WO2018099272A1 - 半固态压铸铝合金及制备半固态压铸铝合金铸件的方法 - Google Patents

半固态压铸铝合金及制备半固态压铸铝合金铸件的方法 Download PDF

Info

Publication number
WO2018099272A1
WO2018099272A1 PCT/CN2017/111382 CN2017111382W WO2018099272A1 WO 2018099272 A1 WO2018099272 A1 WO 2018099272A1 CN 2017111382 W CN2017111382 W CN 2017111382W WO 2018099272 A1 WO2018099272 A1 WO 2018099272A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
weight
semi
alloy
solid die
Prior art date
Application number
PCT/CN2017/111382
Other languages
English (en)
French (fr)
Inventor
菅永喜
张春萌
郭强
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US16/465,321 priority Critical patent/US20190390305A1/en
Priority to EP17877267.9A priority patent/EP3550046A4/en
Publication of WO2018099272A1 publication Critical patent/WO2018099272A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys

Definitions

  • the present disclosure relates to the field of alloys, and in particular to a semi-solid die cast aluminum alloy and a method of preparing a semi-solid die cast aluminum alloy casting.
  • Die casting is a liquid molding method. Due to the high injection speed, the liquid easily forms turbulent flow in the cavity, and the air in the cavity is drawn into the product; when the liquid hits the mold, the temperature difference is large, and the liquid on the surface is rapidly solidified. The core liquid flow resistance is increased, so that it is not well fused to form a cold partition, and the alloy eventually leads to a decrease in product performance due to the introduction of oxides or some other impurities during the melting and casting process.
  • die-casting aluminum alloys have been rapidly applied.
  • die-cast aluminum alloys used in industry mainly include aluminum-silicon alloys and aluminum.
  • the most commonly used die-casting alloy for die casting is ADC12, which has a yield strength of about 190 MPa, a tensile strength of about 280 MPa, and an elongation of 2-3%.
  • the deformed aluminum alloy (including aluminum alloy for extrusion, forging, rolling, etc.) has high mechanical properties and stable performance, but due to the harsh process conditions and high equipment requirements, it is impossible to form complicated parts and cannot realize auto parts. Simple, integrated development needs.
  • the purpose of the present disclosure is to provide a semi-solid die-cast aluminum alloy and a method for preparing a semi-solid die-cast aluminum alloy casting.
  • the semi-solid die-casting aluminum alloy has high strength and high plasticity, can be subjected to high pressure casting, and can form various complexities. Parts, and can guarantee high mechanical properties.
  • the present disclosure provides a semi-solid die-cast aluminum alloy containing an alloying element, unavoidable impurities and a balance of aluminum elements; based on the total weight of the semi-solid die-cast aluminum alloy
  • the alloying elements include: 7.5-9.5 wt% Si, 3.5-4.8 wt% Cu, 0.5-0.75 wt% Mn, 0.01-0.5 wt% Ti, and 0.01-0.35 wt% rare earth elements.
  • the alloying element comprises: 8.0-9.0% by weight of Si, 3.5-4.5% by weight of Cu, 0.5-0.6% by weight of Mn, 0.05- based on the total weight of the semi-solid die-cast aluminum alloy. 0.25 wt% Ti and 0.15-0.25 wt% Rare earth elements.
  • the rare earth element comprises at least one of La, Ce, Pr, and Nd.
  • the impurities in the semi-solid die cast aluminum alloy do not exceed 0.8% by weight.
  • the ratio of the weight content of Ti and Cu is 1: (14-90).
  • the semi-solid die-cast aluminum alloy comprises 7.5-9.5 wt% Si, 3.5-4.8 wt% Cu, 0.5-0.75 wt% Mn, 0.01-0.5 wt% Ti, 0.01-0.35 wt% Rare earth element, no more than 0.8% by weight of impurities and the balance of aluminum.
  • the semi-solid die-cast aluminum alloy comprises 8.0-9.0% by weight of Si, 3.5-4.5% by weight of Cu, 0.5-0.6% by weight of Mn, 0.05-0.25% by weight of Ti, and 0.15-0.25% by weight of Rare earth element, no more than 0.7% by weight of impurities and the balance of aluminum.
  • the semi-solid die-cast aluminum alloy has a tensile strength of not less than 370 MPa, a yield strength of not less than 290 MPa, and an elongation of not less than 5.5%.
  • the semi-solid die-cast aluminum alloy has a tensile strength of not less than 380 MPa, a yield strength of not less than 300 MPa, and an elongation of not less than 6%.
  • the present disclosure also provides a method for preparing a semi-solid die-cast aluminum alloy casting, the method comprising: performing a semi-solid die casting of the aluminum alloy raw material after the ratio smelting to obtain a semi-solid die-cast aluminum alloy casting; the aluminum alloy raw material is obtained
  • the semi-solid die-cast aluminum alloy casting comprises: 7.5-9.5 wt% Si, 3.5-4.8 wt% Cu, 0.5-0.75 wt% Mn, 0.01-0.5 wt. based on the total weight of the semi-solid die-cast aluminum alloy casting.
  • % Ti 0.01-0.35% by weight of rare earth elements, balance of aluminum and unavoidable impurities.
  • the aluminum alloy raw material comprises the obtained semi-solid die-cast aluminum alloy casting comprising: 8.0-9.0% by weight of Si, 3.5-4.5% by weight based on the total weight of the semi-solid die-cast aluminum alloy casting Cu, 0.5-0.6% by weight of Mn, 0.05-0.25% by weight of Ti, 0.15-0.25% by weight of rare earth elements, the balance of aluminum, and unavoidable impurities.
  • the aluminum alloy material is a metal element or a metal alloy.
  • the aluminum alloy material is an alloy of elemental aluminum or aluminum, an alloy of elemental silicon or silicon, an alloy of elemental copper or copper, an alloy of elemental manganese or manganese, an alloy of elemental titanium or titanium, and a rare earth element or An alloy containing rare earth elements.
  • the aluminum alloy raw material is an elemental aluminum, an Al-Si alloy, an Al-Ti alloy, an Al-Cu alloy, an Al-Mn alloy, and an Al-Re intermediate alloy.
  • the purity of the metal element is 99.9% by weight or more, and the total content of the alloy elements in the metal alloy is 99.9% by weight or more.
  • the semi-solid die-casting aluminum alloy according to the present disclosure adjusts the optimized formula and adds rare earth elements, thereby performing degassing and decontamination purification and refining grain metamorphism on the alloy melt, and increasing the melt. Fluidity improves casting performance.
  • the method for preparing a semi-solid die-cast aluminum alloy casting of the present disclosure adopts the above semi-solid die-casting aluminum alloy Semi-solid die casting, this method can form a variety of complex parts, improve the mechanical properties of the casting, while reducing casting defects and improve the yield.
  • the present disclosure provides a semi-solid die-cast aluminum alloy containing an alloying element, unavoidable impurities, and a balance of aluminum elements; the alloying elements based on the total weight of the semi-solid die-cast aluminum alloy Including: 7.5-9.5 wt% Si, 3.5-4.8 wt% Cu, 0.5-0.75 wt% Mn, 0.01-0.5 wt% Ti, and 0.01-0.35 wt% rare earth elements.
  • the semi-solid die-casting aluminum alloy according to the present disclosure adjusts the optimized formula and adds rare earth elements, thereby performing degassing and decontamination purification and refining grain metamorphism on the alloy melt, and at the same time increasing melt fluidity and improving Casting performance.
  • the semi-solid die-cast aluminum alloy of the present disclosure when the composition of the semi-solid die-cast aluminum alloy is within the above range, high mechanical properties can be obtained while obtaining good casting properties.
  • the semi-solid die-cast aluminum alloy obtained by using the formula has a tensile strength of not less than 370 MPa, a yield strength of not less than 290 MPa, and an elongation of not less than 5.5%.
  • the alloying elements include: 8.0-9.0% by weight based on the total weight of the semi-solid die-cast aluminum alloy.
  • Si 3.5-4.5 wt% Cu, 0.5-0.6 wt% Mn, 0.05-0.25 wt% Ti, and 0.15-0.25 wt% rare earth elements.
  • the semi-solid die-cast aluminum alloy obtained according to the formulation has a tensile strength of not less than 380 MPa, a yield strength of not less than 300 MPa, and an elongation of not less than 6%.
