WO2018099204A1 - 一种免烧结的填充式真空石和制备工艺 - Google Patents

一种免烧结的填充式真空石和制备工艺 Download PDF

Info

Publication number
WO2018099204A1
WO2018099204A1 PCT/CN2017/107213 CN2017107213W WO2018099204A1 WO 2018099204 A1 WO2018099204 A1 WO 2018099204A1 CN 2017107213 W CN2017107213 W CN 2017107213W WO 2018099204 A1 WO2018099204 A1 WO 2018099204A1
Authority
WO
WIPO (PCT)
Prior art keywords
aggregate
solid
filled
filler
liquid
Prior art date
Application number
PCT/CN2017/107213
Other languages
English (en)
French (fr)
Inventor
杨绍良
Original Assignee
安徽省安美利特环保材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611075533.1A external-priority patent/CN108117303A/zh
Priority claimed from CN201611075153.8A external-priority patent/CN108117301A/zh
Application filed by 安徽省安美利特环保材料科技有限公司 filed Critical 安徽省安美利特环保材料科技有限公司
Publication of WO2018099204A1 publication Critical patent/WO2018099204A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates

Definitions

  • the invention relates to a sintering-free filling type vacuum stone, and relates to a sintering-free filling type vacuum stone preparation process.
  • Natural stone is an important part of building materials. Because of its diversified colors and easy development, natural stone has been widely used since ancient times. However, with the excessive increase of mining volume and low utilization rate, the exploitation of natural stone is gradually restricted. Especially in European countries, the exploitation of natural stone has been banned. Moreover, the products and varieties of each mineral area are unique, which increases the difficulty of its use. People have been looking for alternatives. With the development of the economy, the building decoration materials are changing with each passing day, and the synthetic stone has great development opportunities as a new type of decorative material.
  • the synthetic stone in the prior art is usually formed by mixing and compressing a granular aggregate and a binder, for example, the invention patent of CN200910215153.7, and the publication date is May 11, 2011, which discloses an artificial quartz.
  • the preparation process of the stone plate is characterized in that it comprises the following process steps: a. ingredients, quartz sand, quartz powder, glass, marble particles, unsaturated resin, toner, curing agent and coupling agent are pressed by an automatic batching system. Mix in proportion and send it into the star mixer for high-speed stirring. After fully stirring, directly discharge the material into the preset mold frame, flatten the material and then spread the paper; b.
  • the ratio of the main raw materials and auxiliary materials used includes 10-40% of quartz sand, 28-36% of quartz powder, 5-45% of glass, and 5-15% of marble particles.
  • the unsaturated resin is 8 to 12%
  • the toner is 0.1 to 0.4%
  • the curing agent and the coupling agent are 0.04 to 0.5%.
  • the binder (resin) is mixed with the aggregate.
  • the essence is that the individual aggregates are bonded together by a binder, and the strength of the synthetic stone is determined by the binder.
  • this bonding method is limited by the bonding strength, and the strength of the synthetic stone is difficult to increase.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art described above, and to provide a high-strength, environmentally-friendly, non-sintering filled vacuum stone, and to provide a sintering-free filling vacuum stone preparation process.
  • a sintering-free filled vacuum stone comprising a granular aggregate of different particle sizes and a reference volume of a filled unit body, the filled unit body being composed of a fine particle size solid particle filler and a liquid a filler made of a surface of the solid particulate filler having a flexible liquid-filled film formed by filling the liquid filler, the particle aggregates of respective particle sizes being filled with each other, between the aggregates of the particles
  • the gap is filled with the filling unit body to form a vacuum sealing body.
  • a sintering-free filled vacuum stone according to the present invention also has the following subsidiary technical features:
  • the particulate aggregate is moved and filled with each other under the combined force of a vacuum force and a high-frequency weight slamming force, and the filling unit body is filled into the gap of each of the granular aggregates.
  • the amount of the solid particulate filler and the liquid filler is determined by the following conditions:
  • Q liquid is to press a filling unit body of one square meter centimeter with a pressure of 1 ton, and finally obtain a liquid filler reference amount in a cubic centimeter of filled unit body.
  • the Q solid is used to press a filling unit body of one square meter centimeter with a pressure of 1 ton, and finally obtain a solid particle filling reference amount in a cubic centimeter of filled unit body.
  • ⁇ solid is the actual density of the solid particle filler in g/cm 3
  • ⁇ particle compaction is to press a square meter centimeter solid particle filler with a pressure of 1 ton to finally obtain a cubic centimeter of solid particle filler mass unit g/cm 3
  • ⁇ liquid is the actual density of liquid filler in g/cm 3
  • the amount of the particulate aggregate and the filled unit body is determined by the following conditions:
  • the Q unit body is a cubic centimeter of the filling unit in the vacuum stone.
  • Q aggregate is the reference amount of granular aggregate in a cubic centimeter of vacuum stone.
  • ⁇ aggregate is the actual density of the granular aggregate in g/cm 3
  • ⁇ aggregate compaction is to press a particle aggregate of one square meter centimeter with a pressure of 1 ton to finally obtain a mass of one cubic centimeter of granular aggregate in g/cm 3
  • the ⁇ unit body is the actual density of the filled unit body in g/cm 3
  • solid particulate filler and the liquid filler are mixed by stirring in a weight ratio of 2-6:1.
  • a cloth is further included before the forming step, and the mixture is arranged in a plate-like structure.
  • the solid particle filler has a particle diameter of 0.1 mm to 0.01 mm, and the particle aggregate has a particle diameter of 0.1 mm or more.
  • the liquid filler may have a property of changing from a liquid state to a solid state, including an organic resin and an inorganic resin.
  • the organic resin includes an acrylic resin, an unsaturated resin, a propylene resin, or an epoxy resin
  • the inorganic resin includes a soybean-based resin or a rubber-based resin.
  • a sintering-free filled vacuum stone preparation process comprises the steps of preparing a filling unit body, mixing a fine particle size solid particle filler with a liquid filler, and forming a surface of the solid particle filler. a flexible liquid filling film; mixing, mixing particle aggregates of different particle sizes with the filling unit body to form a mixture; forming, the particle aggregates are mutually combined under the combined force of vacuum force and hammer slamming force The filling is performed, and the filling unit body is filled into the slit of each of the particle aggregates to form a vacuum sealing body.
  • the preparation process of the sintering-free filled vacuum stone provided according to the present invention further has the following subsidiary technical features:
  • the amount of the solid particulate filler and the liquid filler is determined by the following conditions:
  • Q liquid is to press a filling unit body of one square meter centimeter with a pressure of 1 ton, and finally obtain a liquid filler reference amount in a cubic centimeter of filled unit body.
  • the Q solid is used to pressurize the filling unit body of one square meter centimeter with a pressure of 1 ton, and finally obtain a solid particle filling reference amount in a cubic centimeter of filled unit body.
  • ⁇ solid is the actual density of the solid particle filler in g/cm 3
  • ⁇ particle compaction is to press a square meter centimeter solid particle filler with a pressure of 1 ton to finally obtain a cubic centimeter of solid particle filler mass unit g/cm 3
  • ⁇ liquid is the actual density of liquid filler in g/cm 3
  • the amount of the particulate aggregate and the filled unit body is determined by the following conditions:
