WO2018100915A1 - 微細気泡発生ノズル - Google Patents

微細気泡発生ノズル Download PDF

Info

Publication number
WO2018100915A1
WO2018100915A1 PCT/JP2017/037924 JP2017037924W WO2018100915A1 WO 2018100915 A1 WO2018100915 A1 WO 2018100915A1 JP 2017037924 W JP2017037924 W JP 2017037924W WO 2018100915 A1 WO2018100915 A1 WO 2018100915A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid mixture
flow path
channel
outlet
Prior art date
Application number
PCT/JP2017/037924
Other languages
English (en)
French (fr)
Inventor
清 廣瀬
Original Assignee
日東精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017013499A external-priority patent/JP6835450B2/ja
Application filed by 日東精工株式会社 filed Critical 日東精工株式会社
Priority to CN201780065860.5A priority Critical patent/CN109890493B/zh
Priority to KR1020197011285A priority patent/KR102259060B1/ko
Publication of WO2018100915A1 publication Critical patent/WO2018100915A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23121Diffusers having injection means, e.g. nozzles with circumferential outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/06Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in annular, tubular or hollow conical form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid

Definitions

  • the present invention relates to a fine bubble generating nozzle that generates fine bubbles by a swirling flow method.
  • a conventional fine bubble generating nozzle has an inlet for introducing liquid at one end and a gas from an intake port opened on the peripheral wall of the casing body into a cylindrical casing body having an outlet for discharging liquid at the other end.
  • the gas-liquid mixing part which introduces and mixes with the liquid and the swirl flow formation part which makes a gas-liquid mixture turn into a swirl flow are provided.
  • the gas-liquid mixture that has turned into a swirl is subjected to a force that is repelled sideways by the influence of strong rotation when released, and the gas is divided by the action of twisting and pulling as the vortex breaks down. By being divided in this manner, fine bubbles are generated.
  • Patent Document 2 there is one disclosed in Patent Document 2 as a development of a swirl flow type fine bubble generating nozzle.
  • This fine bubble generating nozzle is intended to generate more fine bubbles by circulating and shearing the gas-liquid mixture in which the fine bubbles are generated by the swirling flow method.
  • JP 2007-21343 A Japanese Patent No. 4678617
  • the fine bubble generating nozzle shown in Patent Document 1 since the fine bubble generating nozzle shown in Patent Document 1 only generates fine bubbles using the shearing force when the swirling flow is released, it is micro level (several tens to several hundreds ⁇ m) and nano level ( There was a problem that a large amount of fine bubbles (less than 1 ⁇ m) could not be generated. Moreover, since the gas-liquid mixture cannot actually circulate the fine bubble generating nozzle shown in Patent Document 2, there is a problem that a large amount of fine bubbles cannot be generated.
  • the present invention was created in view of the above problems, and an object of the present invention is to provide a fine bubble generating nozzle that greatly increases the generation ratio of micro-level and nano-level fine bubbles.
  • the fine bubble generating nozzle includes a flow path and a circulation flow path that circulates the gas-liquid mixture that has reached the downstream of the discharge flow path without flowing into the branch flow path to the upstream of the discharge flow path.
  • the circulation channel is an inner hole of a cylindrical member, and the cylindrical member is inserted into the outlet channel, and the outlet channel and the cylindrical shape are formed on the outer peripheral surface of the downstream end of the cylindrical member.
  • An inlet hole that communicates with the inner hole of the member and introduces the gas-liquid mixture that has reached the downstream of the outlet channel into the inner hole of the cylindrical member is formed, and the outer peripheral surface of the upstream end of the cylindrical member
  • the outlet channel and the inner hole of the cylindrical member communicate with each other, and an outlet hole for leading the gas-liquid mixture that flows back through the inner hole of the cylindrical member to the upstream side of the outlet channel is preferably formed.
  • the branch flow path is formed so that the opening area of the outlet is larger than the opening area of the inlet. Furthermore, it is preferable that one side surface of the branch channel is a curved surface, and the side surface facing this is a flat surface.
  • a core is disposed inside the swirl chamber, and a swirl flow path formed on the surface swirls the gas-liquid mixture.
  • the inner surface of the swirling channel is preferably formed in a step shape.
  • reference numeral 1 denotes a fine bubble generating nozzle, which has a nozzle body 10 composed of a first body 11 and a second body 12. Inside the nozzle body 10, an introduction chamber 20 for introducing the gas-liquid mixture L, a swirl chamber 30 for turning the gas-liquid mixture L in a swirl flow, and the gas-liquid mixture L in a swirl flow are sheared. A shear chamber 50 for generating fine bubbles is formed.
