WO2021147397A1 - 一种铸造镁合金及其制备方法 - Google Patents

一种铸造镁合金及其制备方法 Download PDF

Info

Publication number
WO2021147397A1
WO2021147397A1 PCT/CN2020/122013 CN2020122013W WO2021147397A1 WO 2021147397 A1 WO2021147397 A1 WO 2021147397A1 CN 2020122013 W CN2020122013 W CN 2020122013W WO 2021147397 A1 WO2021147397 A1 WO 2021147397A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid raw
melt
raw material
magnesium alloy
minutes
Prior art date
Application number
PCT/CN2020/122013
Other languages
English (en)
French (fr)
Inventor
胡万文
Original Assignee
中信戴卡股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中信戴卡股份有限公司 filed Critical 中信戴卡股份有限公司
Publication of WO2021147397A1 publication Critical patent/WO2021147397A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the invention relates to the field of metal materials, in particular to a cast magnesium alloy and a preparation method thereof.
  • Magnesium alloy has high specific strength and specific rigidity, high dimensional stability, shock absorption performance, thermal conductivity, casting performance and machinability. With a series of advantages, it is currently the lightest metal structural material and special-purpose functional material used in the industry. It is widely used in the automotive industry, aerospace, weaponry, metallurgy and chemical industry.
  • the crystal grains of the magnesium alloy are easily coarsened, resulting in a decrease in the strength and plasticity of the magnesium alloy after casting.
  • the purpose of the embodiments of the present invention is to provide a cast magnesium alloy and a preparation method thereof, so that the cast magnesium alloy has better strength and plasticity.
  • the embodiment of the present invention provides a cast magnesium alloy, and the cast magnesium alloy includes the following components:
  • Al 7.28 ⁇ 8.88wt%; Zn: 0.67 ⁇ 0.78wt%; Ti: 1.12 ⁇ 1.85wt%; the rest is Mg.
  • the embodiment of the present invention also provides a method for preparing the cast magnesium alloy, the method including:
  • the mixed molten liquid is poured into a mold to form an ingot of the cast magnesium alloy.
  • the heating and melting of the Mg solid raw material to form a Mg melt includes:
  • the Mg solid raw material preheated to 240 to 260°C is heated to 710 to 730°C and kept for 30 to 35 minutes to form a Mg melt.
  • the heating of the Mg solid raw material preheated to 240-260°C to 710-730°C and holding for 30-35 minutes to form a Mg melt includes:
  • the adding solid raw materials of Al, solid raw materials of Zn, and solid raw materials of K 2 TiF 6 to the Mg melt in sequence to form a mixed melt includes:
  • adding solid raw materials of Al, solid raw materials of Zn, and solid raw materials of K 2 TiF 6 to the Mg melt in sequence includes:
  • a solid raw material of Al preheated to 240-260°C, a solid raw material of Zn preheated to 240-260°C, and a solid raw material of K 2 TiF 6 at room temperature are respectively added.
  • the solid raw material of Al, the solid raw material of Zn and the solid raw material of K 2 TiF 6 are sequentially added to the Mg melt, stirred and then sprinkled into the covering agent, and kept at a temperature of 720°C for 30 to 35 minutes After forming the mixed melt, the method further includes:
  • the method further includes:
  • the obtained cast magnesium alloy ingot is solution treated at a temperature of 400°C for 7.5 to 8.5 hours, and aging treated at a temperature of 165°C for 14 to 18 hours.
  • the method before the heating and melting of the Mg solid raw material to form a Mg melt, the method further includes:
  • the method before the heating and melting of the Mg solid raw material to form a Mg melt, the method further includes:
  • the embodiment of the present invention provides a cast magnesium alloy and a preparation method thereof.
  • the cast magnesium alloy includes the following components: Al: 7.28 to 8.88 wt%; Zn: 0.67 to 0.78 wt%; Ti: 1.12 to 1.85 wt%; The rest is Mg; it can be seen that the cast magnesium alloy and its preparation method provided by the embodiment of the present invention can refine the crystal grains by adding Ti to the ordinary cast magnesium alloy, so that the cast magnesium alloy has better strength and plasticity.
  • FIG. 1 is a schematic flow diagram of a method for preparing a cast magnesium alloy according to an embodiment of the present invention
  • Fig. 2 is a detailed flow diagram of a method for preparing a cast magnesium alloy according to an embodiment of the present invention.
  • the invention patent with publication number CN106636823A discloses a new type of magnesium alloy composite material.
  • Rare earth Nd and rare earth Ce are added to magnesium alloy, and electromagnetic field is applied at the same time, which improves the wear resistance, hardness and toughness of traditional magnesium alloy.
  • the addition of expensive rare earth elements greatly increases the material cost.
  • an embodiment of the present invention provides a cast magnesium alloy, the cast magnesium alloy includes the following components:
  • Al 7.28 ⁇ 8.88wt%; Zn: 0.67 ⁇ 0.78wt%; Ti: 1.12 ⁇ 1.85wt%; the rest is Mg.
  • Al aluminum
  • the English name is Aluminium
  • Zn zinc
  • the English name is zinc
  • Ti titanium
  • the English name is Titanium
  • Mg magnesium
  • the English name is Magnesium.
  • the cast magnesium alloy provided by the embodiment of the present invention can refine the crystal grains by adding Ti to the ordinary cast magnesium alloy, so that the cast magnesium alloy has better strength and plasticity, does not need to use rare earth elements, and is low in cost.
  • the grain refinement can reach the level of Mg-Zr master alloy.
  • the embodiment of the present invention also provides a method for preparing the above-mentioned cast magnesium alloy, the method including:
  • the mixed molten liquid is poured into a mold to form an ingot of the cast magnesium alloy.
  • the addition ratio of Al and Zn is the ratio described in the above-mentioned cast magnesium alloy, the ratio of K 2 TiF 6 is 1.00% to 2.0% by weight, and the rest is Mg.
  • the heating and melting of the Mg solid raw material to form a Mg melt may include:
  • the Mg solid raw material preheated to 240 to 260°C is heated to 710 to 730°C and kept for 30 to 35 minutes to form a Mg melt.
  • the Mg solid raw material melts faster, and the Mg melt is more uniform, which is a better implementation.
  • the heating of the Mg solid raw material preheated to 240-260°C to 710-730°C and holding for 30-35 minutes to form a Mg melt includes:
  • Adding a covering agent can not only prevent metal oxidation and gas absorption, but also has the effect of adsorption slagging and refining, which is a better implementation.
  • the effect of adding inert protective gas is: because magnesium has a very low ignition point (350°C), when the temperature is higher than 350°C, magnesium will burn violently. Therefore, the magnesium liquid must be protected during the magnesium smelting process. It is a better implementation.
  • the inert protective gas may be CO 2 and SF 6 .
  • the adding solid raw materials of Al, solid raw materials of Zn, and solid raw materials of K 2 TiF 6 to the Mg melt in sequence to form a mixed melt includes:
  • the solid raw materials of Al, the solid raw materials of Zn and the solid raw materials of K 2 TiF 6 are sequentially added to the Mg melt, stirred and then sprinkled into the covering agent, and kept at a temperature of 720°C for 30 to 35 minutes to form a mixed melt .
  • the mixed melt is more uniform, which is a better embodiment.
  • Adding a covering agent can not only prevent metal oxidation and gas absorption, but also has the effect of adsorption slagging and refining, which is a better implementation.
  • adding solid raw materials of Al, solid raw materials of Zn, and solid raw materials of K 2 TiF 6 to the Mg melt sequentially includes:
  • a solid raw material of Al preheated to 240-260°C, a solid raw material of Zn preheated to 240-260°C, and a solid raw material of K 2 TiF 6 at room temperature are respectively added.
  • K 2 TiF 6 is a fluorotitanate, a commonly used chemical agent, which can dissolve titanium during the smelting process. Obtaining titanium through K 2 TiF 6 has the advantages of convenient preparation and low cost, which is a better implementation.
  • the solid raw material of Al, the solid raw material of Zn and the solid raw material of K 2 TiF 6 are sequentially added to the Mg melt, stirred and then sprinkled into the covering agent, and heated at a temperature of 720°C. After the temperature is kept for 30 to 35 minutes to form a mixed melt, the method further includes:
  • the refining agent is mainly used to remove the hydrogen and floating oxidized slag in the mixed melt, so that the mixed melt is more pure, and it also has the function of a slag cleaning agent.
  • the method further includes:
  • the obtained cast magnesium alloy ingot is solution treated at a temperature of 400°C for 7.5 to 8.5 hours, and aging treated at a temperature of 165°C for 14 to 18 hours.
