WO2018100324A1 - Suspension d'oxyde de cerium - Google Patents

Suspension d'oxyde de cerium Download PDF

Info

Publication number
WO2018100324A1
WO2018100324A1 PCT/FR2017/053357 FR2017053357W WO2018100324A1 WO 2018100324 A1 WO2018100324 A1 WO 2018100324A1 FR 2017053357 W FR2017053357 W FR 2017053357W WO 2018100324 A1 WO2018100324 A1 WO 2018100324A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
polymer
suspension
cerium oxide
cerium
Prior art date
Application number
PCT/FR2017/053357
Other languages
English (en)
Inventor
Antoine DE KERGOMMEAUX
David James Wilson
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1661848A external-priority patent/FR3059660B1/fr
Application filed by Rhodia Operations filed Critical Rhodia Operations
Priority to CN201780084359.3A priority Critical patent/CN110214126A/zh
Priority to JP2019528803A priority patent/JP2020500815A/ja
Priority to EP17817804.2A priority patent/EP3548436A1/fr
Priority to KR1020197018593A priority patent/KR20190089945A/ko
Publication of WO2018100324A1 publication Critical patent/WO2018100324A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium

Definitions

  • the present invention relates to a suspension of cerium oxide particles in a mixture of polar solvents.
  • the invention also relates to the process for preparing this suspension and to the use thereof for dispersing cerium oxide particles in at least one polymer.
  • Cerium oxide particles have anti-UV properties. Their incorporation into a polymer may be carried out by extrusion, but for some polymers difficult to extrude, the incorporation may consist in dissolving the polymer in a solvent or a mixture of solvents, in adding a suspension comprising particles of cerium oxide in a polar solvent, and then evaporate the solvent.
  • polar polymers such as polyimide
  • N-methyl pyrrolidone NMP or 1-methyl-2-pyrrolidone
  • NMP N-methyl pyrrolidone
  • NMP 1-methyl-2-pyrrolidone
  • the technical problem to be solved is therefore to develop a stable suspension of cerium oxide particles in a polar solvent.
  • No. 9,193,850 discloses a composite in the form of a polyimide matrix in which particles of an oxide whose surface has been modified are dispersed.
  • the latter comprises particles of cerium oxide in a mixture of DMSO and of at least one Si compound of formula (I):
  • ⁇ A denotes a group (C 2 -C 5) -alkylene
  • ⁇ R is a (dC 4) -alkyl
  • R 2 and R 3 are both groups (-C 4) -alkyl, which are identical or different.
  • the particles are advantageously nanometric particles. They have an average size of less than or equal to 200 nm. They may have at least one of the following characteristics:
  • a mean size determined by ODR diffraction technique of less than X-ray or equal to 100 nm;
  • a mean size DMET determined using transmission electron microscopy (TEM) of less than or equal to 200 nm;
  • dDRx is the size t of the coherent domain calculated from the width of one or more most intense diffraction lines and using the Scherrer model. According to this model, we use the following formula:
  • ODRX corresponds to the arithmetic mean of three sizes ti, t 2 and t 3 determined from Scherrer's formula above on the three peaks at the following 2 ⁇ (2 theta) angles: 28.6 °; 47.5 ° and 56.4 ° or at the following angles: 28.6 ° ⁇ 0.1; 47.5 ⁇ 0.1 and 56.4 ⁇ 0.1.
  • ⁇ Rx can vary over a wide range from 0.1 to 200 nm, even from 0.1 to 100 nm, preferably from 0.5 to 100 nm.
  • ODX may be between 80 and 100 nm; or between 45 and 65 nm; or between 25 and 45 nm; or between 15 and 30 nm; or between 6 and 15 nm; or between 2 and 4 nm.
  • di iET is calculated from a particle size distribution determined using transmission electron microscopy (TEM).
  • the particles have a dMET of less than or equal to 200 nm, dMET being calculated from a particle size distribution determined using transmission electron microscopy (TEM). It is also possible to characterize the particles using the SMET standard deviation which is less than 35% of said average diameter, SMET being calculated from a particle size distribution determined using microscopy.
  • transmission electronics MET
  • the method for obtaining the distribution consists of measuring the diameter of at least 300 particles on one or more electron microscope slides.
  • the enlargement of the microscope which is retained must make it possible to clearly distinguish the images of the particles on a snapshot.
  • the enlargement can be for example between 50 000 and 500 000.
  • the diameter of a particle which is retained is that of the minimum circle making it possible to circumscribe the entirety of the image of the particle as it is visible on a surface.
  • MET snapshot The term "minimum circle” has the meaning given to it in mathematics and represents the circle of minimum diameter to contain a set of points of a plane. Only particles with at least half of the perimeter are defined.
  • ImageJ software can be used to do more simple processing; this open source software was originally developed by the NIH American Institute and is available at http://rsb.info.nih.gov or http://rsb.info.nih.gov/ij/ dovvnload.html.
  • said diameters are grouped into several size classes ranging from 0 to 500 nm, the width of each class being 1 nm.
  • Number of particles in each class is the basic data to represent the (cumulative) number distribution. From the distribution, the mean diameter dMET is determined which corresponds to the median diameter as conventionally understood in statistics.
  • dMET is such that 50% of the particles (in number) taken into account on the plate (s) MET have a diameter smaller than this value. From this distribution, it is also possible to determine the standard deviation SMET which has the usual meaning used in mathematics and which can be defined as the square root of the variance:
  • n is the number of (so-called primary) particles taken into account on the SEM image (s);
  • X is the diameter of a particle i on the SEM image (s);
  • dMET may be between 150 and 200 nm; or between 70 and 110 nm; or between 35 and 70 nm; or between 15 and 35 nm; or between 6 and 15 nm; or between 2 and 5 nm.
  • d 5 o corresponds to the median diameter as conventionally understood in statistics, determined from a volume distribution of the diameters of the particles obtained using the dynamic light scattering technique (also called DLS for dynamic light scattering). This technique is particularly suitable for submicron particles. It is therefore the value for which on the cumulative volume distribution curve, 50% of the particles have a diameter greater than d 5 o and 50% of the particles have a diameter less than d 5 o.
  • the Zetasizer Nano ZS from Malvern Instruments can be used according to the recommendations and using the manufacturer's software to obtain such a distribution. It should be noted that d 5 o is generally greater than dMET because the particles can agglomerate.
  • the specific surface is determined for its part by nitrogen adsorption on a powder dried at 100 ° C. overnight and placed in a study at 200 ° C. for 2 hours just before the measurement, according to the Brunauer-Emmet-Teller method. which has been described in J. Am. Chem. Soc. 1938, 60, p.309. The principle of this method is also described in ASTM D3663-03.
  • the Shimadzu Flowsorb II 2300 can be used to automatically determine the BET surface area according to the manufacturer's recommendations. It is possible from the BET specific surface of the powder thus measured to determine an equivalent diameter denoted dBET calculated from the following formula:
  • a density of 7200 kg / m 3 is retained for the particles of the invention.
  • BET - 59.5 nm is used.
  • the particles are characterized by a mean dMET size of less than or equal to 200 nm and an average size of ⁇ RDX of less than or equal to 100 nm. More particularly, the particles may have the following characteristics:
  • the particles may also have a SMET standard deviation of at most 30% (SMET ⁇ 30% x dMET) - it may be preferably less than 25%, more particularly less than 20%, of said diameter dMET-
  • the particles can have a volume distribution obtained using the dynamic light scattering technique which is narrow and which is characterized by a dispersion index of at most 0.5. This index may more particularly be at most 0.4 and even more particularly at most 0.3.
  • the dispersion index is the ratio:
  • - ds 4 is the particle diameter for which 84% of the particles have a diameter less than ds 4 ;
  • - d i6 is the particle diameter for which 1 6% of the particles have a diameter less than d i6- If is a compound chosen from the compounds of formula (I) below:
  • ⁇ A denotes a group (C 2 -C 5) -alkylene
  • Ri is a (dC 4 ) -alkyl group
  • R 2 and R 3 are both groups (dC 4) -alkyl, which are identical or different.
  • A may for example be chosen from the following group: -CHMe-CH 2 CH 2 -; - CH 2 CH 2 -CHMe-; -CHEt-CH 2 CH 2 - or -CH 2 CH 2 -CHEt-.
  • R1 can for example be selected from the following group: methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl.
  • MeOOC-Ai-CONMe 2 wherein Ai designates the alkylene group of formula -CHMe-CH 2 CH 2 - or -CH 2 CH 2 -CHMe-;
  • a 2 is the alkylene group of formula -CHEt-CH 2 CH 2 - or -CH 2 CH 2 -CHEt-.
  • Si may be in the form of a mixture of the following two compounds: MeOOC-CHMe-CH 2 CH 2 -CONMe 2 and MeOOC-CH 2 CH 2 -CHME-CONME 2 .
  • the mass proportion S1 / DMSO can vary from 1/99 to 60/40, more particularly between 40/60 and 60/40.
  • Si and the proportion of Si and DMSO it is possible to modify the physicochemical properties of the mixture in order to adapt them to the end use.
  • the nature and the proportion of Si are advantageously adapted from so that Si and DMSO are compatible and form a homogeneous liquid phase at room temperature (15-25 ° C).
  • the mixture of the suspension makes it possible to keep the particles in suspension. It has been found that other mixtures associating an Si compound with another polar solvent such as DMSO such as PGMEA or propylene glycol monomethyl ether acetate do not make it possible to obtain such stability. Thus, advantageously, the suspension therefore does not include a chemical compound that would destabilize the suspension and cause precipitation of the particles.
  • the invention also relates to a suspension consisting of:
  • ⁇ A denotes a group (C 2 -C 5) -alkylene
  • ⁇ R is a (dC 4) -alkyl
  • R 2 and R 3 are both groups (dC 4) -alkyl, which are identical or different.
  • the proportion by weight of the cerium oxide in the suspension is generally at most 25% by weight, preferably at most 10% by weight and even more preferably at most 3% by weight with respect to whole suspension.
  • the suspension may advantageously also comprise at least one anionic surfactant in order to improve the stability of the suspension, especially in contact with a polymer to be dissolved.
  • the surfactant may be more particularly chosen from those of general formula (II):
  • ⁇ A denotes a group (d-C20) -alkyl, linear or branched
  • B denotes a group of formula - (CH 2 CH 2 O) n -;
  • ⁇ n denotes an integer between 2 and 60.
  • the anionic surfactant may be that of formula
  • the anionic surfactant may for example be selected from Rhodafac RS 960, Rhodafac RS 710 E, Rhodafac ASI 100, Rhodasurf TR 4070, Rhodasurf CET 55, Abex 18 S or Geropon ACR-4.
  • the anionic surfactant may also be more particularly chosen from those of general formula (III):
  • ⁇ M counter-cation as described previously;
  • R 4 denotes a group (C 4 -C 17) -alkyl, linear or branched; a - (CH 2 CH 2 O) n -X group or a counter-cation M as previously described;
  • ⁇ n is an integer between 2 and 20;
  • X denotes a linear or branched (C 4 -C 17) -alkyl group.
  • the anionic surfactant is in sufficient quantity to obtain the desired stability.
  • the proportion by weight of the surfactant is generally at most 10% relative to the entire suspension and may be between 1 and 7%.
  • the mixture has a lower volatility than DMSO, which allows easier handling;
  • the particles are cerium oxide particles but it is also possible that it is hydrated oxide (hydroxide).
  • the composition of the particles may thus correspond to an oxide and / or a hydroxide and / or an oxyhydroxide of cerium.
  • the particles may also be composed of a mixed oxide of cerium and at least one other element E selected from La, Pr, Nd, Sr, Y, Al, Ti or Zr.
  • the invention as previously described in all embodiments and variants therefore also relates to particles of cerium oxide hydrate or a mixed cerium oxide and at least one other element E.
  • the proportion by weight the oxide of the element E is at most 10%, more particularly between 1% and 10%, this proportion being determined relative to the mixed oxide.
  • the method comprises contacting an aqueous slurry of cerium oxide and the anionic surfactant, to evaporate water by heating to obtain a powder, shaking together the powder and the solvents, DMSO and Si, and then heating the resulting mixture to a temperature between 50 ° C and 150 ° C, preferably between 50 ° C and 100 ° C.
  • the contacting of the powder and the solvents can be carried out according to different embodiments. Thus, it is possible to add the powder to the mixture of the two solvents or to add to the powder the mixture of the two solvents. It is also possible to first contact the powder and one of the solvents, then add the other solvent.
  • the embodiment chosen depends on the nature of the anionic surfactant, the S 1 / DMSO ratio and the cerium oxide particles (size, surface state) and must ensure a stable suspension without precipitation of the particles.
  • the heating of the last stage of the process makes it possible to deaglomerate the optionally aggregated particles. This step can be carried out by increasing the temperature either in steps or progressively.
  • the process consists in bringing into contact an aqueous suspension of cerium oxide, the two solvents, DMSO and Si, and, if appropriate, the anionic surfactant, then to remove water by vacuum distillation.
  • the surfactant can be advantageously premixed with one of the two solvents or with the mixture of the two solvents. In the case where the suspension is not brought into contact with the mixture of the two solvents, it may be advantageous to first bring the suspension into contact with the DMSO.
  • the mixtures are preferably constantly agitated to prevent settling of the particles that can lead to agglomeration thereof.
  • the stirring retained also depends on the variables already described, namely the nature of the anionic surfactant, the S1 / DMSO ratio and the cerium oxide particles (size, state of the surface). At the laboratory scale, it has been possible to obtain suspensions according to the invention using stir bar stirring.
  • This process for preparing the suspension is carried out identically in its two embodiments for a hydrated oxide (hydroxide) or for a mixed oxide of cerium and at least one other element E. It also applies to case of a composition corresponding to an oxide and / or a hydroxide and / or an oxyhydroxide of cerium.
  • the aqueous suspension of cerium oxide may in turn be prepared by a precipitation process by contacting an aqueous solution of a cerium salt and a basic solution.
  • the cerium salt may in particular be a nitrate.
  • the basic solution may in particular be an ammonia solution.
  • An example of a process for preparing an aqueous suspension of cerium oxide is that described in EP 208580. This process consists in bringing an aqueous solution of a salt of Ce lv into contact with a base in order to obtain the aqueous suspension. .
  • the aqueous solution of this lv salt may be an aqueous solution of ceric nitrate or an aqueous solution of ceric ammonium nitrate.
  • the aqueous solution of Ce lv salt may also comprise Ce "but it is desirable that the molar ratio of Ce lv is at least 85% (That lv / Ce to tai) -
  • the aqueous solution preferably contains no or Few impurities in the form of covalent anions such as sulphate ions
  • the concentration of the salt solution of Ce lv is not critical and may vary between 0.1 and 2 mol / L. This solution generally has a certain initial acidity.
  • the concentration of H + ions is not critical.
  • it is between 0.1 N and 4 N. It may advantageously be used a solution of ceric nitrate obtained by the electrolytic oxidation process described in application FR 2570087.
  • the basic solution may be an aqueous solution of ammonia, soda or potash. This basic solution can have a concentration of between 0.1 and 1 1 N, or even between 0.1 and 5 N.
  • the proportion between the basic solution and the salt solution of Ce IV may be such that the degree of neutralization T is greater than or equal to 0.01 and less than or equal to 3.0.
  • T is defined by the formula (n 3 -n 2 ) / n wherein:
  • represents the number of moles of Ce lv present in the final colloidal suspension
  • ⁇ n 2 represents the number of moles OH "needed to neutralize the acidity introduced by the aqueous solution of salt of Ce lv;
  • ⁇ n 3 represents the number of moles OH "made by the basic solution.
  • the reaction between the aqueous solution of Ce lv and the basic solution is performed at a temperature between 10 ° C and 60 ° C or between 15 ° C and 25 ° C.
  • the mixture can be carried out of the two solutions according to several variants. for example, one can make a simultaneous mixing, with stirring, of two solutions or continuously introducing the basic solution in the aqueude solution of Ce lv or vice versa.
  • the aqueous suspension of cerium oxide may be prepared by the process described in application WO 2008/043703 from a mixture of Ce '' and Ce lv, This process comprises the following steps:
  • the medium obtained in the preceding step is heated under an inert atmosphere at a temperature between 60 and 95 ° C, at least one of the steps (a) or (b) being conducted in the presence of nitrate ions; - (c) is carried out successively but in any order acidification and washing of the medium thus obtained, whereby the suspension is obtained.
  • the first step (a) is prepared from a solution which is a solution of a salt of Ce "further comprising Ce lv.
  • Ce lv is provided by a salt which may be for example the cerium IV nitrate.
  • the amount of Ce lv is such that the molar ratio Ce lv / Ce to tai in the starting solution may be between 1/100 and 1 / 50. It can be between 1/70 and 1/50, particularly between 1/65 and 1/50. This report lv / This is to re adapted and modified if necessary to achieve the particle size DurX desired.
  • the starting solution may be degassed beforehand by contact with an inert gas.
  • inert gas or “inert atmosphere” is meant for the present description an oxygen-free atmosphere or gas, the gas being, for example, nitrogen or argon.
  • the contacting may be a bubbling of the inert gas in the solution.
