WO2018098963A1 - 基桩静载试验装置 - Google Patents
基桩静载试验装置 Download PDFInfo
- Publication number
- WO2018098963A1 WO2018098963A1 PCT/CN2017/079281 CN2017079281W WO2018098963A1 WO 2018098963 A1 WO2018098963 A1 WO 2018098963A1 CN 2017079281 W CN2017079281 W CN 2017079281W WO 2018098963 A1 WO2018098963 A1 WO 2018098963A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pile
- static load
- reaction force
- load test
- test device
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D33/00—Testing foundations or foundation structures
Definitions
- the present invention relates to the field of building engineering, and more particularly to a pile static test device.
- the present invention overcomes the deficiencies of the prior art and provides a pile static test device.
- a pile static load test device for performing a static load test on a pile on a pile foundation
- the pile static load test device comprising: a reaction force frame, an anchor screw and a jack;
- the reaction force frame includes a limit position a pin, a reaction beam and a support;
- the reaction force beam is located between the support, the limit pin is placed above the reaction force beam and fixed on the support, and the support is anchored by the anchor screw and the cap
- the anchor screw is set on the pile Around the pile hole.
- the upper end of the jack is connected to the reaction force beam, and the lower end is connected to the base pile.
- the cap is a reinforced concrete platform connected to the top of each pile at the top of the pile.
- the pile static load test device uses the building's own weight load as the pile pile reaction force, does not need to pile heavy objects on the device, has small volume, the device is light and flexible, is not restricted by the construction site and height, and has convenient detection and small action surface. It can be tested indoors and is widely used for the acceptance of foundation piles for existing building foundations.
- a force transmission tube is further included, and the lower end of the jack is connected to the foundation pile through a force transmission tube.
- the reaction frame transmits the load reaction force through the jack and the force transmission tube to the pile to be inspected.
- a pressure sensor and a displacement sensor are also included.
- the load measurement of the pile static load test uses a pressure sensor in parallel with the jack to measure the oil pressure, and then the load is converted according to the jack calibration result.
- the measuring point of the displacement sensor is fixed at the upper position of the force transmission tube for measuring the pile. The amount of settlement.
- the supports are two groups, and the two sets of supports are symmetrically disposed on both sides of the pile pile hole.
- the reaction beam is located between the two sets of supports and the upward displacement is limited by the limit pins on the support.
- the holder includes a base and two fixing plates disposed on the base, and the fixed plates are interspersed with the limit pins.
- the base is anchored by the anchor screw and the bearing platform, and two fixed plates are disposed at both ends of the reaction force beam, and the end ends of the reaction force beam are respectively placed between the two fixed plates of the two sets of supports,
- the limit pin limits the upward displacement of the reaction force beam.
- the limit pin is inserted through the two fixed plate ends.
- the limit pin is disposed perpendicular to the reaction force beam to help limit the reaction force The displacement of the beam upwards.
- the base is symmetrically provided with slots at both ends, and the anchoring screw is anchored to the cap through the slot.
- the slots are respectively disposed at two ends of the two sets of bases, and are distributed around the holes of the piles to improve the stability of the anchor.
- the anchoring depth is determined according to the concrete strength of the cap, the strength of the anchoring bar, the diameter of the bar and the seismic grade of the building. It is better to approach the bottom of the steel bar.
- the center of symmetry of the reaction force beam is located on the central axis of the pile, so that the force transmission is more uniform and the detection is more accurate.
- the self-weight load that the building can exert is used as the pile reaction force.
- the reaction force of the jack is used to transmit the load reaction force to the jack and the reaction force beam.
- the pile to be tested, the limit pin is fixed on the reaction frame, and the upward displacement of the reaction beam under the action of the jack is restricted.
- the pile static load test device of the pile static load test device uses the self-weight load of the building as the pile reaction force, does not need to pile heavy objects on the device, has small volume, and the device is light and flexible, and is not restricted by the construction site and height.
- the utility model has the advantages of convenient detection, small action surface and indoor detection, and is widely applicable to the acceptance of the foundation piles of the existing building foundation.
- the reaction frame transmits the load reaction force through the jack and the force transmission tube to the pile to be inspected.
- the base is anchored by the anchor screw and the bearing platform, and two fixed plates are disposed at both ends of the reaction force beam, and the end ends of the reaction force beam are respectively placed between the two fixed plates of the two sets of supports,
- the limit pin limits the upward displacement.
- the device of the invention can effectively evaluate the bearing capacity of the foundation piles of the existing building foundation, and can be used for the pressure-stabilizing sealing piles of the reinforcing foundation piles, and has great popularization value.