  • Q unit body is a cubic centimeter of the volume of the filling unit in the vacuum stone.
  • Unit gQ aggregate is a cubic centimeter of the volume of the aggregate in the vacuum stone.
  • ⁇ aggregate is the actual density of the granular aggregate in g/cm 3
  • ⁇ aggregate compaction is to press a particle aggregate of one square meter centimeter with a pressure of 1 ton to finally obtain a mass of one cubic centimeter of granular aggregate in g/cm 3
  • the ⁇ unit body is the actual density of the filled unit body in g/cm 3
  • solid particulate filler and the liquid filler are mixed by stirring in a weight ratio of 2-6:1.
  • a cloth is further included before the forming step, and the mixture is arranged in a plate-like structure.
  • the solid particle filler has a particle diameter of 0.1 mm to 0.01 mm, and the particle aggregate has a particle diameter of 0.1 mm or more.
  • the liquid filler may have a property of changing from a liquid state to a solid state, including an organic resin and an inorganic resin.
  • the organic resin includes an acrylic resin, an unsaturated resin, a propylene resin, or an epoxy resin
  • the inorganic resin includes a soybean-based resin or a rubber-based resin.
  • the invention provides a sintering-free filled vacuum stone and a preparation process according to the present invention.
  • the invention has the following advantages: the invention adopts a novel preparation process for filling small-sized particle aggregates into large-sized granular bones.
  • the fine-grained particle aggregate is filled into the gap of the small-sized particle aggregate, and the gap of the fine-grained aggregate is filled with the liquid filler, and the mutual filling between the large and small particles is used as much as possible.
  • the gap is filled, and the air in the gap between the aggregates of the particles is discharged to form a vacuum sealed body, that is, the vacuum stone is formed by using the principle of the Heidelberg hemisphere, and the strength of the vacuum stone of the present invention does not depend on the bonding strength of the adhesive. However, it is determined by the degree of compaction of the filling, which can effectively increase the strength of the vacuum stone.
  • the liquid filler in the present invention is only mixed with the fine particle size solid particles, so that the amount used is small, not only environmentally friendly, but also convenient for agitation processing.
  • Figure 1 is a schematic view of the structure of the present invention.
  • the present invention provides a sintering-free filled vacuum stone comprising a granular aggregate 2 of different particle diameters and a filled volume unit 1 of a reference volume, the filled unit body 1 being composed of fine particle diameter
  • the solid particle filler 11 and the liquid filler are formed, and the surface of the solid particle filler 11 has a flexible liquid filling film 12 formed by filling the liquid filler, and the particles of each particle diameter
  • the aggregates 2 are filled and adhered to each other, and the gap between the aggregates 2 is filled with the filled unit body 1 to form a vacuum sealed body.
  • the fine particle size solid particle filler 11 is mixed with a liquid filler to form a surface of the solid particle filler to form a flexible liquid filling film 12; the fine particle size solid particles in the present invention
  • the filler is a minimum particle size filling unit, and the flexible liquid filling film 12 has an outer shape plasticity property, and can change a shape according to the size of the slit during the filling process, thereby applying a slit having a different size to fill the gap.
  • the invention fills the particle aggregates 2 with different particle diameters into each other, the large-diameter granular aggregates are close to each other, the small-diameter granular aggregates fill the gaps between the large-diameter granular aggregates, and the granular aggregates of the respective particle diameters
  • the gap between the gaps is filled by the filling unit body, and during the filling process, the flexible liquid filling film on the surface thereof is deformed according to the size and shape of the slit, so that all the gaps are filled as densely as possible, and the air in the gap is discharged.
  • the invention utilizes the principle of the Martborough hemisphere to prepare a vacuum stone which is closer to the natural stone in nature, and the overall performance of the vacuum stone is also close to that of the natural stone.
  • the synthetic stones in the prior art all use the binder to bond the particle aggregates of various particle sizes together, not only the strength of the synthetic stone is not high, but also not environmentally friendly.
  • the vacuum stone of the invention uses the atmospheric pressure to press the aggregates of the particle size particles together, and the strength is higher and environmentally friendly.
  • the filling concept proposed by the present invention means that the aggregates of the particle size particles are mutually moved and adhered, and the particle aggregates of the first-order particle size are filled with the particle aggregates of the first-order particle size, and finally all the gaps are filled by the filling unit body. The padding.
  • the vacuum stone of the present invention is different from the synthetic stone of the prior art.
  • the aggregates of the particle size particles are not mixed with the liquid filler, and the aggregates of the particle size particles can be better adhered to each other, and the amount of the liquid filler is also reduced.
  • the liquid filler is only mixed with the fine particle size solid particle filler to form a reference volume filling unit body of a minimum particle diameter, and the prepared filling unit body is reused for the particle.
  • the mixing of the aggregates causes the filling unit body to enclose the particle aggregates of various particle sizes, and the particle aggregates enclosing the filling unit body can be better filled with each other during the molding process, and the gap between them is filled by the filling unit body. Finally, a vacuum sealed body is formed.
  • each particle size aggregate is coated with a binder, it is difficult for the fine particle size aggregate to be filled into the gap of the particle aggregate during the pressing process.
  • the binder is used too much. During the pressing process, the excess binder is difficult to be discharged from the synthetic stone.
  • the synthetic stone structure formed by the binder bonding is formed.
  • the bonding strength of the binder determines the synthesis. The strength of the stone.
  • the invention does not need to sinter the vacuum stone, is a sintering-free product, and is more environmentally friendly. Therefore, the vacuum stone proposed by the present invention is a brand new product.
  • the granular aggregate in the present invention is moved and filled with each other under the combined force of a vacuum force and a high-frequency weight slamming force, and the filling unit body is filled into a gap of each of the granular aggregates.
  • the vacuum force and the hammer slamming force are realized by the heavy hammer tapping type synthetic stone forming machine equipment owned by the inventor, and the invention patent application of the Chinese Patent Application No. 201510026692.1 is referred to.
  • the vacuum stone of the present invention is prepared by the following preparation process, and the preparation process comprises the following steps.
  • Preparing a filling unit body mixing the fine particle size solid particle filling material with the liquid filler, forming a surface of the solid particle filling material to form a flexible liquid filling film;
  • the fine particle size solid particle filling material in the invention is a minimum particle size filling
  • the flexible liquid filling film has a shape plasticizing property, and can change a shape according to the size of the slit during the filling process, thereby applying a slit having a different size to fill the gap.
  • the granular aggregate is moved and filled with each other under the combined force of a vacuum force and a heavy hammer slamming force, and the filling unit body is filled into a gap of each of the granular aggregates to form a vacuum sealed body.