  • the introduction chamber 20 is provided with an introduction port 21 at one end, from which the gas-liquid mixture L is introduced. Further, the introduction chamber 20 is formed so that the inner diameter becomes smaller toward the downstream side, and the swirl chamber 30 communicates therewith.
  • the inner diameter of the swirl chamber 30 is formed so as to gradually increase from the portion communicating with the introduction chamber 20 to the intermediate point and gradually decrease from the intermediate point to the outlet 31.
  • a core 40 is disposed inside the swirl chamber 30.
  • the core 40 is formed in a substantially conical shape (specifically, a chestnut shape) and has an outer shape along the inner wall of the swirl chamber 30.
  • the core 40 is disposed so as to be fitted inside the swirl chamber 30 so that the top portion 42 of the core 40 faces the upstream side.
  • blade portions 43a that turn clockwise at a predetermined turning angle protrude, and six similar blade portions 43a are arranged at equal intervals. ing. And the turning flow path 43 is formed of the clearance gap between the adjacent blade
  • the swirl flow path 43 includes a bottom surface 43b, an inner side surface 43c, and an outer side surface 43d.
  • the opening portion facing the bottom surface 43b is swirled. It is closed by the inner wall of the chamber 30.
  • the side swirl flow path 43 is constituted by the bottom surface 43 b, the inner side surface 43 c, the outer side surface 43 d, and the four surfaces of the inner wall of the swirl chamber 30. With such a configuration, the swirl flow path 43 generates a velocity component in the swirl direction for the gas-liquid mixture L that has flowed into the swirl chamber 30, as indicated by a two-dot chain line in FIG.
  • the bottom surface 43b and the outer side surface 43d are formed in a step shape so as to descend in the direction in which the gas-liquid mixture L flows so as to generate a vortex in the step portion. It is configured.
  • the inner wall 33 of the swirl chamber 30 is also formed in a step shape.
  • the inlet A and the outlet B of the swirling channel 43 are configured such that the groove depth of the inlet A is deeper than the groove depth of the outlet B, and the opening area of the inlet A is larger than the opening area of the outlet B. Yes.
  • the bottom surface 44 of the core 40 is provided with blade portions 45a and 45b that turn clockwise at a predetermined turning angle.
  • the blade 45a and the blade 45b have different turning angles, and six downstream blades 45a and 45b having different turning angles are alternately arranged at a predetermined interval.
  • a swirl flow path 45 as a flow path of the gas-liquid mixture L is formed by a gap between the adjacent downstream blade section 45a and the downstream blade section 45b.
  • the swirl passage 45 is configured such that the opening portion facing the bottom surface 44 is closed by the inner wall of the swirl chamber 30. For this reason, the gas-liquid mixture L flows in the swirling flow path 45 as shown by a two-dot chain line in FIG. It is comprised so that the speed component of a turning direction may be produced.
  • the swirl flow path 45 is formed in the swirl chamber 30 by the swirl flow path 43 formed on the side surface 41 of the core 40 and the swirl flow path 45 formed on the bottom surface 44 of the core 40. Has been.
  • a shear member 60 formed by laminating a plurality of members is disposed inside the swirl chamber 50.
  • the shearing member 60 is formed in a bottomed hollow cylindrical shape, and the bottomed hollow hole is a lead-out flow path 61, and the opening portion communicates with the lead-out port 31 of the swirl chamber 30.
  • the shearing member 60 is formed with a branching channel 62 that branches from the outlet channel 61 and extends to the outer peripheral surface of the shearing member 60.
  • the six branch channels 62 are provided in a line at equal intervals in the circumferential direction, and a total of 18 are formed by providing three lines.
  • the part numbers of all the branch flow paths are indicated as 62.
  • the branch channel 62 includes an inlet 62 a that communicates with the outlet channel 61 and an outlet 62 b that opens to the outer peripheral surface of the shear member 60. Is configured to gradually expand from the inlet 62a to the outlet 62b.
  • one side surface is a curved surface 62c, and the other side surface facing this is formed on a flat surface 62d.
  • the branch flow path 61 configured as described above increases the generation ratio of fine bubbles.
  • the shear member 60 is disposed inside the swirl chamber 50 with a predetermined interval between the outer peripheral surface thereof and the inner wall of the swirl chamber 50.
  • a discharge channel 63 is formed by a gap with the outer peripheral surface of the shearing member 60.
  • a bubble cutting panel 64 having a plurality of holes is wound around the outer peripheral surface of the shearing member 60.
  • the shearing member 60 is held by a lid 70, and the lid 70 is attached to the end of the nozzle body 10.
  • the lid 70 has a large number of discharge holes 71 communicating with the discharge flow path 63. For this reason, the gas-liquid mixture L flowing out from the outlet 62 b of the branch flow path 62 passes through the hole of the bubble cutting panel 64, flows into the discharge flow path 63, and is ejected from the discharge hole 71.