  • the starting solution is reacted with a base.
  • a base the products of the hydroxide type can be used in particular.
  • alkali or alkaline earth hydroxides and ammonia There may be mentioned alkali or alkaline earth hydroxides and ammonia. It is also possible to use secondary, tertiary or quaternary amines. However, amines and ammonia are preferred insofar as this makes it possible to reduce the risks of pollution by alkaline or alkaline-earth cations.
  • the base may also be degassed beforehand by contact with an inert gas. The amount of base used is in excess of the cations present in the starting solution, so as to precipitate all the cerium present.
  • the contacting can be done in any order of introduction of the reagents. However, it is preferable to introduce the starting solution in a medium containing the base.
  • This step (a) must be conducted under an inert atmosphere. It can be conducted either in a closed reactor or in a semi-closed reactor with inert gas scavenging.
  • the contacting is generally carried out in a stirred reactor. This step is generally carried out at room temperature (20-25 ° C) or at a temperature of at most 50 ° C.
  • the 2nd step (b) of the process is a heat treatment of the reaction mixture obtained at the end of the previous step.
  • This treatment consists in heating the mixture and maintaining it at a temperature which is generally at most 95 ° C. and more particularly between 60 ° C. and 95 ° C.
  • the duration of this treatment can be between a few minutes and a few hours.
  • This treatment is also carried out under an inert atmosphere, which has been described with respect to this atmosphere for step (a) applying likewise here.
  • at least one of the steps (a) or (b) must be conducted in the presence of nitrate ions.
  • the nitrate ions are provided by the addition of nitric acid, more particularly in step (a), during the preparation of the Ce '' solution.
  • the amount of nitrate ions expressed by the molar ratio This is generally between 1/6 and 5/1, rather between 1/3 and 5/1.
  • Step (c) actually comprises two successive operations that can be performed in any order. These operations are on the one hand an acidification and on the other hand a washing. These operations will be described below more precisely in the case of a sequence of acidification and then washing.
  • Acidification generally takes place after cooling of the medium obtained at the end of step (b) by addition of an acid. Any mineral or organic acid can be used. Nitric acid is more particularly used. The amount of acid added is such that the pH of the medium after acidification is between 1 and 5. This operation can be conducted in air, it is no longer necessary to operate under an inert atmosphere at this stage of the process.
  • the acidification is followed by a washing which aims to remove from the suspension the soluble species, mainly salts.
  • the washing can be done in different ways with or without solid / liquid separation. It can thus be carried out by separating the solid particles from the liquid phase, for example by frontal filtration, decantation or centrifugation. The solid obtained is handed then suspended in an aqueous phase. One can also proceed by tangential filtration. This washing may be optionally renewed if necessary, for example until a given conductivity of the suspension is obtained, the conductivity measuring the level of impurities present in this suspension. As indicated above, the order of operations can be reversed with respect to what has just been described.
  • step (c) at the end of step (c) and, again, generally after cooling the medium obtained, it is then possible to carry out a washing as described above. At the end of the washing, the acidification of the medium obtained is then carried out.
  • the advantage of this process is to obtain a suspension of cerium oxide without calcination step at high temperature.
  • the suspension of nonfunctionalized cerium oxide is thus obtained.
  • the cerium oxide can be described here as non-functionalized because it is not necessary that the suspension comprises an organic stabilizer, including a stabilizer comprising at least one carboxylic acid or carboxylate function.
  • the suspension nevertheless remains stable, the stability being able to be ensured by the residual amounts of inorganic ions present in the suspension, such as nitrate or ammonium ions.
  • Steps (a), (b) and (c) may be more particularly the following:
  • step (c) is carried out successively but in any order acidification and washing of the medium thus obtained, whereby the suspension according to the invention is obtained.
  • the solutions used in step (a) are preferably degassed with a neutral gas, such as, for example, nitrogen.
  • the acidic solution can be a nitrate solution of Ce "and Ce lv and nitric acid.
  • the amount of ammonia used is in excess of the cations present in the starting solution and to precipitate the throughout this cerium.
  • One can use an amount of ammonia being such that the molar ratio NH OH / cations present in the starting solution is greater than 1, 30.
  • the ratio Ce lv / Ce to tai is adapted and modified if necessary, to reach the desired particle size dDRx.It can be between 1/100 and 1/50, more particularly between 1/70 and 1/50, even more particularly between 1/65 and 1/50.
  • the solution of Ce '' and Cev is added to the ammonia solution.
  • the duration of the addition can be between 20 minutes and 1 hour.
  • step (c) one carries out successively but in any order an acidification and a washing of the medium thus obtained, whereby one obtains the suspension according to the invention.
  • the process may comprise contacting an aqueous solution comprising nitrate anions, a cerium (III) salt, a cerium (IV) salt and a salt of the element E and causing the particles to precipitate at room temperature. using a basic solution under an inert atmosphere and subjecting the resulting mixture to heating under an inert atmosphere. This is for example an aqueous solution of nitrates.
  • suspension according to the invention it may be used to disperse cerium oxide particles in at least one polymer.
  • the method of dispersing cerium oxide particles in at least one polymer comprises a 1 st step in which is contacted stirring the suspension according to the invention with at least one polymer and optionally at least one organic solvent ( S i p0) of the polymer to disperse the cerium oxide particles in the polymer, then a 2 nd step during which DMSO, the compound Si and optionally S p0 i are totally or partially removed.
  • the solvent S p0 ia operable to partially or completely dissolve and / or swell the polymer.
  • S p0 i therefore denotes an organic solvent which can effectively partially or completely dissolve the polymer, but it is also possible to use an organic solvent which, without dissolving the polymer, makes it possible to swell it.
  • S p0 ia operable to reduce mix viscosity and improve the dispersion of cerium oxide particles.
  • S p0 i is chosen according to the nature of the polymer.
  • the solvent may be decalin.
  • S p0 i may be a polar solvent such as NMP.
  • the 1 st step may be carried out according to several variants.
  • the suspension according to the invention, the polymer and optionally the solvent S p0 i are mixed together.
  • the suspension according to the invention and the polymer which has been previously totally or partially dissolved in the solvent S p0 i and / or swollen with the solvent S p0 i are mixed together.
  • the 1 st step is conducted at a temperature which depends on the nature of the polymer.
  • the mixture formed of the suspension according to the invention, the polymer and the optional solvent S p0 i is preferably heated to a temperature at which the viscosity of the mixture is not too high and compatible with the liquid compounds present in the mixture. It is generally between room temperature and 250 ° C, or even between room temperature and 200 ° C.
  • the mixture can be carried out in a closed chamber, possibly under pressure to maintain some of the liquid compounds.
  • the 2 nd step is to eliminate totally or partially, DMSO, Si compound and optionally i S p0. To do this, it may submit the mixture from the 1 st stage at a pressure lower than atmospheric pressure. In particular, it is also possible to form a film of the mixture from the 1 st step so as to promote the elimination of volatile compounds.
  • the applicable industrial techniques in this case are the spin-coating or the "slot die coating". By these techniques, the polymer is applied on a moving support and the solvent is evaporated in a vacuum chamber. We can rest in Progr Colloid Polym Sci 2005, 130, 1-14 which describes techniques for preparing polymer films.
  • the removal of DMSO compounds, Si compound and optionally S p0 i may be greater or lesser degree as required. They can be eliminated completely under the effect of a very high vacuum. According to one embodiment, it is possible to first apply a light vacuum to remove a part of the volatile compounds, then a higher vacuum to complete the removal of the volatile compounds. This embodiment can in particular make it possible to prevent the formation of holes in a polymer film by bursting of the gas bubbles that would have formed under the effect of a high vacuum.
  • the volatile compounds can also be partially removed so as to allow the handling of the polymer, for example in the form of a film, then to allow the residue of the volatile compounds to be eliminated.
  • the operating conditions eg, the presence of S p0 i or the polymer
  • S p0 i or the polymer used for one of the steps of the dispersion process could theoretically destabilize the suspension according to the invention.
  • the particles disperse in the polymer and the aggregation of particles is limited or prevented.
  • the polymer may be a thermoplastic polymer, such as for example a polyolefin, a polyamide, an acrylic polymer, a polyester, a fluorinated polymer such as PVDF, a chlorinated polymer such as for example PVC.
  • the proportion of cerium oxide in the polymer may be between 1% and 10%, or even between 1% and 7%, this proportion being expressed by weight of cerium oxide relative to the total weight of the polymer and of the cerium oxide.
  • the techniques for preparing a polymer film are particularly suitable for the case where the extrusion technique in the molten state is not adapted to the polymer or to one of the polymers, which is the case for a polyimide that is, a polymer whose polymer chains comprise imide functions.
  • the polyimide may be obtained by the polymerization of at least one aromatic dianhydride and at least one aromatic diamine.
  • An example of polyimide is that obtained by the polymerization of dianhydride pyromellitic and 4,4'-oxydianiline. This polyimide comprises
  • the aromatic dianhydride may correspond to a product of general formula (IV):
  • R 5 denotes a tetravalent organic group containing at least one aromatic ring and preferably having at most 25 carbon atoms.
  • R 5 can for example be chosen from the following list:
  • R 5 may be more particularly chosen from the following list
  • the aromatic dianhydride may be chosen from the following compounds: pyromellitic dianhydride; 3,3 ', 4,4'-biphenyl tetraacarboxylic dianhydride; 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride; 4,4'-oxydiphthalic dianhydride; 3,3 ', 4,4'-diphenyl sulfone tetracarboxylic dianhydride; 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane; dianhydride bisphenol A.
  • the aromatic diamine may correspond to a product of general formula (V)
  • ⁇ 3 ⁇ 4 is a divalent organic group containing at least one aromatic ring and preferably having at most 25 carbon atoms.
  • ⁇ 3 ⁇ 4 can be chosen for example from the following list:
  • the aromatic diamine may be chosen from the following compounds: 3,4'-oxydianiline; 1,3-bis (4-aminophenoxy) benzene; 4,4'-oxydianiline; 1,4-diaminobenzene; 1,3-diaminobenzene; 2,2'-bis (trifluoromethyl) benzidene; 4,4'-diaminobiphenyl; 4,4'-diaminodiphenyl sulfide; 9,9'-bis (4-amino) fluorite.
  • the polycondensation reaction leading to the polyimide consists of reacting the anhydride groups present on the aromatic dianhydride of formula (IV) and the amino groups present on the aromatic diamine of formula (V).
  • the reaction may be incomplete so that some of the anhydride groups open without forming the imide functions, which then leads to a polymer comprising the units of general formula (VI):
  • R 5 is a tetravalent organic group containing at least one aromatic nucleus and preferably having at most 25 carbon atoms;
  • Each carboxylic group -COOH present on R 5 is attached to a carbon atom of R 5 adjacent to another carbon atom of R 5 to which the amide group is attached;
  • ⁇ R 6 is a divalent organic group containing at least one aromatic nucleus and preferably having at most 25 carbon atoms;
  • the amino group -NH- is attached to a carbon atom of the aromatic group of R6.
  • polyamic acid a polymer commonly referred to as polyamic acid according to the following reaction:
  • This incomplete reaction has the advantage that the resulting polymer can be more easily dissolved in an organic solvent than a polyimide which would result from the complete reaction.
  • the polymer of formula (VI) therefore constitutes a polyimide precursor.
  • the polyimide precursor can then be converted chemically to polyimide by an imidization reaction.
  • the imide functions of the polyimide are formed.
  • This conversion generally takes place by applying a heating of the precursor polymer at a temperature generally of between 90 ° C. and 500 ° C.
  • a catalyst such as, for example, benzoic acid may be advantageously added to promote the imidization reaction.
  • Application EP 0984030 describes examples of preparation of polyimide precursor and conversion of the precursor to polyimide.
  • the polymer can also be crosslinkable. It is for example an ethylene-vinyl acetate copolymer (EVA) to which a crosslinking agent, for example of the radical initiator type, has been added.
  • EVA ethylene-vinyl acetate copolymer
  • the invention also relates to the use of a suspension according to the invention for dispersing the particles of cerium oxide, of cerium hydrated oxide or of a mixed cerium oxide and at least one other element.
  • E selected from La, Pr, Nd, Sr, Y, Al, Ti or Zr in at least one polymer, especially a polyimide precursor or a polyimide.
  • the polymer may be in the form of a film, in particular a transparent film.
  • the particles being of small size, they make it possible to obtain protection of the film without degrading the optical properties of the film.
  • the film may have an average thickness of at most 800 ⁇ . This thickness can be between 25 ⁇ and 800 ⁇ , particularly between 100 ⁇ 500 ⁇ . The average thickness is measured at 25 ° C on the film using a micrometer from 20 measurements taken at random over the entire surface of the film.
  • the invention also relates to a dispersion process in which the suspension according to the invention is brought into contact with stirring with at least one polymer (Pi) and optionally at least one organic solvent (S p0 i) of the polymer in order to disperse the particles of cerium oxide in the polymer (Pi), then totally or partially DMSO, the compound Si and optionally S p0 i are eliminated, and the polymer (Pi) is chemically modified to be converted into polymer (P2) . Removal of volatile compounds and chemical modification can be accomplished in two separate steps. It is also possible to envisage that they be carried out at the same time.
  • Pi may be a polymer of formula (VI) and P 2 is a polyimide.
  • Pi may also be an uncrosslinked EVA which has been mixed with a crosslinking agent and P 2 is a crosslinked EVA.
  • the d 5 o was determined using a Zetasizer Nano ZS from the company Malvern following the manufacturer's recommendations. In a quartz cell, a small amount of the suspension is taken from the micropipette and diluted in the same liquid medium as that of the suspension. For the automated calculation of d 5 o, the optical index for the cerium oxide retained is equal to 2.1. The optical index and the viscosity of the liquid medium are also introduced into the software of the apparatus. dlVlET, d [3ET and dXR were determined using the previously described methods.
  • RhodiaSolv Polarclean which is an Si compound of formula MeOOC-ArCONMe2 in which Ai denotes a mixture of the two alkylene groups-CHMe-CH 2 CH 2 - and -CH 2 CH 2 -CHMe-.
  • the suspension SA1 was prepared by reacting cerium nitrate and ammonia according to the process described in Example 1 of EP 208580.
  • the suspension SA2 was prepared by the method described in WO 2008/043703. Table I
  • Rhodafac ASI 100 0.19 g of 10% by weight Rhodafac ASI 100 is added to a suspension of 2% by weight of cerium oxide water and then stirred for 15 minutes. The particles of cerium oxide decant. The mixture is dried in an oven maintained at 100 ° C. for 1 h 30 in order to obtain a dry powder.
  • Rhodasurf 40/70 dry in an oven at 100 ° C, 0.16 g of Rhodasurf 40/70 (10% by weight) for 30 min. 0.016 g of a powder which is dissolved in 31.0 g of a mixture of the two solvents is recovered. 1.55 g of the aqueous suspension of cerium oxide SA1 (proportion by weight of cerium oxide 20.7%, ie 0.32 g of cerium dioxide) are added. After magnetic stirring (300 rpm for 15 min), the mixture has a homogeneous appearance and no settling is observed.
  • the mixture is then heated under vacuum at 100 ° C for 120 min (in the flask, 22-33 ° C at the top of the column, vacuum of 50 mbar) to remove water by vacuum distillation.
  • a suspension according to the invention is then recovered at 1% by weight of cerium oxide.
  • Table II summarizes the various tests carried out in the presence of the two suspensions SA1 and SA2. It can be seen that it is possible to obtain a suspension according to the invention from these two aqueous suspensions according to one of the two processes described above. On the other hand, in the presence of another polar solvent, PGMEA or propylene glycol monomethyl acetate ether of formula j j
  • Figures 1 and 2 show the volume distribution curves of the particle size of cerium oxide obtained using the Zetasizer (abscissa: size in nm, ordinate%) suspended in water or in a polar mixture . These figures show that the transfer of particles from water to the mixture leads to similar distributions, which is a sign that there is no agglomeration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention est relative à une suspension de particules d'oxyde de cérium dans un mélange de solvants polaires. L'invention est aussi relative au procédé de préparation de cette suspension ainsi qu'à l'utilisation de celle-ci pour disperser des particules d'oxyde de cérium dans au moins un polymère.