  • the vacuum force and the hammer slamming force are realized by the heavy hammer tapping type synthetic stone forming machine equipment owned by the inventor, and the invention patent application of the Chinese Patent Application No. 201510026692.1 is referred to.
  • the device can fill the aggregates of different particle sizes with each other, the large-sized granular aggregates are close to each other, and the small-sized granular aggregates fill the gap between the large-sized granular aggregates, and the granular aggregates of the respective sizes.
  • the gap between the gaps is filled by the filling unit body, and during the filling process, the flexible liquid filling film on the surface thereof is deformed according to the size and shape of the slit, so as to fill all the gaps as densely as possible, and discharge the gaps. air.
  • the invention utilizes the principle of the Martborough hemisphere to prepare a vacuum stone which is closer to the natural stone in nature, and the overall performance of the vacuum stone is also close to that of the natural stone.
  • the preparation process proposed by the present invention is a completely new process.
  • the amount of the solid particulate filler and the liquid filler is determined by the following conditions:
  • Q liquid is to press a filling unit body of one square meter centimeter area with a pressure of 1 ton, and finally obtain a liquid filler reference amount unit g in a cubic centimeter of filled unit body, the parameter is used as a liquid filler
  • the reference value of the proportion that is, the optimal amount.
  • the parameter provides a reference value for the material selection, and the value of the parameter is determined by the above formula, and the corresponding amount is converted according to the volume of the prepared filling unit body. This amount can be adjusted based on the reference value, which simplifies the proportioning work of each material and reduces material loss.
  • the Q solid is used to press a filling unit body of one square meter centimeter area with a pressure of 1 ton, and finally obtain a solid particle filling material in a cubic centimeter of the filling unit body.
  • the reference amount unit is used as a solid particle filling material.
  • the reference value of the ratio the optimal amount.
  • the parameter provides a reference value for the material selection, and the value of the parameter is determined by the above formula, and the corresponding amount is converted according to the volume of the prepared filling unit body. This amount can be adjusted based on the reference value, which simplifies the proportioning work of each material and reduces material loss.
  • the ⁇ solid is the actual density unit of the solid particle filler in g/cm 3 .
  • the parameter is determined by the material of the solid particles used. If a plurality of solid particles of different materials are used, the proportion of the solid particles of different materials is calculated. Finally, I got it. For example, the actual density of quartz stone is 2.65 g/cm 3 .
  • the ⁇ particle compaction is to press a square meter centimeter solid particle filler with a pressure of 1 ton to finally obtain a cubic centimeter of solid particle filler mass unit g/cm 3 , which can be obtained experimentally, taking different The solid particle filler of the material is pressed separately and then weighed to obtain.
  • the ⁇ liquid is the actual density of the liquid filler in g/cm 3 , which is determined by the liquid filler used, such as the density of the unsaturated resin being 1.4-2.2 g/cm 3 .
  • the amount of the particulate aggregate and the filling unit body is determined by the following conditions:
  • Q unit body is the filling unit volume reference unit in a cubic centimeter of vacuum stone.
  • the parameter is the reference value of the proportion of the filling unit body, that is, the optimum amount.
  • the parameter provides a reference value for the material selection, and the value of the parameter is determined by the above formula, and the corresponding amount is converted according to the volume of the prepared vacuum stone. This amount can be adjusted based on the reference value to simplify the proportioning work of each material and reduce material loss.
  • the Q aggregate is the reference amount of the granular aggregate in a cubic centimeter of vacuum stone.
  • the parameter is the reference value of the proportion of the granular aggregate, that is, the optimum amount.
  • the parameter provides a reference value for the material selection, and the value of the parameter is determined by the above formula, and the corresponding amount is converted according to the volume of the prepared vacuum stone. This amount can be adjusted based on the reference value, which simplifies the proportioning work of each material and reduces material loss.
  • ⁇ aggregate is the actual density of the granular aggregate in g/cm 3 , which is determined by the material of the granular aggregate used. If a plurality of different aggregates of granular materials are used, the aggregates of the different materials are used. The ratio is calculated and finally derived. For example, the actual density of quartz stone is 2.65 g/cm 3 .
  • the ⁇ aggregate compaction is to press the particle aggregate of one square meter centimeter with a pressure of 1 ton, and finally obtain the mass unit g/cm 3 of one cubic centimeter of the granular aggregate. This parameter can be obtained through experiments and adopts different The granular aggregate of the material is pressed separately and then weighed to obtain.
  • the ⁇ unit body is the actual density of the filled unit body.
  • Unit g/cm 3 This parameter is determined by the following formula:
  • the solid particulate filler and the liquid filler are mixed by stirring at a weight ratio of 2-6:1.
  • the reference value obtained by formulating each component of the filling unit body described above can be adjusted within the proportional relationship, as long as the proportional relationship is satisfied.
  • the proportional relationship can also verify the reference value calculated by the formula to determine whether it meets the requirements.
  • the ratio determined by the above formula in this embodiment is 3.4:1.
  • a cloth is further included before the forming step, and the mixture is arranged in a plate-like structure.
  • the fabric can be clothed by a cloth machine, and the cloth unit should be evenly distributed with the granular aggregate to facilitate the filling movement of the molding step.
  • the liquid filler according to the present invention refers to a liquid having a property of being converted from a liquid state to a solid state, and the liquid also needs to remain solid for a long period of time under normal conditions, thereby eliminating air in the gap and making the air difficult to enter the gap, such as resin. .
  • the solid particle filler has a particle diameter of 0.1 mm to 0.01 mm, 0.05 mm in the embodiment, and the particle size of the granular aggregate is 0.1. Mm or more.
  • the particle size of the granular aggregate in the present invention is selected from the particle aggregates of different particle diameters as required, and the size of the aggregate of the aggregates is not limited.
  • the particle size of the aggregate is suitable for various materials in the field. The size can be selected by a person skilled in the art according to the specific structure of the vacuum stone.
  • the liquid filler may have a property of changing from a liquid state to a solid state, including an organic resin and an inorganic resin.
  • the organic resin includes an acrylic resin, an unsaturated resin, a propylene resin, or an epoxy resin
  • the inorganic resin includes a soybean-based resin or a rubber-based resin.
  • the liquid also needs to remain solid for a long period of time under normal conditions, thereby eliminating air in the gap and making it difficult for air to enter the gap, such as various resins as described above. These resins themselves or act as catalysts.
  • the liquid is converted to a solid state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)

