WO2018099025A1 - 储液器和具有其的压缩机 - Google Patents

储液器和具有其的压缩机 Download PDF

Info

Publication number
WO2018099025A1
WO2018099025A1 PCT/CN2017/086703 CN2017086703W WO2018099025A1 WO 2018099025 A1 WO2018099025 A1 WO 2018099025A1 CN 2017086703 W CN2017086703 W CN 2017086703W WO 2018099025 A1 WO2018099025 A1 WO 2018099025A1
Authority
WO
WIPO (PCT)
Prior art keywords
universal
pipe
cross
tube
cup
Prior art date
Application number
PCT/CN2017/086703
Other languages
English (en)
French (fr)
Inventor
谭琴
宋鹏杰
李盖敏
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Publication of WO2018099025A1 publication Critical patent/WO2018099025A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present invention relates to the field of refrigeration, and more particularly to an accumulator and a compressor having the same.
  • the compressor volumetric efficiency first increases and then decreases sharply, and there is a maximum volumetric efficiency rotational speed point, and the volumetric efficiency attenuates the rotational speed point.
  • the upper cylinder suction pipe and the lower cylinder suction pipe are affected by the other side when inhaling respectively, and the shorter the gas passage length from the connection point of the two pipes to the cylinder, the maximum volumetric efficiency The higher the speed point.
  • the upper cylinder suction pipe and the lower cylinder suction pipe communicate through the inner space of the cup body, and the shorter the gas passage distance from the cylinder of the two suction pipe connections, but the liquid storage of the liquid storage device without increasing the inner diameter of the cup body The smaller the capacity. Therefore, when the maximum design speed of the compressor is increased, the design contradiction between the volumetric efficiency and the liquid storage capacity of the accumulator is apt to occur.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the present invention proposes a liquid storage device which, on the basis of ensuring the liquid storage capacity, can ensure a high volumetric efficiency of the compressor when operating at a high rotational speed, and has a simple structure, is easy to realize a manufacturing process, and has low manufacturing cost.
  • the invention also proposes a compressor comprising the above described reservoir.
  • An accumulator includes: a cup body defining a separation space; an intake pipe disposed at a top of the cup body and communicating with the separation space; an intake pipe a set, the suction pipe set includes a universal pipe and a plurality of connecting pipes, the universal pipe is disposed in the cup body, and a first end of each of the connecting pipes is disposed on the universal pipe and is universal
  • the tubes are in communication, and the second end of each of the connecting tubes extends out of the cup.
  • a universal pipe is disposed in the cup body of the liquid storage device by providing the suction pipe group, thereby ensuring that the compressor has a high speed at a high speed operation on the basis of ensuring the liquid storage capacity.
  • the volumetric efficiency is simple, the manufacturing process is easy to implement, and the manufacturing cost is low.
  • each of the connecting tubes projects into the universal tube.
  • each of the connecting tubes is attached to a bottom wall of the universal tube.
  • a peripheral wall of each of the connecting tubes is connected to an outer peripheral wall of the universal tube.
  • the cross section of the universal tube is formed as a circle, an ellipse or a square.
  • the universal tube has a cross-sectional area of S0, and the sum of the cross-sectional areas of the plurality of connecting tubes is S1, wherein S0 and S1 satisfy the following relationship: 0.6 S1 ⁇ S0.
  • the cup body has a cross-sectional area of S
  • the general-purpose tube has a cross-sectional area of S0, wherein S and S0 satisfy the following relationship: S0 ⁇ 0.8 ⁇ S.
  • the cup body has a cross-sectional area S
  • the general-purpose tube has a cross-sectional area of S0
  • the sum of the cross-sectional areas of the plurality of connecting tubes is S1, wherein S, S0, and S1 satisfy the following relationship: 0.75 ⁇ S1 ⁇ S0 ⁇ 0.8 ⁇ S.