  • the kind of the rare earth element is not particularly limited and may be a conventional species well known to those skilled in the art, and may be a single kind of rare earth element or a mixed rare earth, and in order to reduce the raw material cost, optionally, the rare earth
  • the element may include at least one of La, Ce, Pr, and Nd, and the relative content of each rare earth element is also not particularly required.
  • the above rare earth element may be a commercially available product and is an industrial mixed rare earth.
  • the purity of the semi-solid die-cast aluminum alloy is one of the important factors affecting the performance of the aluminum alloy.
  • the impurities in the semi-solid die-cast aluminum alloy are not More than 0.8% by weight.
  • the addition of the metal element titanium in the semi-solid die-casting aluminum alloy can refine the crystal grains, improve the strength and plasticity of the alloy, improve the fluidity of the alloy, and improve the casting performance.
  • the addition of the metal element copper can form Ti with titanium. 2 Cu 3 phase, distributed at the grain boundary, effectively suppresses the grain boundary slip during alloy stretching, thereby increasing the strength of the alloy.
  • the ratio of the weight content of the Ti and Cu may be 1: (7-350), preferably 1: (14) -90).
  • the semi-solid die-cast aluminum alloy may be 7.5-9.5 wt% Si, 3.5-4.8 wt% Cu, 0.5-0.75 wt. % Mn, 0.01-0.5% by weight of Ti, 0.01-0.35% by weight of a rare earth element, not more than 0.8% by weight of impurities and the balance of aluminum.
  • the semi-solid die-cast aluminum alloy may be composed of 8.0-9.0% by weight of Si, 3.5-4.5% by weight of Cu, 0.5-0.6% by weight of Mn, 0.05-0.25% by weight of Ti, and 0.15-0.25% by weight.
  • the rare earth element no more than 0.7% by weight of impurities and the balance of aluminum.
  • the present disclosure also provides a method for preparing a semi-solid die-cast aluminum alloy casting, the method comprising: performing a semi-solid die casting of the aluminum alloy raw material after the ratio smelting to obtain a semi-solid die-cast aluminum alloy casting; the aluminum alloy raw material is obtained
  • the semi-solid die-cast aluminum alloy casting comprises: 7.5-9.5 wt% Si, 3.5-4.8 wt% Cu, 0.5-0.75 wt% Mn, 0.01-0.5 wt% Ti based on the total weight of the aluminum alloy casting. 0.01-0.35 wt% of rare earth elements, balance of aluminum, and unavoidable impurities.
  • the aluminum alloy raw material may, in the optional case, obtain the obtained semi-solid die-cast aluminum alloy
  • the casting comprises: 8.0-9.0% by weight of Si, 3.5-4.5% by weight of Cu, 0.5-0.6% by weight of Mn, 0.05-0.25% by weight of Ti, 0.15- based on the total weight of the semi-solid die-cast aluminum alloy casting. 0.25 wt% of rare earth elements, balance of aluminum and unavoidable impurities.
  • the melting may be performed in a melting furnace, and the aluminum alloy raw material added to the melting furnace may be a simple substance or a metal alloy, as long as the added aluminum alloy raw material is smelted.
  • the composition of the obtained aluminum alloy may be within the above range.
  • the aluminum alloy material may be an alloy of elemental aluminum or aluminum, an elemental silicon or a silicon-containing alloy, an alloy of elemental copper or copper, an alloy of elemental manganese or manganese, an alloy of elemental titanium or titanium, And a rare earth element or an alloy containing a rare earth.
  • the above aluminum alloy raw materials are elemental aluminum, Al-Si alloy, Al-Ti alloy, Al-Cu alloy, Al-Mn alloy, and Al-Re intermediate alloy. Further, in order to prevent the introduction of impurities from affecting the performance of the aluminum alloy, the purity of the metal element is 99.9% by weight or more, and the total content of the alloying elements in the alloy is 99.9% by weight or more.
  • the semi-solid die-cast aluminum alloy casting is obtained by performing semi-solid die casting after subjecting the aluminum alloy raw material to a ratio smelting, and the smelting and semi-solid die casting can be carried out by a conventional method. And the operating conditions, the disclosure does not make any special requirements.
  • the smelting process may adopt the existing steps of preparing materials ⁇ melting ⁇ refining ⁇ slag removing ⁇ casting.
  • the method for preparing a semi-solid die-cast aluminum alloy casting of the present disclosure may include the following steps:
  • Step 1 Preparation: 1) Raw materials: Prepared formula of pure aluminum ingot (purity ⁇ 99.9wt%), Al-Si intermediate alloy, Al-Ti intermediate alloy, Al-Cu intermediate alloy, Al-Mn intermediate alloy and Al -Re master alloy; 2) Flux: cover agent, refining agent and modifier, can use existing covering agents, refining agents and modifiers for aluminum alloy preparation, for example: covering Agent SY-LF1, refining agent hexachloroethane, modifier K2ZrF6.
  • Step 2 Drying: drying the prepared raw materials, wherein the pure aluminum ingot is dried at a temperature of 100 ° C ⁇ 10 ° C, and the Al-Si intermediate alloy, the Al-Ti intermediate alloy, the Al-Cu intermediate alloy, and the Al The -Mn master alloy and the Al-Re master alloy are dried at a temperature of 150 ° C ⁇ 10 ° C. The purpose of drying is to remove moisture from the raw materials.
  • Step 3 Melt alloying: firstly, the inner wall of the crucible is coated with the prepared covering agent, and then preheated to 200-250 ° C, and the weighed aluminum ingot, Al-Si intermediate alloy, Al-Ti intermediate alloy, Al -Cu intermediate alloy, Al-Mn intermediate alloy and Al-Re intermediate alloy ingot are placed in the crucible and added with a covering agent to heat and melt. After the alloy is fully melted, the stirring is uniform, and the whole melting process is controlled for 2-3 hours, and the aluminum is controlled. The final temperature of the alloy melt is controlled at 750-770 °C.
  • Step 4 Refining: The purpose of refining is to remove non-metallic inclusions in the alloy liquid; press the refining agent hexachloroethane into the melt surface at a rate of about 2/3 in a bell jar at 700-720 ° C, evenly Slowly rotate clockwise, and react fully with hexachloroethane to carry out the inclusions and gases in the melt. The speed of the agitation is slow.
  • the amount of hexachloroethane is related to the alloy composition and the quality of the original ingot, and is generally used in an amount of 0.5% by weight to 0.7% by weight based on the mass of the charge. Melting in the resistance furnace, the refining time is within 10 min.
  • Step 5 Deslagging: After fully refining with hexachloroethane, remove the bell jar, remove the residual oxide, and remove the inclusions on the surface of the melt with a slag spoon.
  • Step 6 Casting: After the alloy slag is treated, it should be poured immediately after 4-10 min of heat preservation, and cast into alloy ingot or die-cast block for die-casting.
  • the pouring temperature is generally required to be between 720 and 750 °C.
  • Step 7 Die Casting: The above-mentioned alloy ingot or die-cast block for die-casting is die-cast by a conventional semi-solid die casting process to obtain an aluminum alloy casting of the present disclosure.
  • the aluminum alloy of the present disclosure and a method for producing the same are further described below by way of examples. However, the present disclosure is not limited to the embodiments listed below.
  • the rare earth element is a mixed rare earth (containing La 39.8 wt%, Ce 58.8 wt%).
  • This embodiment is for explaining the preparation method of the semi-solid die-cast aluminum alloy and the semi-solid die-cast aluminum alloy casting of the present disclosure.
  • the semi-solid die-cast aluminum alloy comprises: 8.5% by weight of Si, 4.0% by weight of Cu, 0.55% by weight of Mn, 0.15% by weight of Ti, and 0.20% by weight of rare earth based on the total weight of the semi-solid die-cast aluminum alloy. Element and balance of aluminum;
  • the aluminum ingot, the Al-Si intermediate alloy, the Al-Ti intermediate alloy, the Al-Cu intermediate alloy, the Al-Mn intermediate alloy and the Al-Re intermediate alloy ingot measured according to the above semi-solid die-cast aluminum alloy composition are coated and covered. And preheated to 220 ° C ⁇ and added a cover agent to heat and melt, after the alloy is fully melted, stir evenly, the melting process is 2.5h, and the final temperature of the aluminum alloy melt is 750 ° C; at 700-720 ° C