- FIG. 1 is a schematic structural view of a pile static load device of the present invention
- FIG. 2 is a top view of the pile static load reaction device of the present invention
- FIG. 3 is a schematic view showing the arrangement of the anchor screw and the pile hole in the static load reaction device of the pile according to the present invention.
- reaction frame 10, reaction frame; 11, limit pin; 12, reaction beam; 13, support; 14, base; 15, fixed plate; 16, slot; 20, anchor screw; 30, jack; 40, pile 50, foundation pile hole; 60, force transmission tube.
- a static pile test device for a pile as shown in Figs. 1 and 2 is used for static load test on a pile on a cap.
- the pile static test device includes: a reaction frame 10, an anchor screw 20, and
- the reaction frame 10 includes a limit pin 11 , a reaction force beam 12 and a support 13 ; the reaction force beam 12 is located between the support 13 , and the limit pin 11 is placed on the reaction force beam 12 .
- Upper and fixed to the support 13, the support 13 is anchored to the platform by the anchor screw 20, and the anchor screw 20 is disposed around the pile hole 50.
- the upper end of the jack 30 is connected to the reaction force beam 12, and the lower end is connected to the foundation pile 40.
- the cap is a reinforced concrete platform connected to the top of each pile at the top of the pile.
- the anti-force frame 10 is fixed by embedding the anchor screw 20 on the cap.
- the self-weight load that the building can exert is used as the pile reaction force.
- the reaction force is transmitted from the reaction force beam 12 to the jack 30 and the pile 10 to be inspected, and the limit pin 11 is fixed on the reaction frame 10 to limit the reaction force under the action of the jack 30.
- the lower end of the jack 30 is coupled to the pile 40 by a force transmission tube 60.
- Reaction frame 10 The load reaction force is transmitted to the pile 40 to be inspected through the jack 30 and the force transmission tube 60.
- the reaction frame 10, the limit pin 11, the reaction force beam 12, the support 13, the base 14, and the force transmission tube are all made of a material having a relatively large strength. In this embodiment, they are all made of steel material. to make.
- the supports 13 are two groups, and the two sets of supports 13 are symmetrically disposed on both sides of the pile pile hole 50.
- the reaction beam 12 is located between the two sets of supports 13, and the upward displacement of the reaction force beam 12 is restricted by the limit pins 11 on the support 13.
- the support 13 includes a base 14 and two fixing plates 15 disposed on the base 14. In this embodiment, the channel steel is used as the fixing plate 15, and the two channels are welded in parallel on the base. A limit pin 11 is inserted between the steels 15.
- the base 14 is anchored to the cap by the anchoring screw 20, and the end ends of the reaction beam 12 are respectively disposed between the two parallel channels 15 of the two sets of supports 13, and are constrained upward by the limit pin 11. Displacement.
- the center of symmetry of the reaction beam 12 is located on the central axis of the pile 40, so that the force transmission is more uniform and the detection is more accurate.
- the limiting pin 11 is inserted through the upper ends of the two channel steels 15. The limit pin 11 is disposed perpendicular to the reaction force beam 12 to help limit the upward displacement of the reaction force beam 12.
- the slot 14 is symmetrically disposed on the two ends of the base 14.
- four slots 16 are provided.
- the anchor screw 20 is anchored to the base through the slot 16 and the anchor screw 20 is fixed to the base 14 by a nut. .
- the slots 16 are respectively disposed at two ends of the two sets of bases 14 and distributed around the pile pile holes 50 to improve the stability of the anchor.
- the anchoring depth is determined according to the concrete strength of the cap, the strength of the anchoring bar, the diameter of the bar and the seismic grade of the building. It is better to approach the bottom of the steel bar.
- the pile static load test device further includes a pressure sensor and a displacement sensor.
- the load measurement of the pile static load test is performed by using a pressure sensor in parallel with the jack 30 to measure the oil pressure, and then the load is converted according to the calibration result of the jack 30, and the measuring point of the displacement sensor is fixed at the upper position of the force transmission tube 60 for The settlement of the pile is measured.
- the pile static load test device provided by the invention can effectively evaluate the bearing capacity of the foundation piles of the existing building foundation, and the anchor frame is fixed by the anchor screw on the pile platform, and the self-weight load that the building can exert is used as the pressure.
- Pile reaction force when using the jack top reaction force beam, the reaction force is transmitted to the jack and the tested pile by the reaction force beam, and the limit pin is fixed on the reaction force frame to limit the reaction force beam under the action of the jack Displacement.