Description

SUSPENSION D'OXYDE DE CERIUM
Domaine technique
La présente invention est relative à une suspension de particules d'oxyde de cérium dans un mélange de solvants polaires. L'invention est aussi relative au procédé de préparation de cette suspension ainsi qu'à l'utilisation de celle-ci pour disperser des particules d'oxyde de cérium dans au moins un polymère.
Problème technique
Les particules d'oxyde de cérium ont des propriétés anti-UV. Leur incorporation dans un polymère peut être réalisée par extrusion mais pour certains polymères difficiles à extruder, l'incorporation peut consister à dissoudre le polymère dans un solvant ou un mélange de solvants, à ajouter une suspension comprenant des particules d'oxyde de cérium dans un solvant polaire, puis à évaporer le solvant. Pour certains polymères polaires comme le polyimide, il est nécessaire que le solvant soit suffisamment polaire pour dissoudre le polymère. La N-méthyl pyrrolidone (NMP ou 1 -méthyl-2-pyrrolidone) est un solvant très polaire qui peut dissoudre le polyimide mais ce solvant est également toxique. II est également nécessaire que la suspension des particules d'oxyde de cérium soit stable dans le temps.
Le problème technique à résoudre est donc de mettre au point une suspension stable de particules d'oxyde de cérium dans un solvant polaire.
Arrière plan technique
US 2016/0053203 et WO 16014763 décrivent des mélanges de solvants polaires pour enlever des traces de peinture. Aucune mention n'est faite d'une suspension de particules d'oxyde de cérium.
US 8,703,085 décrit des particules d'oxyde de cérium cristallisé
US 9,193,850 décrit un composite sous forme d'une matrice en polyimide dans laquelle sont dispersées des particules d'un oxyde dont la surface a été modifiée. Description détaillée
S'agissant de la suspension selon l'invention, celle-ci comprend des particules d'oxyde de cérium dans un mélange de DMSO et d'au moins un composé Si de formule (I) :
Figure imgf000003_0001
dans laquelle
A désigne un groupe (C2-C5)-alkylène ;
Ri est un groupe (d-C4)-alkyle ;
R2 et R3 sont deux groupes (CrC4)-alkyles, identiques ou différents.
Les particules sont avantageusement des particules nanométriques. Elles présentent une taille moyenne inférieure ou égale à 200 nm. Elles peuvent présenter au moins l'une des caractéristiques suivantes :
une taille moyenne ÔDR déterminée par la technique de diffraction des rayons X inférieure ou égale à 100 nm ;
une taille moyenne dMET déterminée à l'aide de la microscopie électronique par transmission (MET) inférieure ou égale à 200 nm ;
une taille moyenne deET déterminée à partir de la mesure de la surface spécifique BET inférieure ou égale à 100 nm ;
■ une taille moyenne d5o déterminée à partir d'une distribution en volume des diamètres des particules obtenue à l'aide de la technique de diffusion dynamique de la lumière inférieure ou égale à 200 nm. dDRx correspond à la taille t du domaine cohérent calculé à partir de la largeur d'une ou de plusieurs raies de diffraction les plus intenses et en utilisant le modèle de Scherrer. Selon ce modèle, on utilise la formule suivante :
k - A
ί ^
y M ····· $~ cost)
t : taille à l'angle 2Θ (thêta) ;
k : facteur de forme valant 0,9 ;
λ (lambda) : longueur d'onde du faisceau incident 1 ,54 Angstrom ;
H : largeur à mi-hauteur du pic ;
s : largeur due au défaut de l'optique instrumentale qui dépend de l'instrument utilisé et de l'angle Θ (thêta) ;
Θ : angle de Bragg.
Lorsqu'on utilise plusieurs raies de diffraction, on retient la moyenne arithmétique des tailles t correspondant à ces raies. Dans le cas de l'oxyde de cérium, ÔDRX correspond à la moyenne arithmétique de trois tailles ti, t2 et t3 déterminées à partir de la formule de Scherrer ci-dessus sur les trois pics aux angles 2Θ (2 thêta) suivants : 28,6° ; 47,5° et 56,4° ou aux angles suivants : 28,6°±0,1 ; 47,5°±0,1 et 56,4°±0,1 . dûRx peut varier dans une large gamme allant de 0,1 à 200 nm, voire de 0,1 à 100 nm, de préférence de 0,5 à 100 nm. Plus particulièrement, ÔDRX peut être compris entre 80 et 100 nm ; ou entre 45 et 65 nm ; ou entre 25 et 45 nm ; ou entre 15 et 30 nm ; ou entre 6 et 15 nm ; ou entre 2 et 4 nm. di iET est calculé à partir d'une distribution des diamètres des particules déterminés à l'aide de la microscopie électronique par transmission (MET). Les particules présentent un dMET inférieur ou égal à 200 nm, dMET étant calculé à partir d'une distribution de diamètres des particules déterminés à l'aide de la microscopie électronique par transmission (MET). Il est également possible de caractériser les particules à l'aide de l'écart-type SMET qui est inférieur à 35% dudit diamètre moyen, SMET étant calculé à partir d'une distribution de diamètres des particules déterminés à l'aide de la microscopie électronique par transmission (MET). La méthode pour obtenir la distribution consiste à mesurer le diamètre d'au moins 300 particules sur un ou plusieurs cliché(s) de microscopie électronique. L'agrandissement du microscope qui est retenu doit permettre de distinguer nettement les images des particules sur un cliché. L'agrandissement peut être par exemple compris entre 50 000 et 500 000. Le diamètre d'une particule qui est retenu est celui du cercle minimum permettant de circonscrire l'intégralité de l'image de la particule telle qu'elle est visible sur un cliché MET. Le terme "cercle minimum" (en Anglais, "minimal enclosing circle") a le sens qui lui est donné en mathématique et représente le cercle de diamètre minimum permettant de contenir un ensemble de points d'un plan. Ne sont retenues que les particules dont au moins la moitié du périmètre est définie. On peut utiliser le logiciel ImageJ pour réaliser plus simplement le traitement ; ce logiciel en libre accès a été développé initialement par l'institut américain NIH et est disponible à l'adresse suivante : http://rsb.info.nih.gov ou http://rsb.info.nih.gov/ij/dovvnload.html . Après avoir déterminé les diamètres des particules retenus par la méthode ci- dessus, on regroupe lesdits diamètres en plusieurs classes granulométriques allant de 0 à 500 nm, la largeur de chaque classe étant de 1 nm. Le nombre de particules dans chaque classe est la donnée de base pour représenter la distribution en nombre (cumulée). A partir de la distribution, on détermine le diamètre moyen dMET qui correspond au diamètre médian tel qu'il est entendu classiquement en statistique. dMET est tel que 50% des particules (en nombre) prises en compte sur le ou les cliché(s) MET ont un diamètre plus petit que cette valeur. A partir de cette distribution, il est également possible de déterminer l'écart-type SMET qui a le sens habituel utilisé en mathématique et qui peut être défini comme la racine carrée de la variance :
Figure imgf000005_0001
n est le nombre de particules (dites primaires) prises en compte sur le ou les clichés MEB ;
X, est le diamètre d'une particule i sur le ou les clichés MEB ;
est le diamètre moyen des n particules, calculé selon la formule 1/n∑ =1
Plus particulièrement, dMET peut être compris entre 150 et 200 nm ; ou entre 70 et 1 10 nm ; ou entre 35 et 70 nm ; ou entre 15 et 35 nm ; ou entre 6 et 15 nm ; ou entre 2 et 5 nm. d5o correspond au diamètre médian tel qu'il est entendu classiquement en statistique, déterminé à partir d'une distribution en volume des diamètres des particules obtenue à l'aide de la technique de diffusion dynamique de la lumière (appelée aussi DLS pour dynamic light scattering). Cette technique est particulièrement adaptée à des particules submicroniques. Il s'agit donc de la valeur pour laquelle sur la courbe cumulative en volume de la distribution, 50% des particules ont un diamètre supérieur à d5o et 50% des particules ont un diamètre inférieur à d5o. On peut utiliser le Zetasizer Nano ZS de la société Malvern Instruments en suivant les recommandations et en utilisant le logiciel du constructeur pour obtenir une telle distribution. On notera que d5o est généralement supérieur à dMET car les particules peuvent s'agglomérer.
La surface spécifique est déterminée quant à elle par adsorption d'azote sur une poudre séchée à 100°C une nuit et placée dans une étude à 200°C pendant 2 heures juste avant la mesure, en application de la méthode Brunauer-Emmet- Teller qui a été décrite dans J. Am. Chem. Soc. 1938, 60, p.309. Le principe de cette méthode est décrite aussi dans ASTM D3663-03. On peut utiliser l'appareil Flowsorb II 2300 de Shimadzu pour déterminer de façon automatisée la surface spécifique BET en suivant les recommandations du constructeur. Il est possible à partir de la surface spécifique BET de la poudre ainsi mesurée de déterminer un diamètre équivalent noté dBET calculé à partir de la formule suivante :
dBET = 6 / (surface spécifique x masse volumique).
On retient une masse volumique de 7200 kg/m3 pour les particules de l'invention. Par exemple, dans le cas d'une poudre d'oxyde de cérium présentant une surface spécifique de 14 m2/g, on a d BET - 59,5 nm.
Plus particulièrement, les particules se caractérisent par une taille moyenne dMET inférieure ou égale à 200 nm et une taille moyenne ÔDRX inférieure ou égale à 1 00 nm. Plus particulièrement encore, les particules peuvent présenter les caractéristiques suivantes :
dMET entre 1 50 et 200 nm et dDRx entre 80 et 1 00 nm ;
dMET entre 70 et 1 1 0 nm et ÔDRX entre 45 et 65 nm ;
dMET entre 35 et 70 nm et ÔDRX entre 25 et 45 nm ;
dMET entre 1 5 et 35 nm et ÔDRX entre 1 5 et 30 nm ;
dMET entre 6 et 1 5 nm et ÔDRX entre 6 et 1 5 nm ;
dMET entre 2 et 5 nm et ÔDRX entre 2 et 4 nm.
Les particules peuvent aussi présenter un écart-type SMET d'au plus 30% (SMET < 30% x dMET)- Il peut être de préférence inférieur à 25%, plus particulièrement inférieur à 20%, dudit diamètre dMET-
Par ailleurs, les particules peuvent présenter une distribution en volume obtenue à l'aide de la technique de diffusion dynamique de la lumière qui est étroite et qui se caractérise par un indice de dispersion d'au plus 0,5. Cet indice peut être plus particulièrement d'au plus 0,4 et encore plus particulièrement d'au plus 0,3. On entend par indice de dispersion le rapport :
σ/m = (d84 - d i 6)/2 d5o
pour lequel :
- ds4 est le diamètre des particules pour lequel 84% des particules ont un diamètre inférieur à ds4 ;
- d i6 est le diamètre des particules pour lequel 1 6% des particules ont un diamètre inférieur à d i6- Si est un composé choisi parmi les composés de formule (I) suivante :
Figure imgf000007_0001
dans laquelle
A désigne un groupe (C2-C5)-alkylène ;
■ Ri est un groupe (d-C4)-alkyle ;
R2 et R3 sont deux groupes (d-C4)-alkyles, identiques ou différents.
Le procédé de préparation des composés de formule (I) est décrit dans la demande WO 2009/092795.
A peut être par exemple choisi dans le groupe suivant : -CHMe-CH2CH2- ; - CH2CH2-CHMe- ; -CHEt-CH2CH2- ou -CH2CH2-CHEt-. Ri peut être par exemple choisi dans le groupe suivant : méthyle, éthyle, propyle, isopropyle, n-butyle, isobutyle. R2 et R3 peuvent par exemple choisi dans le groupe suivant : méthyle, éthyle, propyle, isopropyle, n-butyle, isobutyle. Plus particulièrement, Ri=R2=R3= Me.
Si peut être plus particulièrement choisi parmi les composés de formule :
MeOOC-CH2CH2-CONMe2 ;
■ MeOOC-CH2CH2CH2-CONMe2 ;
MeOOC-CH2CH2CH2CH2-CONMe2 ;
MeOOC-Ai-CONMe2 pour lequel Ai désigne le groupe alkylène de formule -CHMe-CH2CH2- ou bien -CH2CH2-CHMe- ;
MeOOC-A2-CONMe2 pour lequel A2 désigne le groupe alkylène de formule -CHEt-CH2CH2- ou bien -CH2CH2-CHEt-.
Si peut aussi désigner un mélange de deux composés ou plus de formule (I), notamment dans le cas où le groupe (C2-C5)-alkylène n'est pas symétrique. Par exemple, Si peut être sous forme d'un mélange des deux composés suivants : MeOOC-CHMe-CH2CH2-CONMe2 et MeOOC-CH2CH2-CHMe-CONMe2.