  • the crystal grains of the cast magnesium alloy can be made finer, the stress is smaller, the structure is more stable, and the comprehensive mechanical properties are higher.
  • solution treatment is to dissolve a large number of solute atoms into the crystal lattice of the matrix. Due to the difference in the atomic radius and elastic modulus of the solute atoms and the matrix atoms, the crystal lattice of the matrix is distorted, thereby achieving dispersion strengthening and solidification. The effect of solution strengthening increases the strength and plasticity of magnesium alloys.
  • Aging treatment means that during the aging process of magnesium alloy, the uniform and fine continuous precipitated phase dominated by ⁇ phase is precipitated in the structure.
  • the fine and dense second phase effectively hinders the movement of dislocations and grain boundary slippage, resulting in dispersion strengthening, so that Magnesium alloy has high resistance to plastic deformation.
  • the method before the heating and melting of the Mg solid raw material to form a Mg melt, the method further includes:
  • ZnO zinc oxide
  • Zinc oxide Zinc oxide
  • the crucible is more heat-resistant, not easy to rust, and has a long service life. It is a better implementation.
  • ZnO coating has good heat resistance, which makes the product coating film flexible, firm and impermeable, thereby preventing metal corrosion.
  • the method before the heating and melting of the Mg solid raw material to form a Mg melt, the method further includes:
  • the mold is more heat-resistant, not easy to rust, and has a long service life. It is a better implementation.
  • This embodiment provides a cast magnesium alloy.
  • the cast magnesium alloy of this embodiment includes the following components:
  • Al 8.88wt%; Zn: 0.67wt%; Ti: 1.85wt%; Fe ⁇ 0.05%; the rest is Mg.
  • Fe is the elemental chemical formula of iron
  • the English name of iron is iron (Ferrum).
  • the iron is produced by impurities in solid raw materials and smelting equipment during the smelting process. The smaller the content, the better, and the smaller the iron content has the least impact on the performance of the cast magnesium alloy of this embodiment, the same below.
  • This embodiment provides a cast magnesium alloy.
  • the cast magnesium alloy of this embodiment includes the following components:
  • Al 8.12wt%; Zn: 0.78wt%; Ti: 1.53wt%; Fe ⁇ 0.05%; the rest is Mg.
  • This embodiment provides a cast magnesium alloy.
  • the cast magnesium alloy of this embodiment includes the following components:
  • Al 7.28wt%; Zn: 0.77wt%; Ti: 1.12wt%; Fe ⁇ 0.05%; the rest is Mg.
  • This embodiment provides a cast magnesium alloy.
  • the cast magnesium alloy of this embodiment includes the following components:
  • Al 8.88wt%; Zn: 0.78wt%; Ti: 1.85wt%; Fe ⁇ 0.05%; the rest is Mg.
  • This embodiment provides a cast magnesium alloy.
  • the cast magnesium alloy of this embodiment includes the following components:
  • Al 7.28wt%; Zn: 0.67wt%; Ti: 1.12wt%; Fe ⁇ 0.05%; the rest is Mg.
  • This embodiment provides a cast magnesium alloy.
  • the cast magnesium alloy of this embodiment includes the following components:
  • Al 8.88wt%; Zn: 0.78wt%; Ti: 1.12wt%; Fe ⁇ 0.05%; the rest is Mg.
  • This embodiment provides a cast magnesium alloy.
  • the cast magnesium alloy of this embodiment includes the following components:
  • Al 7.28wt%; Zn: 0.67wt%; Ti: 1.85wt%; Fe ⁇ 0.05%; the rest is Mg.
  • This embodiment provides a cast magnesium alloy.
  • the cast magnesium alloy of this embodiment includes the following components:
  • Al 8.88wt%; Zn: 0.67wt%; Ti: 1.12wt%; Fe ⁇ 0.05%; the rest is Mg.
  • This embodiment provides a cast magnesium alloy.
  • the cast magnesium alloy of this embodiment includes the following components:
  • Al 7.28wt%; Zn: 0.77wt%; Ti: 1.85wt%; Fe ⁇ 0.05%; the rest is Mg.
  • This embodiment provides a cast magnesium alloy.
  • the cast magnesium alloy of this embodiment includes the following components:
  • Al 7.28wt%; Zn: 0.78wt%; Ti: 1.12wt%; Fe ⁇ 0.05%; the rest is Mg.
  • This embodiment provides a method for preparing a cast magnesium alloy.
  • the cast magnesium alloy can be any one of Embodiment 1 to Embodiment 10. As shown in FIG. 1, the preparation method includes the following steps:
  • Step 101 heating and melting the solid raw material of Mg to form a molten Mg;
  • Step 102 adding solid raw materials of Al, solid raw materials of Zn, and solid raw materials of K 2 TiF 6 to the Mg melt in order to form a mixed melt;
  • Step 103 Pour the mixed molten liquid into a mold to form an ingot of the cast magnesium alloy.
  • the addition ratio of Al and Zn is in accordance with the ratio described in the cast magnesium alloy described in any one of Examples 1 to 10, the ratio of K 2 TiF 6 is 1.00% to 2.0% by weight, and the rest is Mg . The same is true for the following embodiments, and will not be repeated here.
  • Step 201 The crucible is cleaned and heated to 250°C. After the surface is coated with ZnO paint, the crucible is heated to 500°C for 20 minutes; the crucible is heated by placing the crucible in a heating furnace.
  • the base material of the crucible is low carbon steel.
  • Step 202 Apply the ZnO coating to the mold, stirring rod, slag scoop and bell jar, and then put them in an oven for preheating at 250°C.
  • the mold, the stirring rod, the slag scoop and the bell jar are more heat-resistant, not easy to rust, and have a long service life.
  • Step 203 preheat the solid raw materials of Mg, Al and Zn to 250°C to remove moisture.
  • the solid raw materials of Mg, Al and Zn here are all industrial pure magnesium, industrial pure aluminum and industrial pure zinc, all with a purity of more than 99.5%.
  • Step 204 Put the Mg solid raw material preheated to 250°C into the crucible, sprinkle the covering agent on the surface of the Mg solid raw material, then pass in CO 2 and SF 6 protective gas, heat up to 720°C and keep it for 30 minutes , The formation of Mg melt.
  • the formula of the covering agent is 50% KCl+50% NaCl by weight percentage. In this way, the effect is better and the cost is low.
  • Step 205 Mucking off the slag in the Mg melt.
  • Step 206 Add the preheated solid raw materials of Al and Zn and K 2 TiF 6 at room temperature to the Mg melt in sequence and fully stir to form a mixed melt, and evenly sprinkle the covering agent on the surface of the mixed melt. And keep the temperature at 720°C for 30 minutes.
  • the formula of the covering agent is 50% KCl+50% NaCl by weight percentage. In this way, the effect is better and the cost is low.
  • Step 207 Heat the mixed melt to 730° C., add the refining agent, and after stirring for 10 minutes, the mixed melt is allowed to stand, and the standing time: 20 minutes.
  • the refining agent is hexachloroethane, which can wet and dissolve the suspended oxides in the adsorbed metal liquid, and has a good degassing refining effect.
  • Step 208 remove the scum on the surface of the mixed melt, and cast into a mold preheated to 250°C at 720°C to prepare an ingot.
  • Step 209 Perform solution treatment on the cast magnesium alloy ingot, and the solution treatment includes:
  • Step 210 Perform an aging treatment on the cast magnesium alloy ingot after solid solution, the aging treatment includes: temperature: 165° C., time: 16 hours.
  • This embodiment provides a method for preparing a cast magnesium alloy.
  • the cast magnesium alloy may be any one of Embodiment 1 to Embodiment 10.
  • the preparation method includes the following steps:
  • Step 301 Clean the crucible and heat it to 260°C. After the surface is coated with ZnO paint, heat the crucible to 510°C for 20 minutes; the crucible is heated by putting the crucible in the heating furnace.
  • the base material of the crucible is low carbon steel.
  • Step 302 Apply the ZnO coating to the mold, stirring rod, slag scoop and bell jar, and then put them in an oven for preheating at 260°C.
  • the mold, the stirring rod, the slag scoop and the bell jar are more heat-resistant, not easy to rust, and have a long service life.
  • Step 303 Preheat the solid raw materials of Mg, Al and Zn to 260°C to remove moisture.
  • the solid raw materials of Mg, Al and Zn here are all industrial pure magnesium, industrial pure aluminum and industrial pure zinc, with a purity of more than 99.5%.
  • Step 304 Put the Mg solid raw material preheated to 260°C into the crucible, sprinkle the covering agent on the surface of the Mg solid raw material, and then pass in CO 2 and SF 6 protective gas, heat up to 730°C and keep it warm for 35 minutes , The formation of Mg melt.
  • Step 305 Slag off in the Mg melt.
  • Step 306 Add the preheated solid raw materials of Al and Zn and the K 2 TiF 6 at room temperature to the Mg melt in sequence and fully stir to form a mixed melt, and evenly sprinkle the covering agent on the surface of the mixed melt. And keep the temperature at 730°C for 35 minutes.
