WO2018100641A1 - 動釣合い試験機 - Google Patents

動釣合い試験機 Download PDF

Info

Publication number
WO2018100641A1
WO2018100641A1 PCT/JP2016/085414 JP2016085414W WO2018100641A1 WO 2018100641 A1 WO2018100641 A1 WO 2018100641A1 JP 2016085414 W JP2016085414 W JP 2016085414W WO 2018100641 A1 WO2018100641 A1 WO 2018100641A1
Authority
WO
WIPO (PCT)
Prior art keywords
testing machine
dynamic balance
weight member
injection
spindle
Prior art date
Application number
PCT/JP2016/085414
Other languages
English (en)
French (fr)
Inventor
栄三 岡田
武広 藤原
雄基 古川
Original Assignee
株式会社長浜製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社長浜製作所 filed Critical 株式会社長浜製作所
Priority to PCT/JP2016/085414 priority Critical patent/WO2018100641A1/ja
Publication of WO2018100641A1 publication Critical patent/WO2018100641A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/02Details of balancing machines or devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • G01M1/16Determining imbalance by oscillating or rotating the body to be tested

Definitions

  • This invention relates to a dynamic balance testing machine.
  • the unbalance of the DUT is measured by rotating the fixed DUT at a predetermined speed.
  • the conventional DUT does not have a movable part that moves relative to other parts of the DUT, so if any part of the DUT is fixed to the dynamic balance testing machine, Thus, the unbalance of the device under test can be accurately measured.
  • a new device under test having a base part and a plurality of weight members arranged side by side in the circumferential direction around the axis center line of the base part and held with play by the base part.
  • Each weight member can move relative to the base part in the radial direction and the circumferential direction with respect to the axial center line, and can change its posture.
  • a vehicle such as a torque converter with a pendulum and a dual mass flywheel.
  • Such a DUT is actually used so as to rotate around the axis center line with the axis center line extending horizontally. At that time, lubricating oil is provided between each weight member and the base part. Intervene.
  • the test object is set in a state where the axial center line extends vertically and no lubricating oil is present, so that each weight member comes into contact with the base part from the upper side by its own weight. When the DUT is rotated for unbalance measurement in this state, each weight member cannot freely move due to friction with the base part even if centrifugal force acts.
  • the present invention has been made to solve such a problem, and is a dynamic balance test capable of accurately measuring the unbalance of a test object having a base part and a plurality of weight members held with play by the base part.
  • the purpose is to provide a machine.
  • the present invention provides a base part (3) and a plurality of weight members (line) arranged in a circumferential direction (S) around an axial center line (J) of the base part and held with play by the base part ( 4) a dynamic balance testing machine (1) for a device under test (2) having the base part in a state in which the axis center line extends vertically in the device under test.
  • a spindle (16) to be driven and rotated a balancing unit (11) having a support part (15) that supports the spindle so as to vibrate, a main body frame (10) that supports the balancing unit, and a test object
  • It is a dynamic balance testing machine including the injection part (12, 12 ') which injects air to a weight member.
  • the alphanumeric characters in parentheses indicate corresponding components in the embodiments described later. The same applies hereinafter.
  • the base component in a state where the axial center line extends vertically in the DUT is supported on the spindle supported so as to be able to vibrate by the support portion. Fixed.
  • the spindle in this state is driven and rotated about the vertical axis, the unbalance of the device under test is measured from the vibration caused by the non-uniform distribution of mass with respect to the axis center line of the device under test.
  • the air is injected to each weight member by the injection unit, each weight member moves and is uniform between the weight members. Take a stable posture in a stable position.
  • This stable posture means a posture in a state where the device under test is steadily rotating when traveling while being incorporated in a vehicle.
  • the influence of the position and posture of each weight member in the unbalance measurement is small. Therefore, it is possible to accurately measure the unbalance of the DUT having the base part and the plurality of weight members held with play by the base part.
  • the present invention is characterized in that the injection section (12) injects air from the circumferential direction to the weight member.
  • each weight member is reliably moved to a stable position by injecting air from the circumferential direction to the weight member, and thereafter, each weight member is maintained in a stable position and a stable posture. it can.
  • the present invention is characterized in that the injection section (12 ') injects air to the weight member from the inside in the radial direction (R) with respect to the axial center line.