La proportion massique S1/DMSO peut varier de 1/99 à 60/40, plus particulièrement entre 40/60 et 60/40. En variant la nature de Si et la proportion de Si et de DMSO, il est possible de modifier les propriétés physicochimiques du mélange afin de les adapter à l'utilisation finale. Ainsi, par exemple, il est possible de modifier la polarité du mélange et de la suspension et de l'adapter au polymère. La nature et la proportion de Si sont avantageusement adaptées de sorte que Si et le DMSO soient compatibles et forme une phase liquide homogène à la température ambiante (15-25°C).
Par ailleurs, le mélange de la suspension permet de maintenir en suspension les particules. Il a été constaté que d'autres mélanges associant un composé Si et un autre solvant polaire que le DMSO tel que le PGMEA ou l'acétate de propylène glycol monométhyl éther ne permettent pas d'obtenir une telle stabilité. Ainsi, avantageusement, la suspension ne comprend donc pas de composé chimique qui déstabiliserait la suspension et entraînerait une précipitation des particules. L'invention est aussi relative à une suspension consistant en :
• des particules d'oxyde de cérium telles que précédemment décrites ;
• un mélange de DMSO et d'au moins un composé Si dans lequelles elles sont dispersées, le composé Si étant de formule (I) :
Figure imgf000008_0001
dans laquelle
A désigne un groupe (C2-C5)-alkylène ;
Ri est un groupe (d-C4)-alkyle ;
R2 et R3 sont deux groupes (d-C4)-alkyles, identiques ou différents. La proportion en poids de l'oxyde de cérium dans la suspension est généralement d'au plus 25% en poids, de préférence d'au plus 10% en poids et encore plus préférentiellement d'au plus 3% en poids par rapport à l'ensemble de la suspension. La suspension peut avantageusement comprendre également au moins un tensioactif anionique afin d'améliorer la stabilité de la suspension, notamment au contact d'un polymère à dissoudre. Le tensioactif anionique comprend avantageusement au moins un groupe anionique Z de formule -COOM, -SO3M ou -P(=O)2(OM), -P(=O)(OM2) dans laquelle M désigne un contre-cation, notamment issu d'un métal alcalin comme par exemple Na+ ou K+. Le tensioactif pourra être plus particulièrement choisi parmi ceux de formule générale (II) :
A-O-B-Z (II)
dans laquelle :
A désigne un groupe (d-C2o)-alkyle, linéaire ou branché ;
■ B désigne un groupe de formule -(CH2CH2O)n- ;
n désigne un nombre entier compris entre 2 et 60. Par exemple, le tensioactif anionique pourra être celui de formule
o
, R— OM
O'
n OH
Le tensioactif anionique pourra être par exemple choisi parmi le Rhodafac RS 960, le Rhodafac RS 710 E, le Rhodafac ASI 100, le Rhodasurf TR 4070, le Rhodasurf CET 55, l'Abex 18 S ou le Geropon ACR-4.
Le tensioactif anionique pourra également être plus particulièrement choisi parmi ceux de formule générale (III) :
R4-O-C(=O)-CH2CH(SO3M)-C(=O)-O-R4 (III)
M : contre-cation tel que décrit précédemment ;
R4 désigné un groupe (C4-Ci7)-alkyle, linéaire ou branché; un groupe - (CH2CH2O)n-X ou un contre-cation M tel que décrit précédemment ;
n désigne un nombre entier compris entre 2 et 20 ;
" X désigne un groupe (C4-Ci7)-alkyle linéaire ou branché.
Le tensioactif anionique est en quantité suffisante pour obtenir la stabilité souhaitée. La proportion en poids du tensioactif est généralement d'au plus 10% par rapport à l'ensemble de la suspension et peut être comprise entre 1 et 7%.
La suspension selon l'invention présente les avantages suivants :
le DMSO et le composé Si ne présentent pas une toxicité aussi élevée que la NMP ;
le mélange du DMSO et du composé Si présente cependant une polarité élevée, ce qui le rend notamment apte à dissoudre et/ou gonfler certains polymères ;
de par la présence du composé Si, le mélange présente une volatilité inférieure à celle du DMSO, ce qui permet une manipulation plus aisée ;
de par la présence du composé Si, le mélange ne se solidifie pas à la température de solidification du DMSO (19°C), température qui peut être atteinte dans certains ateliers industriels ;
la suspension est stable, ce qui signifie que les particules d'oxyde de cérium restent en suspension dans le mélange. Visuellement, il n'est pas observé de décantation des particules au fond d'un flacon contenant la suspension pendant une durée d'au moins 1 journée. Cette durée peut aller jusqu'à au moins 1 semaine. On notera que dans l'invention, les particules sont des particules d'oxyde de cérium mais il est également possible qu'il s'agisse d'oxyde hydraté (hydroxyde). La composition des particules peut ainsi correspondre à un oxyde et/ou un hydroxyde et/ou un oxyhydroxyde de cérium. Les particules peuvent aussi être composées d'un oxyde mixte de cérium et d'au moins un autre élément E choisi parmi La, Pr, Nd, Sr, Y, Al, Ti ou Zr. L'invention telle qu'elle a été décrite précédemment dans tous les modes de réalisation et variantes concerne donc aussi des particules d'oxyde de cérium hydraté ou un oxyde mixte de cérium et d'au moins un autre élément E. La proportion en poids de l'oxyde de l'élément E est d'au plus 10%, plus particulièrement entre 1 % et 10%, cette proportion étant déterminée par rapport à l'oxyde mixte.
S'agissant du procédé de préparation de la suspension selon l'invention, il peut être mise en œuvre selon plusieurs modes de réalisation.
Dans un 1 er mode de réalisation (désigné dans la suite par procédé "voie sèche") dans lequel on utilise un tensioactif anionique, le procédé consiste à mettre en contact une suspension aqueuse d'oxyde de cérium et le tensioactif anionique, à évaporer l'eau par chauffage de façon à obtenir une poudre, à agiter ensemble la poudre et les solvants, DMSO et Si, puis à chauffer le mélange obtenu à une température comprise entre 50°C et 150°C, de préférence entre 50°C et 100°C. La mise en contact de la poudre et des solvants peut être conduite selon différents modes de réalisation. Ainsi, il est possible d'ajouter la poudre au mélange des deux solvants ou d'ajouter à la poudre le mélange des deux solvants. Il est également possible de mettre d'abord en contact la poudre et l'un des solvants, puis à ajouter l'autre solvant. Le mode de réalisation retenu dépend de la nature du tensioactif anionique, du rapport S1/DMSO et des particules d'oxyde de cérium (taille, état de la surface) et doit veiller à obtenir une suspension stable et sans précipitation des particules. Le chauffage de la dernière étape du procédé permet de désaglomérer les particules éventuellement agrégées. Cette étape peut être conduite en augmentant la température soit par paliers soit de façon progressive. Selon un 2nd mode de réalisation (désigné par procédé "distillation"), le procédé consiste à mettre en contact une suspension aqueuse d'oxyde de cérium, les deux solvants, DMSO et Si, et le cas échéant, le tensioactif anionique, puis à éliminer l'eau par une distillation sous vide. Le tensioactif peut être avantageusement prémélangé à l'un des deux solvants ou au mélange des deux solvants. Dans le cas où la suspension n'est pas mise en contact du mélange des deux solvants, il peut être avantageux de mettre d'abord en contact la suspension avec le DMSO.
Pour les deux modes de réalisation ainsi décrits, les mélanges sont de préférence constamment agités pour éviter une décantation des particules pouvant conduire à une agglomération de celles-ci. L'agitation retenue dépend là aussi des variables déjà décrites à savoir de la nature du tensioactif anionique, du rapport S1/DMSO et des particules d'oxyde de cérium (taille, état de la surface). A l'échelle du laboratoire, il a été possible d'obtenir des suspensions selon l'invention en utilisant une agitation par barreau aimanté.
Ce procédé de préparation de la suspension est mis en œuvre de façon identique dans ses deux modes de réalisation pour un oxyde hydraté (hydroxyde) ou pour un oxyde mixte de cérium et d'au moins un autre élément E. Il s'applique aussi au cas d'une composition correspondant à un oxyde et/ou un hydroxyde et/ou un oxyhydroxyde de cérium. La suspension aqueuse d'oxyde de cérium peut quant à elle être préparée par un procédé de précipitation par mise en contact d'une solution aqueuse d'un sel de cérium et d'une solution basique. Le sel de cérium peut être notamment un nitrate. La solution basique peut être notamment une solution d'ammoniaque. On pourra se référer par exemple au mode opératoire décrit dans "Precipitation- Redispersion of Cerium Oxide Nanoparticles with Poly(Acrylic Acid) : Towards Stable Dispersions" de Sehgal et al.
Un exemple de procédé de préparation d'une suspension aqueuse d'oxyde de cérium est celui décrit dans EP 208580. Ce procédé consiste à mettre en contact une solution aqueuse d'un sel de Celv avec une base afin d'obtenir la suspension aqueuse. La solution aqueuse de sel de Celv peut être une solution aqueuse de nitrate cérique ou une solution aqueuse de nitrate céri-ammoniacal. La solution aqueuse de sel de Celv peut comprendre également du Ce'" mais il est souhaitable que la proportion molaire de Celv soit d'au moins 85% (Celv/Cetotai)- La solution aqueuse ne contient préférentiellement pas ou peu d'impuretés sous forme d'anions covalents comme des ions sulfates. La concentration de la solution de sel de Celv n'est pas critique. Elle peut varier entre 0,1 et 2 mol/L. Cette solution présente généralement une certaine acidité initiale. La concentration en ions H+ n'est pas critique. Avantageusement, elle est comprise entre 0,1 N et 4 N. On pourra utiliser avantageusement une solution de nitrate cérique obtenue par le procédé d'oxydation électrolytique décrit dans la demande FR 2570087.
La solution basique peut être une solution aqueuse d'ammoniaque, de soude ou de potasse. Cette solution basique peut présenter une concentration comprise entre 0,1 et 1 1 N, voire entre 0,1 et 5 N.
La proportion entre la solution basique et la solution de sel de Celv peut être tel que le taux de neutralisation T est supérieur ou égale à 0,01 et inférieur ou égal à 3,0. T est défini par la formule (n3-n2)/ni dans laquelle :
ni représente le nombre de moles de Celv présente dans la suspension colloïdale finale ;
n2 représente le nombre de moles OH" nécessaires pour neutraliser l'acidité apportée par la solution aqueuse de sel de Celv ;
n3 représente le nombre de moles OH" apportées par la solution basique. La réaction entre la solution aqueuse de Celv et la solution basique est effectuée à un température comprise entre 10°C et 60°C, voire entre 15°C et 25°C. On peut réaliser le mélange des deux solutions selon plusieurs variantes. Par exemple, on peut faire un mélange simultané, sous agitation, des deux solutions ou bien introduire en continu la solution basique dans la solution aqueude de Celv ou inversement.
La suspension aqueuse d'oxyde de cérium peut être préparée par le procédé décrit dans la demande WO 2008/043703 à partir d'un mélange de Ce'" et de Celv. Ce procédé comprend les étapes suivantes :
- (a) on met en contact sous atmosphère inerte une solution aqueuse d'un sel de Ce'" qui comprend en outre du Celv, avec une base, ce par quoi on obtient un précipité;
- (b) on chauffe le milieu obtenu à l'étape précédente sous atmosphère inerte à une température comprise entre 60 et 95°C, au moins une des étapes (a) ou (b) étant conduite en présence d'ions nitrates; - (c) on effectue successivement mais dans un ordre quelconque une acidification et un lavage du milieu ainsi obtenu, ce par quoi on obtient la suspension. A la première étape (a), on prépare une solution de départ qui est une solution d'un sel de Ce'" comprenant en outre du Celv. Comme sels de Ce'", on peut utiliser plus particulièrement le nitrate, le chlorure, le sulfate ou le carbonate de Ce'" ainsi que des mélanges de ces sels comme des mixtes nitrate/chlorure. D'une manière connue cette solution de départ doit présenter l'acidité convenable pour que le cérium soit bien entièrement présent en solution. Le Celv est apporté par un sel qui peut être par exemple le nitrate de cérium IV. La quantité de Celv est telle que le rapport molaire Celv/Cetotai dans la solution de départ peut être compris entre 1/100 et 1/50. Il peut être compris entre 1/70 et 1/50, plus particulièrement entre 1/65 et 1/50. Le rapport Celv/Cetotai est adapté, et modifié si nécessaire, pour atteindre la taille de particules dûRx voulue.