Abstract

一种免烧结的填充式真空石及制备工艺,该真空石包括不同粒径的颗粒骨料和基准体积的填充单元体,该填充单元体由细粒径固体颗粒填充料和液体填充剂制成,该固体颗粒填充料的表面具有由液体填充剂填充形成的柔性液体填充膜,各粒径的颗粒骨料互相填充贴合,颗粒骨料之间的缝隙填充有该填充单元体,形成真空密闭体。该真空石利用大小颗粒之间的相互填充,将所有缝隙填实,将颗粒骨料之间的缝隙中的空气排出,形成真空密闭体,即利用马德堡半球原理,形成真空石。

Description

一种免烧结的填充式真空石和制备工艺 技术领域
本发明涉及一种免烧结的填充式真空石,同时涉及一种免烧结的填充式真空石制备工艺。
背景技术
天然石材作为建筑材料的重要部分,因为其色彩多样化,开发容易,自古以来一直被人广泛使用。但是随着其开采量的过度增加,开采利用率低等原因,天然石材的开采逐步受到限制,特别是欧洲国家,已经禁止了天然石材的开采。而且每个矿产区的产品,其花色,品种都是独一的,更增加了其使用上的难度。人们一直在寻找其替代品。随着经济的发展,建筑装饰材料日新月异,合成石作为一种新型的装饰材料得到很大的发展机遇。但现有技术中的合成石通常有颗粒骨料和粘结剂混合压制而成,例如中国专利号为CN200910215153.7号发明专利,公开日为2011年5月11日,公开了一种人造石英石板材的制备工艺,其特征在于,它包括如下工艺步骤:a、配料,通过自动配料系统将石英砂、石英粉、玻璃、大理石颗粒、不饱和树脂、色粉、固化剂和偶联剂按比例混合,并送进星式搅拌机高速搅拌,充分搅拌后直接将料卸落在预置的模框中,将料布平,再铺上纸皮;b、通过多层叠板机将多张板叠起;c、压制、中温固化,由多层叠板压机压制成型,使用升降式固化炉,采用三块铁板夹加两块板材的固化方式,通过恒温导热油均匀加热传导,使板材均匀收缩固化;d、抛光、切割、包装。在所述工艺步骤a过程中,采用的主要原料及辅料配比(按重量百分比算)包括石英砂10~40%、石英粉28~36%、玻璃5~45%、大理石颗粒5~15%、不饱和树脂8~12%、色粉0.1~0.4%、固化剂和偶联剂0.04~0.5%。通过上述专利可以看出,现有技术中的配料过程中是将粘结剂(树脂)与骨料一起混合, 其本质是通过粘结剂将各个骨料粘结在一起,合成石的强度是由粘结剂来决定的。但这种粘结结合方式受粘结强度的限制,合成石的强度很难提高。另外,为了能够将所有骨料粘结在一起,需要使用较多的树脂,增加了树脂的使用量,树脂使用量的增加不仅降低了合成石的强度,而且还带来了环保问题。
发明内容
本发明所要解决的技术问题在于克服上述现有技术之不足,提供一种强度高、环保的免烧结的填充式真空石,同时提供一种免烧结的填充式真空石制备工艺。
按照本发明提供的一种免烧结的填充式真空石,所述真空石包括不同粒径的颗粒骨料和基准体积的填充单元体,所述填充单元体由细粒径固体颗粒填充料和液体填充剂制成,所述固体颗粒填充料的表面具有由所述液体填充剂填充形成的柔性液体填充膜,各粒径的所述颗粒骨料互相填充贴合,所述颗粒骨料之间的缝隙填充有所述填充单元体,形成真空密闭体。
按照本发明提供的一种免烧结的填充式真空石还具有如下附属技术特征:
进一步包括,所述颗粒骨料在真空力和高频重锤拍击力的合力作用下互相运动填充,并将所述填充单元体填充到各所述颗粒骨料的缝隙中。
进一步包括,所述固体颗粒填充料与所述液体填充剂的用量由以下条件确定:
Q液体=(ρ固体颗粒压实)/ρ固体×1cm3×ρ液体
Q固体=ρ颗粒压实×1cm3
式中:Q液体为用1吨的压力对一平米厘米面积的填充单元体进行施压,最终获得一立方厘米的填充单元体中的液体填充剂基准用量 单位g
Q固体为用1吨的压力对一平米厘米面积的填充单元体进行施压,最 终获得一立方厘米的填充单元体中的固体颗粒填充料基准用量 单位g
ρ固体为固体颗粒填充料的实际密度 单位g/cm3
ρ颗粒压实为用1吨的压力对一平米厘米面积固体颗粒填充料进行施压,最终获得一立方厘米的固体颗粒填充料的质量 单位g/cm3
ρ液体为液体填充剂的实际密度 单位g/cm3
进一步包括,所述颗粒骨料与所述填充单元体的用量由以下条件确定:
Q单元体=(ρ骨料骨料压实)/ρ骨料×1cm3×ρ单元体
Q骨料=ρ骨料压实×1cm3
式中:Q单元体为一立方厘米的真空石中的填充单元体基准用量 单位g
Q骨料为一立方厘米的真空石中的颗粒骨料基准用量 单位g
ρ骨料为颗粒骨料的实际密度 单位g/cm3
ρ骨料压实为用1吨的压力对一平米厘米面积的颗粒骨料进行施压,最终获得一立方厘米的颗粒骨料的质量 单位g/cm3
ρ单元体为填充单元体的实际密度 单位g/cm3
ρ单元体=(Q液体+Q固体)/1cm3
进一步包括,所述固体颗粒填充料与所述液体填充剂通过搅拌混合,重量比例为2-6:1。
进一步包括,在成型步骤之前还包括有布料,将所述混合料布置成板状结构。
进一步包括,在成型步骤之后还包括有固化,将所述液体填充剂由液态变为固态。
进一步包括,所述固体颗粒填充料的粒径为0.1mm-0.01mm,所述颗粒骨料的粒径为0.1mm以上。
进一步包括,所述液体填充剂可以具有由液态变为固态的特性,包括有机类树脂和无机类树脂。
进一步包括,所述有机类树脂包括亚克力树脂、不饱和树脂、丙烯类树脂或环氧树脂,所述无机类树脂包括大豆基树脂或橡胶类树脂。
按照本发明提供的一种免烧结的填充式真空石制备工艺,包括以下步骤,制备填充单元体,将细粒径固体颗粒填充料与液体填充剂混合,使所述固体颗粒填充料的表面形成柔性液体填充膜;混料,将不同粒径的颗粒骨料与所述填充单元体混合,制成混合料;成型,所述颗粒骨料在真空力和重锤拍击力的合力作用下互相运动填充,并将所述填充单元体填充到各所述颗粒骨料的缝隙中,形成真空密闭体。
按照本发明提供的一种免烧结的填充式真空石制备工艺还具有如下附属技术特征:
进一步包括,所述固体颗粒填充料与所述液体填充剂的用量由以下条件确定:
Q液体=(ρ固体颗粒压实)/ρ固体×1cm3×ρ液体
Q固体=ρ颗粒压实×1cm3
式中:Q液体为用1吨的压力对一平米厘米面积的填充单元体进行施压,最终获得一立方厘米的填充单元体中的液体填充剂基准用量 单位g
Q固体为用1吨的压力对一平米厘米面积的填充单元体进行施压,最终获得一立方厘米的填充单元体中的固体颗粒填充料基准用量 单位g
ρ固体为固体颗粒填充料的实际密度 单位g/cm3
ρ颗粒压实为用1吨的压力对一平米厘米面积固体颗粒填充料进行施压,最终获得一立方厘米的固体颗粒填充料的质量 单位g/cm3
ρ液体为液体填充剂的实际密度 单位g/cm3