  • each weight member is reliably moved to a stable position by injecting air from the radially inner side to the weight member, and thereafter, each weight member is aligned in a stable position and a stable posture. Can be maintained.
  • an injection process of injecting air to the weight member by the injection unit, and a measurement process of measuring an unbalance of the test object with the injection unit stopped after the injection process are performed on the spindle. It is characterized by being executed continuously in the rotated state.
  • the weight members are kept in a stable position and a stable posture in a measurement process after the injection process. It is possible to accurately measure the unbalance of the specimen.
  • FIG. 1 is a plan view of a device under test.
  • 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a front view of the dynamic balance testing machine according to the embodiment of the present invention.
  • FIG. 4 is a front view of a dynamic balance testing machine according to another embodiment of the present invention.
  • FIG. 1 is a plan view of a device under test 2 that is an object of unbalance measurement in a dynamic balance testing machine 1 (see FIGS. 3 and 4) according to an embodiment of the present invention.
  • the DUT 2 includes, for example, a disk-shaped base part 3 and a plurality of (for example, six) weight members 4 arranged side by side in the circumferential direction S around the axial center line J of the base part 3.
  • a through hole 3A serving as a reference inner diameter portion is formed at the center of the base part 3, and a guide groove 3B extending in the circumferential direction S and penetrating through the base part 3 is formed in the circumferential direction S at the outer peripheral part of the base part 3.
  • Are formed side by side for example, two for each weight member 4).
  • each weight member 4 is a pair of weights arranged so as to sandwich a portion of the base part 3 where any one of the guide grooves 3B is formed.
  • the plate 5 and, for example, two pin-shaped coupling portions 6 that connect the pair of weight plates 5 to each other are included.
  • each coupling portion 6 is inserted one by one with play with respect to the guide groove 3 ⁇ / b> B at the same position in the circumferential direction S in the base part 3.
  • each weight member 4 is held with play by the base part 3.
  • each weight member 4 is virtually moved by moving relative to the base part 3 in the radial direction R and the circumferential direction S with respect to the axial center line J or changing its posture.
  • the pendulum moves around the movable fulcrum.
  • the DUT 2 rotates around the axial center line J with the axial center line J extending horizontally.
  • each weight member 4 is brought into a stable position by the centrifugal force accompanying the rotation. Reach and take a stable posture.
  • the center portion in the circumferential direction S that is, the center of gravity 4A (see FIG. 1) is at the outermost maximum radial position in the radial direction R within a range in which it can move relative to the base part 3.
  • the distance in the radial direction R between each of the both end portions 4B (see FIG. 1) in the circumferential direction S and the axial center line J is kept substantially equal.
  • the dynamic balance testing machine 1 includes a main body frame 10 fixed to the floor surface Y, a balancing unit 11 supported by the main body frame 10, and an injection unit 12.
  • the main body frame 10 stands up from the floor surface Y, and a horizontal portion 10A is provided at an upper end portion thereof.
  • the balancing unit 11 has a support portion 15 and a spindle 16.
  • the support portion 15 is formed, for example, in a flat plate shape, and is fixed to the horizontal portion 10 ⁇ / b> A of the main body frame 10 from above.
  • the spindle 16 is formed in a cylindrical shape having a vertical axis, and is supported by a spring-like elastic support portion 18 provided on the support portion 15 so as to be able to vibrate.
  • the dynamic balance testing machine 1 includes a drive unit (not shown) such as an electric motor, and the spindle 16 is driven and rotated around a vertical axis by a belt drive or the like by the drive unit.
  • the operation of the drive unit (not shown) is controlled by the control unit 20 configured by a microcomputer or the like.
  • the injection unit 12 is an air nozzle connected to a compressed air source (not shown) via an air hose 21 and can inject compressed air from an injection port 12A at the tip thereof.
  • the injection unit 12 is fixed to the support unit 15 via a stay (not shown), for example.
  • the control unit 20 controls the injection timing and the injection amount of the compressed air by the injection unit 12.
  • the injection unit 12 may be a single injection unit or a plurality of injection units. When a plurality of injection units 12 are provided, the injection units 12 are arranged in the circumferential direction around the spindle 16, for example, at equal intervals.