La solution de départ peut être préalablement dégazée par mise en contact avec un gaz inerte. Par "gaz inerte" ou "atmosphère inerte", on entend pour la présente description une atmosphère ou un gaz exempt d'oxygène, le gaz pouvant être par exemple de l'azote ou de l'argon. La mise en contact peut être un bullage du gaz inerte dans la solution.
On fait réagir la solution de départ avec une base. Comme base, on peut utiliser notamment les produits du type hydroxyde. On peut citer les hydroxydes d'alcalins ou d'alcalino-terreux et l'ammoniaque. On peut aussi utiliser les aminés secondaires, tertiaires ou quaternaires. Toutefois, les aminés et l'ammoniaque sont préférées dans la mesure où cela permet de diminuer les risques de pollution par les cations alcalins ou alcalino-terreux. La base peut aussi être préalablement dégazée par mise en contact avec un gaz inerte. La quantité de base utilisée est en excès par rapport aux cations présents dans la solution de départ, de façon à faire précipiter l'ensemble du cérium présent. On peut utiliser une quantité de base pouvant être telle que le rapport molaire base/cations présents dans la solution de départ soit supérieur à 1 ,30. Pour conduire la réaction, la mise en contact peut se faire dans un ordre quelconque d'introduction des réactifs. Toutefois, il est préférable d'introduire la solution de départ dans un milieu contenant la base. Cette étape (a) doit être conduite sous atmosphère inerte. Elle peut être conduite soit dans un réacteur fermé soit dans un réacteur semi-fermé avec balayage par le gaz inerte. La mise en contact se fait généralement dans un réacteur agité. Cette étape est généralement effectuée à température ambiante (20-25°C) ou à une température d'au plus 50°C.
La 2eme étape (b) du procédé est un traitement thermique du mélange réactionnel obtenu à l'issue de l'étape précédente. Ce traitement consiste à chauffer le mélange et à le maintenir à une température qui est généralement d'au plus 95°C et plus particulièrement comprise entre 60°C et 95°C. La durée de ce traitement peut être comprise entre quelques minutes et quelques heures. Ce traitement est effectué aussi sous atmosphère inerte, ce qui a été décrit au sujet de cette atmosphère pour l'étape (a) s'appliquant de même ici. Selon une caractéristique du procédé, au moins une des étapes (a) ou (b) doit être conduite en présence d'ions nitrates. Généralement, les ions nitrates sont apportés par l'addition d'acide nitrique, plus particulièrement à l'étape (a), lors de la préparation de la solution de Ce'". La quantité d'ions nitrates, exprimée par le rapport molaire NOsVCe'" est généralement comprise entre 1/6 et 5/1 , plutôt entre 1/3 et 5/1 .
L'étape (c) comprend en fait deux opérations successives qui peuvent être effectuées dans un ordre quelconque. Ces opérations sont d'une part une acidification et d'autre part un lavage. On va décrire ci-dessous plus précisément ces opérations dans le cas d'un enchaînement acidification, puis lavage. L'acidification a lieu généralement après refroidissement du milieu obtenu à l'issue de l'étape (b) par addition d'un acide. On peut utiliser tout acide minéral ou organique. On utilise plus particulièrement l'acide nitrique. La quantité d'acide ajoutée est telle que le pH du milieu après acidification soit compris entre 1 et 5. Cette opération peut être conduite à l'air, il n'est plus nécessaire d'opérer sous atmosphère inerte à ce stade du procédé.
L'acidification est suivie d'un lavage qui a pour but d'éliminer de la suspension les espèces solubles, essentiellement des sels. Le lavage peut se faire de différentes manières avec ou sans séparation solide/liquide. On peut ainsi l'effectuer en séparant les particules solides de la phase liquide par exemple par filtration frontale, décantation ou centrifugation. Le solide obtenu est remis ensuite en suspension dans une phase aqueuse. On peut aussi procéder par filtration tangentielle. Ce lavage peut être éventuellement renouvelé si nécessaire par exemple jusqu'à l'obtention d'une conductivité donnée de la suspension, la conductivité mesurant le taux d'impuretés présentes dans cette suspension. Comme indiqué plus haut, l'ordre des opérations peut être inversé par rapport à ce qui vient d'être décrit. Ainsi, à l'issue de l'étape (c) et, là aussi, généralement après refroidissement du milieu obtenu, on peut alors procéder à un lavage de la manière décrite ci-dessus. A l'issue du lavage, on effectue ensuite l'acidification du milieu obtenu. L'avantage de ce procédé est d'obtenir une suspension d'oxyde de cérium sans étape de calcination à haute température.
On obtient ainsi à l'issue de l'étape (c) la suspension d'oxyde de cérium non- fonctionnalisé. L'oxyde de cérium peut être décrit ici comme non-fonctionnalisé car il n'est pas nécessaire que la suspension comprenne un stabilisant organique, notamment un stabilisant comprenant au moins une fonction acide carboxylique ou carboxylate. La suspension reste néanmoins stable, la stabilité étant susceptible d'être assurée par les quantités résiduelles d'ions inorganiques présents dans la suspension, tels que des ions nitrates ou ammoniums.
Une variante du procédé va maintenant être décrite. Celle-ci diffère uniquement par le fait qu'on utilise comme solution de départ, une solution d'un sel de Ce'" comprenant en outre de l'eau oxygénée. Ce qui a été décrit plus haut sur la nature du sel de Ce'" s'applique de même ici. La quantité de solution de H2O2 est telle que le rapport molaire H2O2 Ce'" dans la solution de sel de cérium soit compris entre 1/10000 et 1/100. La suite du procédé selon cette variante se déroule comme décrit plus haut.
Les étapes (a), (b) et (c) peuvent être plus particulièrement les suivantes :
- (a) on met en contact sous atmosphère inerte une solution acide formée à partir de nitrate de Ce'", de nitrate de Celv, avec une solution d'ammoniaque, ce par quoi on obtient un précipité;
- (b) on chauffe le milieu obtenu à l'étape précédente sous atmosphère inerte à une température comprise entre 60 et 95°C;
- (c) on effectue successivement mais dans un ordre quelconque une acidification et un lavage du milieu ainsi obtenu, ce par quoi on obtient la suspension selon l'invention. Les solutions utilisées à l'étape (a) sont de préférence dégazées par un gaz neutre, tel que par exemple l'azote. La solution acide peut être une solution des nitrates de Ce'" et de Celv et d'acide nitrique. La quantité d'ammoniaque utilisée est en excès par rapport aux cations présents dans la solution de départ et de façon à faire précipiter l'ensemble du cérium présent. On peut utiliser une quantité d'ammoniaque pouvant être telle que le rapport molaire NH OH/cations présents dans la solution de départ soit supérieur à 1 ,30. Le rapport Celv/Cetotai est adapté, et modifié si nécessaire, pour atteindre la taille de particules dDRx voulue. Il peut être compris entre 1/100 et 1/50, plus particulièrement entre 1/70 et 1/50, encore plus particulièrement entre 1/65 et 1/50. Selon un mode de réalisation, la solution de Ce'" et Celv est ajoutée à la solution d'ammoniaque. La durée de l'ajout peut être compris entre 20 min et 1 h. A l'étape (c), on effectue successivement mais dans un ordre quelconque une acidification et un lavage du milieu ainsi obtenu, ce par quoi on obtient la suspension selon l'invention.
Dans le cas de l'oxyde mixte, on utilise une solution aqueuse comprenant un sel de cérium et un sel de l'élément E. On peut utiliser le procédé décrit dans WO 2015/197656 ou dans WO 2015/091495 pour obtenir les particules de l'oxyde mixte. En particulier, le procédé peut consister à mettre en contact une solution aqueuse comprenant des anions nitrate, un sel de cérium (III), un sel de cérium (IV) et un sel de l'élément E et à faire précipiter les particules à l'aide d'une solution basique sous atmosphère inerte et à soumettre le mélange obtenu à un chauffage sous atmosphère inerte. Il s'agit par exemple d'une solution aqueuse des nitrates.
S'agissant de de la suspension selon l'invention, celle-ci peut être utilisée pour disperser des particules d'oxyde de cérium dans au moins un polymère.
Le procédé de dispersion des particules d'oxyde de cérium dans au moins un polymère comprend une 1 ere étape au cours de laquelle on met en contact sous agitation la suspension selon l'invention avec au moins un polymère et éventuellement au moins un solvant organique (Sp0i) du polymère afin de disperser les particules d'oxyde de cérium dans le polymère, puis une 2nde étape au cours de laquelle on élimine totalement ou partiellement, le DMSO, le composé Si et éventuellement Sp0i.
Le solvant Sp0i a pour fonction de dissoudre partiellement ou totalement et/ou de gonfler le polymère. Sp0i désigne donc un solvant organique qui peut effectivement dissoudre partiellement ou totalement le polymère mais il est possible aussi d'utiliser un solvant organique qui sans dissoudre le polymère, permet de le gonfler. Sp0i a pour fonction de réduire la viscosité du mélange et d'améliorer la dispersion des particules d'oxyde de cérium. Sp0i est choisi en fonction de la nature du polymère. Par exemple, dans le cas d'un polyéthylène, le solvant peut être la décaline. Dans le cas d'un précurseur de polyimide, Sp0i peut être un solvant polaire comme la NMP.
La 1 ere étape peut être conduite selon plusieurs variantes. Selon une variante, on mélange ensemble la suspension selon l'invention, le polymère et éventuellement le solvant Sp0i. Selon une autre variante, on mélange ensemble la suspension selon l'invention et le polymère qui aura été préalablement dissous totalement ou partiellement dans le solvant Sp0i et/ou gonflé par le solvant Sp0i. La 1 ere étape est conduite à une température qui dépend de la nature du polymère. Le mélange formé de la suspension selon l'invention, du polymère et du solvant Sp0i éventuel est de préférence porté à une température à laquelle la viscosité du mélange n'est pas trop importante et compatible avec les composés liquides présents dans le mélange. Elle est généralement comprise entre la température ambiante et 250°C, voire entre la température ambiante et 200°C. Le mélange peut être réalisée dans une enceinte fermée éventuellement sous pression pour maintenir certains des composés liquides.
La 2nde étape consiste à éliminer totalement ou partiellement, le DMSO, le composé Si et éventuellement Sp0i. Pour ce faire, on peut soumettre le mélange issu de la 1 ere étape à une pression inférieure à la pression atmosphérique. De façon particulière, il est également possible de mettre sous la forme d'un film le mélange issu de la 1 ere étape de façon à favoriser l'élimination des composés volatils. Les techniques industrielles applicables dans ce cas sont le revêtement centrifuge ("spin-coating") ou le "slot die coating". Par ces techniques, le polymère est appliqué sur support en déplacement et le solvant est évaporé dans une chambre sous vide. On pourra se reposer à Progr Colloid Polym Sci 2005, 130, 1 -14 qui décrit des techniques de préparation de films de polymère.
Au cours de la 2nde étape, l'élimination des composés DMSO, le composé Si et éventuellement Sp0i peut être plus ou moins poussée selon les besoins. Ils peuvent être éliminés totalement sous l'effet d'un vide très poussé. Selon un mode de réalisation, il est possible d'appliquer d'abord un vide léger pour éliminer une partie des composés volatifs, puis un vide plus poussé pour terminer l'élimination des composés volatils. Ce mode de réalisation peut notamment permettre d'éviter la formation de trous dans un film de polymère par éclatement des bulles de gaz qui se seraient formées sous l'effet d'un vide poussé. Les composés volatils peuvent aussi être éliminés partiellement de façon à permettre la manipulation du polymère, par exemple sous forme d'un film, puis à laisser s'éliminer le reliquat des composés volatils.
