WO2018099022A1 - 一种离线可钢化零透高反热反射镀膜玻璃及其制备方法 - Google Patents

一种离线可钢化零透高反热反射镀膜玻璃及其制备方法 Download PDF

Info

Publication number
WO2018099022A1
WO2018099022A1 PCT/CN2017/086585 CN2017086585W WO2018099022A1 WO 2018099022 A1 WO2018099022 A1 WO 2018099022A1 CN 2017086585 W CN2017086585 W CN 2017086585W WO 2018099022 A1 WO2018099022 A1 WO 2018099022A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective
glass
glass substrate
zero
temperable
Prior art date
Application number
PCT/CN2017/086585
Other languages
English (en)
French (fr)
Inventor
黄林冲
顾海波
徐庆
周京
陈俊
单志刚
Original Assignee
江苏奥蓝工程玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏奥蓝工程玻璃有限公司 filed Critical 江苏奥蓝工程玻璃有限公司
Publication of WO2018099022A1 publication Critical patent/WO2018099022A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering

Definitions

  • the invention relates to the field of glass and its preparation, in particular to an off-line temperable zero-transparent high-reflective reflective coating glass and a preparation method thereof.
  • the existing off-line heat-reflective coated glass has a high cost due to the use of a metal material or a metal oxide material in the film system configuration.
  • Off-line steel zero-transparent high-reflective reflective coating glass directly using silicon Si film layer, the current cost of silicon Si is very low, and the chemical properties of silicon Si are inactive, have good stability, and the pinhole density is very low.
  • the silicon Si film deposited by magnetron sputtering is dense, flat and has high hardness. It has a strong blocking ability for movable ions. It does not oxidize at 1200 ° C and has good corrosion resistance. Therefore, silicon Si is used.
  • the off-line steel zero-transparent high-reflective reflective coating glass produced by the film layer can realize the high-temperature resistance of the off-line steel zero-transparent high-reflective reflective coating glass while reducing the cost, thereby realizing remotely-cutting, edging, and Subsequent processing such as tempering and hollowing, and the light transmission can be close to zero, and the glass surface is reflected at about 35.
  • the present invention proposes a method for greatly reducing the cost of off-line temperable coated glass, and having zero light transmission, high anti-heat and high reflection performance. Off-line temperable zero-transparent high-reflective reflective coated glass and preparation method thereof.
  • the technical solution adopted by the present invention is: an off-line temperable zero-transparent high-reflective reflective coating glass, comprising a glass substrate and a coating layer, wherein the coating layer is disposed on a glass substrate.
  • the constituent material of the coating layer is only silicon.
  • the glass substrate has a thickness of from 3 to 15 mm.
  • the glass substrate has a thickness of 6 mm.
  • the coating layer silicon has a thickness of 120 to 140 nm.
  • the thickness of the plating layer silicon is 130 nm.
  • the invention also provides a preparation method of the above off-line temperable zero-transparent high-reflective reflective coating glass, comprising the following steps:
  • the glass substrate is sent to the coating chamber for coating, and the power of the high vacuum magnetron sputtering coating device is set. For 350-380 KW, a layer of 120-140 nm silicon is sputtered on the glass substrate to obtain the desired off-line temperable zero-transparent high-reflective reflective coated glass.
  • the thickness of the glass substrate in the step (1) is selected to be 6 mm.
  • the power of the high vacuum magnetron sputtering coating device in the step (3) is 370 KW.
  • the thickness of the silicon sputtered on the glass substrate in the step (3) is 130 nm.
  • the present invention provides an off-line temperable zero-transparent high-reflective reflective coating glass and a preparation method thereof, comprising a glass substrate and a coating layer, wherein the coating layer directly adopts silicon having a low diffusion coefficient as a material, and silicon
  • the invention can not only greatly reduce the production cost without affecting the heat reflection effect, but also can heat-treat the film layer in the tempering furnace without destroying the film layer, and maintain the original thermal performance, and at the same time