  • a circulation pipe 65 which is a hollow cylindrical cylindrical member that opens at both ends, is inserted into the outlet channel 61, and this hollow hole is the circulation channel 66.
  • the circulation pipe 65 has one end closed by the bottom surface of the bottomed hollow hole of the shearing member 60 (that is, the most downstream portion of the outlet channel 61) and the other end closed by the bottom surface of the core 40. It is disposed in the path 61. Further, the circulation pipe 65 is disposed inside the outlet channel 61 with a gap between the outer peripheral surface thereof and the inner wall of the outlet channel 61, and the gas-liquid mixture L flows through this gap.
  • inlet holes 66a are formed at equal intervals on the outer peripheral surface of the downstream end, and similarly, four outlet holes are formed on the outer peripheral surface of the upstream end at equal intervals.
  • 66b is formed. The inlet hole 66 a and the outlet hole 66 b communicate the outlet channel 61 and the circulation channel 66.
  • the gas-liquid mixture L introduced from the introduction port 21 flows through the introduction chamber 20 and flows into the swirl chamber 30. At this time, the gas-liquid mixture L becomes a high-speed swirl flow by flowing through the swirl flow channel 45 subsequent to the swirl flow channel 43. Further, the inner surfaces of the swirling flow path 43 and the swirling flow path 45 are stepped, so that a small vortex flow is generated. Since the frictional resistance between the gas-liquid mixture L and the swirling flow path 43 and the swirling flow path 45 is reduced by this vortex flow, the gas-liquid mixture L becomes a higher-speed swirling flow. In addition, since the swirl flow path 43 is configured so that the opening area gradually decreases from the inlet A to the outlet B, the size of the vortex generated in the swirl flow path 43 becomes very small, and the effect of reducing frictional resistance is achieved. Can be increased.
  • the gas-liquid mixture L that has become a high-speed swirling flow flows from the outlet 31 into the outlet passage 61, and in the outlet passage 61, the outlet pipe 61 turns around its circumference around the circulation pipe 65. It flows downstream. However, not all of the gas-liquid mixture L flows from the upstream to the downstream of the outlet channel 61, but the outer gas-liquid mixture L flows into the branch channel 62 by centrifugal force due to the swirl.
  • the gas-liquid mixture L flowing through the branch flow path 62 has the highest flow velocity in the vicinity of the inlet 62a and expands the bubbles by decompression. And when flowing through the branch channel 62, the bubbles collapse and contract by being sheared, and a large amount of fine bubbles are generated at this time. In particular, since the cross-sectional area of the branch channel 62 gradually increases from the inlet 62a to the outlet 62b, the collapse and contraction of the bubbles are promoted.
  • the gas-liquid mixture L flowing out from the outlet 62 b of the branch channel 62 is subdivided by the bubble cutting panel 64, passes through the discharge channel 63, and is ejected from the discharge port 71.
  • the gas-liquid mixture L that has reached the most downstream side of the outlet channel 61 without flowing into the branch channel 62 flows into the circulation channel 66 in the circulation pipe 65 from the inlet hole 66 a, and in the outlet channel 61. It flows in the opposite direction to the flow of and flows out from the outlet hole 66b to the outlet channel 61.
  • the circulation channel 66 of the circulation pipe 65 circulates a part of the gas-liquid mixture L in the outlet channel 61 from downstream to upstream.
  • the gas-liquid mixture L located inside reaches the most downstream portion of the outlet channel 61.
  • the gas-liquid mixture L swirling inside has a high gas mixing ratio, and even if it passes through the branch flow path 62, it is difficult to generate fine bubbles.
  • the fine bubble generating nozzle 1 of the present invention such a gas-liquid mixture L is repeatedly circulated to the upstream side, thereby allowing the gas and liquid mixing ratio to be appropriate and passing through the branch channel 62. The generation ratio of bubbles can be increased.
  • FIG. 5 is a diagram showing the internal pressure of each flow path in the fine bubble generating nozzle 1 of the present invention in shades, in which portions where the internal pressure is high are shown in dark color, and locations where the internal pressure is low are shown in light color. It appears.
  • the internal pressure of each flow path is highest in the introduction chamber 20, and then decreases in the order from the upstream to the downstream of the swirl chamber 30, and then the outlet flow path 61, the branch flow path 62, and the circulation flow path. 66 is low.
  • the internal pressure of the entire circulation channel 66 is the lowest, the gas-liquid mixture L that has reached the most downstream portion of the outlet channel 61 is sucked into the circulation channel 66 by a negative pressure.
  • the internal pressure in the vicinity of the inlet 62 a of the branch channel 62 is as low as the internal pressure of the circulation channel 66, the gas-liquid mixture L in the vicinity of the outlet 31 flows into the outlet hole 66 b of the circulation channel 66. The flow toward the inlet hole 66a is not formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)