- the pile static load test device of the pile static load test device uses the self-weight load of the building as the pile reaction force, does not need to pile heavy objects on the device, has small volume, and the device is light and flexible, and is not restricted by the construction site and height.
- the utility model has the advantages of convenient detection, small action surface and indoor detection, and is widely applicable to the acceptance of the foundation piles of the existing building foundation. At the same time, it can be used for voltage-stabilizing sealing piles of reinforced foundation piles, which has great promotion value.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
一种基桩静载试验装置,用于对承台上的基桩(40)进行静载试验,包括反力架(10)、锚固螺杆(20)和千斤顶(30);反力架(10)包括限位销(11)、反力梁(12)和支座(13);反力梁(12)位于支座(13)之间,限位销(11)置于反力梁(12)的上方并固定于支座(13)上,支座(13)通过锚固螺杆(20)与承台锚固,锚固螺杆(20)设于基桩桩孔(50)四周,千斤顶(30)上端与反力梁(12)连接,下端与基桩(40)连接。
Description
本发明涉及建筑工程领域,更具体地,涉及一种基桩静载试验装置。
现有的建筑物及构筑物常因设计或者施工的缺陷以及长期使用过程中的老化及破坏,甚至是自然灾害所造成的建筑既有地基基础结构开裂、承载力不足以及抗震性能不良等现象,严重影响构筑物及建筑物的安全使用,从而不得不考虑结构的修复以及加固问题。尤其是近几十年来,随着建筑业和现代科学技术的急速发展,建筑地基基础的加固改造的发展十分迅速。在已有的建筑室内外两侧或者结构柱四周增设加固基桩,是一种提高既有建筑基础承载力和控制沉降常见的加固方法。一般使用静压钢管桩、钻孔钢管灌注桩、静压预制桩和小型钻孔桩等类型基桩加固。但由于现场施工条件的限制,传统的单桩竖向抗压静载试验设备体积大,需在试验设备上堆载重物,因此受施工场地和高度的限制,很难进场,从而难以对加固基桩的承载能力进行有效评价。
发明内容
基于此,本发明在于克服现有技术的缺陷,提供一种基桩静载试验装置。
其技术方案如下:
一种基桩静载试验装置,用于对承台上的基桩进行静载试验,所述基桩静载试验装置包括:反力架、锚固螺杆和千斤顶;所述反力架包括限位销、反力梁和支座;所述反力梁位于支座之间,所述限位销置于反力梁的上方并固定于支座上,所述支座通过锚固螺杆与承台锚固,所述锚固螺杆设于基桩
桩孔四周。所述千斤顶上端与反力梁连接,下端与基桩连接。承台为在基桩顶部设置的联结各桩顶的钢筋混凝土平台,通过在承台上埋设锚固螺杆固定反力架,以建筑物所能发挥的自重载荷作为压桩反力,试验时,用千斤顶顶反力梁,由反力梁将荷载反力传至千斤顶和受检的基桩,反力架上固定限位销,限制千斤顶作用下的反力梁向上的位移。所述基桩静载试验装置以建筑物自重载荷作为压桩反力,无需在装置上堆载重物,体积小,装置轻便灵活,不受施工场地和高度限制,检测方便,作用面小,也可在室内检测,广泛适用于既有建筑物地基基础加固基桩的验收。
在其中一个实施例中,还包括传力管,所述千斤顶下端通过传力管与基桩连接。反力架将载荷反力通过千斤顶和传力管传至受检的基桩上。
在其中一个实施例中,还包括压力传感器和位移传感器。所述基桩静载试验的荷载量测采用压力传感器与千斤顶并联的方式测定油压,再根据千斤顶校准结果换算载荷,所述位移传感器的测点固定在传力管上部位置用于测量基桩的沉降量。
在其中一个实施例中,所述支座为两组,两组支座对称设置于基桩桩孔两侧。反力梁位于两组支座之间,并由支座上的限位销限制向上的位移。
在其中一个实施例中,所述支座包括底座和设置在底座上的两块固定板,所述固定板之间穿插有限位销。所述底座通过锚固螺杆与承台锚固,反力梁的两端均设有两块固定板,且反力梁的两端端部分别置于两组支座的两块固定板之间,被所述限位销限制反力梁向上的位移。
在其中一个实施例中,所述限位销穿插于两块固定板上端。
在其中一个实施例中,所述限位销与反力梁垂直设置,有助于限制反力
梁向上的位移。
在其中一个实施例中,所述底座两端对称设有槽孔,锚固螺杆穿过槽孔与承台锚固。所述槽孔分别设于两组底座的两端,分布于基桩桩孔的四周,提高锚固的稳定性。锚固深度根据承台混凝土强度、锚固钢筋的强度、钢筋直径和建筑抗震等级确定,以接近承台受力钢筋底面为宜。