  • the original film has also been tempered, and the coated glass produced has a good heat insulation effect, and can also realize the subsequent deep processing of the localization, and the light transmission can be close to zero, and the glass surface reflection is about 35.
  • An off-line temperable zero-transparent high-reflective reflective coated glass comprising a glass substrate and a coating layer, the coating layer being disposed on a glass substrate, the constituent material of the coating layer being only silicon.
  • the thickness of the glass substrate was 6 mm, and the thickness of the coated layer of silicon was 130 nm.
  • the above method for preparing an off-line temperable zero-transparent high-reflective reflective coated glass comprises the following steps:
  • the glass substrate is sent to the coating chamber for coating, and the power of the high vacuum magnetron sputtering coating device is set to 370 KW, and a layer of 130 nm silicon is sputtered on the glass substrate, so that the required off-line tempering can be achieved.
  • Anti-heat reflective coated glass is set to 370 KW, and a layer of 130 nm silicon is sputtered on the glass substrate, so that the required off-line tempering can be achieved.
  • An off-line temperable zero-transparent high-reflective reflective coated glass comprising a glass substrate and a coating layer, the coating layer being disposed on a glass substrate, the constituent material of the coating layer being only silicon.
  • the glass substrate has a thickness of 5 mm and the coated layer of silicon has a thickness of 120 nm.
  • the above method for preparing an off-line temperable zero-transparent high-reflective reflective coated glass comprises the following steps:
  • the glass substrate is sent to the coating chamber for coating, and the power of the high vacuum magnetron sputtering coating device is set to 350 KW, and a layer of 120 nm silicon is sputtered on the glass substrate to obtain the required off-line tempering zero penetration.
  • Anti-heat reflective coated glass is set to 350 KW, and a layer of 120 nm silicon is sputtered on the glass substrate to obtain the required off-line tempering zero penetration.
  • An off-line temperable zero-transparent high-reflective reflective coated glass comprising a glass substrate and a coating layer, the coating layer being disposed on a glass substrate, the constituent material of the coating layer being only silicon.
  • the glass substrate has a thickness of 13 mm and the coated layer of silicon has a thickness of 140 nm.
  • the above method for preparing an off-line temperable zero-transparent high-reflective reflective coated glass comprises the following steps:
  • the glass substrate is sent to the coating chamber for coating, and the power of the high-vacuum magnetron sputtering coating device is set to 380 KW, and a layer of 140 nm silicon is sputtered on the glass substrate, so that the required off-line tempering can be achieved.
  • Anti-heat reflective coated glass is set to 380 KW, and a layer of 140 nm silicon is sputtered on the glass substrate, so that the required off-line tempering can be achieved.
  • the invention relates to an off-line temperable zero-transparent high-reflective reflective coating glass and a preparation method thereof, and directly adopting silicon having a low diffusion coefficient as a coating layer material, which can not only greatly reduce the production cost but also greatly reduce the production cost without affecting the heat reflection effect, and can also
  • the film layer is heat-treated in the tempering furnace without destroying the film layer, and the original thermal performance is maintained, and the original film is also tempered, and the produced coated glass has good heat insulation effect, and at the same time It can also realize the subsequent deep processing of the localization, and the light transmission can be close to zero, and the glass surface reflection is about 35.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种离线可钢化零透高反热反射镀膜玻璃及其制备方法,包括玻璃基片和镀膜层,其中镀膜层直接采用扩散系数很低的硅作为材料。