  • the connecting tubes are two.
  • a compressor according to an embodiment of the present invention includes the above-described accumulator.
  • the compressor of the embodiment of the present invention by providing the accumulator according to the above embodiment of the invention, on the basis of ensuring the liquid storage capacity, the compressor is ensured to have a high volumetric efficiency at a high speed operation, and the structure is simple. It is easy to implement the manufacturing process and has low manufacturing cost.
  • FIG. 1 is a schematic illustration of a reservoir in accordance with some embodiments of the present invention.
  • FIG. 2 is a schematic view of a reservoir in accordance with further embodiments of the present invention.
  • FIG. 3 is a schematic illustration of a suction tube set in accordance with some embodiments of the present invention.
  • FIG. 4 is a schematic view of a suction pipe set in accordance with further embodiments of the present invention.
  • FIG. 5 is a schematic illustration of a suction tube set in accordance with further embodiments of the present invention.
  • Figure 6 is a schematic cross-sectional view of a suction tube set in accordance with some embodiments of the present invention.
  • Figure 7 is a schematic cross-sectional view of a suction pipe set in accordance with further embodiments of the present invention.
  • Figure 8 is a schematic cross-sectional view of a suction pipe set in accordance with still further embodiments of the present invention.
  • FIG. 9 is a schematic cross-sectional view of a suction tube set in accordance with still further embodiments of the present invention.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • An accumulator 100 according to an embodiment of the present invention which is applicable to a compressor including a compressor body connected to the accumulator 100, is described below with reference to Figs.
  • an accumulator 100 includes a cup body 1, an intake pipe 2, and an intake pipe group 3.
  • the cup body 1 defines a separation space a, and the intake pipe 2 is provided at the top of the cup body 1 and communicates with the separation space a.
  • the suction pipe set 3 includes a universal pipe 30 and a plurality of connecting pipes 31.
  • the universal pipe 30 is disposed in the cup body 1.
  • the first end of each connecting pipe 31 is disposed on the universal pipe 30 and communicates with the universal pipe 30, each The second end of the connecting tube 31 projects out of the cup 1.
  • the compressor body is provided with a plurality of air return ports, and the plurality of air return ports are respectively connected in one-to-one correspondence with the second ends of the plurality of connecting pipes 31, and the refrigerant in each connecting pipe 31 flows to a corresponding one of the air return ports.
  • the refrigerant When the external refrigerant enters the accumulator 100 through the intake pipe 2, the refrigerant is gas-liquid separated in the separation space a of the accumulator 100, and the separated liquid refrigerant settles to the bottom of the cup 1 and the common pipe 30.
  • the suction ends are separated to prevent the compressor from inhaling the liquid refrigerant to cause a liquid impact on the compressor and affect the reliability of the compressor operation.
  • the separated gaseous refrigerant enters the universal pipe 30, and the compressor draws gaseous refrigerant from the universal pipe 30 through a plurality of connecting pipes 31. Thereby, the mutual influence of the plurality of connecting pipes 31 between the refrigerants during the suction is reduced, and the compressor has a high volumetric efficiency at high speed operation.
  • the gas passage of the gaseous refrigerant to the cylinder of the compressor can be increased, and the liquid storage capacity of the accumulator 100 is further improved.
  • the common pipe 30 is disposed in the cup 1 of the accumulator 100 by providing the suction pipe set 3, thereby ensuring the high speed of the compressor on the basis of ensuring the liquid storage capacity. It has high volumetric efficiency during operation, and has a simple structure, easy manufacturing process, and low manufacturing cost.