Les conditions opératoires (par ex. la présence de Sp0i ou du polymère), utilisées pour l'une des étapes du procédé de dispersion pourraient théoriquement déstabiliser la suspension selon l'invention. Cependant, en présence d'une agitation adaptée à la 1 ere étape, les particules se dispersent dans le polymère et l'agrégation des particules est limitée, voire empêchée.
Le polymère peut être un polymère thermoplastique, tel que par exemple une polyoléfine, un polyamide, un polymère acrylique, un polyester, un polymère fluoré tel que le PVDF, un polymère chloré tel que par exemple le PVC. La proportion d'oxyde de cérium dans le polymère peut être comprise entre 1 % et 10%, voire entre 1 % et 7%, cette proportion étant exprimée en poids d'oxyde de cérium par rapport au poids total du polymère et de l'oxyde de cérium.
Les techniques de préparation d'un film de polymère conviennent particulièrement bien pour le cas où la technique d'extrusion à l'état fondue n'est pas adaptée au polymère ou à l'un des polymères, ce qui est le cas pour un polyimide, c'est-à-dire un polymère dont les chaînes de polymère comprennent des fonctions imides. Le polyimide peut être obtenu par la polymérisation d'au moins un dianhydride aromatique et d'au moins une diamine aromatique. Un exemple de polyimide est celui obtenu par la polymérisation du dianhydride pyroméllitique et de la 4,4'-oxydianiline. Ce polyimide comprend des motifs de
formule :
Le dianhydride aromatique peut correspondre à un produit de formule générale (IV) :
Figure imgf000019_0001
dans laquelle R5 désigne un groupe organique tétravalent contenant au moins un noyau aromatique et ayant de préférence au plus 25 atomes de carbone. R5 peut être par exemple choisi dans la liste suivante :
Figure imgf000019_0002
L peut être une liaison chimique, -O-, -S-, -C(=O)-, -CHOH-, -SO2-, -(CH2)P- ou - (CF2)P-, p désignant un nombre entier compris entre 1 et 10; -CAB- dans lequel A et B désignent indépendamment l'un de l'autre un groupe (Ci-Cio)-alkyle, linéaire ou branché, -C(CF3)2-, -C(CF3)(C6H5)- ou -C(=O)NH-.
R5 peut être plus particulièrement choisi dans la liste suivante
Figure imgf000020_0001
Le dianhydride aromatique peut être choisi parmi les composés suivants : dianhydride pyroméllitique ; dianhydride 3,3',4,4'-biphényl-tétraacarboxylique ; dianhydride 3,3',4,4'-benzophénone tétracarboxylique ; dianhydride 4,4'- oxydiphtalique ; dianhydride 3,3',4,4'-diphényl sulfone tétracarboxylique ; 2,2- bis(3,4-dicarboxyphényl) hexafluoropropane ; dianhydride bisphénol A.
La diamine aromatique peut correspondre à un produit de formule générale (V)
H2N-R6-NH2 dans laquelle ί¾ est un groupe organique divalent contenant au moins un noyau aromatique et ayant de préférence au plus 25 atomes de carbone. ί¾ peut être par exemple choisi dans la liste suivante :
Figure imgf000021_0001
R eut être lus articulièrement choisi dans la liste suivante :
Figure imgf000021_0002
Figure imgf000021_0003
Figure imgf000022_0001
La diamine aromatique peut être choisie parmi les composés suivants : 3,4'- oxydianiline ; 1 ,3-bis-(4-aminophénoxy) benzène ; 4,4'-oxydianiline ; 1 ,4- diaminobenzène ; 1 ,3-diaminobenzène ; 2,2'-bis(trifluorométhyl)benzidène ; 4,4'- diaminobiphényl ; 4,4'-diaminodiphényl sulfure ; 9,9'-bis(4-amino)fluorine.
La réaction de polycondensation conduisant au polyimide consiste à faire réagir les groupes anhydride présents sur le dianhydride aromatique de formule (IV) et les groupes aminés présents sur la diamine aromatique de formule (V). La réaction peut être incomplète de sorte que certains des groupes anhydrides s'ouvrent sans former les fonctions imide, ce qui conduit alors à un polymère comprenant les motifs de formule générale (VI) :
Figure imgf000023_0001
On notera que dans la formule (VI) :
R5 est un groupe organique tétravalent contenant au moins un noyau aromatique et ayant de préférence au plus 25 atomes de carbone ;
■ chaque groupe carboxylique -COOH présent sur R5 est attaché à un atome de carbone de R5 adjacent à un autre atome de carbone de R5 sur lequel est attaché le groupe amide ;
R6 est un groupe organique divalent contenant au moins un noyau aromatique et ayant de préférence au plus 25 atomes de carbone ;
- le groupe aminé -NH- est attaché à un atome de carbone du groupe aromatique de R6.
Pour reprendre l'exemple particulier ci-dessus, la réaction incomplète entre le dianhydride pyroméllitique et la 4,4'-oxydianiline conduit à un polymère désigné couramment sous le terme d'acide polyamique selon la réaction suivante :
Figure imgf000023_0002
Le polymère de cet exemple est donc tel que : R5 = noyau Ph tétravalent ; R6 = - Ph-O-Ph-. Cette réaction incomplète présente l'avantage que le polymère qui en résulte peut être plus facilement dissous dans un solvant organique qu'un polyimide qui résulterait de la réaction complète. Le polymère de formule (VI) constitue donc un précurseur de polyimide. Une fois mis en forme par exemple sous forme de film, le précurseur de polyimide peut alors être converti chimiquement en polyimide par une réaction d'imidization. Au cours de cette étape de transformation, les fonctions imide du polyimide se forment. Cette conversion a lieu généralement en appliquant un chauffage du polymère précurseur à une température généralement comprise entre 90°C et 500°C. Un catalyseur tel que par exemple l'acide benzoïque peut être avantageusement ajouté pour favoriser la réaction d'imidization. La demande EP 0984030 décrit des exemples de préparation de précurseur de polyimide et de conversion du précurseur en polyimide.
Le polymère peut être aussi réticulable. Il s'agit par exemple d'un copolymère de type éthylène-acétate de vinyle (EVA) auquel on a ajouté un agent réticulant, par exemple de type amorceur radicalaire.
L'invention est aussi relative à l'utilisation d'une suspension selon l'invention pour disperser les particules d'oxyde de cérium, d'oxyde hydraté de cérium ou d'un oxyde mixte de cérium et d'au moins un autre élément E choisi parmi La, Pr, Nd, Sr, Y, Al, Ti ou Zr dans au moins un polymère, notamment un précurseur de polyimide ou un polyimide. Le polymère peut être sous la forme d'un film, notamment un film transparent. Les particules étant de petite taille, elles permettent d'obtenir une protection du film sans dégrader les propriétés optiques du film.
Le film peut présenter une épaisseur moyenne d'au plus 800 μιτι. Cette épaisseur peut être comprise entre 25 μιτι et 800 μιτι, particulièrement entre 100 μιτι à 500 μιτι. L'épaisseur moyenne est mesurée à 25°C sur le film à l'aide d'un micromètre à partir de 20 mesures prises au hasard sur toute la surface du film.
L'invention est aussi relative à un procédé de dispersion dans lequel on met en contact sous agitation la suspension selon l'invention avec au moins un polymère (Pi) et éventuellement au moins un solvant organique (Sp0i) du polymère afin de disperser les particules d'oxyde de cérium dans le polymère (Pi), puis on élimine totalement ou partiellement, le DMSO, le composé Si et éventuellement Sp0i, et le polymère (Pi) est modifié chimiquement pour être converti en polymère (P2). L'élimination des composés volatils et la modification chimique peuvent être réalisées en deux étapes distinctes. Il est également possible d'envisager qu'elles soient réalisées en même temps. Il est également possible d'envisager que le polymère (Pi) dans lequel sont dispersées les particules soient soumis à une élévation progressive de la température au cours de laquelle l'élimination des composés volatils et la conversion de (Pi) à (P2) ont lieu progressivement. Pi peut être un polymère de formule (VI) et P2 est un polyimide. Pi peut aussi être un EVA non réticulé auquel on a mélangé un agent réticulant et P2 est un EVA réticulé.
Exemples
Techniques d'analyse utilisées
Le d5o a été déterminé à l'aide d'un Zetasizer Nano ZS de la société Malvern en suivant les recommandations du constructeur. Dans une cellule en quartz, on prélève une petite quantité de la suspension à la micropipette que l'on dilue dans le même milieu liquide que celui de la suspension. Pour le calcul automatisé de d5o, l'indice optique pour l'oxyde de cérium retenu est égal à 2,1 . L'indice optique et la viscosité du milieu liquide sont également introduits dans le logiciel de l'appareil. dlVlET, d[3ET et d DRX ont été déterminées en utilisant les méthodes décrites précédemment.
Produits utilisés
Dans ces exemples, on a utilisé du RhodiaSolv Polarclean qui est un composé Si de formule MeOOC-ArCONMe2 dans laquelle Ai désigne un mélange des deux groupes alkylènes-CHMe-CH2CH2- et -CH2CH2-CHMe-.
On a utilisé deux suspensions aqueuses notées SA1 et SA2 pour lesquelles les particules ont des tailles caractéristiques différentes (voir Tableau I). La suspension SA1 a été préparée en faisant réagir du nitrate de cérium et de l'ammoniaque selon le procédé qui est décrit à l'exemple 1 de EP 208580. La suspension SA2 a été préparée par le procédé décrit dans WO 2008/043703. Tableau I
Figure imgf000026_0001
* voir formule précédente donnant dBET Exemple 1 : suspension dans un mélange de Polarclean et de DMSO (Polarclean/DMSO : 50/50) en présence de Rhodafac ASI 100 préparée selon le procédé dit "voie sèche" (selon l'invention)
On ajoute 0,19 g de Rhodafac ASI 100 à 10% en poids à une suspension dans l'eau d'oxyde de cérium à 2% en poids, puis on agite pendant 15 min. Les particules d'oxyde de cérium décantent. On sèche le mélange dans une étuve maintenue à 100°C pendant 1 h30 de façon à obtenir une poudre sèche.
On ajoute ensuite à la poudre 36,2 g du mélange de solvant Polarclean/DMSO 50/50 afin d'obtenir une suspension d'oxyde de cérium à 1 % en poids. La suspension ainsi obtenue est laissée agiter (agitation par barreau aimanté) de façon à homogénéiser l'ensemble, puis la suspension est chauffée sous agitation à 60°C pendant 2 heures. Exemple 2 : suspension dans un mélange de Si (Polarclean) et de DMSO (S1/DMSO : 50/50) en présence de Rhodasurf 4070 préparée selon le procédé dit "par distillation" (selon l'invention)
On sèche dans une étuve à 100°C, 0,16 g de Rhodasurf 40/70 (à 10% massique) pendant 30 min. On récupère 0,016 g d'une poudre que l'on dissout dans 31 ,0 g d'un mélange des deux solvants. On ajoute 1 ,55 g de la suspension aqueuse d'oxyde de cérium SA1 (proportion en poids d'oxyde de cérium 20,7% ; soit 0,32 g de dioxyde de cérium). Après agitation magnétique (300 tr/min pendant 15 min), le mélange présente une apparence homogène et aucune décantation n'est observée.
Le mélange est ensuite chauffé sous vide à 100°C pendant 120 min (dans le ballon, 22-33°C en tête de colonne ; vide de 50 mbar) pour éliminer l'eau par distillation sous vide. On récupère alors une suspension selon l'invention à 1 % en poids d'oxyde de cérium.
Le Tableau II résume les différents essais réalisés en présence des deux suspensions SA1 et SA2. On s'aperçoit qu'il est possible d'obtenir une suspension selon l'invention à partir de ces deux suspensions aqueuses selon l'un des deux procédés décrits précédemment. En revanche, en présence d'un autre solvant polaire, le PGMEA ou l'acétate de propylène glycol monométhyl éther de formule
Figure imgf000028_0001
j j| n'a pas été possible de stabiliser la suspension.
Exemple 3 :
Les figures 1 et 2 représentent les courbes de distribution en volume de la taille de particules d'oxyde de cérium obtenues à l'aide du Zetasizer (abscisse : taille en nm ; ordonnée %) en suspension dans l'eau ou dans un mélange polaire. Ces figures montrent que le transfert des particules de l'eau vers le mélange conduit à des distributions similaires, ce qui est le signe qu'il n'y a pas d'agglomération.
Suspension de la figure 1 :
d(0,1 ) = 0,1
d(0,16) = 5,08
d(0,50) = 6,38
d(0,84) = 8,28
d(0,90) = 8,85
Suspension de la figure 2 :
d(0,1 ) = 7,18
d(0,16) = 7,87
d(0,50) = 1 1 ,4
d(0,84) = 18,1
d(0,90) = 21 ,0

