器801以及存储器802。其中,图8中以一个处理器801为例。
处理器801和存储器802可以通过总线或者其他方式连接,图8中以通过总线连接为例。
存储器802作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的飞行器航向控制方法对应的程序指令/模块(例如,附图5、6、7所示的各个模块)。处理器801通过运行存储在存储器802中的非易失性软件程序、指令以及模块,从而飞行器航向控制设备的各种功能应用以及数据处理,即实现上述方法实施例以及上述装置实施例的各个模块的功能。
存储器802可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
所述程序指令/模块存储在所述存储器802中,当被所述一个或者多个处理器801执行时,执行上述任意方法实施例中的飞行器航向控制方法,例如,执行以上描述的图1、图2所示的各个步骤;也可实现图5、图6和图7所述的各 个模块。
本申请实施例的电子设备80以多种形式存在,在执行以上描述的图1、图2所示的各个步骤;也可实现图5、图6和图7所述的各个模块时,电子设备80包括但不限于:
(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机(例如iPhone)、多媒体手机、功能性手机,以及低端手机等。
(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上网特性。这类终端包括:PDA、MID和UMPC设备等,例如iPad。
(3)遥控器:这类设备可以用于控制飞行器的飞行。
本申请实施例还提供了一种非易失性计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图8中的一个处理器801,可使得上述一个或多个处理器可执行上述任意方法实施例中的飞行器航向控制方法。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件的方式来实现。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是,以上实施例仅用以说明本申请的技术方案,而非对其限制。在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供。尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或者替换并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种飞行器航向控制方法,其特征在于,包括:
    获取飞行器的航向角;
    获取操作台的方向角;
    根据所述飞行器的航向角及操作台的方向角计算所述飞行器航向调整角度;
    根据所述飞行器航向调整角度,调整所述飞行器的航向。
  2. 如权利要求1所述的飞行器航向控制方法,其特征在于,所述获取飞行器的航向角具体为:接收飞行器发送的飞行姿态信息,从所述飞行姿态信息中获取飞行器的航向角;或者,接收飞行器发送的飞行器机头相对于指南针的方向角作为飞行器的航向角。
  3. 如权利要求1所述的飞行器航向控制方法,其特征在于,所述操作台的方向角具体为从操作台的GPS信息中直接获取的方向角或者为操作台相对于指南针的角度。
  4. 如权利要求1所述的飞行器航向控制方法,其特征在于,所述计算飞行器航向调整角度具体为:飞行器的航向角减去操作台的方向角;或,操作台的方向角减去飞行器的航向角。
  5. 如权利要求1所述的飞行器航向控制方法,其特征在于,所述获取飞行器的航向角之前,进一步包括,获取目标航向角,所述目标航向角为待调整目标位置相对于操作台位置的角度差,当需要朝操作台顺时针方向调整时,所述目标航向角为正角度;当需要朝操作台逆时针方向调整时,所述目标航向角为负角度。
  6. 如权利要求5所述的飞行器航向控制方法,其特征在于,所述计算飞行器航向调整角度具体为:目标航向角加上飞行器的航向角减去操作台的方向角。
  7. 如权利要求4所述的飞行器航向控制方法,其特征在于,当飞行器 的航向角减去操作台的方向角作为飞行器航向调整角度时,当所述飞行器航向调整角度为负值时,则根据所述飞行器航向调整角度,逆时针调整所述飞行器的航向;当所述飞行器航向调整角度为正值时,则根据所述飞行器航向调整角度,则顺时针调整所述飞行器的航向;
    当操作台的方向角减去飞行器的航向角作为飞行器航向调整角度时,当所述飞行器航向调整角度为正值时,则根据所述飞行器航向调整角度,逆时针调整所述飞行器的航向;当所述飞行器航向调整角度为负值时,则根据所述飞行器航向调整角度,则顺时针调整所述飞行器的航向。
  8. 如权利要求5所述的飞行器航向控制方法,其特征在于,当所述飞行器航向调整角度为负值时,则根据所述飞行器航向调整角度,逆时针调整所述飞行器的航向;当所述飞行器航向调整角度为正值时,则根据所述飞行器航向调整角度,则顺时针调整所述飞行器的航向。
  9. 如权利要求1-8任意一项所述的飞行器航向控制方法,其特征在于,当所述飞行器航向调整角度绝对值小于预先设定的阈值时,则不进行调整;否则,则进行调整。
  10. 如权利要求5、6或8任意一项所述的飞行器航向控制方法,其特征在于,所述目标航向角包括飞行器执行以下飞行动作时对应的航向角:相对操作台直行、相对操作台左转90度、相对操作台右转90度、相对操作台掉头。
  11. 一种飞行器航向控制装置,包括:
    航向角获取单元:用于获取飞行器的航向角;
    操作台位置获取单元:用于获取操作台的方向角;
    角度计算单元:用于根据所述航向角及操作台的方向角计算所述飞行器航向调整角度。
  12. 如权利要求11所述的飞行器航向控制设备,其特征在于,进一步包括:
    目标位置设置单元:用于接收目标航向角,并将所述目标航向角发给 所述角度计算单元。
  13. 如权利要求11或12所述的飞行器航向控制设备,其特征在于,进一步包括:
    航向调整单元:用于根据所述飞行器航向调整角度调整所述飞行器的航向。
  14. 如权利要求12所述的飞行器航向控制设备,其特征在于,所述角度计算单元进一步用于:根据所述目标航向角、飞行器航向角和操作台的方向角计算所述飞行器航向调整角度。
  15. 如权利要求13所述的飞行器航向控制设备,其特征在于,所述航向调整单元进一步用于:当所述飞行器航向调整角度小于预先设定的阈值时,则不进行调整。
  16. 一种电子设备,其特征在于,包括:
    至少一个处理器;以及
    与所述至少一个处理器连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令程序,所述指令程序被所述至少一个处理器执行,以使所述至少一个处理器用于执行权利要求1-10任意一项所述的方法。
PCT/CN2017/107377 2016-12-09 2017-10-23 一种飞行器航向控制方法、装置和电子设备 WO2018103462A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/434,514 US11221635B2 (en) 2016-12-09 2019-06-07 Aerial vehicle heading control method and apparatus and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611127903.1 2016-12-09
CN201611127903.1A CN106774390A (zh) 2016-12-09 2016-12-09 一种飞行器航向控制方法、装置和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/434,514 Continuation US11221635B2 (en) 2016-12-09 2019-06-07 Aerial vehicle heading control method and apparatus and electronic device