在其中一个实施例中,所述反力梁的对称中心位于基桩的中心轴线上,使得传力更加均匀,检测更加准确。
本发明的有益效果在于:
通过在承台上埋设锚固螺杆固定反力架,以建筑物所能发挥的自重载荷作为压桩反力,试验时,用千斤顶顶反力梁,由反力梁将荷载反力传至千斤顶和受检的基桩,反力架上固定限位销,限制千斤顶作用下的反力梁向上的位移。所述基桩静载试验反力装置基桩静载试验装置以建筑物自重载荷作为压桩反力,无需在装置上堆载重物,体积小,装置轻便灵活,不受施工场地和高度限制,检测方便,作用面小,也可在室内检测,广泛适用于既有建筑物地基基础加固基桩的验收。
反力架将载荷反力通过千斤顶和传力管传至受检的基桩上。所述底座通过锚固螺杆与承台锚固,反力梁的两端均设有两块固定板,且反力梁的两端端部分别置于两组支座的两块固定板之间,被所述限位销限制向上的位移。本发明装置可以对既有建筑物基础加固基桩承载力进行有效评价,同时可用于对加固基桩进行稳压封桩,具有较大的推广价值。
图1为本发明的基桩静载装置结构示意图;
图2为本发明的基桩静载反力装置俯视图;
图3为本发明的基桩静载反力装置中锚固螺杆与桩孔布置示意图。
附图标记说明:
10、反力架;11、限位销;12、反力梁;13、支座;14、底座;15、固定板;16、槽孔;20、锚固螺杆;30、千斤顶;40、基桩;50、基桩桩孔;60、传力管。
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本发明进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。
如图1和2所示的一种基桩静载试验装置,用于对承台上的基桩进行静载试验,所述基桩静载试验装置包括:反力架10、锚固螺杆20和千斤顶30;所述反力架10包括限位销11、反力梁12和支座13;所述反力梁12位于支座13之间,所述限位销11置于反力梁12的上方并固定于支座13上,所述支座13通过锚固螺杆20与承台锚固,所述锚固螺杆20设于基桩桩孔50四周。所述千斤顶30上端与反力梁12连接,下端与基桩40连接。承台为在基桩顶部设置的联结各桩顶的钢筋混凝土平台,通过在承台上埋设锚固螺杆20固定反力架10,以建筑物所能发挥的自重载荷作为压桩反力,试验时,用千斤顶30顶反力梁12,由反力梁12将荷载反力传至千斤顶30和受检的基桩40,反力架10上固定限位销11,限制千斤顶30作用下的反力梁12向上的位移。
一实施例中,所述千斤顶30下端通过传力管60与基桩40连接。反力架
10将载荷反力通过千斤顶30和传力管60传至受检的基桩40上。
所述反力架10、限位销11、反力梁12、支座13、底座14和传力管均由具有较大强度的材料制成,在本实施例中,其均由钢材料制成。
所述支座13为两组,两组支座13对称设置于基桩桩孔50两侧。反力梁12位于两组支座13之间,并由支座13上的限位销11限制反力梁12向上的位移。所述支座13包括底座14和设置在底座14上的两块固定板15,本实施例中,采用槽钢作为固定板15,将两块槽钢平行焊接在底座上,所述两块槽钢15之间穿插有限位销11。所述底座14通过锚固螺杆20与承台锚固,反力梁12的两端端部分别置于两组支座13的两块平行槽钢15之间,被所述限位销11限制向上的位移。
所述反力梁12的对称中心位于基桩40的中心轴线上,使得传力更加均匀,检测更加准确。所述限位销11穿插于两块槽钢15上端。所述限位销11与反力梁12垂直设置,有助于限制反力梁12向上的位移。
所述底座14两端对称设有槽孔16,本实施例中共设有4个槽孔16,锚固螺杆20穿过槽孔16与承台锚固,再用螺母将锚固螺杆20固定在底座14上。所述槽孔16分别设于两组底座14的两端,分布于基桩桩孔50的四周,提高锚固的稳定性。锚固深度根据承台混凝土强度、锚固钢筋的强度、钢筋直径和建筑抗震等级确定,以接近承台受力钢筋底面为宜。
所述基桩静载试验装置还包括压力传感器和位移传感器。所述基桩静载试验的荷载量测采用压力传感器与千斤顶30并联的方式测定油压,再根据千斤顶30校准结果换算载荷,所述位移传感器的测点固定在传力管60上部位置用于测量基桩的沉降量。
本发明提供的基桩静载试验装置可以对既有建筑物基础加固基桩承载力进行有效评价,通过在承台上埋设锚固螺杆固定反力架,以建筑物所能发挥的自重载荷作为压桩反力,试验时,用千斤顶顶反力梁,由反力梁将荷载反力传至千斤顶和受检的基桩,反力架上固定限位销,限制千斤顶作用下的反力梁向上的位移。所述基桩静载试验反力装置基桩静载试验装置以建筑物自重载荷作为压桩反力,无需在装置上堆载重物,体积小,装置轻便灵活,不受施工场地和高度限制,检测方便,作用面小,也可在室内检测,广泛适用于既有建筑物地基基础加固基桩的验收。同时可用于对加固基桩进行稳压封桩,具有较大的推广价值。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (9)
- 一种基桩静载试验装置,用于对承台上的基桩进行静载试验,其特征在于,包括:反力架、锚固螺杆和千斤顶;所述反力架包括限位销、反力梁和支座;所述反力梁位于支座之间,所述限位销置于反力梁的上方并固定于支座上,所述支座通过锚固螺杆与承台锚固,所述锚固螺杆设于基桩桩孔四周,所述千斤顶上端与反力梁连接,下端与基桩连接。