  • the DUT 2 When measuring the unbalance of the DUT 2 described above, the DUT 2 is set on the upper end of the spindle 16. At the upper end portion of the spindle 16, for example, a holding portion 16 ⁇ / b> A for clamping the DUT 2 in the through hole 3 ⁇ / b> A (see FIG. 1) of the base component 3 is provided. In the DUT 2, the base part 3 is fixed to the spindle 16 by the holding portion 16 ⁇ / b> A in a state where the axial center line J extends vertically and coincides with the vertical axis of the spindle 16.
  • the injection port 12A of the injection unit 12 faces the outer peripheral portion of the base part 3 fixed to the spindle 16 from the circumferential direction S (see also FIG. 1). Note that the injection port 12A does not need to face the outer peripheral portion of the base part 3 from the circumferential direction S accurately, and may be arranged to face the outer peripheral part of the base part 3 from a tangential direction with respect to the circumferential direction S.
  • pouring part 12 may take a substantially horizontal attitude
  • a position changing mechanism (not shown) that changes the position of the injection unit 12 only when the DUT 2 is attached or detached so that the injection unit 12 does not contact the DUT 2 being attached to the spindle 16. May be provided.
  • the rotation of the spindle 16 is started.
  • the injection unit 12 is operated for a predetermined time, and compressed air (see the broken arrow) is continuously supplied from the injection port 12A. Or spray intermittently. While the spindle 16 is rotating, each weight member 4 of the device under test 2 crosses the tip of the injection port 12A, so that the compressed air from the injection port 12A is injected to each weight member 4 from the circumferential direction S ( (See also FIG. 1).
  • the operation of the injection unit 12 is stopped so that the injection of compressed air from the injection port 12A stops.
  • the measurement process for measuring the unbalance of the DUT 2 is continuously executed.
  • the vibration of the spindle 16 rotating integrally with the device under test 2 is detected by, for example, a vibration detector (not shown) fixed to the main body frame 10, and the vibration of the device under test 2 is detected based on this vibration.
  • the balance is measured.
  • the clamp by the holding portion 16A of the spindle 16 is released, and the device under test 2 is removed from the spindle 16.
  • each weight member 4 moves and is fixed so as to have a uniform stable posture at a uniform stable position between the weight members 4. In this way, when the unbalance measurement is performed in the measurement process subsequent to the injection process while keeping the respective weight members 4 in the stable position and the stable posture, the position of each weight member 4 in the unbalance measurement and There is little influence by posture. Therefore, the unbalance of the device under test 2 can be measured accurately and in a short time. Thereby, the tact time relating to the unbalance measurement can be shortened. Furthermore, since the position of each weight member 4 can be adjusted with a simple configuration using air injection, the cost can be reduced.
  • the injection unit 12 injects air from the circumferential direction S to each weight member 4 to surely move each weight member 4 to a stable position. Thereafter, each weight member 4 is in a stable position and a stable posture. A complete state can be maintained.
  • the number of rotations of the spindle 16 may be the same during the injection process and during the measurement process.
  • each weight member 4 positively takes a stable posture at a stable position in the injection process.
  • the rotation speed during the injection process may be higher than the rotation speed during the measurement process.
  • the injection unit 12 may inject air to each weight member 4 from another direction in the horizontal direction (for example, the radial direction R) instead of injecting air from the circumferential direction S to each weight member 4.
  • the dynamic balance testing machine 1 includes an injection portion 12 ′ that is disposed on the inner side in the radial direction R with respect to each weight member 4 in the DUT 2.
  • the injection port 12A of the injection unit 12 'faces the outside in the radial direction R.
  • each spindle member 4 crosses the tip of the injection port 12A in the circumferential direction S during the rotation of the spindle 16, so that each spindle member 4 has an injection port 12A of the injection unit 12 ′.
  • Compressed air is injected from the inside in the radial direction R (see also FIG. 1).
  • each weight member 4 moves to a stable position reliably, and is fixed so that a stable posture may be taken in a stable position after that.
  • the number of injection units 12 ′ may be fixed to the holding unit 16 ⁇ / b> A of the spindle 16, and in that case, the same number as the weight members 4 is provided.
  • the injection port 12A of each injection part 12 faces the weight member 4 located at the same position in the circumferential direction S from the inside in the radial direction R.
  • the injection unit 12 ′ rotates integrally with the spindle 16 and the DUT 2, and at this time, each weight member 4 is individually supplied with compressed air from the corresponding injection unit 12 ′. Be injected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Balance (AREA)