进一步包括,所述颗粒骨料与所述填充单元体的用量由以下条件确定:
Q单元体=(ρ骨料骨料压实)/ρ骨料×1cm3×ρ单元体
Q骨料=ρ骨料压实×1cm3
式中:Q单元体为一立方厘米的真空石中的填充单元体基准用量 单位gQ骨料为一立方厘米的真空石中的颗粒骨料基准用量 单位g
ρ骨料为颗粒骨料的实际密度 单位g/cm3
ρ骨料压实为用1吨的压力对一平米厘米面积的颗粒骨料进行施压,最终获得一立方厘米的颗粒骨料的质量 单位g/cm3
ρ单元体为填充单元体的实际密度 单位g/cm3
ρ单元体=(Q液体+Q固体)/1cm3
进一步包括,所述固体颗粒填充料与所述液体填充剂通过搅拌混合,重量比例为2-6:1。
进一步包括,在成型步骤之前还包括有布料,将所述混合料布置成板状结构。
进一步包括,在成型步骤之后还包括有固化,将所述液体填充剂由液态变为固态。
进一步包括,所述固体颗粒填充料的粒径为0.1mm-0.01mm,所述颗粒骨料的粒径为0.1mm以上。
进一步包括,所述液体填充剂可以具有由液态变为固态的特性,包括有机类树脂和无机类树脂。
进一步包括,所述有机类树脂包括亚克力树脂、不饱和树脂、丙烯类树脂或环氧树脂,所述无机类树脂包括大豆基树脂或橡胶类树脂。
按照本发明提供的一种免烧结的填充式真空石和制备工艺与现有技术相比具有如下优点:本发明采用一种全新的制备工艺,将小粒径颗粒骨料填充到大粒径颗粒骨料的缝隙中,再将细小粒径颗粒骨料填充到小粒径颗粒骨料的缝隙中,细小颗粒骨料的缝隙则由液体填充剂填充,利用大小颗粒之间的相互填充,尽量将所有缝隙填实,将颗粒骨料之间的缝隙中的空气排出,形成真空密闭体,即利用马德堡半球原理,形成真空石,本发明的真空石强度不取决于粘结剂的粘结强度,而是由填充的密实程度决定,可以有效的提高真空石的强度。本发明中的液体填充剂仅与细粒径固体颗粒混合,因此使用量较小,不仅环保,而且方便搅拌加工。
附图说明
图1是本发明的结构示意图。
具体实施方式
为清楚的说明本发明中的方案,下面给出优选的实施例并结合附图详细说明。以下的说明本质上仅仅是示例性的而并不是为了限制本公开的应用或用途。应当理解的是,在全部的附图中,对应的附图标记表示相同或对应的部件和特征。
参见图1,本发明提供的一种免烧结的填充式真空石,所述真空石包括不同粒径的颗粒骨料2和基准体积的填充单元体1,所述填充单元体1由细粒径固体颗粒填充料11和液体填充剂制成,所述固体颗粒填充料11的表面具有由所述液体填充剂填充形成的柔性液体填充膜12,各粒径的所述颗 粒骨料2互相填充贴合,所述颗粒骨料2之间的缝隙填充有所述填充单元体1,形成真空密闭体。
本发明中的填充单元体1,是将细粒径固体颗粒填充料11与液体填充剂混合,使所述固体颗粒填充料的表面形成柔性液体填充膜12;本发明中的细粒径固体颗粒填充料为最小粒径填充单元,所述柔性液体填充膜12具有外形可塑特性,在填充过程中能够根据缝隙的大小变化形状,从而适用大小不同的缝隙,将缝隙填充密实。
本发明将不同粒径的颗粒骨料2相互填充,大粒径颗粒骨料相互接近贴合,小粒径颗粒骨料填充大粒径颗粒骨料之间的缝隙,各粒径颗粒骨料之间的缝隙由填充单元体填充,所述填充单元体在填充的过程中,其表面的柔性液体填充膜根据缝隙的大小形状发生变形,从而尽可能将所有缝隙均填充密实,排出缝隙中的空气。本发明利用马德堡半球的原理制备出真空石,该真空石更接近于自然界中天然石材,真空石的整体性能也接近于天然石材。
现有技术中的合成石均是利用粘结剂将各粒径的颗粒骨料粘结在一起,不仅合成石的强度不高,而且不够环保。本发明的真空石是利用大气压强将各粒径颗粒骨料压在一起,强度更高,也更环保。本发明提出的填充概念是指各粒径颗粒骨料相互运动贴合,并由次一级粒径的颗粒骨料填充大一级粒径的颗粒骨料缝隙,最终由填充单元体完成所有缝隙的填充。本发明的真空石不同于现有技术中的合成石。本发明为了实现填充目的,各粒径颗粒骨料不与液体填充剂混合,各粒径颗粒骨料能够更好的相互贴合,也降低了液体填充剂的使用量。所述液体填充剂只与细粒径固体颗粒填充料混合,制成最小粒径的基准体积填充单元体,制备完成的所述填充单元体再用于颗粒 骨料的混合,使所述填充单元体包裹各粒径的颗粒骨料,包裹填充单元体的颗粒骨料在成型过程中能够更好的相互填充,它们之间的缝隙则由填充单元体填充,最终形成真空密闭体。若各粒径颗粒骨料表面包裹粘结剂,则在压制过程中,细粒径颗粒骨料难以填充进颗粒骨料的缝隙中。粘结剂使用过多,在压制过程中,多余的粘结剂很难从合成石排出,最终形成的就是由粘结剂粘结形成的合成石结构,粘结剂的粘结强度决定了合成石的强度。同时,本发明也无需对真空石进行烧结,是一种免烧结产品,更加环保。因此,本发明提出的真空石是一种全新产品。
本发明中的所述颗粒骨料在真空力和高频重锤拍击力的合力作用下互相运动填充,并将所述填充单元体填充到各所述颗粒骨料的缝隙中。本发明中真空力和重锤拍击力是由发明人所拥有的重锤拍击式合成石成型机设备实现的,参见中国专利申请号为201510026692.1的发明专利申请。
本发明的真空石采用以下制备工艺制得,该制备工艺包括以下步骤,
制备填充单元体,将细粒径固体颗粒填充料与液体填充剂混合,使所述固体颗粒填充料的表面形成柔性液体填充膜;本发明中的细粒径固体颗粒填充料为最小粒径填充单元,所述柔性液体填充膜具有外形可塑特性,在填充过程中能够根据缝隙的大小变化形状,从而适用大小不同的缝隙,将缝隙填充密实。
混料,将不同粒径的颗粒骨料与所述填充单元体混合,制成混合料;
成型,所述颗粒骨料在真空力和重锤拍击力的合力作用下互相运动填充,并将所述填充单元体填充到各所述颗粒骨料的缝隙中,形成真空密闭体。本发明中真空力和重锤拍击力是由发明人所拥有的重锤拍击式合成石成型机设备实现的,参见中国专利申请号为201510026692.1的发明专利申请。 利用该设备可以将不同粒径的颗粒骨料相互填充,大粒径颗粒骨料相互接近贴合,小粒径颗粒骨料填充大粒径颗粒骨料之间的缝隙,各粒径颗粒骨料之间的缝隙由填充单元体填充,所述填充单元体在填充的过程中,其表面的柔性液体填充膜根据缝隙的大小形状发生变形,从而尽可能将所有缝隙均填充密实,排出缝隙中的空气。本发明利用马德堡半球的原理制备出真空石,该真空石更接近于自然界中天然石材,真空石的整体性能也接近于天然石材。本发明提出的制备工艺是一种全新工艺。
参见图1,在本发明给出的上述实施例中进一步包括,所述固体颗粒填充料与所述液体填充剂的用量由以下条件确定:
Q液体=(ρ固体颗粒压实)/ρ固体×1cm3×ρ液体
Q固体=ρ颗粒压实×1cm3