  • the refining agent hexachloroethane was batch-pressed into the surface of the melt by about 2/3, and the mixture was uniformly rotated clockwise for 8 minutes.
  • the amount of hexachloroethane was 0.5 wt% of the mass of the charge; fully refined After The bell jar is taken out, the residual oxide is removed, and the inclusions on the surface of the melt are removed by using a slag spoon; the alloy is kept for 5 minutes, cast into an aluminum alloy ingot Z1, and the pouring temperature is 750 ° C; the above aluminum alloy ingot Z1 is passed through the conventional The sample was die-cast by a semi-solid die casting process to obtain the aluminum alloy casting A1 of the present embodiment.
  • This embodiment is for explaining the preparation method of the semi-solid die-cast aluminum alloy and the semi-solid die-cast aluminum alloy casting of the present disclosure.
  • the method of Embodiment 1 is employed, except that the semi-solid die-cast aluminum alloy comprises: 9.5% by weight of Si, 3.5% by weight of Cu, 0.5% by weight of Mn, 0.01 based on the total weight of the semi-solid die-cast aluminum alloy.
  • the aluminum alloy casting A2 of the present example was obtained by weighting Ti, 0.01% by weight of a rare earth element, and the balance of aluminum.
  • This embodiment is for explaining the preparation method of the semi-solid die-cast aluminum alloy and the semi-solid die-cast aluminum alloy casting of the present disclosure.
  • Example 1 The method of Example 1 is employed, except that the semi-solid die-cast aluminum alloy comprises: 7.5% by weight of Si, 4.8% by weight of Cu, 0.75% by weight of Mn, 0.5 based on the total weight of the semi-solid die-cast aluminum alloy.
  • the aluminum alloy casting A3 of the present example was obtained by weighting Ti, 0.35% by weight of a rare earth element, and the balance of aluminum.
  • This embodiment is for explaining the preparation method of the semi-solid die-cast aluminum alloy and the semi-solid die-cast aluminum alloy casting of the present disclosure.
  • Example 1 The method of Example 1 was employed, except that the semi-solid die-cast aluminum alloy included: 9.0% by weight of Si, 4.4% by weight of Cu, 0.52% by weight of Mn, 0.10 based on the total weight of the semi-solid die-cast aluminum alloy.
  • the aluminum alloy casting A4 of the present example was obtained by weighting Ti, 0.15% by weight of a rare earth element, and the balance of aluminum.
  • This comparative example is used to illustrate a method for preparing a semi-solid die-cast aluminum alloy and an aluminum alloy casting different from the present disclosure.
  • Example 1 The method and the raw material of Example 1 were employed except that the rare earth element was not added, and the aluminum alloy casting B1 of the present comparative example was obtained.
  • This comparative example is used to illustrate a method for preparing a semi-solid die-cast aluminum alloy and an aluminum alloy casting different from the present disclosure.
  • Example 1 The method and the raw material of Example 1 were used except that the content of the rare earth element in the semi-solid die-cast aluminum alloy was 0.5% by weight to obtain the aluminum alloy casting B2 of the present comparative example.
  • This comparative example is used to illustrate a method for preparing a semi-solid die-cast aluminum alloy and an aluminum alloy casting different from the present disclosure.
  • Example 1 The method and the raw material of Example 1 were used except that the content of Si in the semi-solid die-cast aluminum alloy was 10% by weight to obtain the aluminum alloy casting B3 of the present comparative example.
  • This comparative example is used to illustrate a method for preparing a semi-solid die-cast aluminum alloy and an aluminum alloy casting different from the present disclosure.
  • Example 1 The method and the raw material of Example 1 were used except that the content of Si in the semi-solid die-cast aluminum alloy was 7% by weight to obtain the aluminum alloy casting B4 of the present comparative example.
  • This comparative example is used to illustrate a method for preparing a semi-solid die-cast aluminum alloy and an aluminum alloy casting different from the present disclosure.
  • Example 1 The method and the raw material of Example 1 were used except that the content of Cu in the semi-solid die-cast aluminum alloy was 5% by weight to obtain the aluminum alloy casting B5 of the present comparative example.
  • This comparative example is used to illustrate a method for preparing a semi-solid die-cast aluminum alloy and an aluminum alloy casting different from the present disclosure.
  • Example 1 The method and the raw material of Example 1 were used except that the content of Cu in the semi-solid die-cast aluminum alloy was 3% by weight to obtain the aluminum alloy casting B6 of the present comparative example.
  • This comparative example is used to illustrate a method for preparing a semi-solid die-cast aluminum alloy and an aluminum alloy casting different from the present disclosure.
  • Example 1 The method of Example 1 was employed except that a commercially available ADC12 aluminum alloy ingot was used as an ingot to obtain an aluminum alloy sample B7.
  • This comparative example is used to illustrate a method for preparing a semi-solid die-cast aluminum alloy and an aluminum alloy casting different from the present disclosure.
  • Example 1 The method of Example 1 was employed except that a commercial A356.2 aluminum alloy ingot was used as an ingot to obtain an aluminum alloy sample B8.
  • This comparative example is used to illustrate a method of preparing a die-cast aluminum alloy and an aluminum alloy casting different from the present disclosure.
  • Example 1 The raw material of Example 1 was used except that the aluminum alloy sample B9 was obtained using a conventional die casting method.
  • This comparative example is used to illustrate a method of preparing a die-cast aluminum alloy and an aluminum alloy casting different from the present disclosure.
  • This comparative example is used to illustrate a method of preparing a die-cast aluminum alloy and an aluminum alloy casting different from the present disclosure.
  • the temperature of the alloy liquid is raised to 780 ° C, and the mixed rare earth is added. After the rare earth is melted, the surface scum is removed, and the mixture is stirred for 3-6 minutes to homogenize the composition. After stirring, the temperature of the alloy liquid is raised to 770-780 ° C, and the temperature is maintained. Standing for 30 minutes; wherein, the total weight of the mixed rare earth is not more than 1%, and each of La, Ce, Sm, Nd is less than 0.35% by weight;
  • the alloy liquid is cooled to 750 ° C for 15 minutes, the alloy liquid is cooled to 710 ° C for slag removal, and then the alloy liquid is cooled to 690 ° C for degassing, and finally the alloy liquid after degassing is cooled to
  • the die casting is carried out at 680 ° C, and the heat treatment process is carried out after the casting is formed.
  • the solution treatment is carried out for 3 hours at a temperature higher than 545 ° C, and then aged at a temperature of 165 ° C for 6-12 hours to obtain an aluminum alloy sample B11.
  • Comparative example 8 251 310 8.0 Comparative example 9 174 278 2 Comparative example 10 200 300 6.2 Comparative Example 11 230 308 5.0
  • the semi-solid die-cast aluminum alloy of the present disclosure has good mechanical properties and casting properties, and the tensile strength of the semi-solid die-cast aluminum alloy is not less than 370 MPa.
  • the yield strength is not lower than 290 MPa, and the elongation is not lower than 5.5%.
  • the alloying elements selectable in the present disclosure include: 8.0-9.0% by weight of Si, 3.5-4.5% by weight of Cu, 0.5-0.6% by weight of Mn, 0.05-0.25% by weight of Ti, and 0.15-0.25% by weight of
  • the semi-solid die-cast aluminum alloy obtained according to the formulation has a tensile strength of not less than 380 MPa, a yield strength of not less than 300 MPa, and an elongation of not less than 6%.