Abstract

ベース部品とベース部品によって遊びを持って保持された複数の錘部材とを有する被試験体の不釣合いを正確に測定できる動釣合い試験機を提供する。 動釣合い試験機1は、バランシングユニット11と、バランシングユニット11を支持する本体フレーム10と、噴射部12とを含む。バランシングユニット11は、被試験体2において軸中心線Jが垂直に延びた状態におけるベース部品3が固定され、垂直軸線まわりに駆動回転されるスピンドル16と、スピンドル16を振動可能に支持する支持部15とを有する。噴射部12は、被試験体2の錘部材4にエアを噴射する。

Description

動釣合い試験機
 この発明は、動釣合い試験機に関する。
 動釣合い試験機では、固定された被試験体を所定速度で回転させることによって、被試験体の不釣合いが測定される。従来の被試験体には、被試験体における他の部分に対して相対的に動く可動部分が存在しないことが一般的なので、被試験体におけるいずれかの箇所を動釣合い試験機に固定すれば、被試験体の不釣合いを正確に測定することができる。
 ベース部品と、ベース部品の軸中心線まわりの周方向に並んで配置され、ベース部品によって遊びを持って保持された複数の錘部材とを有する新たな被試験体が想定される。各錘部材は、軸中心線を基準とした径方向および周方向のそれぞれへ向けてベース部品に対して相対移動したり自身の姿勢を変えたりすることができる。このような被試験体の一例として、振り子付きのトルクコンバーターやデュアルマスフライホイール等といった車両等の部品が挙げられる。
 このような被試験体は、実際には軸中心線が水平に延びた状態で軸中心線まわりに回転するように使用され、その際、各錘部材とベース部品との間には潤滑油が介在する。しかし、被試験体は、動釣合い試験機では、軸中心線が垂直に延びて潤滑油が存在しない状態でセットされるので、各錘部材が自重によってベース部品に上側から接触する。この状態で不釣合い測定のために被試験体を回転させると、各錘部材は、遠心力が作用しても、ベース部品との間の摩擦によって自由に移動できない。そのため、被試験体がセットされた時点における錘部材の位置および姿勢が、実際使用時の被試験体における各錘部材の安定位置および安定姿勢とは異なり、錘部材毎にバラバラであれば、そのままの状態で被試験体が回転しながら不釣合い測定が行われる。これでは、錘部材の影響によって、被試験体の回転の度に異なった不釣り合いが生じるので、被試験体の不釣合いを正確に測定することが困難である。
 この発明は、かかる問題を解決するためになされたもので、ベース部品とベース部品によって遊びを持って保持された複数の錘部材とを有する被試験体の不釣合いを正確に測定できる動釣合い試験機を提供することを目的とする。
 本発明は、ベース部品(3)と、前記ベース部品の軸中心線(J)まわりの周方向(S)に並んで配置され、前記ベース部品によって遊びを持って保持された複数の錘部材(4)とを有する被試験体(2)のための動釣合い試験機(1)であって、被試験体において軸中心線が垂直に延びた状態における前記ベース部品が固定され、垂直軸線まわりに駆動回転されるスピンドル(16)と、前記スピンドルを振動可能に支持する支持部(15)とを有するバランシングユニット(11)と、前記バランシングユニットを支持する本体フレーム(10)と、被試験体の錘部材にエアを噴射する噴射部(12、12’)とを含む、動釣合い試験機である。なお、括弧内の英数字は、後述の実施形態における対応構成要素などを表す。以下、この項において同じ。
 この構成によれば、動釣合い試験機において本体フレームによって支持されたバランシングユニットでは、支持部によって振動可能に支持されたスピンドルに、被試験体において軸中心線が垂直に延びた状態におけるベース部品が固定される。この状態のスピンドルが垂直軸線まわりに駆動回転されたときに被試験体の軸中心線に関する質量の不均一分布によって生じた振動から、被試験体の不釣り合いが測定される。被試験体を回転させて、或る回転速度に到達した後、不釣り合い測定に先立って、噴射部によって各錘部材にエアを噴射すれば、各錘部材が移動し、錘部材間で均一な安定位置にて、揃った安定姿勢をとる。この安定姿勢とは、被試験体が車両に組み込まれて走行するときに定常的に回転している状態での姿勢を意味する。この状態で被試験体が回転して不釣合い測定が行われると、不釣合い測定における各錘部材の位置および姿勢による影響が少ない。そのため、ベース部品とベース部品によって遊びを持って保持された複数の錘部材とを有する被試験体の不釣合いを正確に測定できる。
 また、本発明は、前記噴射部(12)は、前記周方向から錘部材にエアを噴射することを特徴とする。
 この構成によれば、周方向から錘部材にエアを噴射することによって、各錘部材を確実に安定位置まで移動させ、その後は、各錘部材が安定位置および安定姿勢にて揃った状態を維持できる。