  • Step 307 Heat the mixed melt to 740° C., add a refining agent, and stir for 12 minutes, then let the mixed melt stand for 30 minutes.
  • Step 308 remove the scum on the surface of the mixed melt, and cast into a mold preheated to 260°C at 730°C to prepare an ingot.
  • Step 309 Perform solution treatment on the cast magnesium alloy ingot, and the solution treatment includes:
  • Step 310 Perform aging treatment on the cast magnesium alloy ingot after solid solution, and the aging treatment includes:
  • This embodiment provides a method for preparing a cast magnesium alloy.
  • the cast magnesium alloy may be any one of Embodiment 1 to Embodiment 10.
  • the preparation method includes the following steps:
  • Step 401 Clean the crucible and heat it to 240°C. After the surface is coated with ZnO paint, heat the crucible to 490°C for 20 minutes; the crucible is heated by placing the crucible in a heating furnace.
  • the base material of the crucible is low carbon steel.
  • Step 402 Apply the ZnO coating to the mold, the stirring rod, the slag scoop and the bell jar, and then put them in an oven for preheating at 240°C.
  • the mold, the stirring rod, the slag scoop and the bell jar are more heat-resistant, not easy to rust, and have a long service life.
  • Step 403 preheat the solid raw materials of Mg, Al and Zn to 240° C. to remove moisture.
  • the solid raw materials of Mg, Al and Zn here are all industrial pure magnesium, industrial pure aluminum and industrial pure zinc, with a purity of more than 99.5%.
  • Step 404 Put the Mg solid raw material preheated to 240°C into the crucible, sprinkle the covering agent on the surface of the Mg solid raw material, and then pass in CO 2 and SF 6 protective gas, heat up to 710°C and keep it warm for 35 minutes , The formation of Mg melt.
  • Step 405 Mucking off the slag in the Mg melt.
  • Step 406 Add the preheated solid raw materials of Al and Zn and the K 2 TiF 6 at room temperature to the Mg melt in sequence and fully stir to form a mixed melt, and evenly sprinkle the covering agent on the surface of the mixed melt. And keep it at 710°C for 35 minutes.
  • Step 407 Heat the mixed melt to 720° C., add the refining agent, and stir for 12 minutes, then let the mixed melt stand for 30 minutes.
  • Step 408 remove the scum on the surface of the mixed melt, and cast at 710°C into a mold preheated to 240°C to prepare an ingot.
  • Step 409 Perform solution treatment on the cast magnesium alloy ingot, and the solution treatment includes:
  • Step 410 Perform aging treatment on the cast magnesium alloy ingot after solid solution, and the aging treatment includes:
  • This embodiment provides a method for preparing a cast magnesium alloy.
  • the cast magnesium alloy may be any one of Embodiment 1 to Embodiment 10.
  • the preparation method includes the following steps:
  • Step 501 The crucible is cleaned and heated to 260°C. After the surface is coated with ZnO coating, the crucible is heated to 510°C for 18 minutes; the crucible is heated by placing the crucible in a heating furnace.
  • the base material of the crucible is low carbon steel.
  • Step 502 Apply the ZnO coating to the mold, the stirring rod, the slag scooping spoon and the bell jar, and then put them into an oven to preheat at 260°C.
  • the mold, the stirring rod, the slag scoop and the bell jar are more heat-resistant, not easy to rust, and have a long service life.
  • Step 503 preheat the solid raw materials of Mg, Al and Zn to 260°C to remove moisture.
  • the solid raw materials of Mg, Al and Zn here are all industrial pure magnesium, industrial pure aluminum and industrial pure zinc, with a purity of more than 99.5%.
  • Step 504 Put the Mg solid raw material preheated to 260°C into the crucible, sprinkle the covering agent on the surface of the Mg solid raw material, and then pass in CO 2 and SF 6 protective gas, heat up to 730°C and keep for 30 minutes , The formation of Mg melt.
  • Step 505 Mucking off the slag in the Mg melt.
  • Step 506 Add the preheated Al and Zn solid raw materials and K 2 TiF 6 at room temperature to the Mg melt in sequence and fully stir to form a mixed melt, and evenly sprinkle the covering agent on the surface of the mixed melt. And keep the temperature at 730°C for 30 minutes.
  • Step 507 Heat the mixed melt to 740°C, add the refining agent, and after stirring for 12 minutes, the mixed melt is allowed to stand, and the standing time: 20 minutes.
  • Step 508 remove the scum on the surface of the mixed melt, and cast it into a mold preheated to 260°C under the condition of 730°C to prepare an ingot.
  • Step 509 Perform solution treatment on the cast magnesium alloy ingot, and the solution treatment includes:
  • Step 510 Perform an aging treatment on the cast magnesium alloy ingot after the solid solution, the aging treatment includes: temperature: 165° C., time: 14 hours.
  • This embodiment provides a method for preparing a cast magnesium alloy.
  • the cast magnesium alloy can be any one of Embodiment 1 to Embodiment 10.
  • the preparation method includes the following steps:
  • Step 601 Clean the crucible and heat it to 240°C. After the surface is coated with ZnO paint, heat the crucible to 490°C for 18 minutes; the crucible is heated by placing the crucible in a heating furnace.
  • the base material of the crucible is low carbon steel.
  • Step 602 Apply the ZnO coating to the mold, the stirring rod, the slag scooping spoon and the bell jar, and then put them in an oven for preheating at 240°C.
  • the mold, the stirring rod, the slag scoop and the bell jar are more heat-resistant, not easy to rust, and have a long service life.
  • Step 603 preheat the solid raw materials of Mg, Al and Zn to 240°C to remove moisture.
  • the solid raw materials of Mg, Al and Zn here are all industrial pure magnesium, industrial pure aluminum and industrial pure zinc, with a purity of more than 99.5%.
  • Step 604 Put the Mg solid raw material preheated to 240°C into the crucible, sprinkle the covering agent on the surface of the Mg solid raw material, and then pass in CO 2 and SF 6 protective gas, heat up to 710°C and keep it for 30 minutes , The formation of Mg melt.
  • Step 605 Mucking off the slag in the Mg melt.
  • Step 606 Add the preheated solid raw materials of Al and Zn and K 2 TiF 6 at room temperature to the Mg melt in sequence and fully stir to form a mixed melt, and evenly sprinkle the covering agent on the surface of the mixed melt. And keep it at 710°C for 30 minutes.
  • Step 607 Heat the mixed melt to 720°C, add a refining agent, and stir for 10 minutes, then let the mixed melt stand still, standing time: 20 minutes.
  • Step 608 remove the scum on the surface of the mixed melt, and cast into a mold preheated to 240°C under the condition of 710°C to prepare an ingot.
  • Step 609 Perform solution treatment on the cast magnesium alloy ingot, and the solution treatment includes:
  • Step 610 Perform aging treatment on the cast magnesium alloy ingot after solid solution, and the aging treatment includes:
  • Embodiment 1 to Embodiment 3 are shown, and the data of other embodiments of the present invention are similar. It can be seen from the data in Table 1 that the cast magnesium alloys of the examples of the present invention have higher tensile strength, yield strength and elongation, and are superior in performance to conventional AZ91. Moreover, since the conventional chemical fluorotitanate is used in the preparation process, the fluorotitanate is easy to obtain and the cost is low.
  • connection should be interpreted broadly. For example, it may be an electrical connection, or it may be a connection between two components, it may be directly connected, or through an intermediate The media are indirectly connected, and those of ordinary skill in the art can understand the specific meanings of the above-mentioned terms according to specific circumstances.
  • first ⁇ second ⁇ third involved in the embodiments of the present invention only distinguishes similar objects, and does not represent a specific order for the objects. Understandably, “first ⁇ second ⁇ third” The specific order or precedence can be interchanged when permitted.
  • an embodiment or “some embodiments” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present invention. Therefore, appearances of "in one embodiment” or “in some embodiments” in various places throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures or characteristics can be combined in one or more embodiments in any suitable manner. It should be understood that, in various embodiments of the present invention, the size of the sequence numbers of the foregoing processes does not mean the order of execution. The execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present invention. The implementation process constitutes any limitation. The sequence numbers of the foregoing embodiments of the present invention are only for description, and do not represent the superiority or inferiority of the embodiments.