Abstract

一种半固态压铸铝合金及用半固态压铸制备铝合金铸件的方法,该半固态压铸铝合金含有合金元素、不可避免的杂质和余量的铝元素;以所述半固态压铸铝合金的总重量为基准,所述合金元素包括:7.5-9.5重量%的Si、3.5-4.8重量%的Cu、0.5-0.75重量%的Mn、0.01-0.5重量%的Ti和0.01-0.35重量%的稀土元素。

Description

半固态压铸铝合金及制备半固态压铸铝合金铸件的方法
相关申请的交叉引用
本申请主张在2016年12月2日在中国提交的中国专利申请号CN 201611096735.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及合金领域,具体地,涉及一种半固态压铸铝合金及制备半固态压铸铝合金铸件的方法。
背景技术
压铸是一种液态成型方式,由于压射速度快,液体在模腔中容易形成紊流,将模腔中的空气卷入产品中;在液体碰到模具瞬间温差较大,表面的液体快速凝固,增加了芯部液体流动阻力,因此不能很好的融合进而形成冷隔,同时合金在熔炼、铸造过程中由于引入氧化物或一些其它杂质,最终也导致产品性能降低。
随着3C和汽车产品的迅猛发展,压铸铝合金得到快速应用,到20世纪80年代,美国68%的铝合金构件采用压铸技术生产,目前,工业使用的压铸铝合金主要有铝硅合金、铝镁合金、铝锌合金、铝硅铜合金以及铝硅镁合金。
普通压铸最常用的压铸合金是ADC12,其屈服强度约190MPa,抗拉强度约280MPa,延伸率2-3%,不能进行热处理强化。而变形铝合金(包括挤压、锻造、轧制等用铝合金)尽管力学性能高,且性能稳定,但由于工艺条件苛刻,装备要求高而不能成型复杂的零部件,无法实现汽车零部件的简约化、集成化发展需求。
发明内容
本公开的目的是提供一种半固态压铸铝合金及制备半固态压铸铝合金铸件的方法,该半固态压铸铝合金兼有高强度和高塑性,能够进行高压铸造,既能成型出各种复杂零部件,而且能够保证较高的力学性能。
为了实现上述目的,本公开提供一种半固态压铸铝合金,该半固态压铸铝合金含有合金元素、不可避免的杂质和余量的铝元素;以所述半固态压铸铝合金的总重量为基准,所述合金元素包括:7.5-9.5重量%的Si、3.5-4.8重量%的Cu、0.5-0.75重量%的Mn、0.01-0.5重量%的Ti和0.01-0.35重量%的稀土元素。
可选地,以所述半固态压铸铝合金的总重量为基准,所述合金元素包括:8.0-9.0重量%的Si、3.5-4.5重量%的Cu、0.5-0.6重量%的Mn、0.05-0.25重量%的Ti和0.15-0.25重量% 的稀土元素。
可选地,所述稀土元素包括La、Ce、Pr和Nd中的至少一种。
可选地,所述半固态压铸铝合金中的杂质不超过0.8重量%。
可选地,所述Ti和Cu的重量含量之比为1:(14-90)。
可选地,所述半固态压铸铝合金由7.5-9.5重量%的Si、3.5-4.8重量%的Cu、0.5-0.75重量%的Mn、0.01-0.5重量%的Ti、0.01-0.35重量%的稀土元素、不超过0.8重量%的杂质和余量的铝组成。
可选地,所述半固态压铸铝合金由8.0-9.0重量%的Si、3.5-4.5重量%的Cu、0.5-0.6重量%的Mn、0.05-0.25重量%的Ti、0.15-0.25重量%的稀土元素、不超过0.7重量%的杂质和余量的铝组成。
可选地,所述半固态压铸铝合金的抗拉强度不低于370MPa,屈服强度不低于290MPa,延伸率不低于5.5%。
可选地,所述半固态压铸铝合金的抗拉强度不低于380MPa,屈服强度不低于300MPa,延伸率不低于6%。
本公开还提供一种制备半固态压铸铝合金铸件的方法,该方法包括:将铝合金原料进行配比熔炼后进行半固态压铸,得到半固态压铸铝合金铸件;所述铝合金原料使所得到的半固态压铸铝合金铸件包括:以半固态压铸铝合金铸件的总重量为基准,7.5-9.5重量%的Si、3.5-4.8重量%的Cu、0.5-0.75重量%的Mn、0.01-0.5重量%的Ti、0.01-0.35重量%的稀土元素、余量的铝以及不可避免的杂质。
可选地,所述铝合金原料使所得到的所述半固态压铸铝合金铸件包括:以半固态压铸铝合金铸件的总重量为基准,8.0-9.0重量%的Si、3.5-4.5重量%的Cu、0.5-0.6重量%的Mn、0.05-0.25重量%的Ti、0.15-0.25重量%的稀土元素、余量的铝以及不可避免的杂质。
可选地,所述铝合金原料是金属单质或金属合金。
可选地,所述铝合金原料为单质铝或铝的合金、单质硅或硅的合金、单质铜或铜的合金、单质锰或锰的合金、单质钛或钛的合金、以及稀土元素单质或含有稀土元素的合金。
可选地,所述铝合金原料为单质铝、Al-Si合金、Al-Ti合金、Al-Cu合金、Al-Mn合金和Al-Re中间合金。
可选地,所述金属单质的纯度为99.9重量%以上,所述金属合金中合金元素的合计含量为99.9重量%以上。
通过上述技术方案,根据本公开的半固态压铸铝合金通过调整优化配方,并加入稀土元素,对合金熔体起到了除气除杂净化作用和细化晶粒的变质作用,同时增加了熔体流动性,提高了铸造性能。本公开的制备半固态压铸铝合金铸件的方法采用上述半固态压铸铝合金进 行半固态压铸,该方法可以成型出各种复杂零部件,提高了铸件的力学性能,同时减少了铸件缺陷,提高了成品率。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
以下对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
本公开提供一种半固态压铸铝合金,该半固态压铸铝合金含有合金元素、不可避免的杂质和余量的铝元素;以所述半固态压铸铝合金的总重量为基准,所述合金元素包括:7.5-9.5重量%的Si、3.5-4.8重量%的Cu、0.5-0.75重量%的Mn、0.01-0.5重量%的Ti和0.01-0.35重量%的稀土元素。
根据本公开的半固态压铸铝合金通过调整优化配方,并加入稀土元素,对合金熔体起到了除气除杂净化作用和细化晶粒的变质作用,同时增加了熔体流动性,提高了铸造性能。根据本公开的半固态压铸铝合金,半固态压铸铝合金的组成成分在上述范围内时,可以在获得良好的铸造性能的同时,获得高机械性能。采用该配方得到的半固态压铸铝合金的抗拉强度不低于370MPa,屈服强度不低于290MPa,延伸率不低于5.5%。
根据本公开,为了进一步提高所述半固态压铸铝合金的力学性能与铸造性能,可选地,以所述半固态压铸铝合金的总重量为基准,所述合金元素包括:8.0-9.0重量%的Si、3.5-4.5重量%的Cu、0.5-0.6重量%的Mn、0.05-0.25重量%的Ti和0.15-0.25重量%的稀土元素。根据该配方得到的半固态压铸铝合金的抗拉强度不低于380MPa,屈服强度不低于300MPa,延伸率不低于6%。