 また、本発明は、前記噴射部(12’)は、前記軸中心線を基準とした径方向(R)の内側から錘部材にエアを噴射することを特徴とする。
 この構成によれば、径方向の内側から錘部材にエアを噴射することによって、各錘部材を確実に安定位置まで移動させ、その後は、各錘部材が安定位置および安定姿勢にて揃った状態を維持できる。
 また、本発明は、前記噴射部によって錘部材にエアを噴射する噴射処理と、前記噴射処理後に前記噴射部が停止した状態で被試験体の不釣り合いを測定する測定処理とが、前記スピンドルを回転させた状態において連続して実行されることを特徴とする。
 この構成によれば、噴射処理において被試験体の各錘部材にエアを噴射することによって各錘部材が安定位置および安定姿勢にて揃った状態を保ったまま、噴射処理後の測定処理において被試験体の不釣合いを正確に測定することができる。
図1は、被試験体の平面図である。 図2は、図1のA-A矢視断面図である。 図3は、この発明の一実施形態に係る動釣合い試験機の正面図である。 図4は、この発明の別の実施形態に係る動釣合い試験機の正面図である。
 以下では、この発明の実施形態について詳細に説明をする。図1は、この発明の実施形態に係る動釣合い試験機1(図3および図4参照)での不釣合い測定の対象となる被試験体2の平面図である。被試験体2は、例えば円盤状のベース部品3と、ベース部品3の軸中心線Jまわりの周方向Sに並んで配置された複数(例えば6つ)の錘部材4とを有する。ベース部品3の中心部には、基準内径部としての貫通穴3Aが形成され、ベース部品3の外周部には、周方向Sに延びてベース部品3を貫通したガイド溝3Bが、周方向Sに並んで複数(例えば1つの錘部材4に対して2つずつ)形成されている。
 図1のA-A矢視断面図である図2も参照して、各錘部材4は、ベース部品3においていずれかのガイド溝3Bが形成された部分を挟むように配置された一対の錘板5と、一対の錘板5同士を連結する例えば2つのピン状の結合部6とを含む。各錘部材4において、各結合部6は、ベース部品3において周方向Sで同じ位置にあるガイド溝3Bに対して遊びを持って1つずつ挿通されている。これにより、各錘部材4は、ベース部品3によって遊びを持って保持されている。この場合における各錘部材4は、軸中心線Jを基準とした径方向Rおよび周方向Sのそれぞれへ向けてベース部品3に対して相対移動したり自身の姿勢を変えたりすることによって、仮想の可動支点を中心とした振り子運動をする。
 実際使用時の被試験体2は、軸中心線Jが水平に延びた状態で軸中心線Jまわりに回転するので、その際、各錘部材4は、回転に伴う遠心力によって、安定位置に到達し、安定姿勢をとる。安定位置にある錘部材4では、周方向Sにおける中央部つまり重心4A(図1参照)が、ベース部品3に対して相対移動できる範囲内において径方向Rの最も外側の最大半径位置にある。安定姿勢をとった錘部材4では、周方向Sにおける両端部4B(図1参照)のそれぞれと軸中心線Jとの径方向Rの間隔が略均等に保たれる。
 図3の正面図を参照して、動釣合い試験機1は、床面Yに固定される本体フレーム10と、本体フレーム10によって支持されるバランシングユニット11と、噴射部12とを含む。本体フレーム10は、床面Yから立ち上がっていて、その上端部には、水平部10Aが設けられている。
 バランシングユニット11は、支持部15と、スピンドル16とを有する。支持部15は、例えば平板状に形成され、本体フレーム10の水平部10Aに対して上から固定される。スピンドル16は、垂直軸線を有する円柱状に形成され、支持部15に設けられたバネ状の弾性支持部18によって振動可能に支持される。動釣合い試験機1は、電動モータ等の駆動部(図示せず)を含み、スピンドル16は、この駆動部によるベルトドライブ等によって垂直軸線まわりに駆動回転される。駆動部(図示せず)の動作は、マイクロコンピューター等によって構成された制御部20によって制御される。
 噴射部12は、エアーホース21を介して圧縮空気源(図示せず)に接続されたエアーノズルであって、その先端の噴射口12Aから圧縮空気を噴射することができる。噴射部12は、例えばステー(図示せず)を介して支持部15に固定されている。噴射部12による圧縮空気の噴射タイミングや噴射量は、制御部20によって制御される。噴射部12は、単数でも複数でもよく、複数設けられる場合の噴射部12は、スピンドル16まわりの周方向に、例えば等間隔で並んで配置される。