Publications (1)

Publication Number Publication Date
WO2018103462A1 true WO2018103462A1 (zh) 2018-06-14

Family

ID=58877753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107377 WO2018103462A1 (zh) 2016-12-09 2017-10-23 一种飞行器航向控制方法、装置和电子设备

Country Status (3)

Country Link
US (1) US11221635B2 (zh)
CN (1) CN106774390A (zh)
WO (1) WO2018103462A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106774390A (zh) * 2016-12-09 2017-05-31 深圳市道通智能航空技术有限公司 一种飞行器航向控制方法、装置和电子设备
CN107272733A (zh) * 2017-06-13 2017-10-20 深圳市伊特利网络科技有限公司 终端定位的无人机控制方法及系统
JP6921026B2 (ja) * 2018-03-30 2021-08-18 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 送信機、飛行体、飛行制御指示方法、飛行制御方法、プログラム、及び記憶媒体
CN108549399B (zh) * 2018-05-23 2020-08-21 深圳市道通智能航空技术有限公司 飞行器偏航角修正方法、装置及飞行器
WO2020061738A1 (zh) * 2018-09-25 2020-04-02 深圳市大疆软件科技有限公司 农业无人飞行器的控制方法、控制端及存储介质
CN111665827A (zh) * 2019-03-07 2020-09-15 北京奇虎科技有限公司 一种信息处理方法、控制设备和被控设备
CN113093774B (zh) * 2019-12-23 2023-07-14 海鹰航空通用装备有限责任公司 无人机滑跑控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104180796A (zh) * 2013-05-22 2014-12-03 上海九鹰电子科技有限公司 遥控信号的发送及接收的装置和方法、遥控设备
US20150346721A1 (en) * 2014-05-30 2015-12-03 Aibotix GmbH Aircraft
CN105573334A (zh) * 2016-02-18 2016-05-11 览意科技(上海)有限公司 无人机无头模式的实现方法及其控制系统
CN105573330A (zh) * 2015-03-03 2016-05-11 广州亿航智能技术有限公司 基于智能终端的飞行器操控方法
CN105992980A (zh) * 2015-05-18 2016-10-05 深圳市大疆创新科技有限公司 基于无头模式的无人机控制方法及设备
CN106774390A (zh) * 2016-12-09 2017-05-31 深圳市道通智能航空技术有限公司 一种飞行器航向控制方法、装置和电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552983A (en) * 1994-03-02 1996-09-03 United Technologies Corporation Variable referenced control system for remotely operated vehicles
US6092007A (en) * 1998-04-29 2000-07-18 Sikorsky Aircraft Corporation Aircraft course correction for wind and fuzzy logic course intercept profile based upon accuracy and efficiency
US7286913B2 (en) * 2003-10-23 2007-10-23 International Business Machines Corporation Navigating a UAV with telemetry through a socket
US8676406B2 (en) * 2011-05-03 2014-03-18 Raytheon Company Unmanned aerial vehicle control using a gamepad
FR2985329B1 (fr) * 2012-01-04 2015-01-30 Parrot Procede de pilotage intuitif d'un drone au moyen d'un appareil de telecommande.