Abstract

【課題】マイクロレベルおよびナノレベルの微細気泡の発生割合を大幅に高めた微細気泡発生ノズルを提供する。 【解決手段】 気液混合体を導入する導入室20と、導入室20から流出した気液混合体Lを旋回させる旋回室30と、旋回した気液混合体Lを導出する導出流路61と、導出流路から分岐する分岐流路62と、分岐流路へ流入せずに導出流路の下流へ到達した気液混合体Lを導出流路61の上流へ循環する循環流路66とを備えることを微細気泡発生ノズル1による。このノズル1によれば、微細気泡が生成されなかった気液混合体Lを循環させて微細気泡を生成するので、大量に微細気泡を生成することができる。

Description

微細気泡発生ノズル
 本発明は、旋回流方式により微細気泡を発生する微細気泡発生ノズルに関する。
 従来、旋回流方式の微細気泡発生ノズルの一例として、特許文献1に開示されたものがある。従来の微細気泡発生ノズルは、一端に液体を導入する導入口を有するとともに、他端に液体を導出する導出口を有する筒状のケーシング体内に、ケーシング体の周壁に開口した吸気口から気体を導入して液体と混合させる気液混合部と、気液混合体を旋回流となす旋回流形成部とを備えている。旋回流となった気液混合体は、放出される際に強い回転の影響で横にはじき飛ばされる力を受け、気体が渦の崩壊に伴ってねじりと引っ張りの作用を受けて分断される。このようにして分断化されることにより、微細気泡が生成される。
 また、旋回流方式の微細気泡発生ノズルを発展させたものとしては、特許文献2に開示されたものがある。この微細気泡発生ノズルは、旋回流方式によって微細気泡が生成された気液混合体を循環させ、せん断することにより、より多くの微細気泡を生成しようとするものである。
特開2007-21343号公報 特許第4678617号公報
 しかしながら、特許文献1に示す微細気泡発生ノズルは、旋回流を放出したときのせん断力を利用して微細気泡を生成するだけのものなので、マイクロレベル(数十~数百μm)およびナノレベル(1μm未満)の微細気泡を大量に生成できない問題を有していた。また、特許文献2に示す微細気泡発生ノズルは、実際のところ、気液混合体を循環させられないので、微細気泡の大量生成を実現できない問題を有していた。
 本発明は、上記問題に鑑みて創生されたものであり、マイクロレベルおよびナノレベルの微細気泡の発生割合を大幅に高めた微細気泡発生ノズルを提供することを目的とする。
 気液混合体を導入する導入室と、前記導入室から流出した気液混合体を旋回させる旋回室と、旋回した気液混合体を導出する導出流路と、前記導出流路から分岐する分岐流路と、前記分岐流路へ流入せずに導出流路の下流へ到達した気液混合体を導出流路の上流へ循環する循環流路とを備える微細気泡発生ノズルによる。
 また、前記循環流路は筒状部材の内孔であって、この筒状部材は、導出流路内に挿入され、筒状部材の下流側端部の外周面には導出流路と筒状部材の内孔とを連通し、導出流路の下流へ到達した気液混合体を筒状部材の内孔へ導入する入口穴が形成されるとともに、筒状部材の上流側端部の外周面には導出流路と筒状部材の内孔とを連通し、筒状部材の内孔を逆流する気液混合体を導出流路の上流へ導出する出口穴が形成されていることが好ましい。
 また、前記分岐流路は、出口の開口面積が入口の開口面積よりも広くなるように形成されていることが好ましい。さらに、分岐流路は、一方の側面が曲面で、これに対向する側面が平面であることが好ましい。
 また、前記旋回室の内部には中子が配設され、その表面に形成された旋回流路が気液混合体を旋回させることが好ましい。
 前記旋回流路は、その内面が段形状に形成されていることが好ましい。
 本発明によれば、マイクロレベルおよびナノレベルの微細気泡を大量に発生可能な微細気泡生成ノズルを提供することができる。
本発明の微細気泡発生ノズルにおける正面視の縦断面図である。 本発明の微細気泡発生ノズルにおける旋回室の内部構造を示す平面側からの斜視図である。 本発明の微細気泡発生ノズルにおける旋回室の内部構造を示す底面側からの斜視図である。 本発明の微細気泡発生ノズルにおけるせん断室の内部構造を示す平面側からの斜視図である。 本発明の微細気泡発生ノズルにおける各流路の内部圧力を示す図である。
 以下、図面に基づいて本発明の実施形態を説明する。図1において、1は微細気泡発生ノズルであり、第1の本体11と、第2の本体12とから成るノズル本体10を有している。ノズル本体10の内部には、気液混合体Lを導入する導入室20と、気液混合体Lを旋回流にする旋回室30と、旋回流となった気液混合体Lをせん断して微細気泡を生成するせん断室50とが形成されている。