  • each connecting tube 31 extends into the universal tube 30. Therefore, it can be seen that the connection mode of the connecting pipe 31 and the universal pipe 30 is simple, the manufacturing is convenient, and the production efficiency of the accumulator 100 is high.
  • each connecting tube 31 is coupled to the bottom wall of the universal tube 30. Therefore, the connection mode of the connecting pipe 31 and the universal pipe 30 is simple, the manufacturing is convenient, and the production efficiency of the accumulator 100 is high.
  • each connecting pipe 31 is connected to the outer peripheral wall of the universal pipe 30. Therefore, the connection mode of the connecting pipe 31 and the universal pipe 30 is simple, the manufacturing is convenient, and the production efficiency of the accumulator 100 is high.
  • the cross-section of the universal tube 30 is formed as a circle, an ellipse or a square. Therefore, the structure of the universal tube 30 is simple and easy to manufacture. It can be understood that the shape of the cross section of the universal pipe 30 is not limited thereto. For example, as shown in FIG. 9, the cross section of the universal pipe 30 may also be in the shape of a racetrack, as long as the compressor can be guaranteed to operate at a high rotational speed. The high volumetric efficiency does not affect the liquid storage capacity of the accumulator 100, and the shape of the cross section of the universal tube 30 can be selected according to actual conditions.
  • the cross section of the connecting pipe 31 is formed in a circular shape, an elliptical shape or a square shape.
  • the structure of the connecting pipe 31 is simple and the manufacturing is convenient.
  • the shape of the cross section of the connecting pipe 31 is not limited thereto, and may be, for example, a polygon, a racetrack shape or the like as long as it can ensure a high volumetric efficiency of the compressor at high rotational speed.
  • the universal tube 30 is formed as a unitary tube.
  • the structure is simple and the manufacturing is convenient. It can be understood that the universal tube 30 can also be formed as a segmented tube, a straight tube or a curved tube, etc., as long as the compressor can ensure high volumetric efficiency at high speed operation without affecting the liquid storage of the liquid storage device 100.
  • Ability can be.
  • the connecting tube 31 is formed as an integral tube.
  • the structure is simple and the manufacturing is convenient.
  • the connecting pipe 31 can also be formed as a segmented pipe, a straight pipe or a curved pipe, etc., as long as the compressor can ensure a high volumetric efficiency when operating at a high rotational speed, and ensure that the connecting pipe 31 inhales each other. The impact is small.
  • the connecting pipe includes a straight pipe and a bent pipe, and the straight pipe and the bent pipe are weldedly connected at the bottom wall of the cup body.
  • the installation of the connecting pipe is facilitated, and the industrialization of the connecting pipe is easy to be realized.
  • the cross-sectional area of the universal tube 30 is S0, and the sum of the cross-sectional areas of the plurality of connecting tubes 31 is S1.
  • the inventors discovered through experimentation that when the cross-sectional area S0 of the universal tube 30 and the plurality of connections The sum S1 of the cross-sectional area of the tube 31 satisfies: 0.6 S1 ⁇ S0, not only can ensure high volumetric efficiency of the compressor at high speed operation, but also can reduce the mutual influence of different connecting tubes 31 when inhaling, and reduce Inspiratory flow resistance loss.
  • S0 and S1 satisfy the following relationship: 0.6 S1 ⁇ S0.
  • the cross-sectional area of the cup 1 is S
  • the cross-sectional area of the universal tube 30 is S0.
  • S0 When ⁇ 0.8 ⁇ S, the liquid storage capacity of the accumulator 100 can be improved to some extent, and the compressor has a high volumetric efficiency when operating at a high rotational speed.