式中:Q液体为用1吨的压力对一平米厘米面积的填充单元体进行施压,最终获得一立方厘米的填充单元体中的液体填充剂基准用量 单位g,该参数是作为液体填充剂所占比例的参考数值,即最佳量。实际在制备过程中,该参数为选料提供了参考值,通过上述公式确定了该参数的数值,根据制备填充单元体的体积换算相应用量。该用量可以在参考值的基础上进行调整,从而简化各物料的配比工作,降低物料损耗。
Q固体为用1吨的压力对一平米厘米面积的填充单元体进行施压,最终获得一立方厘米的填充单元体中的固体颗粒填充料基准用量 单位g该参数是作为固体颗粒填充料所占比例的参考数值,即最佳量。实际在制备过程中,该参数为选料提供了参考值,通过上述公式确定了该参数的数值,根据制备填充单元体的体积换算相应用量。该用量可以在参考值的基础上进行调整,从而简化各物料的配比工作,降低物料损耗。
ρ固体为固体颗粒填充料的实际密度单位g/cm3,该参数由所采用固体颗粒的材质决定,若采用多种不同材质的固体颗粒,则通过各不同材质固体颗粒所占比例进行计算,最终得出。比如石英石的实际密度为2.65g/cm3
ρ颗粒压实为用1吨的压力对一平米厘米面积固体颗粒填充料进行施压,最终获得一立方厘米的固体颗粒填充料的质量 单位g/cm3,该参数可以通过实验获得,采取不同材质的固体颗粒填充料分别压制,然后称重来获得。
ρ液体为液体填充剂的实际密度 单位g/cm3,该参数由所采用的液体填充剂来决定,比如不饱和树脂的密度在1.4-2.2g/cm3
在本发明给出的上述实施例中,如果采用石英石作为细粒径固体颗粒填充料,采用不饱和树脂作为液体填充剂。首先,对细粒径石英石按照一平米厘米用1吨的压力标准进行压制,压制完成后,取一立方厘米进行称重,最终获得参数为ρ颗粒压实=1.91g/cm3。因此,Q固体=ρ颗粒压实×1cm3=1.91g。Q液体=(ρ固体颗粒压实)/ρ固体×1cm3×ρ液体=(2.65-1.91)/2.65×1×2=0.56g。即参考值是压制一个立方厘米的填充单元体需要石英石1.91g,不饱和树脂0.56g,按照该比例关系进行配比即可。
参见图1,在本发明给出的上述实施例中进一步包括,所述颗粒骨料与所述填充单元体的用量由以下条件确定:
Q单元体=(ρ骨料骨料压实)/ρ骨料×1cm3×ρ单元体
Q骨料=ρ骨料压实×1cm3
式中:Q单元体为一立方厘米的真空石中的填充单元体基准用量 单位g,该参数是作为填充单元体所占比例的参考数值,即最佳量。实际在制备过程中,该参数为选料提供了参考值,通过上述公式确定了该参数的数值,根据制备真空石的体积换算相应用量。该用量可以在参考值的基础上进行调整, 从而简化各物料的配比工作,降低物料损耗。
Q骨料为一立方厘米的真空石中的颗粒骨料基准用量 单位g,该参数是作为颗粒骨料所占比例的参考数值,即最佳量。实际在制备过程中,该参数为选料提供了参考值,通过上述公式确定了该参数的数值,根据制备真空石的体积换算相应用量。该用量可以在参考值的基础上进行调整,从而简化各物料的配比工作,降低物料损耗。
ρ骨料为颗粒骨料的实际密度 单位g/cm3,该参数由所采用颗粒骨料的材质决定,若采用多种不同材质的颗粒骨料时,则通过各不同材质颗粒骨料所占比例进行计算,最终得出。比如石英石的实际密度为2.65g/cm3
ρ骨料压实为用1吨的压力对一平米厘米面积的颗粒骨料进行施压,最终获得一立方厘米的颗粒骨料的质量 单位g/cm3,该参数可以通过实验获得,采取不同材质的颗粒骨料分别压制,然后称重来获得。
ρ单元体为填充单元体的实际密度 单位g/cm3该参数是以下公式确定:
ρ单元体=(Q液体+Q固体)/1cm3
。其中Q液体和Q固体与前述内容一致。
在本发明给出的上述实施例中,如果采用石英石作为颗粒骨料。首先,将不同粒径的颗粒骨料混合按照一平方厘米用1吨的压力标准进行压制,压制完成后,取一立方厘米的颗粒骨料进行称重,最终获得参数ρ骨料压实=2.0g/cm3。Q骨料=ρ骨料压实×1cm3=2.0g。ρ单元体=(0.56g+1.91)/1=2.47g/cm3,Q单元体=(ρ骨料骨料压实)/ρ骨料×1cm3×ρ单元体=(2.65-2.0)/2.65×1×2.47=0.60g。即参考值是压制一个立方厘米的真空石需要填充单元体0.60g,石英石颗粒骨料2.0g,按照该比例关系进行配比即可。
参见图1,在本发明给出的上述实施例中进一步包括,所述固体颗粒填充料与所述液体填充剂通过搅拌混合,重量比例为2-6:1。通过上述填充单元体各组分公式得到参考值,可以在该比例关系内进行调整,只要满足该比例关系均可以。该比例关系也可以对公式计算的参考值进行验证,确定是否符合要求。本实施例由上述公式确定的比例为3.4:1。
参见图1,在本发明给出的上述实施例中进一步包括,在成型步骤之前还包括有布料,将所述混合料布置成板状结构。布料可以由布料机进行布料,布料时要使得填充单元体与颗粒骨料分布均匀,利于成型步骤的填充运动。
参见图1,在本发明给出的上述实施例中进一步包括,在成型步骤之后还包括有固化,将所述液体填充剂由液态变为固态。本发明所述的液体填充剂是指具有由液态转化为固态特性的液体,这种液体还需要在常态情况下长期保持固态,从而消除缝隙中的空气,使空气不易进入缝隙中,比如树脂等。
参见图1,在本发明给出的上述实施例中进一步包括,所述固体颗粒填充料的粒径为0.1mm-0.01mm,本实施例采用0.05mm,所述颗粒骨料的粒径为0.1mm以上。本发明中的颗粒骨料的粒径是按照需要选择不同粒径的颗粒骨料,0.1mm以上并不是没有限制的,所述颗粒骨料粒径的选择适用于本领域各种不同材质骨料大小,本领域技术人员可以按照真空石的具体结构来进行选择。
参见图1,在本发明给出的上述实施例中进一步包括,所述液体填充剂可以具有由液态变为固态的特性,包括有机类树脂和无机类树脂。所述有机类树脂包括亚克力树脂、不饱和树脂、丙烯类树脂或环氧树脂,无机类树脂包括大豆基树脂或橡胶类树脂。这些液体填充剂具有由液体向固态转化的特性,并能够满足真空石的需要。本发明所述的液体填充剂是指具有由液态 转化为固态特性的液体,这种液体还需要在常态情况下长期保持固态,从而消除缝隙中的空气,使空气不易进入缝隙中,比如上述的各种树脂等,这些树脂自身或在催化剂的作用下由液态转化为固态。
综上所述,以上所述内容仅为本发明的实施例,仅用于说明本发明的原理,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种免烧结的填充式真空石,其特征在于:所述真空石包括不同粒径的颗粒骨料和基准体积的填充单元体,所述填充单元体由细粒径固体颗粒填充料和液体填充剂制成,所述固体颗粒填充料的表面具有由所述液体填充剂填充形成的柔性液体填充膜,各粒径的所述颗粒骨料互相填充贴合,所述颗粒骨料之间的缝隙填充有所述填充单元体,形成真空密闭体。