- 根据权利要求1所述的基桩静载试验装置,其特征在于,还包括传力管,所述千斤顶下端通过传力管与基桩连接。
- 根据权利要求2所述的基桩静载试验装置,其特征在于,还包括压力传感器和位移传感器;所述压力传感器与千斤顶并联,所述位移传感器的测点固定在传力管上部位置。
- 根据权利要求1所述的基桩静载试验装置,其特征在于,所述支座为两组,两组支座对称设置于基桩桩孔两侧。
- 根据权利要求1所述的基桩静载试验装置,其特征在于,所述支座包括底座和设置在底座上的两块固定板,所述固定板之间穿插有所述限位销。
- 根据权利要求5所述的基桩静载试验装置,其特征在于,所述限位销穿插于两块固定板上端。
- 根据权利要求5所述的基桩静载试验装置,其特征在于,所述限位销与反力梁垂直设置。
- 根据权利要求5所述的基桩静载试验装置,其特征在于,所述底座两端对称设有槽孔,锚固螺杆穿过槽孔与承台锚固。
- 根据权利要求1-8任一项所述的基桩静载试验装置,其特征在于,所 述反力梁的对称中心位于基桩的中心轴线上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621316504.5U CN206245359U (zh) | 2016-12-02 | 2016-12-02 | 基桩静载试验装置 |
CN201621316504.5 | 2016-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018098963A1 true WO2018098963A1 (zh) | 2018-06-07 |
Family
ID=59003412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/079281 WO2018098963A1 (zh) | 2016-12-02 | 2017-04-01 | 基桩静载试验装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN206245359U (zh) |
WO (1) | WO2018098963A1 (zh) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109100232A (zh) * | 2018-09-06 | 2018-12-28 | 中建三局第三建设工程有限责任公司 | 用于检测桥塔爬锥竖向承载力的试验装置及使用方法 |
CN109387384A (zh) * | 2018-10-22 | 2019-02-26 | 绍兴文理学院元培学院 | 一种自动式双向反力架 |
CN110004997A (zh) * | 2019-05-10 | 2019-07-12 | 四川中亿创新重型装备有限公司 | 一种压重堆载体静载试验移动装置及方法 |
CN110042873A (zh) * | 2019-03-14 | 2019-07-23 | 中国电力科学研究院有限公司 | 一种基础上拔载荷试验可増程式加载装置及加载方法 |
CN110108562A (zh) * | 2019-05-29 | 2019-08-09 | 西安建筑科技大学 | 一种斜支撑节点抗滑移试验静力加载装置及加载方法 |
CN110146372A (zh) * | 2019-05-06 | 2019-08-20 | 中国电力科学研究院有限公司 | 一种基础上拔载荷试验的加载装置及加载方法 |
CN110295632A (zh) * | 2019-07-12 | 2019-10-01 | 周家樑 | 一种单桩竖向抗压静载试验方法及其试验装置 |
CN110387829A (zh) * | 2019-08-14 | 2019-10-29 | 四川路桥华东建设有限责任公司 | 大型横梁支架通过多点锚固张拉法进行预压的系统及操作方法 |
EP3584371A1 (en) * | 2018-06-18 | 2019-12-25 | Vallourec Deutschland GmbH | Device for verifying the bearing capacity of a pile of an offshore foundation construction |
CN110629812A (zh) * | 2019-10-25 | 2019-12-31 | 中铁第四勘察设计院集团有限公司 | 单桩竖向动静荷载的加载试验装置及方法 |
CN110864837A (zh) * | 2019-11-22 | 2020-03-06 | 四川省建筑科学研究院有限公司 | 一种钢钉锚固力检测装置及其使用方法 |
CN111141625A (zh) * | 2020-01-21 | 2020-05-12 | 安徽理工大学 | 一种新型爆破模拟实验装置 |
CN111157352A (zh) * | 2020-02-25 | 2020-05-15 | 北京工业大学 | 一种新型的自平衡竖向加载试验装置 |
CN112982514A (zh) * | 2021-03-12 | 2021-06-18 | 中科院广州化灌工程有限公司 | 外加堆载和桩筏板自重反力联合共同受力的桩静载检测装置及其方法 |