CN104898699B (zh) * 2015-05-28 2020-03-17 小米科技有限责任公司 飞行控制方法及装置、电子设备
KR20180017674A (ko) * 2016-08-10 2018-02-21 엘지전자 주식회사 이동 단말기 및 그 제어 방법
US9891705B1 (en) * 2016-08-25 2018-02-13 Rockwell Collins, Inc. Automatic boresighting of head-worn display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104180796A (zh) * 2013-05-22 2014-12-03 上海九鹰电子科技有限公司 遥控信号的发送及接收的装置和方法、遥控设备
US20150346721A1 (en) * 2014-05-30 2015-12-03 Aibotix GmbH Aircraft
CN105573330A (zh) * 2015-03-03 2016-05-11 广州亿航智能技术有限公司 基于智能终端的飞行器操控方法
CN105992980A (zh) * 2015-05-18 2016-10-05 深圳市大疆创新科技有限公司 基于无头模式的无人机控制方法及设备
CN105573334A (zh) * 2016-02-18 2016-05-11 览意科技(上海)有限公司 无人机无头模式的实现方法及其控制系统
CN106774390A (zh) * 2016-12-09 2017-05-31 深圳市道通智能航空技术有限公司 一种飞行器航向控制方法、装置和电子设备

Also Published As

Publication number Publication date
CN106774390A (zh) 2017-05-31
US20190285433A1 (en) 2019-09-19
US11221635B2 (en) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2018103462A1 (zh) 一种飞行器航向控制方法、装置和电子设备
US10567497B2 (en) Reticle control and network based operation of an unmanned aerial vehicle
WO2016183771A1 (zh) 基于无头模式的无人机控制方法及设备
WO2019119829A1 (zh) 一种无人机控制方法、装置、遥控设备和无人机系统
WO2016138690A1 (zh) 基于智能终端的体感飞行操控系统及终端设备
WO2018120132A1 (zh) 控制方法、装置、设备及无人飞行器
CN105892476B (zh) 一种飞行器的控制方法及控制终端
EP3345832B1 (en) Unmanned aerial vehicle and method for controlling the same
WO2018099198A1 (zh) 无人机姿态控制方法、装置及无人机
WO2018214074A1 (zh) 无人飞行器的返航控制方法、设备及无人飞行器
WO2019127019A9 (zh) 无人飞行器路径规划方法、装置和飞行管理方法、装置
US10452063B2 (en) Method, storage medium, and electronic device for controlling unmanned aerial vehicle
WO2018187916A1 (zh) 云台随动控制方法及控制设备
US20200169666A1 (en) Target observation method, related device and system
CN105607647A (zh) 一种航拍设备的拍摄范围调整系统以及相应的调整方法
WO2017181513A1 (zh) 无人机的飞行控制方法和装置
WO2018090807A1 (zh) 飞行拍摄控制系统和方法、智能移动通信终端、飞行器
EP3399380B1 (en) Headless control method
WO2018214155A1 (zh) 用于设备姿态调整的方法、设备、系统和计算机可读存储介质
WO2019127478A1 (zh) 无人机的控制方法、飞行控制器及无人机
WO2019210639A1 (zh) 一种油门控制的方法、装置及无人机
WO2021232273A1 (zh) 无人机及其控制方法和装置、遥控终端、无人机系统
WO2020237529A1 (zh) 一种无人机的飞行控制方法、设备及无人机
WO2019140695A1 (zh) 控制飞行器飞行的方法及设备
WO2023193611A1 (zh) 无人飞行器及其控制方法、装置、系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878913

Country of ref document: EP

Kind code of ref document: A1