根据本公开,所述稀土元素的种类没有特别的限制,可以为本领域技术人员所熟知的常规种类,可以为单一种类的稀土元素或混合稀土,为了降低原料成本,可选地,所述稀土元素可以包括La、Ce、Pr和Nd中的至少一种,各稀土元素的相对含量也没有特别要求。上述稀土元素可以为商购产品,为工业混合稀土。
根据本公开,半固态压铸铝合金的纯度是影响铝合金性能的重要因素之一,为了使本公开的半固态压铸铝合金性能优良,可选地,所述半固态压铸铝合金中的杂质不超过0.8重量%。
根据本公开,在半固态压铸铝合金中添加金属元素钛,可以细化晶粒,提高合金的强度与塑性,改善合金流动性,提高铸造性能;同时,添加金属元素铜,可以与钛形成Ti2Cu3相,分布于晶界处,使合金拉伸时的晶界滑移受到有效抑制,从而提升合金强度。为了进一步提高上述两种元素对所述半固态压铸铝合金性能的提升效果,可选地,所述Ti和Cu的重量含量之比可以为1:(7-350),优选为1:(14-90)。
为了进一步提高所述半固态压铸铝合金的力学性能与铸造性能,可选地,所述半固态压铸铝合金可以由7.5-9.5重量%的Si、3.5-4.8重量%的Cu、0.5-0.75重量%的Mn、0.01-0.5重量%的Ti、0.01-0.35重量%的稀土元素、不超过0.8重量%的杂质和余量的铝组成。
可选地,所述半固态压铸铝合金可以由8.0-9.0重量%的Si、3.5-4.5重量%的Cu、0.5-0.6重量%的Mn、0.05-0.25重量%的Ti、0.15-0.25重量%的稀土元素、不超过0.7重量%的杂质和余量的铝组成。
本公开还提供一种制备半固态压铸铝合金铸件的方法,该方法包括:将铝合金原料进行配比熔炼后进行半固态压铸,得到半固态压铸铝合金铸件;所述铝合金原料使所得到的半固态压铸铝合金铸件包括:以铝合金铸件的总重量为基准,7.5-9.5重量%的Si、3.5-4.8重量%的Cu、0.5-0.75重量%的Mn、0.01-0.5重量%的Ti、0.01-0.35重量%的稀土元素、余量的铝以及不可避免的杂质。
根据本公开的制备半固态压铸铝合金铸件的方法,为了得到具有更高机械性能的半固态压铸铝合金铸件,在可选的情况下,所述铝合金原料使所得到的半固态压铸铝合金铸件包括:以半固态压铸铝合金铸件的总重量为基准,8.0-9.0重量%的Si、3.5-4.5重量%的Cu、0.5-0.6重量%的Mn、0.05-0.25重量%的Ti、0.15-0.25重量%的稀土元素、余量的铝以及不可避免的杂质。
根据本公开的制备半固态压铸铝合金铸件的方法,所述熔融可以在熔炼炉内进行,向熔炼炉内加入的铝合金原料可以是单质也可以是金属合金,只要加入的铝合金原料熔炼后得到的铝合金中的组成成分在上述范围内即可。在可选的情况下,所述铝合金原料可以为单质铝或铝的合金、单质硅或含硅的合金、单质铜或铜的合金、单质锰或锰的合金、单质钛或钛的合金、以及稀土元素单质或含有稀土的合金。在可选的情况下,上述铝合金原料为单质铝、Al-Si合金、Al-Ti合金、Al-Cu合金、Al-Mn合金和Al-Re中间合金。另外,为了避免引入杂质影响铝合金的性能,金属单质的纯度为99.9重量%以上,合金中合金元素的合计含量为99.9重量%以上。
根据本公开的制备半固态压铸铝合金铸件的方法,通过将铝合金原料进行配比熔炼后进行半固态压铸得到所述半固态压铸铝合金铸件,所述熔炼和半固态压铸可以采用常规的方法和操作条件,本公开不作特殊的要求。
例如,熔炼工艺可以采用现有的备料→熔化→精炼→除渣→浇铸的步骤,具体地,本公开的制备半固态压铸铝合金铸件的方法可以包括如下步骤:
步骤1、备料:1)原材料:准备好配方量的纯铝锭(纯度≥99.9wt%)、Al-Si中间合金、Al-Ti中间合金、Al-Cu中间合金、Al-Mn中间合金和Al-Re中间合金;2)助熔剂:覆盖剂、精炼剂和变质剂,均可采用现有的用于铝合金制备的覆盖剂、精炼剂和变质剂,例如:覆盖 剂SY-LF1、精炼剂六氯乙烷、变质剂K2ZrF6。
步骤2、干燥:将准备好的原料进行干燥处理,其中,纯铝锭在100℃±10℃温度下烘干,而Al-Si中间合金、Al-Ti中间合金、Al-Cu中间合金、Al-Mn中间合金和Al-Re中间合金在150℃±10℃温度下烘干,烘干的作用是为了去除原料中的水分。
步骤3、熔融合金化:首先将坩埚内壁涂覆上准备好的覆盖剂,然后预热至200-250℃,将称量好的铝锭、Al-Si中间合金、Al-Ti中间合金、Al-Cu中间合金、Al-Mn中间合金和Al-Re中间合金锭放入坩埚中并加入覆盖剂加热熔化,待合金充分熔化后,搅拌均匀,整个熔化过程的时间控制在2-3h,且铝合金熔液的最终温度控制在750-770℃。
步骤4、精炼:精炼的目的是清除合金液中的非金属夹杂物;在700-720℃时用钟罩将精炼剂六氯乙烷分批压入熔液面下约2/3处,均匀缓慢做顺时针转动,待六氯乙烷充分反应,将熔液中的夹杂物、气体带出。搅动的速度要缓慢。六氯乙烷的用量与合金成分及原铸锭质量有关,一般用量为炉料质量的0.5wt%-0.7wt%。在电阻炉内熔化,精炼时间在10min以内。
步骤5、除渣:当使用六氯乙烷充分精炼后,将钟罩取出,清理掉残留的氧化物,将熔液表面的夹杂物用打渣勺捞出。
步骤6、浇铸:合金扒渣处理后保温4-10min应立即进行浇注,浇注成压铸用合金锭或压铸块。浇注温度一般要求为720-750℃之间。
步骤7,压铸:将上述压铸用合金锭或压铸块通过常规半固态压铸工艺压铸出样件,获得本公开的铝合金铸件。
以下通过列举实施例,对本公开的铝合金及其制备方法进行进一步说明。但本公开并不限定于以下所列举的实施例。
在本公开的下述实施例和对比例中,所述稀土元素为混合稀土(含有La 39.8重量%,Ce 58.8重量%)。
实施例1
本实施例用于说明本公开的半固态压铸铝合金及半固态压铸铝合金铸件的制备方法。
所述半固态压铸铝合金包括:以半固态压铸铝合金的总重量为基准,8.5重量%的Si、4.0重量%的Cu、0.55重量%的Mn、0.15重量%的Ti、0.20重量%的稀土元素以及余量的铝;
将按照上述半固态压铸铝合金组成计量的铝锭、Al-Si中间合金、Al-Ti中间合金、Al-Cu中间合金、Al-Mn中间合金和Al-Re中间合金锭放入涂覆有覆盖剂并预热至220℃的坩埚中并加入覆盖剂加热熔化,待合金充分熔化后,搅拌均匀,熔化过程在2.5h,且铝合金熔液的最终温度为750℃;在700-720℃时用钟罩将精炼剂六氯乙烷分批压入熔液面下约2/3处,均匀缓慢做顺时针转动,精炼8min,六氯乙烷的用量为炉料质量的0.5wt%;充分精炼后,将 钟罩取出,清理掉残留的氧化物,将熔液表面的夹杂物用打渣勺捞出;保温5min,浇注成铝合金铸锭Z1,浇注温度750℃;将上述铝合金铸锭Z1通过常规半固态压铸工艺压铸出样件,得到本实施例的铝合金铸件A1。
实施例2
本实施例用于说明本公开的半固态压铸铝合金及半固态压铸铝合金铸件的制备方法。
采用实施例1的方法,所不同的是,半固态压铸铝合金包括:以半固态压铸铝合金的总重量为基准,9.5重量%的Si、3.5重量%的Cu、0.5重量%的Mn、0.01重量%的Ti、0.01重量%的稀土元素以及余量的铝,得到本实施例的铝合金铸件A2。