CN113235675A (zh) * | 2021-05-13 | 2021-08-10 | 湖南科技大学 | 模拟溶洞基桩受力变形的室内模型试验装置及其使用方法 |
CN113432996A (zh) * | 2021-06-22 | 2021-09-24 | 浙江创新工程检测有限公司 | 一种混凝土梁的静载检测设备 |
CN114075834A (zh) * | 2020-08-21 | 2022-02-22 | 苏州恒信建设技术开发检测有限公司 | 一种基桩静载检测装置以及方法 |
CN114150661A (zh) * | 2021-12-08 | 2022-03-08 | 郑州天宏工程检测有限公司 | 一种新型桩基及其承载力检测装置及其检测方法 |
CN115030159A (zh) * | 2022-08-01 | 2022-09-09 | 江苏建研建设工程质量安全鉴定有限公司 | 一种拔出障碍桩的装置及操作方法 |
CN115219089A (zh) * | 2022-08-19 | 2022-10-21 | 惠州市建设集团工程建设监理有限公司 | 应用于建设监理的基坑监测系统及监理检测方法 |
CN117966824A (zh) * | 2024-03-28 | 2024-05-03 | 广东省有色工业建筑质量检测站有限公司 | 平板载荷试验自膨胀式地锚反力装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107059961B (zh) * | 2017-06-21 | 2019-06-18 | 浙江求是工程检测有限公司 | 一种桩基静载装置 |
CN107389443A (zh) * | 2017-09-04 | 2017-11-24 | 苏交科集团股份有限公司 | 静载锚固试验的样品支撑装置 |
CN111337343A (zh) * | 2018-12-19 | 2020-06-26 | 比亚迪股份有限公司 | 梁静载试验装置 |
CN109594593B (zh) * | 2019-02-21 | 2024-02-02 | 潍坊科技学院 | 一种工程结构试验反力锚固结构 |
CN110700332A (zh) * | 2019-09-29 | 2020-01-17 | 广东省建筑科学研究院集团股份有限公司 | 一种既有建筑加固桩基静载试验反力装置及其试验方法 |
CN113026830A (zh) * | 2021-03-10 | 2021-06-25 | 中国科学院武汉岩土力学研究所 | 一种可复用的沉井施工期深层载荷试验设备 |
CN112878397A (zh) * | 2021-03-10 | 2021-06-01 | 中国科学院武汉岩土力学研究所 | 一种沉井施工期深层载荷试验设备的使用方法 |
CN114592553B (zh) * | 2022-04-11 | 2024-03-26 | 上海长凯岩土工程有限公司 | 大吨位加固桩基静载荷试验方法 |
CN115075245A (zh) * | 2022-05-31 | 2022-09-20 | 杭州圣基建筑特种工程有限公司 | 一种智能型锚杆静压桩机 |
CN115059124A (zh) * | 2022-07-13 | 2022-09-16 | 天津市地质工程勘测设计院有限公司 | 用于软土地区高承台基桩抗压静载荷试验装置及实现方法 |
CN117966799B (zh) * | 2024-04-01 | 2024-05-31 | 山东三箭建设工程股份有限公司 | 一种便于周转使用的装配式塔吊基础结构及其施工方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102061712A (zh) * | 2010-12-30 | 2011-05-18 | 中交第三航务工程局有限公司 | 水下挤密砂桩复合地基试验系统 |
CN202577378U (zh) * | 2012-04-20 | 2012-12-05 | 宏润建设集团股份有限公司 | 单桩静载试验架 |
JP2012255305A (ja) * | 2011-06-09 | 2012-12-27 | Takenaka Komuten Co Ltd | 基礎の載荷試験方法 |
CN103953078A (zh) * | 2014-05-16 | 2014-07-30 | 安徽省建筑工程质量监督检测站 | 管桩抗拔单杆传力试验装置 |
CN204040080U (zh) * | 2014-07-18 | 2014-12-24 | 广州市地下铁道总公司 | 一种基于分布式传感光纤的钻孔灌注桩静载检测系统 |
-
2016
- 2016-12-02 CN CN201621316504.5U patent/CN206245359U/zh active Active
-
2017
- 2017-04-01 WO PCT/CN2017/079281 patent/WO2018098963A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102061712A (zh) * | 2010-12-30 | 2011-05-18 | 中交第三航务工程局有限公司 | 水下挤密砂桩复合地基试验系统 |