 前述した被試験体2の不釣り合いを測定する場合には、被試験体2が、スピンドル16の上端部にセットされる。スピンドル16の上端部には、例えばベース部品3の貫通穴3A(図1参照)において被試験体2をクランプするための保持部16Aが設けられている。被試験体2では、ベース部品3が、その軸中心線Jが垂直に延びてスピンドル16の垂直軸線と一致した状態で、保持部16Aによってスピンドル16に固定される。このとき、被試験体2では、各錘部材4における一対の錘板5がベース部品3を上下から挟んだ状態にあり、上側の錘板5がベース部品3の上面に接触している。このとき、噴射部12の噴射口12Aは、スピンドル16に固定されたベース部品3の外周部に、周方向Sから臨んでいる(図1も参照)。なお、噴射口12Aは、正確に周方向Sからベース部品3の外周部に臨む必要はなく、周方向Sに対する接線方向からベース部品3の外周部に臨むように配置されてもよい。また、噴射部12は、ベース部品3に沿うように略水平な姿勢をとってもよいが、噴射口12Aが下端に位置するように傾斜した姿勢をとってもよい。また、スピンドル16に取り付けられている最中の被試験体2に噴射部12が接触しないように、被試験体2の着脱時だけ噴射部12の位置を変更する位置変更機構(図示せず)が設けられてもよい。
 ベース部品3がスピンドル16に固定された後に、スピンドル16の回転が開始される。スピンドル16の回転が開始されて、或る回転速度に到達した後の初期段階では、噴射処理として、噴射部12が所定時間作動されて噴射口12Aから圧縮空気(破線矢印を参照)を連続的または断続的に噴射する。スピンドル16の回転中には、噴射口12Aの先を被試験体2の各錘部材4が横切るので、各錘部材4には、噴射口12Aからの圧縮空気が周方向Sから噴射される(図1も参照)。
 噴射処理の後に、噴射口12Aからの圧縮空気の噴射が停止するように噴射部12の作動が停止される。そして、引き続きスピンドル16が回転された状態において、被試験体2の不釣り合いを測定する測定処理が連続して実行される。測定処理では、被試験体2と一体回転中のスピンドル16の振動が、例えば本体フレーム10に固定された振動検出器(図示せず)によって検出され、この振動に基いて被試験体2の不釣り合いが測定される。測定処理における不釣り合いの測定が完了すると、スピンドル16の保持部16Aによるクランプが解除されて、被試験体2がスピンドル16から取り外される。
 以上のように、被試験体2を回転させて、或る回転速度に到達した後、測定処理に先立った噴射処理において、噴射部12によって被試験体2の各錘部材4にエア噴射による衝撃を付与しておけば、各錘部材4が移動し、錘部材4間で均一な安定位置にて、揃った安定姿勢をとるように固定される。このように各錘部材4を安定位置および安定姿勢にて揃えた状態を保ったまま、噴射処理の後に続く測定処理において不釣合い測定が行われると、不釣合い測定における各錘部材4の位置および姿勢による影響が少ない。そのため、被試験体2の不釣合いを正確かつ短時間で測定することができる。これにより、不釣合い測定に関するタクトタイムの短縮を図れる。さらに、エア噴射を用いたシンプルな構成によって各錘部材4を位置調整できるので、コスト低減を図ることもできる。
 特に、噴射部12が周方向Sから各錘部材4にエアを噴射することによって、各錘部材4を確実に安定位置まで移動させ、その後は、各錘部材4が安定位置および安定姿勢にて揃った状態を維持できる。
 この発明は、以上に説明した実施形態に限定されるものではなく、請求項に記載の範囲内において種々の変更が可能である。
 例えば、噴射処理中と測定処理中とで、スピンドル16の回転数が同じであってもよいし、例えば、噴射処理において各錘部材4が積極的に安定位置にて安定姿勢をとるように、噴射処理中の回転数が測定処理中の回転数より高くてもよい。
 また、噴射部12は、周方向Sから各錘部材4にエアを噴射するのではなく、水平方向における他の方向(例えば径方向R)から各錘部材4にエアを噴射してもよい。この場合、図4を参照して、動釣合い試験機1は、被試験体2における各錘部材4よりも径方向Rの内側に配置された噴射部12’を含む。噴射部12’の噴射口12Aは、径方向Rの外側を向いている。この場合、前述した噴射処理では、スピンドル16の回転中には、噴射口12Aの先を各錘部材4が周方向Sに横切るので、各錘部材4には、噴射部12’の噴射口12Aからの圧縮空気が径方向Rの内側から噴射される(図1も参照)。これにより、各錘部材4は、確実に安定位置まで移動し、その後は、安定位置にて安定姿勢をとるように固定される。
 なお、噴射部12’は、スピンドル16の保持部16Aに固定されていてもよく、その場合には、各錘部材4と同数設けられる。被試験体2のベース部品3が保持部16Aに固定されると、各噴射部12’の噴射口12Aは、周方向Sで同じ位置にある錘部材4に径方向Rの内側から対向する。噴射処理におけるスピンドル16の回転中には、噴射部12’がスピンドル16や被試験体2と一体回転し、その際、各錘部材4には、対応する噴射部12’から個別に圧縮空気が噴射される。
 1   動釣合い試験機
 2   被試験体
 3   ベース部品
 4   錘部品
 10  本体フレーム
 11  バランシングユニット
 12  噴射部
 12’ 噴射部
 15  支持部
 16  スピンドル
 J   軸中心線
 R   径方向
 S   周方向