Abstract

一种铸造镁合金及其制备方法,所述镁合金包括如下组分:Al:7.28~8.88wt%;Zn:0.67~0.78wt%;Ti:1.12~1.85wt%;其余为Mg。铸造镁合金及其制备方法,使铸造镁合金有更好的强度和塑性。

Description

一种铸造镁合金及其制备方法 技术领域
本发明涉及金属材料领域,具体涉及一种铸造镁合金及其制备方法。
背景技术
随着汽车轻量化不断发展,很多汽车零件都由镁合金铸造制成,镁合金具有高的比强度和比刚度,尺寸稳定性高,减震性能、导热性能、铸造性能和可切削加工性能良好等一系列优点,是目前工业上应用最轻的金属结构材料和特殊用途的功能材料,被广泛应用于汽车工业、航空航天、武器装备、冶金化工等领域。
但是,在铸造过程中,镁合金的晶粒容易粗化,导致其强度、塑性在铸造后降低。
发明内容
有鉴于此,本发明实施例的目的在于提供一种铸造镁合金及其制备方法,使铸造镁合金有更好的强度和塑性。
为达到上述目的,本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种铸造镁合金,所述铸造镁合金包括如下组分:
Al:7.28~8.88wt%;Zn:0.67~0.78wt%;Ti:1.12~1.85wt%;其余为Mg。
本发明实施例还提供了一种铸造镁合金的制备方法,所述方法包括:
将Mg的固体原材料加热熔化,形成Mg熔液;
将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液进行搅拌,形成混合熔液;
将所述混合熔液浇注至模具,形成所述铸造镁合金的铸锭。
上述方案中,所述将Mg的固体原材料加热熔化,形成Mg熔液,包括:
将预热至240~260℃的Mg的固体原材料加热到710~730℃,保温30~35分钟,形成Mg熔液。
上述方案中,所述将预热至240~260℃的Mg的固体原材料加热到710~730℃,保温30~35分钟,形成Mg熔液,包括:
将预热至240~260℃的Mg的固体原材料表面撒上覆盖剂,通入惰性保护气体,加热到710~730℃,保温30~35分钟,形成Mg熔液。
上述方案中,所述将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液进行搅拌,形成混合熔液,包括:
在Mg熔液中扒渣,然后将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液,搅拌后撒入覆盖剂,并在720℃的温度下保温30~35分钟,形成混合熔液。
上述方案中,将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液,包括:
在Mg熔液中,分别加入预热至240~260℃的Al的固体原材料、预热至240~260℃的Zn的固体原材料和常温的K 2TiF 6的固体原材料。
上述方案中,在将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液,搅拌后撒入覆盖剂,并在720℃的温度下保温30~35分钟,形成混合熔液之后,所述方法还包括:
将混合熔液加热至720~740℃,加入精炼剂,搅拌9~11分钟后,将混合熔液静置,静置时间大于20分钟,打掉表面的浮渣,再将所述混合熔液浇注至模具。
上述方案中,在形成所述铸造镁合金的铸锭之后,所述方法还包括:
将所得的铸造镁合金的铸锭在400℃的温度下固溶处理7.5~8.5个小时,在165℃的温度下时效处理14~18小时。
上述方案中,在所述将Mg的固体原材料加热熔化,形成Mg熔液之前,所述方法还包括:
将坩埚加热至240~260℃,表面涂刷ZnO涂料;
将涂刷ZnO涂料的坩埚加热到500℃,保温18~20min。
上述方案中,在所述将Mg的固体原材料加热熔化,形成Mg熔液之前,所述方法还包括:
将模具涂刷ZnO涂料;
将涂刷ZnO涂料的模具加热至240~260℃预热。
本发明实施例提供了一种铸造镁合金及其制备方法,所述铸造镁合金包括如下组分:Al:7.28~8.88wt%;Zn:0.67~0.78wt%;Ti:1.12~1.85wt%;其余为Mg;可见,本发明实施例提供的铸造镁合金及其制备方法,通过在普通铸造镁合金中加入Ti,能细化晶粒,使铸造镁合金有更好的强度和塑性。
本发明实施例的其他有益效果将在具体实施方式中结合具体技术方案进一步说明。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要的说明。应当理解,下面描述的附图仅仅是本发明实施例的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例铸造镁合金的制备方法的流程示意图;
图2为本发明实施例铸造镁合金的制备方法的详细流程示意图。
具体实施方式
现有技术中,在解决铸造镁合金强度的问题上,有一些解决方案,但是效果还不尽如人意,例如公开号为CN106636823A的发明专利,公开了一种新型镁合金复合材料,通过向传统镁合金中添加稀土Nd和稀土Ce,同时施加电磁场,提高了传统镁合金的耐磨性、硬度和强韧性。但是添加昂贵的稀土元素极大的增加了材料成本。
针对上述问题,本发明实施例提供了一种铸造镁合金,所述铸造镁合金包 括如下组分:
Al:7.28~8.88wt%;Zn:0.67~0.78wt%;Ti:1.12~1.85wt%;其余为Mg。这里,Al为铝,英文名为:Aluminium,Zn为锌,英文名为:zinc,Ti为钛,英文名为:Titanium,Mg为镁,英文名为:Magnesium。
本发明实施例提供的铸造镁合金,通过在普通铸造镁合金中加入Ti,能细化晶粒,使铸造镁合金有更好的强度和塑性,且无需使用稀土元素,成本低。
具体地,加入Ti,晶粒的细化可以达到Mg-Zr中间合金的程度。
本发明实施例还提供了一种上面所述的铸造镁合金的制备方法,所述方法包括:
将Mg的固体原材料加热熔化,形成Mg熔液;
将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液进行搅拌,形成混合熔液;
将所述混合熔液浇注至模具,形成所述铸造镁合金的铸锭。
这里,Al、Zn的添加比例按上面所述的铸造镁合金所述的比例,K 2TiF 6的比例为1.00%~2.0wt%,其余的为Mg。
在本发明的另一些实施例中,所述将Mg的固体原材料加热熔化,形成Mg熔液,可以包括:
将预热至240~260℃的Mg的固体原材料加热到710~730℃,保温30~35分钟,形成Mg熔液。
这样,Mg的固体原材料熔化的速度更快,Mg熔液更均匀,是更佳的实施方式。
在本发明的另一些实施例中,所述将预热至240~260℃的Mg的固体原材料加热到710~730℃,保温30~35分钟,形成Mg熔液,包括:
将预热至240~260℃的Mg的固体原材料表面撒上覆盖剂,通入惰性保护气体,加热到710~730℃,保温30~35分钟,形成Mg熔液。加入覆盖剂不仅可以防止金属氧化和吸气,还有吸附造渣精炼的作用,是更佳的实施方式。