Claims

Tableau II * mélange 1 = Si (Polarclean) / DMSO dans un rapport massique 50/50 ; mélange 2 = Si (Polarclean) / PGMEA dans un rapport massique 50/50** proportion en poids du tensioactif dans la suspension finale : 5% *** proportion en poids de l'oxyde de cérium dans la suspension finale: 1 % **** procédé de l'ex. 1 = procédé "voie sèche" ; procédé de l'ex. 2 = procédé "par distillation" ***** aspect de la suspension : +++ suspension stable ; 0 : précipitation de l'oxyde de cérium REVENDICATIONS
1 . Suspension de particules d'oxyde de cérium, d'oxyde hydraté de cérium ou d'un oxyde mixte de cérium et d'au moins un autre élément E choisi parmi La, Pr,
Nd, Sr, Y, Al, Ti ou Zr, dans un mélange de DMSO et d'au moins un composé Si de formule (I) :
Figure imgf000030_0001
dans laquelle
- A désigne un groupe (C2-C5)-alkylène ;
Ri est un groupe (d-C4)-alkyle ;
R2 et R3 sont deux groupes (d-C4)-alkyles, identiques ou différents.
2. Suspension selon la revendication 1 dans laquelle les particules sont des particules d'oxyde de cérium.
3. Suspension selon la revendication 1 dans laquelle les particules sont des particules d'un oxyde mixte de cérium et d'au moins un autre élément E choisi parmi La, Pr, Nd, Sr, Y, Al, Ti ou Zr
4. Suspension selon la revendication 1 à 3 dans laquelle les particules présentent une taille moyenne inférieure à 200 nm.
5. Suspension selon l'une des revendications précédentes dans laquelle les particules présentent au moins l'une des caractéristiques suivantes :
une taille moyenne ÔDRX déterminée par la technique de diffraction des rayons X inférieure ou égale à 100 nm ;
une taille moyenne dMET déterminée à l'aide de la microscopie électronique par transmission (MET) inférieure ou égale à 200 nm ;
■ une taille moyenne dBET déterminée à partir de la mesure de la surface spécifique BET inférieure ou égale à 100 nm ;
une taille moyenne d5o déterminée à partir d'une distribution en volume des diamètres des particules obtenue à l'aide de la technique de diffusion dynamique de la lumière inférieure ou égale à 200 nm.
6. Suspension selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend au moins un tensioactif anionique comprenant au moins un groupe anionique Z de formule -COOM, -SO3M ou -P(=O)2(OM), -P(=O)(OM2) dans laquelle M désigne un contre-cation, plus particulièrement issu d'un métal alcalin.
7. Suspension selon l'une des revendications précédentes dans laquelle les particules se caractérisent par ÔDRX compris entre 80 et 100 nm ; ou entre 45 et
65 nm ; ou entre 25 et 45 nm ; ou entre 15 et 30 nm ; ou entre 6 et 15 nm ; ou entre 2 et 4 nm.
8. Suspension selon l'une des revendications précédentes dans laquelle les particules se caractérisent par dMET compris entre 150 et 200 nm ; ou entre 70 et
1 10 nm ; ou entre 35 et 70 nm ; ou entre 15 et 35 nm ; ou entre 6 et 15 nm ; ou entre 2 et 5 nm.
9. Suspension selon l'une des revendications précédentes dans laquelle les particules se caractérisent par :
dMET entre 150 et 200 nm et dDRx entre 80 et 100 nm ;
dMET entre 70 et 1 10 nm et ÔDRX entre 45 et 65 nm ;
dMET entre 35 et 70 nm et ÔDRX entre 25 et 45 nm ;
dMET entre 15 et 35 nm et ÔDRX entre 15 et 30 nm ;
dMET entre 6 et 15 nm et ÔDRX entre 6 et 15 nm ;
dMET entre 2 et 5 nm et ÔDRX entre 2 et 4 nm.
10. Suspension selon l'une des revendications 1 à 9 consistant en :
• des particules d'oxyde de cérium, d'oxyde hydraté de cérium ou d'un oxyde mixte de cérium et d'au moins un autre élément E choisi parmi La, Pr, Nd, Sr,
Y, Al, Ti ou Zr telles que décrites dans l'une des revendications 1 à 7 ; et
• un mélange de DMSO et d'au moins un composé Si dans lequelles les particules sont dispersées, le composé Si étant de formule (I) :
Figure imgf000031_0001
dans laquelle
A désigne un groupe (C2-C5)-alkylène ;
Ri est un groupe (d-C4)-alkyle ;
R2 et R3 sont deux groupes (d-C4)-alkyles, identiques ou différents ; et
• éventuellement au moins un tensioactif anionique comprenant au moins un groupe anionique Z de formule -COOM, -SO3M ou -P(=O)2(OM), -
P(=O)(OM2) dans laquelle M désigne un contre-cation, plus particulièrement issu d'un métal alcalin.
1 1 . Suspension selon la revendication 1 à 10 caractérisée en ce que la proportion massique S1/DMSO peut varier de 1/99 à 60/40, plus particulièrement entre 40/60 et 60/40.
12. Suspension selon l'une des revendications précédentes dans laquelle la proportion en poids de l'oxyde de cérium, de l'oxyde hydraté de cérium ou de l'oxyde mixte est d'au plus 25% en poids, de préférence d'au plus 10% en poids et encore plus préférentiellement d'au plus 3% en poids par rapport à l'ensemble de la suspension.
13. Utilisation d'une suspension selon l'une des revendications précédentes pour disperser des particules d'oxyde de cérium, d'oxyde hydraté de cérium ou d'un oxyde mixte de cérium et d'au moins un autre élément E choisi parmi La, Pr, Nd, Sr, Y, Al, Ti ou Zr dans au moins un polymère, notamment un précurseur de polyimide ou un polyimide.
14. Procédé de dispersion de particules d'oxyde de cérium, d'oxyde hydraté de cérium ou d'un oxyde mixte de cérium et d'au moins un autre élément E choisi parmi La, Pr, Nd, Sr, Y, Al, Ti ou Zr, dans au moins un polymère comprenant une 1 ere étape au cours de laquelle on met en contact sous agitation la suspension selon l'une des revendications 1 à 12 avec au moins un polymère et éventuellement au moins un solvant organique (Sp0i) du polymère afin de disperser les particules dans le polymère, puis une 2nde étape au cours de laquelle on élimine totalement ou partiellement, le DMSO, le composé Si et éventuellement Sp0i.
15. Procédé selon la revendication 14 caractérisé en ce que le polymère dans lequel sont dispersées les particules est un polymère thermoplastique ou un polyimide.
16. Procédé de dispersion de particules d'oxyde de cérium, d'oxyde hydraté de cérium ou d'un oxyde mixte de cérium et d'au moins un autre élément E choisi parmi La, Pr, Nd, Sr, Y, Al, Ti ou Zr, dans au moins un polymère (P2) dans lequel on met en contact sous agitation la suspension selon l'une des revendications 1 à 12 avec au moins un polymère (Pi) et éventuellement au moins un solvant organique (Sp0i) du polymère afin de disperser les particules dans le polymère (Pi), puis on élimine totalement ou partiellement, le DMSO, le composé Si et éventuellement Sp0i, et le polymère (Pi) est modifié chimiquement pour être converti en polymère (P2).
17. Procédé selon la revendication 16 caractérisé en ce que (Pi) est un précurseur de polyimide et (P2) est un polyimide.
18. Procédé selon l'une des revendications 14 à 17 dans lequel le polymère obtenu est mis sous la forme d'un film.
PCT/FR2017/053357 2016-12-02 2017-12-01 Suspension d'oxyde de cerium WO2018100324A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780084359.3A CN110214126A (zh) 2016-12-02 2017-12-01 氧化铈的悬浮液
JP2019528803A JP2020500815A (ja) 2016-12-02 2017-12-01 酸化セリウムの懸濁液
EP17817804.2A EP3548436A1 (fr) 2016-12-02 2017-12-01 Suspension d'oxyde de cerium
KR1020197018593A KR20190089945A (ko) 2016-12-02 2017-12-01 산화세륨의 현탁액