 導入室20は、一端に導入口21を備えており、ここから気液混合体Lが導入されるように構成されている。また、この導入室20は、下流側に向かうにつれて内径が小さくなるように形成されており、ここには旋回室30が連通している。
 旋回室30の内径は、導入室20と連通する部分から中間地点まで徐々に大きくなり、中間地点を過ぎてから導出口31までは徐々に小さくなるように形成されている。また、旋回室30の内部には、中子40が配設されている。中子40は、略円錐形状(具体的には栗形状)に成形されており、旋回室30の内壁に沿う外形を成している。この中子40の頂部42を上流側に向けるようにして、中子40は、旋回室30の内部に嵌合させるように配設されている。
 図2に示すように、中子40の側面41には、所定の旋回角度で時計回りに方向転換する羽根部43aが突設されており、同様の羽根部43aが等間隔に六本配置されている。そして、隣接する羽根部43a間の隙間によって、旋回流路43が形成されている。
 前記旋回流路43は、底面43bと、内側側面43cと、外側側面43dとを備えており、中子40を旋回室30の内部に配設したとき、底面43bに対向する開口部分は、旋回室30の内壁によって閉ざされる。要するに、側旋回流路43は、底面43b、内側側面43c、外側側面43dおよび旋回室30の内壁の四面によって構成されている。このような構成により、旋回流路43は、図2の二点鎖線で示すように、旋回室30に流れ込んだ気液混合体Lに対し、旋回方向の速度成分を生じさせる。
 また、旋回流路43の内面のうち、底面43bおよび外側側面43dは、気液混合体Lの流れる方向へ降段するような段形状に形成されており、段差部分に渦流を発生させるように構成されている。同様に、旋回室30の内壁33も段形状に形成されている。
 さらに、旋回流路43の入口Aおよび出口Bは、入口Aの溝深さが出口Bの溝深さよりも深く、かつ入口Aの開口面積が出口Bの開口面積より大きくなるように構成されている。
 図3に示すように、底面視において、前記中子40の底面44には、所定の旋回角度で時計回りに方向転換する羽根部45a,45bが突設されている。羽根部45aと羽根部45bとでは、旋回角度が異なり、旋回角度の異なる下流側羽根部45a,45bが所定の間隔をおいて交互に六本配置されている。そして、隣接する下流側羽根部45aと下流側羽根部45bとの隙間によって、気液混合体Lの流路としての旋回流路45が形成されている。
 中子40を旋回室30の内部に配設したとき、旋回流路45は、その底面44に対向する開口部分が旋回室30の内壁によって閉ざされるように構成されている。このため、旋回流路45には、図3の二点鎖線で示すように気液混合体Lが流れ、旋回流路45は、旋回流路43を通過して流れ込んだ液体Lに対し、さらに旋回方向の速度成分を生じさせるように構成されている。このように、中子40の側面41に形成された旋回流路43と、中子40の底面44に形成された旋回流路45とによって、旋回室30の内部には旋回流路45が形成されている。
 図1およひ図4に示すように、前記旋回室50の内部には、複数の部材を積層して成るせん断部材60が配設されている。せん断部材60は、有底中空円筒状に形成されており、この有底中空穴が導出流路61であって、その開口部分が旋回室30の導出口31と連通する。また、せん断部材60には、導出流路61から分岐してせん断部材60の外周面まで延びる分岐流路62が形成されている。
 前記分岐流路62は、円周方向に等間隔をおいて一列に六本設けられ、これを三列設けることにより、合計18本形成されれている。なお、図面においては、便宜上、全ての分岐流路の部品番号は、62と付記する。また、図4に示すように、分岐流路62は、導出流路61と連通する入口62aと、せん断部材60の外周面に開口する出口62bとを備えており、分岐流路62の断面積は、入口62aから出口62bにかけて徐々に拡がるように構成されている。さらに、分岐流路62の両側面においては、一方の側面が曲面62cで、これに対向する他の側面が平面62dに形成されている。このように構成された分岐流路61によって、微細気泡の生成割合が高められている。
 図1に示すように、前記せん断部材60は、その外周面と旋回室50の内壁との間に所定の間隔を空けて旋回室50の内部に配設されており、旋回室50の内壁とせん断部材60の外周面との隙間によって吐出流路63が形成されている。また、せん断部材60の外周面には複数の孔を有する気泡切断パネル64が巻きかけられている。さらに、せん断部材60は、蓋体70によって保持されており、この蓋体70は、ノズル本体10の端部に取り付けられる。蓋体70は、吐出流路63と連通する多数の吐出孔71を有している。このため、前記分岐流路62の出口62bから流出した気液混合体Lは、気泡切断パネル64の孔を通過し、吐出流路63へ流れ込み、吐出孔71から噴射される。