Description

一种离线可钢化零透高反热反射镀膜玻璃及其制备方法 技术领域
本发明涉及玻璃及其制备领域,尤其涉及一种离线可钢化零透高反热反射镀膜玻璃及其制备方法。
背景技术
现有普通离线热反射镀膜玻璃由于膜系配置均采用金属材料或金属氧化物材料,成本较高。离线可钢零透高反热反射镀膜玻璃,直接采用硅Si膜层,目前硅Si的成本很低,而且硅Si的化学性质不活泼,有较好的稳定性,针孔密度非常低。磁控溅射沉积的硅Si膜层致密、平整且硬度很高,对可动离子有非常强的阻挡能力,在1200℃时不发生氧化,有较好的抗蚀性,所以,使用硅Si膜层生产的离线可钢零透高反热反射镀膜玻璃,可以在降低成本的同时实现离线可钢零透高反热反射镀膜玻璃耐高温的性能,从而实现远程异地化的切割、磨边、钢化、中空等后续加工,且透光可以做到接近零,玻璃面反射在35左右。
发明内容
发明目的:为了克服现有技术中存在的离线可钢化镀膜玻璃成本较高的问题,本发明提出了一种大幅度降低离线可钢化镀膜玻璃成本,且具有零透光、高反热高反射性能的离线可钢化零透高反热反射镀膜玻璃及其制备方法。
技术方案:为了解决上述技术问题,本发明所采用的技术方案为:一种离线可钢化零透高反热反射镀膜玻璃,包括玻璃基片和镀膜层,所述镀膜层设于玻璃基片上,所述镀膜层的组成原料仅为硅。
为了获得最佳的性能,所述玻璃基片的厚度为3-15mm。
更进一步的,所述玻璃基片的厚度为6mm。
作为本发明的进一步改进,所述镀膜层硅的厚度为120-140nm。
更进一步的,所述镀膜层硅的厚度为130nm。
本发明还提出了上述离线可钢化零透高反热反射镀膜玻璃的制备方法,包括如下步骤:
(1)选择3-15mm厚度的玻璃基片,按预定尺寸切割成玻璃片,用清洗机对玻璃片进行清洗;
(2)将高真空磁控溅射镀膜设备的基础真空设置为10-3Pa,线速度设置为2m/min;
(3)将玻璃基片送入镀膜室进行镀膜,设置高真空磁控溅射镀膜设备的功率 为350-380KW,在玻璃基片上溅射一层120-140nm的硅,即得所需离线可钢化零透高反热反射镀膜玻璃。
更为优选的,所述步骤(1)中玻璃基片的厚度选择6mm。
更进一步的,所述步骤(3)中高真空磁控溅射镀膜设备的功率为370KW。
更为优选的,所述步骤(3)中在玻璃基片上溅射的硅的厚度为130nm。
有益效果:本发明提供的一种离线可钢化零透高反热反射镀膜玻璃及其制备方法,包括玻璃基片和镀膜层,其中镀膜层直接采用扩散系数很低的硅作为材料,且硅的价格较低,本发明不仅能够在不影响热反射效果的同时大大降低生产成本,也能够使膜层在钢化炉中进行热处理而不使膜层破坏,且保持了原有热工性能,同时将原片也进行了钢化处理,而且生产出来的镀膜玻璃具有很好的隔热功效,同时也能实现异地化后续深加工,且透光可以做到接近零,玻璃面反射在35左右。
具体实施方式
下面结合实施例对本发明作进一步的详细说明:
实施例1:
一种离线可钢化零透高反热反射镀膜玻璃,包括玻璃基片和镀膜层,所述镀膜层设于玻璃基片上,所述镀膜层的组成原料仅为硅。
为了获得最佳的性能,所述玻璃基片的厚度为6mm,所述镀膜层硅的厚度为130nm。
上述一种离线可钢化零透高反热反射镀膜玻璃的制备方法,包括如下步骤:
(1)选择6mm厚度的玻璃基片,按预定尺寸切割成玻璃片,用清洗机对玻璃片进行清洗;
(2)将高真空磁控溅射镀膜设备的基础真空设置为10-3Pa,线速度设置为2m/min;
(3)将玻璃基片送入镀膜室进行镀膜,设置高真空磁控溅射镀膜设备的功率为370KW,在玻璃基片上溅射一层130nm的硅,即得所需离线可钢化零透高反热反射镀膜玻璃。
实施例2:
一种离线可钢化零透高反热反射镀膜玻璃,包括玻璃基片和镀膜层,所述镀膜层设于玻璃基片上,所述镀膜层的组成原料仅为硅。
为了获得最佳的性能,所述玻璃基片的厚度为5mm,所述镀膜层硅的厚度为120nm。
上述一种离线可钢化零透高反热反射镀膜玻璃的制备方法,包括如下步骤:
(1)选择5mm厚度的玻璃基片,按预定尺寸切割成玻璃片,用清洗机对玻璃片进行清洗;
(2)将高真空磁控溅射镀膜设备的基础真空设置为10-3Pa,线速度设置为2m/min;
(3)将玻璃基片送入镀膜室进行镀膜,设置高真空磁控溅射镀膜设备的功率为350KW,在玻璃基片上溅射一层120nm的硅,即得所需离线可钢化零透高反热反射镀膜玻璃。
实施例3:
一种离线可钢化零透高反热反射镀膜玻璃,包括玻璃基片和镀膜层,所述镀膜层设于玻璃基片上,所述镀膜层的组成原料仅为硅。
为了获得最佳的性能,所述玻璃基片的厚度为13mm,所述镀膜层硅的厚度为140nm。
上述一种离线可钢化零透高反热反射镀膜玻璃的制备方法,包括如下步骤:
(1)选择13mm厚度的玻璃基片,按预定尺寸切割成玻璃片,用清洗机对玻璃片进行清洗;
(2)将高真空磁控溅射镀膜设备的基础真空设置为10-3Pa,线速度设置为2m/min;
(3)将玻璃基片送入镀膜室进行镀膜,设置高真空磁控溅射镀膜设备的功率为380KW,在玻璃基片上溅射一层140nm的硅,即得所需离线可钢化零透高反热反射镀膜玻璃。
本发明一种离线可钢化零透高反热反射镀膜玻璃及其制备方法,直接采用扩散系数很低的硅作为镀膜层材料,不仅能够在不影响热反射效果的同时大大降低生产成本,也能够使膜层在钢化炉中进行热处理而不使膜层破坏,且保持了原有热工性能,同时将原片也进行了钢化处理,而且生产出来的镀膜玻璃具有很好的隔热功效,同时也能实现异地化后续深加工,且透光可以做到接近零,玻璃面反射在35左右。
应当指出,以上具体实施方式仅用于说明本发明而不用于限制本发明的范 围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。