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1661848A FR3059660B1 (fr) 2016-12-02 2016-12-02 Suspension d'oxyde de cerium
FR1661848 2016-12-02
FR1752414 2017-03-23
FR1752414 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018100324A1 true WO2018100324A1 (fr) 2018-06-07

Family

ID=60765987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/053357 WO2018100324A1 (fr) 2016-12-02 2017-12-01 Suspension d'oxyde de cerium

Country Status (5)

Country Link
EP (1) EP3548436A1 (fr)
JP (1) JP2020500815A (fr)
KR (1) KR20190089945A (fr)
CN (1) CN110214126A (fr)
WO (1) WO2018100324A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184355A1 (fr) * 2019-03-14 2020-09-17 三菱瓦斯化学株式会社 Composition de résine de polyimide
WO2021065509A1 (fr) * 2019-09-30 2021-04-08 三菱瓦斯化学株式会社 Composition de résine polyimide, vernis polyimide, film polyimide

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2570087A1 (fr) 1984-09-13 1986-03-14 Rhone Poulenc Spec Chim Procede d'oxydation electrolytique et ensemble d'electrolyse pour sa mise en oeuvre
EP0208580A1 (fr) 1985-06-20 1987-01-14 Rhone-Poulenc Chimie Nouveau composé de cérium IV et son procédé de préparation
EP0984030A2 (fr) 1998-08-31 2000-03-08 Du Pont-Toray Company, Ltd. Pellicule de polyimide et son procédé de production
WO2008043703A2 (fr) 2006-10-09 2008-04-17 Rhodia Operations Suspension liquide et poudre de particules d'oxyde de cerium, procedes de preparation de celles-ci et utilisation dans le polissage
WO2008048562A1 (fr) * 2006-10-16 2008-04-24 Cabot Microelectronics Corporation Compositions et procedes de polissage de verre
WO2009092795A1 (fr) 2008-01-25 2009-07-30 Rhodia Operations Utilisation d'esteramides, nouveaux esteramides et procédés de préparation d'esteramides
US20120000137A1 (en) * 2010-03-09 2012-01-05 Lg Chem, Ltd. Crystalline cerium oxide and preparation method of the same
WO2015091495A1 (fr) 2013-12-16 2015-06-25 Rhodia Operations Suspension liquide de particules d'oxyde de cérium
US9193850B2 (en) 2011-08-11 2015-11-24 Samsung Electronics Co., Ltd. Nanocomposite, process for preparing the same, and surface emitting device
WO2015197656A1 (fr) 2014-06-24 2015-12-30 Rhodia Operations Compositions d'oxyde de cérium dopées par un métal
WO2016014763A1 (fr) 2014-07-24 2016-01-28 Narayanan Kolazi S Compositions à base de solvants mélangés pour éliminer de la peinture et du vernis
US20160053203A1 (en) 2014-08-21 2016-02-25 Kolazi S. Narayanan Synergistic mixed solvents-based compositions for removal of paint, varnish and stain coatings

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2570087A1 (fr) 1984-09-13 1986-03-14 Rhone Poulenc Spec Chim Procede d'oxydation electrolytique et ensemble d'electrolyse pour sa mise en oeuvre
EP0208580A1 (fr) 1985-06-20 1987-01-14 Rhone-Poulenc Chimie Nouveau composé de cérium IV et son procédé de préparation
EP0984030A2 (fr) 1998-08-31 2000-03-08 Du Pont-Toray Company, Ltd. Pellicule de polyimide et son procédé de production
WO2008043703A2 (fr) 2006-10-09 2008-04-17 Rhodia Operations Suspension liquide et poudre de particules d'oxyde de cerium, procedes de preparation de celles-ci et utilisation dans le polissage
WO2008048562A1 (fr) * 2006-10-16 2008-04-24 Cabot Microelectronics Corporation Compositions et procedes de polissage de verre
WO2009092795A1 (fr) 2008-01-25 2009-07-30 Rhodia Operations Utilisation d'esteramides, nouveaux esteramides et procédés de préparation d'esteramides
US20120000137A1 (en) * 2010-03-09 2012-01-05 Lg Chem, Ltd. Crystalline cerium oxide and preparation method of the same
US8703085B2 (en) 2010-03-09 2014-04-22 Lg Chem, Ltd. Crystalline cerium oxide and preparation method of the same
US9193850B2 (en) 2011-08-11 2015-11-24 Samsung Electronics Co., Ltd. Nanocomposite, process for preparing the same, and surface emitting device
WO2015091495A1 (fr) 2013-12-16 2015-06-25 Rhodia Operations Suspension liquide de particules d'oxyde de cérium
WO2015197656A1 (fr) 2014-06-24 2015-12-30 Rhodia Operations Compositions d'oxyde de cérium dopées par un métal
WO2016014763A1 (fr) 2014-07-24 2016-01-28 Narayanan Kolazi S Compositions à base de solvants mélangés pour éliminer de la peinture et du vernis
US20160053203A1 (en) 2014-08-21 2016-02-25 Kolazi S. Narayanan Synergistic mixed solvents-based compositions for removal of paint, varnish and stain coatings

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BARTU NE?K V ET AL: "Preparation and size control of cerium(IV) oxide ultrafine nanoparticles", MICRO AND NANO LET, THE INSTITUTION OF ENGINEERING AND TECHNOLOGY, GB, vol. 5, no. 4, 31 August 2010 (2010-08-31), pages 222 - 224, XP006035862, ISSN: 1750-0443, DOI: 10.1049/MNL:20100059 *
BRUNAUER-EMMET-TELLER, J. AM. CHEM. SOC., vol. 60, 1938, pages 309
ERIC JOHANSSON SALAZAR-SANDOVAL ET AL: "Aminopolycarboxylic acids as a versatile tool to stabilize ceria nanoparticles - a fundamental model experimentally demonstrated", RSC ADVANCES, vol. 4, no. 18, 1 January 2014 (2014-01-01), pages 9048, XP055249699, DOI: 10.1039/c3ra45875j *
ON POURRA SE REPOSER À PROGR COLLOID POLYM SCI, vol. 130, 2005, pages 1 - 14
SHANG ET AL: "Studies on syntheses and properties of novel CeO"2/polyimide nanocomposite films from Ce(Phen)"3 complex", POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, vol. 48, no. 14, 21 June 2007 (2007-06-21), pages 4041 - 4046, XP022126280, ISSN: 0032-3861, DOI: 10.1016/J.POLYMER.2007.03.077 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184355A1 (fr) * 2019-03-14 2020-09-17 三菱瓦斯化学株式会社 Composition de résine de polyimide
JP6766986B1 (ja) * 2019-03-14 2020-10-14 三菱瓦斯化学株式会社 ポリイミド樹脂組成物
WO2021065509A1 (fr) * 2019-09-30 2021-04-08 三菱瓦斯化学株式会社 Composition de résine polyimide, vernis polyimide, film polyimide

Also Published As

Publication number Publication date
KR20190089945A (ko) 2019-07-31
JP2020500815A (ja) 2020-01-16
CN110214126A (zh) 2019-09-06
EP3548436A1 (fr) 2019-10-09

Similar Documents

Publication Publication Date Title
Daraei et al. Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube
Hayyan et al. Functionalization of graphene using deep eutectic solvents
EP2081871B1 (fr) Suspension liquide de particules d&#39;oxyde de cerium et procede de preparation decelle-ci
EP3078700B1 (fr) Particules de résine de fluorure de polyvinylidène et procédé de production associé
Huynh et al. Polymer coating of graphene oxide via reversible addition–fragmentation chain transfer mediated emulsion polymerization
CA2734354C (fr) Suspension liquide et poudre de particules d&#39;oxyde de cerium, procedes de preparation de celles-ci et utilisation dans le polissage
JPWO2015186596A1 (ja) 表面改質シリカナノ粒子の製造方法、および表面改質シリカナノ粒子
Ruiterkamp et al. Surface functionalization of titanium dioxide nanoparticles with alkanephosphonic acids for transparent nanocomposites
JP2014040553A (ja) インクジェット記録用の水性白色顔料分散液組成物の製造方法、該製造方法によって得られる水性白色顔料分散液組成物、該組成物を構成するa−bブロックコポリマーの製造方法およびインクジェット記録用の白色インク組成物
EP3548436A1 (fr) Suspension d&#39;oxyde de cerium
FR2845390A1 (fr) Compositions pigmentaires de particules d&#39;aluminium metallique
RU2531172C2 (ru) Способ получения дисперсий углеродных нанотрубок
EP3121151A1 (fr) Microparticules de carbonate de strontium en forme d&#39;aiguilles et leur liquide de dispersion
Kochameshki et al. Graphene oxide grafted poly (acrylic acid) synthesized via surface initiated RAFT as a pH‐responsive additive for mixed matrix membrane
KR20200112952A (ko) 그래핀 제조 방법
KR20100100185A (ko) 광촉매 효율이 증가된 계층적 금속/산화아연 이종접합 나노구조체의 제조방법 및 이에 의해 제조된 계층적 금속/산화아연 이종접합 나노구조체
JP6636760B2 (ja) ポリフェニレンサルファイド微粒子
CN112105447A (zh) 气体分离膜的制造方法
CA2926910C (fr) Encres a nanotubes de carbone a base de solvant et a base d&#39;eau, contenant des additifs pouvant etre elimines
Gigault et al. Selection of an appropriate aqueous nano-fullerene (nC60) preparation protocol for studying its environmental fate and behavior
FR3059660A1 (fr) Suspension d&#39;oxyde de cerium
Hou et al. Superhydrophobic membrane from double co-crystallization for high-performance separation of water-in-oil emulsion
KR20090108836A (ko) 자기-조립 이중블록 공중합체와 졸-겔 공정을 이용한 2차원정렬된 산화티탄 나노입자의 제조방법 및 이에 따라제조된 산화티탄 나노입자
Kwon et al. Preparation of Thin-Layer Graphene Using RAFT Polymerization and a Thiol-Ene Click Reaction
AU2014256431A1 (en) Process for preparing polymer powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17817804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528803

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197018593

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017817804

Country of ref document: EP

Effective date: 20190702