 一方、導出流路61の内部には、両端が開口する中空円筒状の筒状部材である循環パイプ65が挿入されており、この中空穴が循環流路66である。ただし、循環パイプ65は、一端がせん断部材60の有底中空穴の底面(つまり、導出流路61の最下流部)によって閉ざされ、他端が中子40の底面によって閉ざされるように導出流路61内に配設されている。また、循環パイプ65は、その外周面と導出流路61の内壁との間に隙間を空けて導出流路61の内部に配設されており、この隙間を気液混合体Lが流れる。
 前記循環パイプ65において、下流側端部の外周面には、等間隔に4つの入口穴66aが形成されており、同様に、上流側端部の外周面には、等間隔に4つの出口穴66bが形成されている。これら入口穴66aおよび出口穴66bは、導出流路61と循環流路66とを連通する。
 以上のように、構成された微細気泡発生ノズルの基本動作および作用効果を説明する。
 導入口21から導入された気液混合体Lは、導入室20を流れ、旋回室30へ流入する。このとき、気液混合体Lは、旋回流路43に続いて旋回流路45を流れることにより高速の旋回流となる。さらに、旋回流路43および旋回流路45の内面は、段形状になっていることにより、小さな渦流が発生する。この渦流によって気液混合体Lと旋回流路43および旋回流路45との摩擦抵抗が低減されるので、気液混合体Lは、さらに高速の旋回流となる。しかも、旋回流路43は、開口面積が入口Aから出口Bにかけて徐々に小さくなるように構成されているので、旋回流路43に発生する渦のサイズは非常に小さくなり、摩擦抵抗の低減効果を高めることができる。
 高速の旋回流となった気液混合体Lは、導出口31から導出流路61へ流れ込み、導出流路61内では循環パイプ65を中心にしてその外周を旋回するようにして導出流路61の下流側へ流れる。ただし、全ての気液混合体Lが導出流路61の上流から下流へ向かうのではなく、外側の気液混合体Lは旋回による遠心力によって分岐流路62へ流れ込む。
 分岐流路62を流れる気液混合体Lは、入口62a近傍で最も流速が高めらるとともに減圧により気泡が膨張する。そして、分岐流路62を流れる際に、気泡がせん断されることにより崩壊して収縮するため、このとき大量の微細気泡が生成される。特に、分岐流路62は流路の断面積が入口62aから出口62bにかけて徐々に拡がっているので、気泡の崩壊および収縮が促進される。
 続いて、分岐流路62の出口62bから流出した気液混合体Lは、気泡切断パネル64によって細分化され、吐出流路63を通過して吐出口71から噴射される。
 他方、分岐流路62へ流れ込まずに、導出流路61の最下流へ到達した気液混合体Lは、入口穴66aから循環パイプ65内の循環流路66へ流れ込み、導出流路61内での流れとは逆方向に流れ、出口穴66bから導出流路61へ流出される。このようにして、循環パイプ65の循環流路66は、導出流路61内の気液混合体Lの一部を下流から上流へ循環する。導出流路61内において循環パイプ65を中心にしてその外周を旋回する気液混合体Lのうち、内側に位置する気液混合体Lが導出流路61の最下流部へ到達するのだが、このように、内側を旋回する気液混合体Lは、気体の混合割合が高くなっており、分岐流路62を通過しても微細気泡を生成しにくい状態といえる。本発明の微細気泡発生ノズル1によれば、このような気液混合体Lを繰り返し上流へ循環させることにより、気体と液体の混合比率を適正にして分岐流路62を通過させることにより、微細気泡の生成割合を高めることができる。
 ここで、図5は、本発明の微細気泡発生ノズル1における各流路の内部圧力を濃淡で示した図であり、内部圧力が高い箇所を濃色で示し、内部圧力が低い箇所を淡色で現している。図5に示すように、各流路の内部圧力は、導入室20が最も高く、次いで旋回室30の上流から下流の順で低くなり、次いで導出流路61、分岐流路62および循環流路66が低い。特に循環流路66全体の内部圧力が最も低いため、導出流路61の最下流部へ到達した気液混合体Lは負圧によって循環流路66内へ吸い込まれる。また、分岐流路62の入口62a近傍の内部圧力は、循環流路66の内部圧力と同じくらい低いため、導出口31付近の気液混合体Lが循環流路66の出口穴66bへ流入し、入口穴66aへ向かうような流れを形成することはない。
 なお、本発明の各部の具体的な構成は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
1 微細気泡発生ノズル
10 ノズル本体
20 導入室
21 導入口
30 旋回室
31 導出口
40 中子
45 旋回流路
50 せん断室
60 せん断部材
61 導出流路
62 分岐流路
63 吐出流路
64 気泡切断パネル
65 循環パイプ
66 循環流路
66a 入口穴
66b 出口穴
70 蓋体
71 吐出口