实施例3
本实施例用于说明本公开的半固态压铸铝合金及半固态压铸铝合金铸件的制备方法。
采用实施例1的方法,所不同的是,半固态压铸铝合金包括:以半固态压铸铝合金的总重量为基准,7.5重量%的Si、4.8重量%的Cu、0.75重量%的Mn、0.5重量%的Ti、0.35重量%的稀土元素以及余量的铝,得到本实施例的铝合金铸件A3。
实施例4
本实施例用于说明本公开的半固态压铸铝合金及半固态压铸铝合金铸件的制备方法。
采用实施例1的方法,所不同的是,半固态压铸铝合金包括:以半固态压铸铝合金的总重量为基准,9.0重量%的Si、4.4重量%的Cu、0.52重量%的Mn、0.10重量%的Ti、0.15重量%的稀土元素以及余量的铝,得到本实施例的铝合金铸件A4。
对比例1
本对比例用于说明与本公开不同的半固态压铸铝合金及铝合金铸件制备方法。
采用实施例1的方法和原料,不同之处仅在于,不加入稀土元素,得到本对比例的铝合金铸件B1。
对比例2
本对比例用于说明与本公开不同的半固态压铸铝合金及铝合金铸件制备方法。
采用实施例1的方法和原料,不同之处仅在于,半固态压铸铝合金中稀土元素的含量为0.5重量%,得到本对比例的铝合金铸件B2。
对比例3
本对比例用于说明与本公开不同的半固态压铸铝合金及铝合金铸件制备方法。
采用实施例1的方法和原料,不同之处仅在于,半固态压铸铝合金中Si的含量为10重量%,得到本对比例的铝合金铸件B3。
对比例4
本对比例用于说明与本公开不同的半固态压铸铝合金及铝合金铸件制备方法。
采用实施例1的方法和原料,不同之处仅在于,半固态压铸铝合金中Si的含量为7重量%,得到本对比例的铝合金铸件B4。
对比例5
本对比例用于说明与本公开不同的半固态压铸铝合金及铝合金铸件制备方法。
采用实施例1的方法和原料,不同之处仅在于,半固态压铸铝合金中Cu的含量为5重量%,得到本对比例的铝合金铸件B5。
对比例6
本对比例用于说明与本公开不同的半固态压铸铝合金及铝合金铸件制备方法。
采用实施例1的方法和原料,不同之处仅在于,半固态压铸铝合金中Cu的含量为3重量%,得到本对比例的铝合金铸件B6。
对比例7
本对比例用于说明与本公开不同的半固态压铸铝合金及铝合金铸件制备方法。
采用实施例1的方法,不同之处仅在于,采用商用的ADC12铝合金锭为铸锭,获得铝合金样件B7。
对比例8
本对比例用于说明与本公开不同的半固态压铸铝合金及铝合金铸件制备方法。
采用实施例1的方法,不同之处仅在于,采用商用的A356.2铝合金锭为铸锭,获得铝合金样件B8。
对比例9
本对比例用于说明与本公开不同的压铸铝合金及铝合金铸件制备方法。
采用实施例1的原料,不同之处仅在于,使用常规的压铸方法,获得铝合金样件B9。
对比例10
本对比例用于说明与本公开不同的压铸铝合金及铝合金铸件制备方法。
将纯铝(A00铝)、铝锰合金(AlMn10)、铝硅合金(AlSi12)、铝铁合金(AlFe10)、铝铜合金(Al-50Cu)、纯镁(99.9)、纯锌(99.95)、铝钛碳硼合金、镁镧铈(Mg-LaCe)、镁钇(Mg-Y),经配料计算、熔炼和浇注,最终制得的合金主要元素的含量如下所示:Si:6.0wt%,Cu:0.5wt%,Fe:0.42wt%,Mn:0.05wt%,Mg:1.0wt%,Zn:1.5wt%,Ti:0.05wt%,C:0.002wt%,LaCe:0.20wt%,Y:0.12wt%,剩余为Al和不可避免的杂质。使用常规的压铸方法,获得铝合金样件B10。
对比例11
本对比例用于说明与本公开不同的压铸铝合金及铝合金铸件制备方法。
(1)将纯镁锭、中间合金Al-Si、Al-Mn、Al-Cu、Al-Ti预热到180-240℃,纯铝熔化后保温在740-760℃范围内,依次将纯镁锭、中间合金Al-Si、Al-Mn、Al-Cu、Al-Ti加入至铝液中,待其熔化后,在740℃下保温30分钟,使其充分均匀化;其中,上述材料中各成分按重量百分比为Si:8.5-11.5%、Mn:0.1-0.8%、Cu:0.5-3.0%、Mg:0.25-0.5%、Ti:0.15-0.35%、其他杂质≤0.4%(其中Fe<0.8%、P<0.004%);
(2)将合金液温度升温到780℃,加入混合稀土,待混合稀土熔化后去除表面浮渣,搅拌3-6分钟使成分均匀化,搅拌后将合金液温度提高至770-780℃,保温静置30分钟;其中,混合稀土总重量不大于1%,其La、Ce、Sm、Nd每种元素按重量百分比分别小于0.35%;
(3)将合金液降温至750℃进行精炼15分钟后将合金液降温至710℃进行除渣,再将合金液降温至690℃进行除气,最后将除渣除气后的合金液降温到680℃进行压铸,铸件成型后进行热处理工艺,在温度高于545℃中固溶处理持续3小时,后在温度165℃进行时效处理6-12小时,获得铝合金样件B11。
测试
本测试用于测定实施例1-4与对比例1-11中获得的半固态压铸铝合金铸件在室温下的力学性能。
参照《GB/T 228.1-2010金属材料拉伸试验第一部分:室温试验方法》测试的铝合金铸件的抗拉强度、屈服强度和延伸率,具体结果见表1。
表1
实施例 屈服强度(MPa) 断裂强度(MPa) 延伸率(%)
实施例1 310 392 8.5
实施例2 300 371 7.0
实施例3 291 376 5.5
实施例4 305 385 8.0
对比例1 254 332 5.5
对比例2 296 367 7.0
对比例3 280 371 6.0
对比例4 261 323 5.0
对比例5 290 342 4.0
对比例6 243 296 5.0
对比例7 185 292 2.5
对比例8 251 310 8.0
对比例9 174 278 2
对比例10 200 300 6.2
对比例11 230 308 5.0
从实施例1-4与对比例1-11的结果对比可以看出,本公开的半固态压铸铝合金具有良好的力学性能和铸造性能,该半固态压铸铝合金抗拉强度不低于370MPa,屈服强度不低于290MPa,延伸率不低5.5%。尤其是在本公开可选的合金元素包括:8.0-9.0重量%的Si、3.5-4.5重量%的Cu、0.5-0.6重量%的Mn、0.05-0.25重量%的Ti和0.15-0.25重量%的稀土元素时,根据该配方得到的半固态压铸铝合金的抗拉强度不低于380MPa,屈服强度不低于300MPa,延伸率不低于6%。从实施例1和实施例4与实施例2-3的数据对比可以看出,在本公开的Ti和Cu的重量含量之比为1:(14-90)的情况下,本公开的半固态压铸铝合金力学性能和铸造性能更好。
以上详细描述了本公开的可选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种变型,这些变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (15)