加入惰性保护气体的作用在于:由于镁着火点很低(350℃),当温度高于 350℃时,镁就会剧烈的燃烧。因此在镁熔炼的过程中要对镁液进行保护。是更佳的实施方式。具体地,所述惰性保护气体可以是CO 2和SF 6
在本发明的另一些实施例中,所述将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液进行搅拌,形成混合熔液,包括:
将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液,搅拌后撒入覆盖剂,并在720℃的温度下保温30~35分钟,形成混合熔液。
这样,混合熔液更均匀,是更佳的实施方式。加入覆盖剂不仅可以防止金属氧化和吸气,还有吸附造渣精炼的作用,是更佳的实施方式。
在本发明的另一些实施例中,将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液,包括:
在Mg熔液中,分别加入预热至240~260℃的Al的固体原材料、预热至240~260℃的Zn的固体原材料和常温的K 2TiF 6的固体原材料。
这里,K 2TiF 6为一种氟钛酸盐,是一种常用化学药剂,可以在熔炼的过程中溶解出钛。而通过K 2TiF 6获得钛,具有制备方便、成本低的优点,是更佳的实施方式。
这样,固体原材料熔化的速度更快,混合熔液更均匀,是更佳的实施方式。
在本发明的另一些实施例中,在将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液,搅拌后撒入覆盖剂,并在720℃的温度下保温30~35分钟,形成混合熔液之后,所述方法还包括:
将混合熔液加热至720~740℃,加入精炼剂,搅拌9~11分钟后,将混合熔液静置,静置时间大于20分钟,打掉表面的浮渣,再将所述混合熔液浇注至模具。
这样,混合熔液更均匀,杂质更少,是更佳的实施方式。精炼剂主要是用于清除混合熔液内部的氢和浮游的氧化夹渣,使混合熔液更纯净,并兼有清渣剂的作用。
在本发明的另一些实施例中,在形成所述铸造镁合金的铸锭之后,所述方 法还包括:
将所得的铸造镁合金的铸锭在400℃的温度下固溶处理7.5~8.5个小时,在165℃的温度下时效处理14~18小时。
这样,能使铸造镁合金的晶粒更细,应力更小,组织更稳定,综合机械性能更高。
固溶处理的目的是为了将大量的溶质原子溶入基体的晶格中,由于溶质原子与基体原子的原子半径和弹性模量不同,使基体的晶格发生畸变,从而起到弥散强化和固溶强化的作用,增加镁合金的强度和塑性。
时效处理是指镁合金在时效过程中,组织中析出以β相为主的均匀细小的连续析出相,细小而密集的第二相有效阻碍位错运动和晶界滑移,产生弥散强化,使镁合金具有较高的塑性变形抗力。在本发明的另一些实施例中,在所述将Mg的固体原材料加热熔化,形成Mg熔液之前,所述方法还包括:
将坩埚加热至240~260℃,表面涂刷ZnO涂料;
将涂刷ZnO涂料的坩埚加热到500℃,保温18~20min。
这里,ZnO为氧化锌,英文名为:Zinc oxide。
这样,坩埚更耐热、且不易锈蚀,使用寿命长。是更佳的实施方式。ZnO涂料具有良好的耐热性,有使产品涂膜柔韧、牢固、不透水,从而能阻止金属的锈蚀。
在本发明的另一些实施例中,在所述将Mg的固体原材料加热熔化,形成Mg熔液之前,所述方法还包括:
将模具涂刷ZnO涂料;
将涂刷ZnO涂料的模具加热至240~260℃预热。
这样,模具更耐热、且不易锈蚀,使用寿命长。是更佳的实施方式。
为更清楚的了解本发明,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。并且,下面描述的实施例,仅仅是本发明的一部分实施例,而不是全部的实施例。本技术领域的普通技术人员,根据这些实施例,在不付出 创造性劳动的前提下获得的所有其它实施例,均属于本发明保护的范围。
实施例一
本实施例提供了一种铸造镁合金,本实施例的铸造镁合金包括如下组分:
Al:8.88wt%;Zn:0.67wt%;Ti:1.85wt%;Fe≤0.05%;其余为Mg。
这里,Fe为铁单质化学式,铁的英文名为iron(Ferrum)。这里的铁是在熔炼过程中,由固体原材料、熔炼器具中的杂质产生的,含量越小越好,越小对本实施例的铸造镁合金的性能影响最小,下同。
实施例二
本实施例提供了一种铸造镁合金,本实施例的铸造镁合金包括如下组分:
Al:8.12wt%;Zn:0.78wt%;Ti:1.53wt%;Fe≤0.05%;其余为Mg。
实施例三
本实施例提供了一种铸造镁合金,本实施例的铸造镁合金包括如下组分:
Al:7.28wt%;Zn:0.77wt%;Ti:1.12wt%;Fe≤0.05%;其余为Mg。
实施例四
本实施例提供了一种铸造镁合金,本实施例的铸造镁合金包括如下组分:
Al:8.88wt%;Zn:0.78wt%;Ti:1.85wt%;Fe≤0.05%;其余为Mg。
实施例五
本实施例提供了一种铸造镁合金,本实施例的铸造镁合金包括如下组分:
Al:7.28wt%;Zn:0.67wt%;Ti:1.12wt%;Fe≤0.05%;其余为Mg。
实施例六
本实施例提供了一种铸造镁合金,本实施例的铸造镁合金包括如下组分:
Al:8.88wt%;Zn:0.78wt%;Ti:1.12wt%;Fe≤0.05%;其余为Mg。
实施例七
本实施例提供了一种铸造镁合金,本实施例的铸造镁合金包括如下组分:
Al:7.28wt%;Zn:0.67wt%;Ti:1.85wt%;Fe≤0.05%;其余为Mg。
实施例八
本实施例提供了一种铸造镁合金,本实施例的铸造镁合金包括如下组分:
Al:8.88wt%;Zn:0.67wt%;Ti:1.12wt%;Fe≤0.05%;其余为Mg。
实施例九
本实施例提供了一种铸造镁合金,本实施例的铸造镁合金包括如下组分:
Al:7.28wt%;Zn:0.77wt%;Ti:1.85wt%;Fe≤0.05%;其余为Mg。
实施例十
本实施例提供了一种铸造镁合金,本实施例的铸造镁合金包括如下组分:
Al:7.28wt%;Zn:0.78wt%;Ti:1.12wt%;Fe≤0.05%;其余为Mg。
实施例十一
本实施例提供了一种铸造镁合金的制备方法,所述铸造镁合金可以是实施例一~实施例十中的任意一种,如图1所示,所述制备方法包括如下步骤:
步骤101:将Mg的固体原材料加热熔化,形成Mg熔液;
步骤102:将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液进行搅拌,形成混合熔液;
步骤103:将所述混合熔液浇注至模具,形成所述铸造镁合金的铸锭。
这里,Al、Zn的添加比例按实施例一~实施例十中的任意一种所述的铸造镁合金所述的比例,K 2TiF 6的比例为1.00%~2.0wt%,其余的为Mg。下面的实施例也是如此,不再赘述。
具体的实际生产中,所述制备方法还会有更详细的步骤,如图2所示,更详细的步骤包括:
步骤201:将坩埚清洗后加热至250℃,表面涂刷ZnO涂料后,将坩埚加热至500℃,保温20min;坩埚的加热是将坩埚放入加热炉中实现的,坩埚的基材为低碳钢。
步骤202:将模具、搅拌棒、扒渣勺和钟罩涂刷ZnO涂料,然后放入烘箱中进行250℃预热。这样,模具、搅拌棒、扒渣勺和钟罩更耐热、且不易锈蚀,使用寿命长。