  2. 如权利要求1所述的一种免烧结的填充式真空石,其特征在于:所述颗粒骨料在真空力和高频重锤拍击力的合力作用下互相运动填充,并将所述填充单元体填充到各所述颗粒骨料的缝隙中。
  3. 如权利要求1所述的一种免烧结的填充式真空石,其特征在于:所述固体颗粒填充料与所述液体填充剂的用量由以下条件确定:
    Q液体=(ρ固体颗粒压实)/ρ固体×1cm3×ρ液体
    Q固体=ρ颗粒压实×1cm3
    式中:Q液体为用1吨的压力对一平米厘米面积的填充单元体进行施压,最终获得一立方厘米的填充单元体中的液体填充剂基准用量单位g
    Q固体为用1吨的压力对一平米厘米面积的填充单元体进行施压,最终获得一立方厘米的填充单元体中的固体颗粒填充料基准用量单位g
    ρ固体为固体颗粒填充料的实际密度单位g/cm3
    ρ颗粒压实为用1吨的压力对一平米厘米面积固体颗粒填充料进行施压,最终获得一立方厘米的固体颗粒填充料的质量单位g/cm3
    ρ液体为液体填充剂的实际密度单位g/cm3
  4. 如权利要求3所述的一种免烧结的填充式真空石,其特征在于:所述颗粒骨料与所述填充单元体的用量由以下条件确定:
    Q单元体=(ρ骨料骨料压实)/ρ骨料×1cm3×ρ单元体
    Q骨料=ρ骨料压实×1cm3
    式中:Q单元体为一立方厘米的真空石中的填充单元体基准用量单位g
    Q骨料为一立方厘米的真空石中的颗粒骨料基准用量单位g
    ρ骨料为颗粒骨料的实际密度单位g/cm3
    ρ骨料压实为用1吨的压力对一平米厘米面积的颗粒骨料进行施压,最终获得一立方厘米的颗粒骨料的质量单位g/cm3
    ρ单元体为填充单元体的实际密度单位g/cm3
    ρ单元体=(Q液体+Q固体)/1cm3
  5. 如权利要求1所述的一种免烧结的填充式真空石,其特征在于:所述固体颗粒填充料与所述液体填充剂通过搅拌混合,重量比例为2-6:1。
  6. 如权利要求1所述的一种免烧结的填充式真空石,其特征在于:所述固体颗粒填充料的粒径为0.1mm-0.01mm,所述颗粒骨料的粒径为0.1mm以上。
  7. 如权利要求1所述的一种免烧结的填充式真空石,其特征在于:所述液体填充剂可以具有由液态变为固态的特性,包括有机类树脂和无机类树脂。
  8. 如权利要求7所述的一种免烧结的填充式真空石,其特征在于:所述有机类树脂包括亚克力树脂、不饱和树脂、丙烯类树脂或环氧树脂,所述无机类树脂包括大豆基树脂或橡胶类树脂。
  9. 一种免烧结的填充式真空石制备工艺,其特征在于:包括以下步骤,
    制备填充单元体,将细粒径固体颗粒填充料与液体填充剂混合,使所述 固体颗粒填充料的表面形成柔性液体填充膜;
    混料,将不同粒径的颗粒骨料与所述填充单元体混合,制成混合料;
    成型,所述颗粒骨料在真空力和重锤拍击力的合力作用下互相运动填充,并将所述填充单元体填充到各所述颗粒骨料的缝隙中,形成真空密闭体。
  10. 如权利要求9所述的一种免烧结的填充式真空石制备工艺,其特征在于:所述固体颗粒填充料与所述液体填充剂的用量由以下条件确定:
    Q液体=(ρ固体颗粒压实)/ρ固体×1cm3×ρ液体
    Q固体=ρ颗粒压实×1cm3
    式中:Q液体为用1吨的压力对一平米厘米面积的填充单元体进行施压,最终获得一立方厘米的填充单元体中的液体填充剂基准用量单位g
    Q固体为用1吨的压力对一平米厘米面积的填充单元体进行施压,最终获得一立方厘米的填充单元体中的固体颗粒填充料基准用量单位g
    ρ固体为固体颗粒填充料的实际密度单位g/cm3
    ρ颗粒压实为用1吨的压力对一平米厘米面积固体颗粒填充料进行施压,最终获得一立方厘米的固体颗粒填充料的质量单位g/cm3
    ρ液体为液体填充剂的实际密度单位g/cm3
  11. 如权利要求10所述的一种免烧结的填充式真空石制备工艺,其特征在于:所述颗粒骨料与所述填充单元体的用量由以下条件确定:
    Q单元体=(ρ骨料骨料压实)/ρ骨料×1cm3×ρ单元体
    Q骨料=ρ骨料压实×1cm3
    式中:Q单元体为一立方厘米的真空石中的填充单元体基准用量单位g
    Q骨料为一立方厘米的真空石中的颗粒骨料基准用量单位g
    ρ骨料为颗粒骨料的实际密度单位g/cm3
    ρ骨料压实为用1吨的压力对一平米厘米面积的颗粒骨料进行施压,最终获得一立方厘米的颗粒骨料的质量单位g/cm3
    ρ单元体为填充单元体的实际密度单位g/cm3
    ρ单元体=(Q液体+Q固体)/1cm3
  12. 如权利要求9所述的一种免烧结的填充式真空石制备工艺,其特征在于:所述固体颗粒填充料与所述液体填充剂通过搅拌混合,重量比例为2-6:1。
  13. 如权利要求9所述的一种免烧结的填充式真空石制备工艺,其特征在于:在成型步骤之前还包括有布料,将所述混合料布置成板状结构。
  14. 如权利要求9所述的一种免烧结的填充式真空石制备工艺,其特征在于:在成型步骤之后还包括有固化,将所述液体填充剂由液态变为固态。
  15. 如权利要求9所述的一种免烧结的填充式真空石制备工艺,其特征在于:所述固体颗粒填充料的粒径为0.1mm-0.01mm,所述颗粒骨料的粒径为0.1mm以上。
  16. 如权利要求9所述的一种免烧结的填充式真空石制备工艺,其特征在于:所述液体填充剂可以具有由液态变为固态的特性,包括有机类树脂和无机类树脂。
  17. 如权利要求16所述的一种免烧结的填充式真空石制备工艺,其特征在于:所述有机类树脂包括亚克力树脂、不饱和树脂、丙烯类树脂或环氧树脂,所述无机类树脂包括大豆基树脂或橡胶类树脂。
PCT/CN2017/107213 2016-11-29 2017-10-23 一种免烧结的填充式真空石和制备工艺 WO2018099204A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201611075533.1 2016-11-29
CN201611075153.8 2016-11-29
CN201611075533.1A CN108117303A (zh) 2016-11-29 2016-11-29 一种免烧结的填充式真空石
CN201611075153.8A CN108117301A (zh) 2016-11-29 2016-11-29 一种免烧结的填充式真空石制备工艺