Claims (6)

  1.  気液混合体を導入する導入室と、
     前記導入室から流出した気液混合体を旋回させる旋回室と、
     旋回した気液混合体を導出する導出流路と、
     前記導出流路から分岐する分岐流路と、
     前記分岐流路へ流入せずに導出流路の下流へ到達した気液混合体を導出流路の上流へ循環する循環流路と、
     を備えることを特徴とする微細気泡発生ノズル。
  2.  前記循環流路は筒状部材の内孔であって、この筒状部材は、導出流路内に挿入され、筒状部材の下流側端部の外周面には導出流路と筒状部材の内孔とを連通し、導出流路の下流へ到達した気液混合体を筒状部材の内孔へ導入する入口穴が形成されるとともに、筒状部材の上流側端部の外周面には導出流路と筒状部材の内孔とを連通し、筒状部材の内孔を逆流する気液混合体を導出流路の上流へ導出する出口穴が形成されていることを特徴とする請求項1に記載の微細気泡発生ノズル。
  3.  前記分岐流路は、出口の開口面積が入口の開口面積よりも広くなるように形成されていることを特徴とする請求項1または2に記載の微細気泡発生ノズル。
  4.  前記分岐流路は、一方の側面が曲面で、これに対向する側面が平面であることを特徴とする請求項1ないし3のいずれかに記載の微細気泡発生ノズル。
  5.  前記旋回室の内部には中子が配設され、その表面に形成された旋回流路が気液混合体を旋回させることを特徴とする請求項1ないし4のいずれかに記載の微細気泡発生ノズル。
  6.  前記旋回流路は、その内面が段形状に形成されていることを特徴とする請求項5に記載の微細気泡発生ノズル。
     
PCT/JP2017/037924 2016-11-29 2017-10-20 微細気泡発生ノズル WO2018100915A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780065860.5A CN109890493B (zh) 2016-11-29 2017-10-20 微细气泡产生喷嘴
KR1020197011285A KR102259060B1 (ko) 2016-11-29 2017-10-20 미세 기포 발생 노즐

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-231512 2016-11-29
JP2016231512 2016-11-29
JP2017013499A JP6835450B2 (ja) 2016-11-29 2017-01-27 微細気泡発生ノズル
JP2017-013499 2017-01-27

Publications (1)

Publication Number Publication Date
WO2018100915A1 true WO2018100915A1 (ja) 2018-06-07

Family

ID=62242571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037924 WO2018100915A1 (ja) 2016-11-29 2017-10-20 微細気泡発生ノズル

Country Status (2)

Country Link
CN (1) CN109890493B (ja)
WO (1) WO2018100915A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110433683A (zh) * 2019-09-02 2019-11-12 中国天辰工程有限公司 一种用于非均相反应的混合器
CN110559895A (zh) * 2019-09-20 2019-12-13 中南大学 振荡射流式微纳米气泡发生装置
WO2020124263A1 (en) * 2018-12-21 2020-06-25 Nanorial Technologies Ltd. Apparatus, methods, and systems for mixing, dispersing substances
CN112320896A (zh) * 2020-09-30 2021-02-05 山东默锐环境产业股份有限公司 一种协同增效微电解反应器
CN113081619A (zh) * 2021-04-19 2021-07-09 温州医科大学附属第一医院 一种麻醉剂定量手术台
CN116212776A (zh) * 2023-04-13 2023-06-06 江苏正丹化学工业股份有限公司 偏三甲苯液相空气氧化微纳气液反应装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7104006B2 (ja) * 2019-08-22 2022-07-20 本田技研工業株式会社 気泡発生装置
CN113797781A (zh) * 2021-09-17 2021-12-17 无锡小天鹅电器有限公司 一种气泡发生装置、流道组件及洗涤装置
JP7214277B1 (ja) * 2022-04-27 2023-01-30 株式会社サイエンス バブル液発生ノズル