JP2012255305A (ja) * | 2011-06-09 | 2012-12-27 | Takenaka Komuten Co Ltd | 基礎の載荷試験方法 |
CN202577378U (zh) * | 2012-04-20 | 2012-12-05 | 宏润建设集团股份有限公司 | 单桩静载试验架 |
CN103953078A (zh) * | 2014-05-16 | 2014-07-30 | 安徽省建筑工程质量监督检测站 | 管桩抗拔单杆传力试验装置 |
CN204040080U (zh) * | 2014-07-18 | 2014-12-24 | 广州市地下铁道总公司 | 一种基于分布式传感光纤的钻孔灌注桩静载检测系统 |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3584371A1 (en) * | 2018-06-18 | 2019-12-25 | Vallourec Deutschland GmbH | Device for verifying the bearing capacity of a pile of an offshore foundation construction |
WO2019243364A1 (en) * | 2018-06-18 | 2019-12-26 | Vallourec Deutschland Gmbh | Device for verifying the bearing capacity of a pile of an offshore foundation construction |
CN109100232A (zh) * | 2018-09-06 | 2018-12-28 | 中建三局第三建设工程有限责任公司 | 用于检测桥塔爬锥竖向承载力的试验装置及使用方法 |
CN109100232B (zh) * | 2018-09-06 | 2023-12-05 | 中建三局第三建设工程有限责任公司 | 用于检测桥塔爬锥竖向承载力的试验装置及使用方法 |
CN109387384A (zh) * | 2018-10-22 | 2019-02-26 | 绍兴文理学院元培学院 | 一种自动式双向反力架 |
CN109387384B (zh) * | 2018-10-22 | 2023-12-29 | 绍兴文理学院元培学院 | 一种自动式双向反力架 |
CN110042873A (zh) * | 2019-03-14 | 2019-07-23 | 中国电力科学研究院有限公司 | 一种基础上拔载荷试验可増程式加载装置及加载方法 |
CN110146372B (zh) * | 2019-05-06 | 2024-05-24 | 中国电力科学研究院有限公司 | 一种基础上拔载荷试验的加载装置及加载方法 |
CN110146372A (zh) * | 2019-05-06 | 2019-08-20 | 中国电力科学研究院有限公司 | 一种基础上拔载荷试验的加载装置及加载方法 |
CN110004997A (zh) * | 2019-05-10 | 2019-07-12 | 四川中亿创新重型装备有限公司 | 一种压重堆载体静载试验移动装置及方法 |
CN110108562A (zh) * | 2019-05-29 | 2019-08-09 | 西安建筑科技大学 | 一种斜支撑节点抗滑移试验静力加载装置及加载方法 |
CN110295632A (zh) * | 2019-07-12 | 2019-10-01 | 周家樑 | 一种单桩竖向抗压静载试验方法及其试验装置 |
CN110387829A (zh) * | 2019-08-14 | 2019-10-29 | 四川路桥华东建设有限责任公司 | 大型横梁支架通过多点锚固张拉法进行预压的系统及操作方法 |
CN110629812A (zh) * | 2019-10-25 | 2019-12-31 | 中铁第四勘察设计院集团有限公司 | 单桩竖向动静荷载的加载试验装置及方法 |
CN110864837A (zh) * | 2019-11-22 | 2020-03-06 | 四川省建筑科学研究院有限公司 | 一种钢钉锚固力检测装置及其使用方法 |
CN111141625A (zh) * | 2020-01-21 | 2020-05-12 | 安徽理工大学 | 一种新型爆破模拟实验装置 |
CN111141625B (zh) * | 2020-01-21 | 2024-08-06 | 安徽理工大学 | 一种新型爆破模拟实验装置 |
CN111157352A (zh) * | 2020-02-25 | 2020-05-15 | 北京工业大学 | 一种新型的自平衡竖向加载试验装置 |
CN114075834B (zh) * | 2020-08-21 | 2023-07-18 | 苏州恒信建设技术开发检测有限公司 | 一种基桩静载检测装置以及方法 |