Claims (4)

  1.  ベース部品と、前記ベース部品の軸中心線まわりの周方向に並んで配置され、前記ベース部品によって遊びを持って保持された複数の錘部材とを有する被試験体のための動釣合い試験機であって、
     被試験体において軸中心線が垂直に延びた状態における前記ベース部品が固定され、垂直軸線まわりに駆動回転されるスピンドルと、前記スピンドルを振動可能に支持する支持部とを有するバランシングユニットと、
     前記バランシングユニットを支持する本体フレームと、
     被試験体の錘部材にエアを噴射する噴射部とを含む、動釣合い試験機。
  2.  前記噴射部は、前記周方向から錘部材にエアを噴射する、請求項1に記載の動釣合い試験機。
  3.  前記噴射部は、前記軸中心線を基準とした径方向の内側から錘部材にエアを噴射する、請求項1に記載の動釣合い試験機。
  4.  前記噴射部によって錘部材にエアを噴射する噴射処理と、前記噴射処理後に前記噴射部が停止した状態で被試験体の不釣り合いを測定する測定処理とが、前記スピンドルを回転させた状態において連続して実行される、請求項1~3のいずれかに記載の動釣合い試験機。
PCT/JP2016/085414 2016-11-29 2016-11-29 動釣合い試験機 WO2018100641A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085414 WO2018100641A1 (ja) 2016-11-29 2016-11-29 動釣合い試験機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085414 WO2018100641A1 (ja) 2016-11-29 2016-11-29 動釣合い試験機