步骤203:将Mg、Al和Zn的固体原材料预热至250℃,去除水分。这里的Mg、Al和Zn的固体原材料,均为工业纯镁、工业纯铝及工业纯锌,纯度均 在99.5%以上。
步骤204:将预热至250℃的Mg的固体原材料放入坩埚中,在Mg的固体原材料的表面撒上覆盖剂,然后通入CO 2和SF 6保护气,升温到720℃并保温30分钟,形成Mg熔液。这里,覆盖剂的配方按重量百分比为:50%KCl+50%NaCl。这样,效果更好,成本低。
步骤205:在Mg熔液中扒渣。
步骤206:将预热好的Al和Zn的固体原材料以及常温的K 2TiF 6依次加入到Mg熔液中并进行充分搅拌,形成混合熔液,在混合熔熔液表面均匀撒入覆盖剂,并在720℃的温度下保温30分钟。这里,覆盖剂的配方按重量百分比为:50%KCl+50%NaCl。这样,效果更好,成本低。
步骤207:将混合熔液加热至730℃,加入精炼剂,搅拌10分钟后,将混合熔液静置,静置时间:20分钟。这里,精炼剂为六氯乙烷,六氯乙烷能润湿和溶解吸附金属液中呈悬浮状态的氧化物,具有很好的除气精炼作用。
步骤208:打掉混合熔液表面的浮渣,在720℃的条件下浇铸至预热到250℃的模具中,制备出铸锭。
步骤209:对所述铸造镁合金铸锭进行固溶处理,所述固溶处理包括:
温度:400℃,时间:8小时。
步骤210:对固溶后的铸造镁合金铸锭进行时效处理,所述时效处理包括:温度:165℃,时间:16小时。
实施例十二
本实施例提供了一种铸造镁合金的制备方法,所述铸造镁合金可以是实施例一~实施例十中的任意一种,所述制备方法包括如下步骤:
步骤301:将坩埚清洗后加热至260℃,表面涂刷ZnO涂料后,将坩埚加热至510℃,保温20min;坩埚的加热是将坩埚放入加热炉中实现的,坩埚的基材为低碳钢。
步骤302:将模具、搅拌棒、扒渣勺和钟罩涂刷ZnO涂料,然后放入烘箱中进行260℃预热。这样,模具、搅拌棒、扒渣勺和钟罩更耐热、且不易锈蚀, 使用寿命长。
步骤303:将Mg、Al和Zn的固体原材料预热至260℃,去除水分。这里的Mg、Al和Zn的固体原材料,均为工业纯镁、工业纯铝及工业纯锌,纯度均在99.5%以上。
步骤304:将预热至260℃的Mg的固体原材料放入坩埚中,在Mg的固体原材料的表面撒上覆盖剂,然后通入CO 2和SF 6保护气,升温到730℃并保温35分钟,形成Mg熔液。
步骤305:在Mg熔液中扒渣。
步骤306:将预热好的Al和Zn的固体原材料以及常温的K 2TiF 6依次加入到Mg熔液中并进行充分搅拌,形成混合熔液,在混合熔熔液表面均匀撒入覆盖剂,并在730℃的温度下保温35分钟。
步骤307:将混合熔液加热至740℃,加入精炼剂,搅拌12分钟后,将混合熔液静置,静置时间:30分钟。
步骤308:打掉混合熔液表面的浮渣,在730℃的条件下浇铸至预热到260℃的模具中,制备出铸锭。
步骤309:对所述铸造镁合金铸锭进行固溶处理,所述固溶处理包括:
温度:400℃,时间:8.5小时。
步骤310:对固溶后的铸造镁合金铸锭进行时效处理,所述时效处理包括:
温度:165℃,时间:18小时。
因本实施例的流程与实施例十一的区别仅在于过程中的温度、时间等参数,其它均一致,因此流程示意图不再另行示出,可参见图2。
实施例十三
本实施例提供了一种铸造镁合金的制备方法,所述铸造镁合金可以是实施例一~实施例十中的任意一种,所述制备方法包括如下步骤:
步骤401:将坩埚清洗后加热至240℃,表面涂刷ZnO涂料后,将坩埚加热至490℃,保温20min;坩埚的加热是将坩埚放入加热炉中实现的,坩埚的基材为低碳钢。
步骤402:将模具、搅拌棒、扒渣勺和钟罩涂刷ZnO涂料,然后放入烘箱中进行240℃预热。这样,模具、搅拌棒、扒渣勺和钟罩更耐热、且不易锈蚀,使用寿命长。
步骤403:将Mg、Al和Zn的固体原材料预热至240℃,去除水分。这里的Mg、Al和Zn的固体原材料,均为工业纯镁、工业纯铝及工业纯锌,纯度均在99.5%以上。
步骤404:将预热至240℃的Mg的固体原材料放入坩埚中,在Mg的固体原材料的表面撒上覆盖剂,然后通入CO 2和SF 6保护气,升温到710℃并保温35分钟,形成Mg熔液。
步骤405:在Mg熔液中扒渣。
步骤406:将预热好的Al和Zn的固体原材料以及常温的K 2TiF 6依次加入到Mg熔液中并进行充分搅拌,形成混合熔液,在混合熔熔液表面均匀撒入覆盖剂,并在710℃的温度下保温35分钟。
步骤407:将混合熔液加热至720℃,加入精炼剂,搅拌12分钟后,将混合熔液静置,静置时间:30分钟。
步骤408:打掉混合熔液表面的浮渣,在710℃的条件下浇铸至预热到240℃的模具中,制备出铸锭。
步骤409:对所述铸造镁合金铸锭进行固溶处理,所述固溶处理包括:
温度:400℃,时间:8.5小时。
步骤410:对固溶后的铸造镁合金铸锭进行时效处理,所述时效处理包括:
温度:165℃,时间:18小时。
因本实施例的流程与实施例十一的区别仅在于过程中的温度、时间等参数,其它均一致,因此流程示意图不再另行示出,可参见图2。
实施例十四
本实施例提供了一种铸造镁合金的制备方法,所述铸造镁合金可以是实施例一~实施例十中的任意一种,所述制备方法包括如下步骤:
步骤501:将坩埚清洗后加热至260℃,表面涂刷ZnO涂料后,将坩埚加 热至510℃,保温18min;坩埚的加热是将坩埚放入加热炉中实现的,坩埚的基材为低碳钢。
步骤502:将模具、搅拌棒、扒渣勺和钟罩涂刷ZnO涂料,然后放入烘箱中进行260℃预热。这样,模具、搅拌棒、扒渣勺和钟罩更耐热、且不易锈蚀,使用寿命长。
步骤503:将Mg、Al和Zn的固体原材料预热至260℃,去除水分。这里的Mg、Al和Zn的固体原材料,均为工业纯镁、工业纯铝及工业纯锌,纯度均在99.5%以上。
步骤504:将预热至260℃的Mg的固体原材料放入坩埚中,在Mg的固体原材料的表面撒上覆盖剂,然后通入CO 2和SF 6保护气,升温到730℃并保温30分钟,形成Mg熔液。
步骤505:在Mg熔液中扒渣。
步骤506:将预热好的Al和Zn的固体原材料以及常温的K 2TiF 6依次加入到Mg熔液中并进行充分搅拌,形成混合熔液,在混合熔熔液表面均匀撒入覆盖剂,并在730℃的温度下保温30分钟。
步骤507:将混合熔液加热至740℃,加入精炼剂,搅拌12分钟后,将混合熔液静置,静置时间:20分钟。
步骤508:打掉混合熔液表面的浮渣,在730℃的条件下浇铸至预热到260℃的模具中,制备出铸锭。
步骤509:对所述铸造镁合金铸锭进行固溶处理,所述固溶处理包括:
温度:400℃,时间:7.5小时。
步骤510:对固溶后的铸造镁合金铸锭进行时效处理,所述时效处理包括:温度:165℃,时间:14小时。
因本实施例的流程与实施例十一的区别仅在于过程中的温度、时间等参数,其它均一致,因此流程示意图不再另行示出,可参见图2。
实施例十五
本实施例提供了一种铸造镁合金的制备方法,所述铸造镁合金可以是实施 例一~实施例十中的任意一种,所述制备方法包括如下步骤:
步骤601:将坩埚清洗后加热至240℃,表面涂刷ZnO涂料后,将坩埚加热至490℃,保温18min;坩埚的加热是将坩埚放入加热炉中实现的,坩埚的基材为低碳钢。
步骤602:将模具、搅拌棒、扒渣勺和钟罩涂刷ZnO涂料,然后放入烘箱中进行240℃预热。这样,模具、搅拌棒、扒渣勺和钟罩更耐热、且不易锈蚀,使用寿命长。
步骤603:将Mg、Al和Zn的固体原材料预热至240℃,去除水分。这里的Mg、Al和Zn的固体原材料,均为工业纯镁、工业纯铝及工业纯锌,纯度均在99.5%以上。
步骤604:将预热至240℃的Mg的固体原材料放入坩埚中,在Mg的固体原材料的表面撒上覆盖剂,然后通入CO 2和SF 6保护气,升温到710℃并保温30分钟,形成Mg熔液。
步骤605:在Mg熔液中扒渣。
步骤606:将预热好的Al和Zn的固体原材料以及常温的K 2TiF 6依次加入到Mg熔液中并进行充分搅拌,形成混合熔液,在混合熔熔液表面均匀撒入覆盖剂,并在710℃的温度下保温30分钟。
步骤607:将混合熔液加热至720℃,加入精炼剂,搅拌10分钟后,将混合熔液静置,静置时间:20分钟。
步骤608:打掉混合熔液表面的浮渣,在710℃的条件下浇铸至预热到240℃的模具中,制备出铸锭。
步骤609:对所述铸造镁合金铸锭进行固溶处理,所述固溶处理包括:
温度:400℃,时间:7.5小时。
步骤610:对固溶后的铸造镁合金铸锭进行时效处理,所述时效处理包括:
温度:165℃,时间:14小时。因本实施例的流程与实施例十一的区别仅在于过程中的温度、时间等参数,其它均一致,因此流程示意图不再另行示出,可参见图2。
为了更清楚的了解本发明实施例铸造镁合金的性能,下面以常规的铸造镁合金AZ91作为对比例,与上面的实施例一~实施例十,在同等条件下进行力学性能测试,测试结果如表1:
Figure PCTCN2020122013-appb-000001
表1
为了表达简洁,仅示出实施例一~实施例三的数据,本发明的其它实施例数据类似。从表1的数据可以看出,本发明实施例的铸造镁合金具有较高的抗拉强度、屈服强度和延伸率,比常规的AZ91的性能更优越。而且,由于在制备过程中,使用了常规的化学药剂氟钛酸盐,而氟钛酸盐的取材方便,成本低。
本说明书中未说明的或说明不清楚的为本领域公知技术。
在本发明实施例记载中,除非另有说明和限定,术语“连接”应做广义理解,例如,可以是电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
本发明实施例中如有涉及的术语“第一\第二\第三”,仅是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序。
应理解,说明书通篇中提到的“一实施例”或“一些实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一实施例中”或“在一些实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序 号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种铸造镁合金,其特征在于,所述铸造镁合金包括如下组分:
    Al:7.28~8.88wt%;Zn:0.67~0.78wt%;Ti:1.12~1.85wt%;其余为Mg。
  2. 一种权利要求1所述的铸造镁合金的制备方法,其特征在于,所述方法包括:
    将Mg的固体原材料加热熔化,形成Mg熔液;
    将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液进行搅拌,形成混合熔液;
    将所述混合熔液浇注至模具,形成所述铸造镁合金的铸锭。
  3. 根据权利要求2所述的方法,其特征在于,所述将Mg的固体原材料加热熔化,形成Mg熔液,包括:
    将预热至240~260℃的Mg的固体原材料加热到710~730℃,保温30~35分钟,形成Mg熔液。
  4. 根据权利要求3所述的方法,其特征在于,所述将预热至240~260℃的Mg的固体原材料加热到710~730℃,保温30~35分钟,形成Mg熔液,包括:
    将预热至240~260℃的Mg的固体原材料表面撒上所述覆盖剂,通入惰性保护气体,加热到710~730℃,保温30~35分钟,形成Mg熔液。
  5. 根据权利要求4所述的方法,其特征在于,所述将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液进行搅拌,形成混合熔液,包括:
    在Mg熔液中扒渣,然后将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液,搅拌后撒入覆盖剂,并在720℃的温度下保温30~35分钟,形成混合熔液。
  6. 根据权利要求5所述的方法,其特征在于,将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液,包括:
    在Mg熔液中,分别加入预热至240~260℃的Al的固体原材料、预热至 240~260℃的Zn的固体原材料和常温的K 2TiF 6的固体原材料。
  7. 根据权利要求6所述的方法,其特征在于,在将Al的固体原材料、Zn的固体原材料和K 2TiF 6的固体原材料依次加入所述Mg熔液,搅拌后撒入覆盖剂,并在720℃的温度下保温30~35分钟,形成混合熔液之后,所述方法还包括:
    将混合熔液加热至720~740℃,加入精炼剂,搅拌9~11分钟后,将混合熔液静置,静置时间大于20分钟,打掉表面的浮渣,再将所述混合熔液浇注至模具。
  8. 根据权利要求7所述的方法,其特征在于,在形成所述铸造镁合金的铸锭之后,所述方法还包括:
    将所得的铸造镁合金的铸锭在400℃的温度下固溶处理7.5~8.5个小时,在165℃的温度下时效处理14~18小时。
  9. 根据权利要求8所述的方法,其特征在于,在所述将Mg的固体原材料加热熔化,形成Mg熔液之前,所述方法还包括:
    将坩埚加热至240~260℃,表面涂刷ZnO涂料;
    将涂刷ZnO涂料的坩埚加热到500℃,保温18~20min。
  10. 根据权利要求9所述的方法,其特征在于,在所述将Mg的固体原材料加热熔化,形成Mg熔液之前,所述方法还包括:
    将所述模具涂刷ZnO涂料;
    将涂刷ZnO涂料的模具加热至240~260℃预热。
PCT/CN2020/122013 2020-01-21 2020-10-20 一种铸造镁合金及其制备方法 WO2021147397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010070474.9 2020-01-21
CN202010070474.9A CN111172441A (zh) 2020-01-21 2020-01-21 一种铸造镁合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2021147397A1 true WO2021147397A1 (zh) 2021-07-29