CN114075834A (zh) * | 2020-08-21 | 2022-02-22 | 苏州恒信建设技术开发检测有限公司 | 一种基桩静载检测装置以及方法 |
CN112982514A (zh) * | 2021-03-12 | 2021-06-18 | 中科院广州化灌工程有限公司 | 外加堆载和桩筏板自重反力联合共同受力的桩静载检测装置及其方法 |
CN113235675B (zh) * | 2021-05-13 | 2024-04-26 | 湖南科技大学 | 模拟溶洞基桩受力变形的室内模型试验装置及其使用方法 |
CN113235675A (zh) * | 2021-05-13 | 2021-08-10 | 湖南科技大学 | 模拟溶洞基桩受力变形的室内模型试验装置及其使用方法 |
CN113432996A (zh) * | 2021-06-22 | 2021-09-24 | 浙江创新工程检测有限公司 | 一种混凝土梁的静载检测设备 |
CN114150661A (zh) * | 2021-12-08 | 2022-03-08 | 郑州天宏工程检测有限公司 | 一种新型桩基及其承载力检测装置及其检测方法 |
CN115030159A (zh) * | 2022-08-01 | 2022-09-09 | 江苏建研建设工程质量安全鉴定有限公司 | 一种拔出障碍桩的装置及操作方法 |
CN115219089A (zh) * | 2022-08-19 | 2022-10-21 | 惠州市建设集团工程建设监理有限公司 | 应用于建设监理的基坑监测系统及监理检测方法 |
CN117966824A (zh) * | 2024-03-28 | 2024-05-03 | 广东省有色工业建筑质量检测站有限公司 | 平板载荷试验自膨胀式地锚反力装置 |
Also Published As
Publication number | Publication date |
---|---|
CN206245359U (zh) | 2017-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018098963A1 (zh) | 基桩静载试验装置 | |
CN104374648B (zh) | 一种测试管桩与注浆土体之间动力剪切特性的试验装置及方法 | |
CN105839678A (zh) | 一种改进型桩基竖向承载力试验反向自平衡法及试验装置 | |
CN206189478U (zh) | 一种水平桩基单桩水平载荷试验装置 | |
CN104328810B (zh) | 预制管桩单桩地基承载力检测改进方法 | |
CN111535374B (zh) | 一种桩基抗扭、抗拉扭、抗压扭检测系统及方法 | |
CN108978734B (zh) | 一种纤维筋抗浮锚杆受力特性室内模拟试验装置 | |
CN108020460A (zh) | 一种黄土湿陷系数测量设备及其测量方法 | |
CN208668482U (zh) | 一种地基承载力检测装置 | |
CN108398319B (zh) | 超高水充填材料蠕变试验装置及其使用方法 | |
CN210720117U (zh) | 一种自平衡式钢筋与混凝土粘结滑移测试装置 | |
CN107144261A (zh) | 一种管桩垂直度偏差快速测量装置及检测方法 | |
CN109469123B (zh) | 一种双千斤顶的桩基水平加载的自平衡装置及测试方法 | |
RU71669U1 (ru) | Устройство для статического испытания свай | |
CN210486733U (zh) | 一种桥梁工程钻孔桩孔底沉渣层厚度测定装置 | |
CN207017322U (zh) | 一种用于预应力管桩抗拔静载试验装置 | |
CN215296993U (zh) | 一种全应力路径追踪的多联岩土原位剪切测试装置 | |
CN213517146U (zh) | 一种混凝土坍落度试验固定调平装置 | |
CN106245689B (zh) | 一种混合材料支撑桩轴力的监测方法 | |
CN213625529U (zh) | 一种简易地基承载力测试装置 | |
CN106939622A (zh) | 扩大头间距对扩底抗拔桩承载力的影响研究试验装置 | |
CN210395467U (zh) | 一种新型单桩抗拔静载试验装置 | |
CN110409519B (zh) | 超大直径端承桩承载力的检验装置及检测方法 | |
RU2713019C1 (ru) | Мобильная установка для проведения статических испытаний штампов и свай | |
CN211172116U (zh) | 模拟基坑开挖对邻近建筑基桩承载力影响的实验装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17875910 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17875910 Country of ref document: EP Kind code of ref document: A1 |