Claims (9)

  1. 一种离线可钢化零透高反热反射镀膜玻璃,其特征在于包括玻璃基片和镀膜层,所述镀膜层设于玻璃基片上,所述镀膜层的组成原料仅为硅。
  2. 根据权利要求1所述的离线可钢化零透高反热反射镀膜玻璃,其特征在于:所述玻璃基片的厚度为3-15mm。
  3. 根据权利要求2所述的离线可钢化零透高反热反射镀膜玻璃,其特征在于:所述玻璃基片的厚度为6mm。
  4. 根据权利要求1所述的离线可钢化零透高反热反射镀膜玻璃,其特征在于:所述镀膜层硅的厚度为120-140nm。
  5. 根据权利要求4所述的离线可钢化零透高反热反射镀膜玻璃,其特征在于:所述镀膜层硅的厚度为130nm。
  6. 如权利要求1所述的离线可钢化零透高反热反射镀膜玻璃的制备方法,其特征在于包括如下步骤:
    (1)选择3-15mm厚度的玻璃基片,按预定尺寸切割成玻璃片,用清洗机对玻璃片进行清洗;
    (2)将高真空磁控溅射镀膜设备的基础真空设置为10-3Pa,线速度设置为2m/min;
    (3)将玻璃基片送入镀膜室进行镀膜,设置高真空磁控溅射镀膜设备的功率为350-380KW,在玻璃基片上溅射一层120-140nm的硅,即得所需离线可钢化零透高反热反射镀膜玻璃。
  7. 根据权利要求6所述的离线可钢化零透高反热反射镀膜玻璃的制备方法,其特征在于,其特征在于所述步骤(1)中玻璃基片的厚度选择6mm。
  8. 根据权利要求6所述的离线可钢化零透高反热反射镀膜玻璃的制备方法,其特征在于,其特征在于所述步骤(3)中高真空磁控溅射镀膜设备的功率为370KW。
  9. 根据权利要求6所述的离线可钢化零透高反热反射镀膜玻璃的制备方法,其特征在于,其特征在于所述步骤(3)中在玻璃基片上溅射的硅的厚度为130nm。
PCT/CN2017/086585 2016-11-30 2017-05-31 一种离线可钢化零透高反热反射镀膜玻璃及其制备方法 WO2018099022A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611078104.XA CN106746712A (zh) 2016-11-30 2016-11-30 一种离线可钢化零透高反热反射镀膜玻璃及其制备方法
CN201611078104.X 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018099022A1 true WO2018099022A1 (zh) 2018-06-07

Family

ID=58898088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086585 WO2018099022A1 (zh) 2016-11-30 2017-05-31 一种离线可钢化零透高反热反射镀膜玻璃及其制备方法

Country Status (2)