Family

ID=70647646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122013 WO2021147397A1 (zh) 2020-01-21 2020-10-20 一种铸造镁合金及其制备方法

Country Status (2)

Country Link
CN (1) CN111172441A (zh)
WO (1) WO2021147397A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111172441A (zh) * 2020-01-21 2020-05-19 中信戴卡股份有限公司 一种铸造镁合金及其制备方法
CN112725673A (zh) * 2020-12-28 2021-04-30 中信戴卡股份有限公司 一种Mg-Al合金及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102366827A (zh) * 2011-10-10 2012-03-07 陈伟军 一种镁合金汽车发动机气缸罩盖的挤压铸造方法
CN102994846A (zh) * 2012-10-15 2013-03-27 高源� 一种加强屏磁防辐射抗静电功能的镁合金及其制备方法
CN104741570A (zh) * 2013-12-25 2015-07-01 青岛玉光精铸厂 镁合金汽车发动机气缸罩盖的挤压铸造方法
US20180305801A1 (en) * 2014-04-18 2018-10-25 Terves Inc. Galvanically-Active In Situ Formed Particles for Controlled Rate Dissolving Tools
CN109084008A (zh) * 2018-08-27 2018-12-25 重庆元和利泰镁合金制造有限公司 镁合金变速箱壳体及其制备方法
CN109930041A (zh) * 2018-12-25 2019-06-25 西安交通大学 一种高塑性原位纳米颗粒增强镁基复合材料及其制备方法
CN111172441A (zh) * 2020-01-21 2020-05-19 中信戴卡股份有限公司 一种铸造镁合金及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107841668A (zh) * 2017-12-01 2018-03-27 朱旭 一种高强度Mg‑Al‑Zn‑Mn‑Ti合金及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102366827A (zh) * 2011-10-10 2012-03-07 陈伟军 一种镁合金汽车发动机气缸罩盖的挤压铸造方法
CN102994846A (zh) * 2012-10-15 2013-03-27 高源� 一种加强屏磁防辐射抗静电功能的镁合金及其制备方法
CN104741570A (zh) * 2013-12-25 2015-07-01 青岛玉光精铸厂 镁合金汽车发动机气缸罩盖的挤压铸造方法
US20180305801A1 (en) * 2014-04-18 2018-10-25 Terves Inc. Galvanically-Active In Situ Formed Particles for Controlled Rate Dissolving Tools
CN109084008A (zh) * 2018-08-27 2018-12-25 重庆元和利泰镁合金制造有限公司 镁合金变速箱壳体及其制备方法
CN109930041A (zh) * 2018-12-25 2019-06-25 西安交通大学 一种高塑性原位纳米颗粒增强镁基复合材料及其制备方法
CN111172441A (zh) * 2020-01-21 2020-05-19 中信戴卡股份有限公司 一种铸造镁合金及其制备方法

Also Published As

Publication number Publication date
CN111172441A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2020113713A1 (zh) 一种高强韧铸造铝硅合金及其制备方法和应用
WO2021098044A1 (zh) 一种高性能半固态压铸铝合金及其制备方法
CN109881063B (zh) 一种高强韧高模量压铸镁合金及其制备方法
TWI500775B (zh) 鋁合金及其製造方法
CN108486441B (zh) 一种砂型重力铸造铝合金材料及其制备方法
WO2021147397A1 (zh) 一种铸造镁合金及其制备方法
CN112680615B (zh) 高强韧压铸铝合金材料的制备方法、热处理方法和压铸方法
CN111690844B (zh) 一种共晶型Al-Fe-Mn-Si-Mg压铸合金及制备方法与应用
WO2023125262A1 (zh) 改性铝合金及其制备方法
CN101857934A (zh) 一种耐热镁合金及其制备方法
CN114231800B (zh) 一种高性能低碳铝合金与制备方法
CN111809086B (zh) 一种压铸铝合金及其制备方法和应用
CN115418537A (zh) 一种免热处理压铸铝合金及其制备方法和应用
CN113667864B (zh) 一种具有优良流动性能的Al-Si-Mg-B-Mn铸造合金的制备工艺
CN112522557B (zh) 一种高强韧压铸铝合金材料
WO2023241681A1 (zh) 一种铝合金添加剂及其制备方法和应用
CN110029255B (zh) 一种高强韧高模量砂型重力铸造镁合金及其制备方法
CN114277277B (zh) 一种AlN/Al颗粒增强镁铝稀土基复合材料及其制备方法
CN115961186A (zh) 压铸铝合金材料及其制备方法和应用
WO2023015608A1 (zh) 高强高导抗晶间腐蚀铝合金及其制备方法
WO2018099272A1 (zh) 半固态压铸铝合金及制备半固态压铸铝合金铸件的方法
CN110938763B (zh) 一种可阳极氧化压铸铝合金材料的制备方法及压铸方法
CN113005315A (zh) 一种高效Al-10Sr中间合金的制备方法
CN108048704B (zh) 一种含镧和镱的耐腐蚀铝合金材料的制备方法
CN108220704B (zh) 一种含镨和镱的耐腐蚀压铸铝合金的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915785

Country of ref document: EP

Kind code of ref document: A1