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330050A (ja) * 2003-05-06 2004-11-25 Regal Joint Co Ltd オゾン水供給装置と流体混合装置
JP2007021343A (ja) * 2005-07-14 2007-02-01 Kansai Automation Kiki Kk マイクロバブル発生装置
JP2009160576A (ja) * 2007-12-14 2009-07-23 Yasumasa Nishiyama 微細気泡発生装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002331299A (ja) * 2001-05-10 2002-11-19 Sys Yoshida:Kk 水域内に微細気泡を均等に配分する方法
JP2008036557A (ja) * 2006-08-08 2008-02-21 Tokyo Electron Ltd 気体溶解装置、基板洗浄ユニット、気体溶解方法および基板洗浄方法
JP4426612B2 (ja) * 2007-09-30 2010-03-03 三相電機株式会社 微細気泡発生ノズル
JP5765853B2 (ja) * 2011-12-21 2015-08-19 千住スプリンクラー株式会社 放水型ヘッド
JP5807783B2 (ja) * 2012-01-19 2015-11-10 ニッタ株式会社 微細気泡発生装置および旋回流形成体
CN104703520B (zh) * 2012-10-11 2017-05-31 松下知识产权经营株式会社 淋浴头
CN203525576U (zh) * 2013-10-18 2014-04-09 青岛新生活生物科技有限公司 微小气泡发生器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330050A (ja) * 2003-05-06 2004-11-25 Regal Joint Co Ltd オゾン水供給装置と流体混合装置
JP2007021343A (ja) * 2005-07-14 2007-02-01 Kansai Automation Kiki Kk マイクロバブル発生装置
JP2009160576A (ja) * 2007-12-14 2009-07-23 Yasumasa Nishiyama 微細気泡発生装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020124263A1 (en) * 2018-12-21 2020-06-25 Nanorial Technologies Ltd. Apparatus, methods, and systems for mixing, dispersing substances
CN110433683A (zh) * 2019-09-02 2019-11-12 中国天辰工程有限公司 一种用于非均相反应的混合器
CN110559895A (zh) * 2019-09-20 2019-12-13 中南大学 振荡射流式微纳米气泡发生装置
CN112320896A (zh) * 2020-09-30 2021-02-05 山东默锐环境产业股份有限公司 一种协同增效微电解反应器
CN113081619A (zh) * 2021-04-19 2021-07-09 温州医科大学附属第一医院 一种麻醉剂定量手术台
CN113081619B (zh) * 2021-04-19 2022-12-06 温州医科大学附属第一医院 一种麻醉剂定量手术台
CN116212776A (zh) * 2023-04-13 2023-06-06 江苏正丹化学工业股份有限公司 偏三甲苯液相空气氧化微纳气液反应装置

Also Published As

Publication number Publication date
CN109890493A (zh) 2019-06-14
CN109890493B (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2018100915A1 (ja) 微細気泡発生ノズル
CN109414661B (zh) 在后处理系统混合排气和还原剂的系统和方法
JP6842249B2 (ja) 微細気泡発生ノズル
RU2501610C1 (ru) Форсунка со сплошным конусом распыла
CN106660842B (zh) 微气泡喷嘴
US8622715B1 (en) Twin turbine asymmetrical nozzle and jet pump incorporating such nozzle
JP2007069071A (ja) 微細気泡発生装置およびそれが組み込まれた微細気泡循環システム
KR101176463B1 (ko) 유동성 볼을 이용한 미세 버블 발생 장치
JP2008086868A (ja) マイクロバブル発生装置
JP2012508107A5 (ja)
JP4142728B1 (ja) 気泡微細化器
JP5573879B2 (ja) 微細気泡発生装置
JP2018089610A (ja) 微細気泡発生ノズル
JP2008136931A (ja) 液吐出装置
JP4426612B2 (ja) 微細気泡発生ノズル
JP6714651B2 (ja) 気液混合装置
JP2007111616A (ja) 微細気泡発生装置
JP2019166493A (ja) 微細気泡発生ノズル
US20210213400A1 (en) Gas-liquid mixing device
JP6681770B2 (ja) バブル発生器およびバブル発生器具
JP2019141828A (ja) 微細気泡発生ノズル
JP2011240210A (ja) 微小気泡発生機構
KR101524403B1 (ko) 미세 기포 발생 장치
JP5257586B2 (ja) 旋回式微細気泡発生器
JP3904684B2 (ja) 燃焼室を作動するためのバーナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197011285

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875800

Country of ref document: EP

Kind code of ref document: A1