Publications (1)

Publication Number Publication Date
WO2018099204A1 true WO2018099204A1 (zh) 2018-06-07

Family

ID=62241149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107213 WO2018099204A1 (zh) 2016-11-29 2017-10-23 一种免烧结的填充式真空石和制备工艺

Country Status (1)

Country Link
WO (1) WO2018099204A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109605766A (zh) * 2018-11-05 2019-04-12 湖北冠泰建材有限公司 曲线纹理人造石英板生产装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255947A (ja) * 2004-03-15 2005-09-22 Sankyo Seifun Kk 人工大理石及び樹脂組成物
CN101480810A (zh) * 2009-01-21 2009-07-15 上海贵雅橱柜有限公司 一种人造石英石的制备方法
CN102229189A (zh) * 2011-06-21 2011-11-02 云浮市新富云岗石有限公司 一种方料型人造石英石板材及其制备方法
US20140179847A1 (en) * 2012-12-20 2014-06-26 Cheil Industries Inc. Artificial Silica Marble Having Amorphous Patterns and Method for Preparing the Same
CN104003653A (zh) * 2014-05-20 2014-08-27 深圳市国大长兴科技有限公司 钢化人造石英石及其制备方法
CN104276795A (zh) * 2013-07-01 2015-01-14 万峰石材科技股份有限公司 一种高强度复合型无机人造石及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255947A (ja) * 2004-03-15 2005-09-22 Sankyo Seifun Kk 人工大理石及び樹脂組成物
CN101480810A (zh) * 2009-01-21 2009-07-15 上海贵雅橱柜有限公司 一种人造石英石的制备方法
CN102229189A (zh) * 2011-06-21 2011-11-02 云浮市新富云岗石有限公司 一种方料型人造石英石板材及其制备方法
US20140179847A1 (en) * 2012-12-20 2014-06-26 Cheil Industries Inc. Artificial Silica Marble Having Amorphous Patterns and Method for Preparing the Same
CN104276795A (zh) * 2013-07-01 2015-01-14 万峰石材科技股份有限公司 一种高强度复合型无机人造石及其制备方法
CN104003653A (zh) * 2014-05-20 2014-08-27 深圳市国大长兴科技有限公司 钢化人造石英石及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109605766A (zh) * 2018-11-05 2019-04-12 湖北冠泰建材有限公司 曲线纹理人造石英板生产装置
CN109605766B (zh) * 2018-11-05 2021-02-05 湖北冠泰建材有限公司 曲线纹理人造石英板生产装置

Similar Documents

Publication Publication Date Title
CN108117301A (zh) 一种免烧结的填充式真空石制备工艺
CN102049809B (zh) 一种人造石英石板材的制备工艺
CN109265072B (zh) 一种多层人造石及其制备方法
CN104402306B (zh) 人造石英石板及其制备方法
CN107226662A (zh) 一种大掺量高炉重矿渣复合砂基透水砖及其高效制备方法
KR102279176B1 (ko) 가공 복합 스톤 슬래브를 형성하기 위한 생산 플랜트
CN104786138B (zh) 一种树脂结合剂型金刚石研磨垫及其制备方法
CN109238799B (zh) 裂缝结构精细表征的碳酸盐岩板状岩心制备方法
WO2018099204A1 (zh) 一种免烧结的填充式真空石和制备工艺
CN101164958A (zh) 微晶型合成石
JP5443611B2 (ja) 人造石の製造方法及び製造装置
CN101200088A (zh) 仿真纹人造石制造方法
JP3683503B2 (ja) 人工石材の製造方法及び接合方法
CN108117302A (zh) 一种用于真空石中的混料工艺及填充单元体
CN107935457A (zh) 一种纳米石英石的制备方法
CN109972803A (zh) 一种内嵌安装件的真空石
CN108117303A (zh) 一种免烧结的填充式真空石
CN109972810A (zh) 一种真空石安装系统和安装工艺
CN108296995B (zh) 一种金刚石磨片及其制备方法
CN107199521A (zh) 一种利用废料制作磨块的工艺
CN107473628A (zh) 一种抗压人造石
CN109049281A (zh) 一种具有多色图案的真空石及制备工艺
CN104858800B (zh) 一种新型砂轮及其生产方法
CN113526915B (zh) 用于人造石填料及粘合剂配比计算的装置和计算的方法
KR20130003900A (ko) 불포화폴리에스테르계 인조석 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876795

Country of ref document: EP

Kind code of ref document: A1