  1. 一种半固态压铸铝合金,含有合金元素、不可避免的杂质和余量的铝元素;以所述半固态压铸铝合金的总重量为基准,所述合金元素包括:7.5-9.5重量%的Si、3.5-4.8重量%的Cu、0.5-0.75重量%的Mn、0.01-0.5重量%的Ti和0.01-0.35重量%的稀土元素。
  2. 根据权利要求1所述的半固态压铸铝合金,其中,以所述半固态压铸铝合金的总重量为基准,所述合金元素包括:8.0-9.0重量%的Si、3.5-4.5重量%的Cu、0.5-0.6重量%的Mn、0.05-0.25重量%的Ti和0.15-0.25重量%的稀土元素。
  3. 根据权利要求1或2所述的半固态压铸铝合金,其中,所述稀土元素包括La、Ce、Pr和Nd中的至少一种。
  4. 根据权利要求1至3中任一项所述的半固态压铸铝合金,其中,所述半固态压铸铝合金中的所述杂质不超过0.8重量%。
  5. 根据权利要求1至4中任一项所述的半固态压铸铝合金,其中,所述Ti和Cu的重量含量之比为1:(14-90)。
  6. 根据权利要求1至5中任一项所述的半固态压铸铝合金,其中,所述半固态压铸铝合金由7.5-9.5重量%的Si、3.5-4.8重量%的Cu、0.5-0.75重量%的Mn、0.01-0.5重量%的Ti、0.01-0.35重量%的稀土元素、不超过0.8重量%的杂质和余量的铝组成。
  7. 根据权利要求6所述的半固态压铸铝合金,其中,所述半固态压铸铝合金由8.0-9.0重量%的Si、3.5-4.5重量%的Cu、0.5-0.6重量%的Mn、0.05-0.25重量%的Ti、0.15-0.25重量%的稀土元素、不超过0.7重量%的杂质和余量的铝组成。
  8. 根据权利要求1-7中任意一项所述的半固态压铸铝合金,其中,所述半固态压铸铝合金的抗拉强度不低于370MPa,屈服强度不低于290MPa,延伸率不低于5.5%。
  9. 根据权利要求2或7所述的半固态压铸铝合金,其中,所述半固态压铸铝合金的抗拉强度不低于380MPa,屈服强度不低于300MPa,延伸率不低于6%。
  10. 一种制备半固态压铸铝合金铸件的方法,包括:将铝合金原料进行配比熔炼后进行半固态压铸,得到半固态压铸铝合金铸件;其中所述铝合金原料使所得到的所述半固态压铸铝合金铸件包括:以铝合金铸件的总重量为基准,7.5-9.5重量%的Si、3.5-4.8重量%的Cu、0.5-0.75重量%的Mn、0.01-0.5重量%的Ti、0.01-0.35重量%的稀土元素、余量的铝以及不可避免的杂质。
  11. 根据权利要求10所述的方法,其中所述铝合金原料使所得到的所述半固态压铸铝合金铸件包括:以半固态压铸铝合金铸件的总重量为基准,8.0-9.0重量%的Si、3.5-4.5重量%的Cu、0.5-0.6重量%的Mn、0.05-0.25重量%的Ti、0.15-0.25重量%的稀土元素、余量的铝以及不可避免的杂质。
  12. 根据权利要求10或11所述的方法,其中所述铝合金原料是金属单质或金属合金。
  13. 根据权利要求12所述的方法,其中所述铝合金原料为单质铝或铝的合金、单质硅或硅的合金、单质铜或铜的合金、单质锰或锰的合金、单质钛或钛的合金、以及稀土元素单质或含有稀土元素的合金。
  14. 根据权利要求12或13所述的方法,其中所述铝合金原料为单质铝、Al-Si合金、Al-Ti合金、Al-Cu合金、Al-Mn合金和Al-Re中间合金。
  15. 根据权利要求12至14中任一项所述的方法,其中所述金属单质的纯度为99.9重量%以上,所述金属合金中合金元素的合计含量为99.9重量%以上。
PCT/CN2017/111382 2016-12-02 2017-11-16 半固态压铸铝合金及制备半固态压铸铝合金铸件的方法 WO2018099272A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/465,321 US20190390305A1 (en) 2016-12-02 2017-11-16 Semi-solid die-casting aluminum alloy and method for preparing semi-solid die-casting aluminum alloy casting
EP17877267.9A EP3550046A4 (en) 2016-12-02 2017-11-16 SEMI-SOLID DIE CAST ALUMINUM ALLOY AND PROCESS FOR THE MANUFACTURING OF SEMI-SOLID DIE CAST ALUMINUM ALLOYS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611096735.4A CN108149083B (zh) 2016-12-02 2016-12-02 一种半固态压铸铝合金及制备半固态压铸铝合金铸件的方法
CN201611096735.4 2016-12-02