  • S and S0 satisfy the following relationship: S0 ⁇ 0.8 x S.
  • the inventors have found through further experiments that the cross-sectional area S of the cup 1 , the cross-sectional area S0 of the universal tube 30, and the total cross-sectional area S1 of the plurality of connecting tubes 31 satisfy: 0.75 ⁇ S1 ⁇ S0 ⁇ 0.8 ⁇ S
  • the liquid storage capacity of the accumulator 100 is improved not only to a certain extent, but also the volumetric efficiency of the compressor at high rotational speed is optimized, and the suction flow resistance loss is effectively reduced. Therefore, in a preferred example of the present invention, S S0 and S1 satisfy the following relationship: 0.75 ⁇ S1 ⁇ S0 ⁇ 0.8 ⁇ S.
  • the universal tube 30 and the connecting tube 31 are integrally formed.
  • the suction pipe group 3 is made easy to manufacture, and the production efficiency of the accumulator 100 is improved.
  • a compressor according to an embodiment of the present invention includes the above-described accumulator 100.
  • the compressor of the embodiment of the present invention by providing the accumulator 100 according to the above-described embodiment of the invention, it is ensured that the compressor has a high volumetric efficiency at a high speed operation and a simple structure on the basis of ensuring the liquid storage capacity. Easy to implement manufacturing process and low manufacturing cost.
  • the accumulator 100 in the embodiment of the present invention comprises: a cup body 1 , an intake pipe 2 and an intake pipe group 3 .
  • the cup body 1 defines a separation space a, and the intake pipe 2 is provided at the top of the cup body 1 and communicates with the separation space a.
  • the suction pipe set 3 includes a universal pipe 30 and two connecting pipes 31, and the universal pipe 30 and the two connecting pipes 31 are integrally formed.
  • the universal pipe 30 is formed as a straight pipe, and the two connecting pipes 31 are respectively formed as a bent pipe.
  • the universal tube 30 is disposed in the cup 1 and the cross section of the universal tube 30 is formed in a circular shape.
  • a cross section of each connecting pipe 31 is formed in a circular shape, and a first end of each connecting pipe 31 projects into the universal pipe 30, and a second end of each connecting pipe 31 projects from the cup body 1 to the compressor body The air return port is connected.
  • the cross-sectional area of the cup 1 is S
  • the cross-sectional area of the universal tube 30 is S0
  • the sum of the cross-sectional areas of the plurality of connecting tubes 31 is S1, wherein S, S0 and S1 satisfy the following relationship: 0.75 ⁇ S1 ⁇ S0 ⁇ 0.8 ⁇ S.
  • the accumulator 100 in the embodiment of the present invention comprises: a cup body 1, an intake pipe 2 and an intake pipe group 3.
  • the cup body 1 defines a separation space a, and the intake pipe 2 is provided at the top of the cup body 1 and communicates with the separation space a.
  • the suction pipe set 3 includes a universal pipe 30 and two connecting pipes 31.
  • the universal tube 30 is formed as a straight tube, and each of the connecting tubes 31 includes a straight tube and a bent tube.
  • the universal pipe 30 and the straight pipes of the two connecting pipes 31 are formed as an integrally formed piece, and the bent pipe portion of each connecting pipe 31 and the straight pipe portion are weldedly connected at the bottom wall of the cup body 1.
  • the universal tube 30 is disposed in the cup 1 and the cross section of the universal tube 30 is formed in a circular shape.
  • the cross section of each of the connecting tubes 31 is formed in a circular shape, and the bent portion of each of the connecting tubes 31 protrudes from the cup body 1 to be connected to the air return port of the compressor body.
  • the cross-sectional area of the cup 1 is S
  • the cross-sectional area of the universal tube 30 is S0
  • the sum of the cross-sectional areas of the plurality of connecting tubes 31 is S1, wherein S, S0 and S1 satisfy the following relationship: 0.75 ⁇ S1 ⁇ S0 ⁇ 0.8 ⁇ S.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

储液器(100)和具有其的压缩机,储液器(100)包括:杯体(1),杯体(1)内限定出分离空间(a);进气管(2),进气管(2)设在杯体(1)的顶部且与分离空间(a)连通;吸气管组(3),吸气管组(3)包括通用管(30)和多个连接管(31),通用管(30)设在杯体(1)内,每个连接管(31)的第一端设在通用管(30)上且与通用管(30)连通,每个连接管(31)的第二端伸出杯体(1)。

Description

储液器和具有其的压缩机 技术领域
本发明涉及制冷领域,尤其涉及一种储液器和具有其的压缩机。
背景技术
在相关技术的旋转式压缩机中,随着压缩机转速的增加,压缩机容积效率先升高后急剧降低,存在最大容积效率转速点,既容积效率衰减转速点。而对于双缸旋转式压缩机的储液器,上缸吸气管和下缸吸气管在各自吸气时受对方影响,两管的连通处距离气缸的气体通道长度越短,最大容积效率转速点越大。同时上缸吸气管和下缸吸气管通过杯体内部空间连通,两吸气管连通处距离气缸的气体通道长度越短,但在不增加杯体内径情况下,储液器的储液容量越小。因此,当压缩机设计最高转速增加时,易出现容积效率和储液器储液能力的设计矛盾。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明提出一种储液器,在保证储液能力的基础上,能够保证压缩机在高转速运行时具有较高的容积效率,并且结构简单,易于实现制造工艺,制造成本低。
本发明还提出一种压缩机,包括上述的储液器。
根据本发明实施例的储液器,包括:杯体,所述杯体内限定出分离空间;进气管,所述进气管设在所述杯体的顶部且与所述分离空间连通;吸气管组,所述吸气管组包括通用管和多个连接管,所述通用管设在所述杯体内,每个所述连接管的第一端设在所述通用管上且与所述通用管连通,每个所述连接管的第二端伸出所述杯体。
根据本发明实施例的储液器,通过设置吸气管组,在储液器的杯体内设置通用管,从而在保证储液能力的基础上,保证了压缩机在高速运转时具有较高的容积效率,并且结构简单,易于实现制造工艺,制造成本低。
可选地,每个所述连接管的第一端伸入到所述通用管内。
可选地,每个所述连接管的第一端连接在所述通用管的底壁上。
可选地,每个所述连接管的外周壁与所述通用管的外周壁相连。
可选地,所述通用管的横截面形成为圆形、椭圆形或者方形。
根据本发明的一些实施例,所述通用管的横截面积为S0,所述多个连接管的横截面积总和为S1,其中S0和S1满足如下关系:0.6 S1<S0。
进一步地,所述杯体的横截面积为S,所述通用管的横截面积为S0,其中S和S0满足如下关系:S0<0.8×S。
进一步地,所述杯体的横截面积为S,所述通用管的横截面积为S0,所述多个连接管的横截面积总和为S1,其中S、S0和S1满足如下关系:0.75×S1<S0<0.8×S。
根据本发明的一些实施例,所述连接管为两个。
根据本发明实施例的压缩机,包括上述的储液器。
根据本发明实施例的压缩机,通过设置根据发明上述实施例的储液器,从而在保证储液能力的基础上,保证了压缩机在高速运转时具有较高的容积效率,并且结构简单,易于实现制造工艺,制造成本低。
附图说明
图1是根据本发明的一些实施例的储液器的示意图;
图2是根据本发明的另一些实施例的储液器的示意图;
图3是根据本发明的一些实施例的吸气管组的示意图;
图4是根据本发明的另一些实施例的吸气管组的示意图;
图5是根据本发明的再一些实施例的吸气管组的示意图;
图6是根据本发明的一些实施例的吸气管组的截面示意图;
图7是根据本发明的另一些实施例的吸气管组的截面示意图;
图8是根据本发明的再一些实施例的吸气管组的截面示意图;
图9是根据本发明的又一些实施例的吸气管组的截面示意图。
附图标记:
储液器100;
杯体1;分离空间a;进气管2;吸气管组3;通用管30;连接管31。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“上”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明 和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图9描述根据本发明实施例的储液器100,该储液器100可应用到压缩机中,压缩机包括与储液器100相连的压缩机本体。
如图1-图9所示,根据本发明实施例的储液器100,包括:杯体1、进气管2和吸气管组3。
杯体1内限定出分离空间a,进气管2设在杯体1的顶部且与分离空间a连通。吸气管组3包括通用管30和多个连接管31,通用管30设在杯体1内,每个连接管31的第一端设在通用管30上且与通用管30连通,每个连接管31的第二端伸出杯体1。
压缩机本体设有多个回气口,多个回气口分别与多个连接管31的第二端一一对应地相连,每个连接管31中的冷媒流向相应的一个回气口。
当外界冷媒通过进气管2进入到储液器100后,冷媒在储液器100的分离空间a内进行气液分离,分离出来的液态冷媒就会沉降到杯体1的底部而与通用管30的吸气端分离开,从而避免压缩机吸入液态冷媒对压缩机产生液击而影响压缩机工作的可靠性。分离出来的气态冷媒进入到通用管30中,压缩机通过多个连接管31从通用管30中吸取气态冷媒。从而减小了多个连接管31在吸气时冷媒之间的相互影响,保证了压缩机在高速运转时具有较高的容积效率。同时通过设置通用管30,可以增长气态冷媒流向压缩机的气缸的气体通道,进一步提高了储液器100的储液容量。
根据本发明实施例的储液器100,通过设置吸气管组3,在储液器100的杯体1内设置通用管30,从而在保证储液能力的基础上,保证了压缩机在高速运转时具有较高的容积效率,并且结构简单,易于实现制造工艺,制造成本低。
如图3所示,根据本发明的一些实施例,每个连接管31的第一端伸入到通用管30内。由此可知,连接管31与通用管30的连接方式简单,制造方便,储液器100的生产效率高。
如图1和图4所示,根据本发明的另一些实施例,每个连接管31的第一端连接在通用管30的底壁上。从而使连接管31与通用管30的连接方式简单,制造方便,储液器100的生产效率高。
如图5所示,根据本发明的再一些实施例,每个连接管31的外周壁与通用管30的外周壁相连。从而使连接管31与通用管30的连接方式简单,制造方便,储液器100的生产效率高。
如图6-图8所示,根据本发明的一些实施例,通用管30的横截面形成为圆形、椭圆形或者方形。从而使通用管30的结构简单,制造方便。可以理解的是,通用管30的横截面的形状不限于此,例如如图9所示,通用管30的横截面的形状还可以为跑道形,只要能够保证压缩机在高转速运行时具有较高的容积效率,并且不影响储液器100的储液能力即可,可以根据实际情况选择通用管30的横截面的形状。
进一步地,连接管31的横截面形成为圆形、椭圆形或者方形。从而使连接管31的结构简单,制造方便。当然可以理解的是,连接管31的横截面的形状不限于此,例如还可以为多边形、跑道形等,只要能够保证压缩机在高转速运行时具有较高的容积效率即可。
可选地,通用管30形成为整体管。从而结构简单,制造方便。可以理解的是,通用管30还可以形成为分段管、直管或弯管等,只要能够保证压缩机在高转速运行时具有较高的容积效率的同时不影响储液器100的储液能力即可。
可选地,连接管31形成为整体管。从而结构简单,制造方便。可以理解的是,连接管31还可以形成为分段管、直管或弯管等,只要能够保证压缩机在高转速运行时具有较高的容积效率,并且保证连接管31吸气时相互之间影响较小即可。
具体地,如图2所示,连接管包括直管和弯管,直管和弯管在杯体的底壁处焊接连接。从而便于连接管的安装,易于实现连接管产业化。
根据本发明的一些实施例,通用管30的横截面积为S0,多个连接管31的横截面积总和为S1,发明人通过实验发现,当通用管30的横截面积S0和多个连接管31的横截面积总和S1满足:0.6 S1<S0时,不但可以保证压缩机在高转速运行时具有较高的容积效率,而且还可以减小不同连接管31吸气时的相互影响,减少吸气流动阻力损失。因此在本发明的一些示例中,S0和S1满足如下关系:0.6 S1<S0。
进一步地,杯体1的横截面积为S,通用管30的横截面积为S0,发明人通过实验发现,当杯体1的横截面积S和通用管30的横截面积S0满足:S0<0.8×S时,能够在一定程度上提高储液器100的储液能力,并保证压缩机在高转速运行时具有较高的容积效率。因此在本发明的一些示例中,S和S0满足如下关系:S0<0.8×S。
发明人通过进一步的实验发现,杯体1的横截面积S,通用管30的横截面积S0,多个连接管31的横截面积总和S1,满足:0.75×S1<S0<0.8×S时,不但在一定程度上提高了储液器100的储液能力,而且使压缩机在高转速运行时的容积效率最优,有效减少吸气流动阻力损失,因此在本发明的优选示例中,S、S0和S1满足如下关系:0.75×S1<S0<0.8×S。
根据本发明的一些实施例,连接管31为两个。从而使储液器100的结构简单,制造成本低。
可选地,通用管30与连接管31为一体成型件。从而使吸气管组3制造方便,提高储液器100的生产效率。
根据本发明实施例的压缩机,包括上述的储液器100。
根据本发明实施例的压缩机,通过设置根据发明上述实施例的储液器100,从而在保证储液能力的基础上,保证了压缩机在高速运转时具有较高的容积效率,并且结构简单,易于实现制造工艺,制造成本低。
下面参考图1、图3和图6对根据本发明一个具体实施例的储液器100结构进行详细说明。但是需要说明的是,下述的说明仅具有示例性,普通技术人员在阅读了本发明的下述技术方案之后,显然可以对其中的技术方案或者部分技术特征进行组合或者替换、修改,这也落入本发明所要求的保护范围之内。
如图1、图3和图6所示,本发明实施例中的储液器100,包括:杯体1、进气管2和吸气管组3。
杯体1内限定出分离空间a,进气管2设在杯体1的顶部且与分离空间a连通。
吸气管组3包括一个通用管30和两个连接管31,通用管30与两个连接管31为一体成型件。其中通用管30形成为直管,两个连接管31分别形成为弯管。
通用管30设在杯体1内并且通用管30的横截面形成为圆形。每个连接管31的横截面形成为圆形,并且每个连接管31的第一端伸入到通用管30内,每个连接管31的第二端伸出杯体1以与压缩机本体的回气口相连。
杯体1的横截面积为S,通用管30的横截面积为S0,多个连接管31的横截面积总和为S1,其中S、S0和S1满足如下关系:0.75×S1<S0<0.8×S。
下面参考图2、图4和图6对根据本发明再一个具体实施例的储液器100结构进行详细说明。但是需要说明的是,下述的说明仅具有示例性,普通技术人员在阅读了本发明的下述技术方案之后,显然可以对其中的技术方案或者部分技术特征进行组合或者替换、修改,这也落入本发明所要求的保护范围之内。
如图2、图4和图6所示,本发明实施例中的储液器100,包括:杯体1、进气管2和吸气管组3。
杯体1内限定出分离空间a,进气管2设在杯体1的顶部且与分离空间a连通。
吸气管组3包括一个通用管30和两个连接管31。通用管30形成为直管,每个连接管31均包括直管和弯管两部分。其中,通用管30与两个连接管31的直管形成为一体成型件,每个连接管31的弯管部分与直管部分在杯体1的底壁处焊接连接。
通用管30设在杯体1内并且通用管30的横截面形成为圆形。每个连接管31的横截面形成为圆形,每个连接管31的弯管部分伸出杯体1以与压缩机本体的回气口相连。
杯体1的横截面积为S,通用管30的横截面积为S0,多个连接管31的横截面积总和为S1,其中S、S0和S1满足如下关系:0.75×S1<S0<0.8×S。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种储液器,其特征在于,包括:
    杯体,所述杯体内限定出分离空间;
    进气管,所述进气管设在所述杯体的顶部且与所述分离空间连通;
    吸气管组,所述吸气管组包括通用管和多个连接管,所述通用管设在所述杯体内,每个所述连接管的第一端设在所述通用管上且与所述通用管连通,每个所述连接管的第二端伸出所述杯体。
  2. 根据权利要求1所述的储液器,其特征在于,每个所述连接管的第一端伸入到所述通用管内。
  3. 根据权利要求1所述的储液器,其特征在于,每个所述连接管的第一端连接在所述通用管的底壁上。
  4. 根据权利要求1所述的储液器,其特征在于,每个所述连接管的外周壁与所述通用管的外周壁相连。
  5. 根据权利要求1-4中任一项所述的储液器,其特征在于,所述通用管的横截面形成为圆形、椭圆形或者方形。
  6. 根据权利要求1-5中任一项所述的储液器,其特征在于,所述通用管的横截面积为S0,所述多个连接管的横截面积总和为S1,其中S0和S1满足如下关系:0.6S1<S0。
  7. 根据权利要求1-6中任一项所述的储液器,其特征在于,所述杯体的横截面积为S,所述通用管的横截面积为S0,其中S和S0满足如下关系:S0<0.8×S。
  8. 根据权利要求1-7中任一项所述的储液器,其特征在于,所述杯体的横截面积为S,所述通用管的横截面积为S0,所述多个连接管的横截面积总和为S1,其中S、S0和S1满足如下关系:0.75×S1<S0<0.8×S。
  9. 根据权利要求1-8中任一项所述的储液器,其特征在于,所述连接管为两个。
  10. 一种压缩机,其特征在于,包括根据权利要求1-9中任一项所述的储液器。
PCT/CN2017/086703 2016-11-29 2017-05-31 储液器和具有其的压缩机 WO2018099025A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621310977.4 2016-11-29
CN201621310977.4U CN206222761U (zh) 2016-11-29 2016-11-29 储液器和具有其的压缩机

Publications (1)

Publication Number Publication Date
WO2018099025A1 true WO2018099025A1 (zh) 2018-06-07

Family

ID=58783910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086703 WO2018099025A1 (zh) 2016-11-29 2017-05-31 储液器和具有其的压缩机

Country Status (2)

Country Link
CN (1) CN206222761U (zh)
WO (1) WO2018099025A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112577220A (zh) * 2019-09-27 2021-03-30 广东美芝精密制造有限公司 压缩机及其储液器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2804735Y (zh) * 2005-07-15 2006-08-09 上海日立电器有限公司 双转子式压缩机储液器吸气管结构
KR20070074794A (ko) * 2006-01-10 2007-07-18 엘지전자 주식회사 공기조화기의 어큐뮬레이터
JP2008051373A (ja) * 2006-08-23 2008-03-06 Daikin Ind Ltd 気液分離器
CN201100797Y (zh) * 2007-08-24 2008-08-13 复旦大学 带有消音结构吸气管的双通道储液器
JP2011174401A (ja) * 2010-02-24 2011-09-08 Panasonic Corp 多気筒圧縮機用アキュムレータ
CN203615661U (zh) * 2013-12-03 2014-05-28 广东美芝精密制造有限公司 储液器和具有其的压缩机
CN204285910U (zh) * 2014-11-20 2015-04-22 上海日立电器有限公司 一种压缩机用储液器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2804735Y (zh) * 2005-07-15 2006-08-09 上海日立电器有限公司 双转子式压缩机储液器吸气管结构
KR20070074794A (ko) * 2006-01-10 2007-07-18 엘지전자 주식회사 공기조화기의 어큐뮬레이터
JP2008051373A (ja) * 2006-08-23 2008-03-06 Daikin Ind Ltd 気液分離器
CN201100797Y (zh) * 2007-08-24 2008-08-13 复旦大学 带有消音结构吸气管的双通道储液器
JP2011174401A (ja) * 2010-02-24 2011-09-08 Panasonic Corp 多気筒圧縮機用アキュムレータ
CN203615661U (zh) * 2013-12-03 2014-05-28 广东美芝精密制造有限公司 储液器和具有其的压缩机
CN204285910U (zh) * 2014-11-20 2015-04-22 上海日立电器有限公司 一种压缩机用储液器

Also Published As

Publication number Publication date
CN206222761U (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
CN102748298B (zh) 一种旋转压缩机吸气结构
WO2018099025A1 (zh) 储液器和具有其的压缩机
WO2018133286A1 (zh) 储液器以及具有它的双缸压缩机
WO2018076691A1 (zh) 储液器和具有其的压缩机组件
CN115648904A (zh) 排液结构及换热器
CN206369377U (zh) 储液器及具有其的压缩机组件、制冷装置
CN206860455U (zh) 一种螺旋结构的排气管及具有该排气管的旋转式压缩机
CN207406454U (zh) 吸气消音器和具有其的压缩机
CN107178503B (zh) 旋转式压缩机及制冷装置
CN216557747U (zh) 压缩机组件、空调室外机和空调系统
CN103913022A (zh) 储液器和具有该储液器的压缩机
CN212838359U (zh) 压缩机气缸结构和压缩机
CN206159733U (zh) 流体缓冲装置、分液器、压缩机及换热设备
CN106766427B (zh) 储液器及具有其的压缩机组件、制冷装置
WO2017059665A1 (zh) 空调系统及具有其的空调器
CN210292455U (zh) 一种储液器以及压缩机
CN106837793B (zh) 摇摆式压缩机和具有其的制冷装置
JP6219032B2 (ja) オイルセパレータ
CN203758117U (zh) 储液器和具有该储液器的压缩机
CN206860402U (zh) 压缩机组件和具有其的冰箱
CN105134594B (zh) 旋转式压缩机
WO2023071196A1 (zh) 空调系统、空调室外机和压缩机组件
CN110925203A (zh) 旋转式双缸空压机构以及双缸单吸气压缩机
CN210861855U (zh) 用于压缩机的储液器和具有其的压缩机
CN208934921U (zh) 气缸、泵体组件及压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877039

Country of ref document: EP

Kind code of ref document: A1