Country Link
CN (1) CN106746712A (zh)
WO (1) WO2018099022A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634314A (zh) * 2022-03-21 2022-06-17 新福兴玻璃工业集团有限公司 一种功能型可钢化低辐射镀膜玻璃及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992087A (en) * 1989-01-28 1991-02-12 Flachglas Aktiengesellschaft Process for the production of a tempered or bent glass plate with a rear coating, glass plate produced according to the same and the use thereof
CN102099309A (zh) * 2008-07-18 2011-06-15 日本电气硝子株式会社 烹调器用面板
CN202013433U (zh) * 2011-04-20 2011-10-19 河南金林玻璃有限公司 一种高级无铜环保镜
CN103847161A (zh) * 2013-09-11 2014-06-11 洛阳新晶润工程玻璃有限公司 一种高透光率的耐高温低辐射镀膜玻璃
CN104310800A (zh) * 2014-10-17 2015-01-28 佛山市金海纳真空镀膜有限公司 玻璃仿古金属真空镀膜及其工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992087A (en) * 1989-01-28 1991-02-12 Flachglas Aktiengesellschaft Process for the production of a tempered or bent glass plate with a rear coating, glass plate produced according to the same and the use thereof
CN102099309A (zh) * 2008-07-18 2011-06-15 日本电气硝子株式会社 烹调器用面板
CN202013433U (zh) * 2011-04-20 2011-10-19 河南金林玻璃有限公司 一种高级无铜环保镜
CN103847161A (zh) * 2013-09-11 2014-06-11 洛阳新晶润工程玻璃有限公司 一种高透光率的耐高温低辐射镀膜玻璃
CN104310800A (zh) * 2014-10-17 2015-01-28 佛山市金海纳真空镀膜有限公司 玻璃仿古金属真空镀膜及其工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634314A (zh) * 2022-03-21 2022-06-17 新福兴玻璃工业集团有限公司 一种功能型可钢化低辐射镀膜玻璃及其制备方法

Also Published As

Publication number Publication date
CN106746712A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018099023A1 (zh) 一种离线可钢化五十透过率低辐射镀膜玻璃及其制备方法
JP6490810B2 (ja) 耐温度性及び耐腐食性の表面反射体
CN102615877B (zh) 离线可钢低辐射镀膜玻璃及其制造方法
WO2018099024A1 (zh) 一种离线可钢化六十透过率低辐射镀膜玻璃及其制备方法
JP2015536892A5 (zh)
JP6338602B2 (ja) 耐引っかき性ガラス製品
JP2016534969A (ja) 低い可視光線透過率を有する低放射率コーティングを備えた被覆製品
CN104230182A (zh) 高透过率可钢化低辐射镀膜玻璃的制备方法
Kulczyk-Malecka et al. Diffusion studies in magnetron sputter deposited silicon nitride films
Fekkai et al. Optical, morphological and electrical properties of silver and aluminium metallization contacts for solar cells
CN107058962A (zh) 一种低温磁控溅射制备低电阻率氮化钛薄膜的方法
CN205501126U (zh) 一种高透光的可钢化低辐射镀膜玻璃
CN106966608A (zh) 一种高透光率低辐射镀膜玻璃的制作方法
JP6000265B2 (ja) ガラスを被覆する方法
CN103770403B (zh) 一种可钢化的热反射镀膜玻璃
TWI767089B (zh) 附透明導電膜之玻璃片材、附透明導電膜之玻璃捲筒、及其製造方法
WO2018099022A1 (zh) 一种离线可钢化零透高反热反射镀膜玻璃及其制备方法
JP2008222544A (ja) 焼戻し可能なガラスコーティング
RU2012148723A (ru) Способ изготовления покрытого изделия, имеющего антибактериальное и/или противогрибковое покрытие, и конечный продукт
CN202576250U (zh) 一种离线可钢低辐射镀膜玻璃
CN105819705B (zh) 一种阳光控制镀膜玻璃及其制备方法和应用
JP2009242128A (ja) 透明導電ガラス基板およびその製造方法
CN103786381B (zh) 一种类风信子石镀膜玻璃及其制备方法
WO2012038718A2 (en) Coating glass
CN108439823A (zh) 一种可钢化低辐射镀膜玻璃及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875500

Country of ref document: EP

Kind code of ref document: A1