Publications (1)

Publication Number Publication Date
WO2018099272A1 true WO2018099272A1 (zh) 2018-06-07

Family

ID=62241244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111382 WO2018099272A1 (zh) 2016-12-02 2017-11-16 半固态压铸铝合金及制备半固态压铸铝合金铸件的方法

Country Status (4)

Country Link
US (1) US20190390305A1 (zh)
EP (1) EP3550046A4 (zh)
CN (1) CN108149083B (zh)
WO (1) WO2018099272A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109396380B (zh) * 2018-11-20 2020-12-15 吴江市格瑞福金属制品有限公司 一种半固态压铸制备高导热烤盘的方法
CN113862528A (zh) * 2021-09-30 2021-12-31 上海耀鸿科技股份有限公司 一种稀土铝合金箱体件材料及制备方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303134A (ja) * 1999-04-20 2000-10-31 Furukawa Electric Co Ltd:The セミソリッド加工用アルミニウム基合金及びその加工部材の製造方法
JP2011144443A (ja) * 2010-01-18 2011-07-28 Yasuo Sugiura セミソリッド鋳造用アルミニウム合金
CN103526084A (zh) * 2013-09-29 2014-01-22 宁波东浩铸业有限公司 一种硅油离合器及其制备方法
CN104831129A (zh) * 2015-04-10 2015-08-12 凤阳爱尔思轻合金精密成型有限公司 非热处理自强化铝硅合金及其制备工艺
CN105525158A (zh) * 2016-02-19 2016-04-27 福建省金瑞高科有限公司 一种半固态压铸铝合金材料及使用该材料压铸成型的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050161128A1 (en) * 2002-03-19 2005-07-28 Dasgupta Rathindra Aluminum alloy
JP4765400B2 (ja) * 2005-05-18 2011-09-07 株式会社豊田中央研究所 セミソリッド鋳造用アルミニウム合金、並びにアルミ合金鋳物とその製造方法
WO2009132388A1 (en) * 2008-04-30 2009-11-05 Commonwealth Scientific And Industrial Research Organisation Improved aluminium based casting alloy
CN102277520B (zh) * 2010-06-08 2012-12-19 西安康博新材料科技有限公司 铝基材料反射镜及其制备方法
CN106086545A (zh) * 2016-08-14 2016-11-09 林亚东 一种铝合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303134A (ja) * 1999-04-20 2000-10-31 Furukawa Electric Co Ltd:The セミソリッド加工用アルミニウム基合金及びその加工部材の製造方法
JP2011144443A (ja) * 2010-01-18 2011-07-28 Yasuo Sugiura セミソリッド鋳造用アルミニウム合金
CN103526084A (zh) * 2013-09-29 2014-01-22 宁波东浩铸业有限公司 一种硅油离合器及其制备方法
CN104831129A (zh) * 2015-04-10 2015-08-12 凤阳爱尔思轻合金精密成型有限公司 非热处理自强化铝硅合金及其制备工艺
CN105525158A (zh) * 2016-02-19 2016-04-27 福建省金瑞高科有限公司 一种半固态压铸铝合金材料及使用该材料压铸成型的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550046A4 *

Also Published As

Publication number Publication date
EP3550046A1 (en) 2019-10-09
CN108149083A (zh) 2018-06-12
CN108149083B (zh) 2019-11-05
EP3550046A4 (en) 2020-08-05
US20190390305A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
CN110129630B (zh) 一种高强韧薄壁结构件铸造铝合金及其制备方法
JP3255560B2 (ja) ダイカスト合金およびダイカスト品
WO2021098044A1 (zh) 一种高性能半固态压铸铝合金及其制备方法
CN108642336B (zh) 一种挤压铸造铝合金材料及其制备方法
CN108977702B (zh) 一种铝合金及铝合金铸件制备方法
Liao et al. Dispersoid particles precipitated during the solutionizing course of Al-12 wt% Si-4 wt% Cu-1.2 wt% Mn alloy and their influence on high temperature strength
CN112143945B (zh) 一种多种复合稀土元素的高强韧性铸造铝硅合金及其制备方法
CN109371295B (zh) 一种高Mn含量Al-Mn合金及其制备方法
CN110029258B (zh) 一种高强韧变形镁合金及其制备方法
WO2023125263A1 (zh) 铝合金改性用复合稀土合金及其制备方法
CN111690844B (zh) 一种共晶型Al-Fe-Mn-Si-Mg压铸合金及制备方法与应用
WO2024021367A1 (zh) 一种铸造Al-Si合金及其制备方法
CN102965553A (zh) 用于汽车保险杠的铝合金铸锭及其生产工艺
CN107587012A (zh) 一种轻质铸造Al‑Si‑Li合金材料及其制备方法
WO2023125262A1 (zh) 改性铝合金及其制备方法
CN112301259A (zh) 高强压铸铝合金、其制备方法和应用
US20160298217A1 (en) Aluminum Alloy Refiner Material and Preparation Method Thereof
CN115961186A (zh) 压铸铝合金材料及其制备方法和应用
CN114231800B (zh) 一种高性能低碳铝合金与制备方法
WO2018099272A1 (zh) 半固态压铸铝合金及制备半固态压铸铝合金铸件的方法
WO2021147397A1 (zh) 一种铸造镁合金及其制备方法
CN115198150B (zh) 铝硅合金及其制备方法和应用
CN107699747A (zh) 一种高Cu含量Al‑Si‑Li‑Cu铸造合金及其制备方法
CN111155003A (zh) 一种高强韧性高镁铝合金及其制备方法
CN108330359A (zh) 一种稀土改性铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017877267

Country of ref document: EP

Effective date: 20190702