Publications (1)

Publication Number Publication Date
WO2018100641A1 true WO2018100641A1 (ja) 2018-06-07

Family

ID=62241321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085414 WO2018100641A1 (ja) 2016-11-29 2016-11-29 動釣合い試験機

Country Status (1)

Country Link
WO (1) WO2018100641A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884236A (zh) * 2021-08-24 2022-01-04 西安电子科技大学 一种多传感器融合动平衡分析方法、系统、设备、介质
CN117824923A (zh) * 2024-02-29 2024-04-05 武汉成华汽车饰件有限公司 一种汽车钢轮毂动平衡工艺及焊接设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467649A (en) * 1982-05-25 1984-08-28 American Hofmann Corporation Apparatus for balancing rotatable bodies
JP2005181012A (ja) * 2003-12-17 2005-07-07 Nagahama Seisakusho Ltd 動釣合い試験機に適用される軸受け装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467649A (en) * 1982-05-25 1984-08-28 American Hofmann Corporation Apparatus for balancing rotatable bodies
JP2005181012A (ja) * 2003-12-17 2005-07-07 Nagahama Seisakusho Ltd 動釣合い試験機に適用される軸受け装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884236A (zh) * 2021-08-24 2022-01-04 西安电子科技大学 一种多传感器融合动平衡分析方法、系统、设备、介质
CN113884236B (zh) * 2021-08-24 2022-06-21 西安电子科技大学 一种多传感器融合动平衡分析方法、系统、设备、介质
CN117824923A (zh) * 2024-02-29 2024-04-05 武汉成华汽车饰件有限公司 一种汽车钢轮毂动平衡工艺及焊接设备
CN117824923B (zh) * 2024-02-29 2024-06-11 武汉成华汽车饰件有限公司 一种汽车钢轮毂动平衡工艺及焊接设备

Similar Documents

Publication Publication Date Title
US6658936B2 (en) Apparatus and method for measuring uniformity and/or dynamic balance of tire
WO2018100641A1 (ja) 動釣合い試験機
CN106441707B (zh) 数字式旋转体静平衡测量装置及测量方法
PL225215B1 (pl) Wyważarka wałów przegubowych i sposób wyważania wałów przegubowych
CN213397498U (zh) 三相异步电动机转子动平衡检测机构
RU2587758C1 (ru) Стенд для циклических испытаний газодинамических подшипников
MXPA05010762A (es) Dispositivo para medicion de desequilibrio y metodo para medicion de desequilibrio.
JP6998039B2 (ja) 不釣合い測定装置
JP2559240B2 (ja) 回転体の質量心出し機
WO2018092217A1 (ja) 動釣合い試験機
JP6360158B2 (ja) ロータを駆動するための装置
US2327606A (en) Balancing rotating element
KR200491723Y1 (ko) 밸런싱머신용 회전체 고정구
KR102228680B1 (ko) 균형 검사 장치
JP5954708B2 (ja) 質量中心測定機
JP7372667B2 (ja) 動釣合い試験機用のコレットおよび動釣合い試験機
RU189957U1 (ru) Балансировочный стенд
JPH0815074A (ja) タイヤ用ダイナミックバランサ
JPH07110342A (ja) 遠心力加速度試験機
KR101306016B1 (ko) 질량 특성 측정 장치 및 측정 방법
US1343954A (en) Method of and apparatus for testing for dynamic balances
JP2018205038A (ja) 立型の動釣合い試験機
JP2024067776A (ja) 動釣合い試験機用の被試験体支持装置および動釣合い試験機
JP4634927B2 (ja) クランクシャフト用動釣合い試験機およびクランク軸押さえ装置
KR102601742B1 (ko) 밸런싱머신

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP