WO2018098924A1 - 苯乙烯基硅氧基聚苯醚树脂及其制备方法和应用 - Google Patents

苯乙烯基硅氧基聚苯醚树脂及其制备方法和应用 Download PDF

Info

Publication number
WO2018098924A1
WO2018098924A1 PCT/CN2017/076527 CN2017076527W WO2018098924A1 WO 2018098924 A1 WO2018098924 A1 WO 2018098924A1 CN 2017076527 W CN2017076527 W CN 2017076527W WO 2018098924 A1 WO2018098924 A1 WO 2018098924A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
polyphenylene ether
ether resin
group
Prior art date
Application number
PCT/CN2017/076527
Other languages
English (en)
French (fr)
Inventor
袁婵娥
罗鸿运
范华勇
林伟
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Priority to US16/465,193 priority Critical patent/US20200002473A1/en
Publication of WO2018098924A1 publication Critical patent/WO2018098924A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0162Silicon containing polymer, e.g. silicone

Definitions

  • the invention belongs to the technical field of copper clad laminates, and relates to a styryl siloxy polyphenylene ether resin and a preparation method and application thereof.
  • the polyphenylene ether resin has a large amount of benzene ring structure and no strong polar groups, which gives the polyphenylene ether resin excellent properties, such as high glass transition temperature, good dimensional stability, small linear expansion coefficient, and water absorption. Low rates, especially excellent low dielectric constant and low dielectric loss.
  • polyphenylene ether resin with vinyl benzyl ether structure has become a preferred resin material for high-frequency printed circuit board substrates due to its good mechanical properties and excellent dielectric properties.
  • the double bond and other resins containing double bonds are prepared by free radical reaction or self-curing to prepare a laminate having high glass transition temperature, high heat resistance and high heat and humidity resistance.
  • a resin having a vinyl benzyl ether compound having various chemical structures has been used in a high-frequency high-speed field, and a polyphenylene ether resin having a vinyl benzyl ether structure has good mechanical properties and excellent dielectric properties. The more the resin material is the substrate of the high frequency printed circuit board.
  • an object of the present invention is to provide a styryl siloxy polyphenylene ether resin and a preparation method and application thereof.
  • the present invention provides a styrylsiloxy polyphenylene ether resin having a structure of the following formula I:
  • R 1 is R is absent or selected from substituted or unsubstituted C1-C8 linear alkyl, substituted or unsubstituted C1-C8 branched alkyl, -O-, -S-, Or any one of -SO 2 -, R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are independently selected from hydrogen, substituted or unsubstituted C1-C8 straight chain Alkyl, substituted or unsubstituted C1-C8 branched alkyl, substituted or unsubstituted C2-C10 linear alkenyl, substituted or unsubstituted C2-C10 branched alkenyl or substituted or unsubstituted benzene Any one of the groups, m is 0 or 1; R 2 and R 3 are independently selected from substituted or unsubstituted C1-C10 linear alkyl, substituted or unsubstituted C1-C
  • R is a substituted or unsubstituted C1-C8 linear alkyl group, that is, R may be a substituted or unsubstituted C1, C2, C3, C4, C5, C6, C7 or C8 linear alkyl group.
  • R may be -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 - or -CH 2 CH 2 CH 2 CH 2 - or the like.
  • R is a substituted or unsubstituted C1-C8 branched alkyl group, that is, R may be a substituted or unsubstituted C2, C3, C4, C5, C6, C7 or C8 branched alkyl group, for example
  • the R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are independently a substituted or unsubstituted C1-C8 linear alkyl group means that it may be substituted unsubstituted C1, C2, C3, C4, C5, C6, C7 or C8 straight chain alkyl group, for example, be -CH 3, -CH 2 CH 3, -CH 2 CH 2 CH 3, -CH 2 CH 2 CH 2 CH 3 or -CH 2 CH 2 CH 2 CH 2 CH 3 or the like.
  • the R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are independently a substituted or unsubstituted C1-C8 branched alkyl group means that it may be substituted Or an unsubstituted C1, C2, C3, C4, C5, C6, C7 or C8 branched alkyl group, for example, Wait.
  • the R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are independently a substituted or unsubstituted C 2 -C 10 branched alkenyl group, which means that a C2, C3, C4, C5, C6, C7, C8, C9 or C10 branched alkenyl group, for example, Wait.
  • R 1 is R a is selected from any one of H, allyl or isoallyl.
  • the R 2 and R 3 are selected from a substituted or unsubstituted C1-C10 linear alkyl group, which means that C1, C2, C3, C4, C5, C6, C7, C8 may be substituted or unsubstituted.
  • C9 or C10 linear alkyl for example, may be -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH 2 CH 2 CH 2 CH 3 or -CH 2 CH 2 CH 2 CH 2 CH 3 and so on.
  • the R 2 and R 3 are selected from a substituted or unsubstituted C1-C10 branched alkyl group, and may be C1, C2, C3, C4, C5, C6, C7, C8 which may be substituted or unsubstituted. , C9 or C10 branched alkyl, for example, can be Wait.
  • the R 2 and R 3 are selected from a substituted or unsubstituted C 2 -C 10 branched alkenyl group, and may be substituted or unsubstituted C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C9 or C10 branched alkenyl group, for example Wait.
  • the R 2 and R 3 are selected from substituted or unsubstituted cycloalkyl groups, preferably selected from substituted or unsubstituted C3-C10 (eg, C3, C4, C5, C6, C7, C8, C9). Or C10) cycloalkyl, for example, Wait.
  • the R 2 and R 3 are selected from a substituted or unsubstituted aryl group to mean a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted hetero group.
  • a substituted or unsubstituted aryl group to mean a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted hetero group.
  • Aryl and the like are selected from a substituted or unsubstituted aryl group to mean a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted hetero group.
  • the R 2 and R 3 are selected from a substituted or unsubstituted alkylaryl group, which may be a substituted or unsubstituted alkylphenyl group, a substituted or unsubstituted alkylnaphthyl group, a substitution. Or unsubstituted alkylheteroaryl and the like.
  • R 2 and R 3 are selected from Any one of -CH 2 CH 3 or -CH 3 , and R 2 and R 3 may be the same or different.
  • the R 4 is selected from any of the C1-C20 organic groups satisfying its chemical environment, meaning that R 4 is C1, C2, C3, C4, C5, C6, C7, C8, which satisfies its chemical environment.
  • Any organic group of C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19 or C20 which may be an organic group containing a hetero atom such as N, O or F.
  • the group may be an organic group containing no hetero atom, and may be, for example, an alkyl group, a cycloalkyl group, an aryl group or a heteroaryl group satisfying the number of carbon atoms.
  • n 1 and n 2 are integers greater than 0, and satisfy 4 ⁇ n 1 + n 2 ⁇ 25, for example, n 1 may be 1, 2, 3, 4, 5, 6, 7, 8 , 9, 10, 11, 12, 13, 14, 15, 16, 17 , 18, 19 , 20, 22 , 23 or 24, n 2 may be 1, 2, 3, 4, 5, 6, 7, 8 , 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23 or 24, and 4 ⁇ n 1 + n 2 ⁇ 25, for example, n 1 + n 2 is equal to 5 6, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24, preferably 6 ⁇ n 1 + n 2 ⁇ 20, Further preferably, 8 ⁇ n 1 + n 2 ⁇ 15.
  • the styrylsiloxy polyphenylene ether resin is any one or a combination of at least two of the compounds having the structure shown by the following formula a-d:
  • R 1 is Ra is selected from any one of H, allyl or isoallyl; n 1 and n 2 are integers greater than 0, and satisfy 4 ⁇ n 1 + n 2 ⁇ 25.
  • the present invention provides a process for the preparation of a styrylsiloxy polyphenylene ether resin as described above, the method comprising the steps of:
  • R 1 is R is absent or selected from substituted or unsubstituted C1-C8 linear alkyl, substituted or unsubstituted C1-C8 branched alkyl, -O-, -S-, Or -SO 2 - in any one
  • R 5, R 6, R 7, R 8, R 9, R 10, R 11 and R 12 are independently selected from hydrogen, a substituted or unsubstituted C1-C8 linear Alkyl, substituted or unsubstituted C1-C8 branched alkyl, substituted or unsubstituted C2-C10 linear alkenyl, substituted or unsubstituted C2-C10 branched alkenyl or substituted or unsubstituted benzene Any one of the groups, m is 0 or 1; R 2 and R 3 are independently selected from substituted or unsubstituted C1-C10 linear alkyl, substituted or unsubstituted C1-C10 branched alkyl, substituted
  • the molar ratio of the dichlorosilane monomer of the formula II represented by the formula (1) to the polyphenylene ether resin of the formula III is (1-1.5):1, for example, 1:1, 1.1:1. 1.2:1, 1.3:1, 1.4:1 or 1.5:1.
  • the temperature of the reaction in the step (1) is 0-60 ° C, such as 0 ° C, 5 ° C, 10 ° C, 15 ° C, 20 ° C, 25 ° C, 30 ° C, 35 ° C, 40 ° C, 45 ° C, 50 °C, 55 ° C, 60 ° C.
  • the reaction time in the step (1) is 2-24 hours, for example 2 hours, 3 hours, 5 hours, 6 hours, 7 hours, 9 hours, 11 hours, 13 hours, 15 hours, 16 hours, 17 Hour, 19 hours, 20 hours, 22 hours or 24 hours, preferably 3-22 hours, further preferably 4-20 hours.
  • the dichlorosilane monomer of the formula II is added dropwise to the reaction system containing the polyphenylene ether resin of the formula III.
  • the temperature at the time of dropwise addition is 0-20 ° C, such as 0 ° C, 3 ° C, 5 ° C, 8 ° C, 10 ° C, 12 ° C, 15 ° C, 18 ° C or 20 ° C.
  • the dichlorosilane monomer of formula II is added at 0-20 ° C (for example, 0 ° C, 3 ° C, 5 ° C, 8 ° C, 10 ° C, 12 ° C, 15 ° C, 18 ° C or 20 ° C).
  • the reaction is 5-10 hours (eg 5 hours, 6 hours, 7 hours, 8 hours, 9 hours or 10 hours) and then warmed to 40-60 ° C (eg 40 ° C, 45 ° C, 50 ° C, 55 ° C or 60 ° C) Reaction for 1-5 hours (eg 1 hour, 2 hours, 3 hours, 4 hours or 5) hour).
  • the molar ratio of the vinyl group-containing phenol monomer of the formula V to the Cl group in the modified polyphenylene ether resin represented by the formula IV is (0.65-1):1, for example, 0.65. 1: 1, 0.7: 1, 0.75: 1, 0.8: 1, 0.85: 1, 0.9: 1, 0.95: 1, or 1:1.
  • the temperature of the reaction in the step (2) is 0-60 ° C, such as 0 ° C, 5 ° C, 10 ° C, 15 ° C, 20 ° C, 25 ° C, 30 ° C, 35 ° C, 40 ° C, 45 ° C, 50 °C, 55 ° C, 60 ° C.
  • the reaction time in the step (2) is 2-10 hours, for example 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours or 10 hours, preferably 3-9
  • the hour is further preferably 4 to 8 hours.
  • step (1) and step (2) is carried out in an anhydrous organic solvent.
  • the anhydrous organic solvent is selected from any one or a mixture of at least two of tetrahydrofuran, dichloromethane, acetone or methyl ethyl ketone; typical but non-limiting examples of the mixture include tetrahydrofuran and dichloromethane a mixture of methylene chloride and methyl ethyl ketone, a mixture of tetrahydrofuran and methyl ethyl ketone, a mixture of acetone, tetrahydrofuran and methyl ethyl ketone.
  • the reactions described in step (1) and step (2) are carried out under protective gas protection; the protective gas is preferably nitrogen.
  • the present invention provides a styrylsiloxy polyphenylene ether resin composition comprising the styrylsiloxy polyphenylene ether as described above Resin.
  • the content of the styrylsiloxy polyphenylene ether resin in the styrylsiloxy polyphenylene ether resin composition is from 10 to 97%, for example, 12%, 15%, 18%, 20 %, 25%, 28%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95%, etc. .
  • the styrylsiloxy polyphenylene ether resin composition further includes other resins having double bonds.
  • the other resin having a double bond means a resin having a double bond other than the styrylsiloxy polyphenylene ether resin described in the present invention.
  • the other resin having a double bond is selected from a polyolefin resin or a silicone resin having a double bond.
  • the polyolefin resin is selected from any one of a styrene-butadiene copolymer, a polybutadiene or a styrene-butadiene-divinylbenzene copolymer or a mixture of at least two.
  • the polyolefin resin is selected from the group consisting of amino-modified, maleic anhydride-modified, epoxy-modified, acrylate-modified, hydroxyl-modified or carboxyl-modified styrene-butadiene Any one or a mixture of at least two of a copolymer, a polybutadiene, a styrene-butadiene-divinylbenzene copolymer.
  • Sartomer's styrene-butadiene copolymer R100 Japan's Soda's polybutadiene B-1000 or Sartomer's styrene-butadiene-divinylbenzene copolymer R250.
  • the double-bonded silicone resin is selected from any one or a combination of at least two of the organosilicon compounds represented by the following formula A or formula B:
  • R 13 , R 14 and R 15 are independently selected from a substituted or unsubstituted C1-C8 linear alkyl group, a substituted or unsubstituted C1-C8 branched alkyl group, a substituted or unsubstituted phenyl group. Or a substituted or unsubstituted C2-C10 alkenyl group; and at least one of R 13 , R 14 and R 15 is a substituted or unsubstituted C 2 -C 10 alkenyl group; p is an integer from 0 to 100;
  • R 16 is selected from a substituted or unsubstituted C1-C12 linear alkyl group or a substituted or unsubstituted C1-C12 branched alkyl group; q is an integer of 2-10.
  • the styrylsiloxy polyphenylene ether resin composition may further include a silicone resin.
  • the silicon hydride resin is selected from any one or a combination of at least two of the silicon-hydrogen bond-containing organosilicon compound structures represented by the following formula C or formula D:
  • R 17 , R 18 and R 19 are independently selected from a substituted or unsubstituted C1-C8 linear alkyl group, a substituted or unsubstituted C1-C8 branched alkyl group, a substituted or unsubstituted phenyl group or Hydrogen; and at least one of R 17 , R 18 and R 19 is hydrogen; i is an integer from 0 to 100;
  • R 20 is selected from a substituted or unsubstituted C1-C12 linear alkyl group or a substituted or unsubstituted C1-C12 branched alkyl group; k is an integer of 2-10.
  • the styrylsiloxy polyphenylene ether resin composition further comprises an initiator or a platinum catalyst.
  • the combination when the resin in the resin composition is all a styrylsiloxy polyphenylene ether resin, or a styrylsiloxy polyphenylene ether resin and other resins having a double bond, the combination is Can be packaged An initiator is contained; when a silicone hydrogen resin is contained in the resin composition, a platinum catalyst can be used as a catalyst in the composition.
  • the initiator is a free radical initiator and the free radical initiator is selected from an organic peroxide initiator.
  • the organic peroxide initiator is selected from the group consisting of di-tert-butyl peroxide, dilauroyl peroxide, dibenzoyl peroxide, cumene peroxy neodecanoate, and undoped neodecanoate.
  • the styrylsiloxy polyphenylene ether resin composition further includes an inorganic filler.
  • the inorganic filler is selected from the group consisting of aluminum hydroxide, boehmite, silica, talc, mica, barium sulfate, lithopone, calcium carbonate, wollastonite, kaolin, brucite, diatomaceous earth, Any one or a mixture of at least two of bentonite or pumice powder.
  • the styrylsiloxy polyphenylene ether resin composition further includes a flame retardant.
  • the flame retardant is an organic flame retardant and/or an inorganic flame retardant.
  • the organic flame retardant is selected from the group consisting of a halogen-based organic flame retardant, a phosphorus-based organic flame retardant, or a nitrogen-based one. Any one or a mixture of at least two of the organic flame retardants.
  • the organic flame retardant is selected from the group consisting of tris(2,6-dimethylphenyl)phosphine, 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa- 10-phosphinophen-10-oxide, 2,6-bis(2,6-dimethylphenyl)phosphinobenzene, 10-phenyl-9,10-dihydro-9-oxa-10-phosphine Any one or a mixture of at least two of a phenanthrene-10-oxide, a phenoxyphosphazene compound, a nitrogen-phosphorus expanded organic flame retardant, a phosphorus-containing phenol resin or a phosphorus-containing bismaleimide.
  • the inorganic flame retardant is zinc borate.
  • One of the preparation methods of the styrylsiloxypolyphenylene ether resin composition of the present invention can be prepared by stirring and mixing the constituent components by a known method.
  • the present invention provides a resin glue obtained by dissolving or dispersing a styrylsiloxy polyphenylene ether resin composition as described above in a solvent.
  • the solvent in the present invention is not particularly limited.
  • the solvent is one or a combination of at least two of an alcohol, a ketone, an aromatic hydrocarbon, an ether, an ester, or a nitrogen-containing organic solvent, preferably methanol, ethanol, butanol, and B.
  • Cellosolve butyl cellosolve, ethylene glycol-methyl ether, carbitol, butyl carbitol, acetone, methyl ethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, toluene,
  • mesitylene mesitylene, ethoxyethyl acetate, ethyl acetate, N,N-dimethylformamide, N,N-dimethylacetamide or N-methyl-2-pyrrolidone Any one or a mixture of at least two.
  • the above solvents may be used singly or in combination of two or more kinds, preferably a mixture of an aromatic hydrocarbon solvent and a ketone flux, preferably toluene and/or xylene with acetone, methyl ethyl ketone or methyl ethyl ketone. Any one or at least two of a ketone, methyl isobutyl ketone or cyclohexanone may be used in combination.
  • An emulsifier may be added during the process of dissolving or dispersing the resin composition as described above in a solvent. By dispersing by an emulsifier, the inorganic filler or the like can be uniformly dispersed in the glue.
  • the present invention provides a cured product obtained by curing a styrylsiloxy polyphenylene ether resin composition as described above.
  • the present invention provides a prepreg obtained by dampening a reinforcing material with a resin glue as described above and drying it.
  • the reinforcing material is selected from the group consisting of carbon fiber, glass fiber cloth, aramid fiber or nonwoven fabric.
  • the carbon fibers are, for example, T300, T700, T800 of Toray Industries, Japan, aramid fibers such as Kevlar fibers, and exemplary glass fiber cloths such as 7628 fiberglass cloth or 2116 fiberglass cloth.
  • the invention provides an insulating sheet comprising at least one prepreg as described above.
  • the present invention provides a metal foil-clad laminate comprising at least one prepreg as described above and a metal covering one or both sides of the laminated prepreg Foil.
  • metal foil-clad laminates e.g., copper clad laminates
  • those skilled in the art are fully capable of preparing the metal foils of the present invention according to the fabrication techniques of metal foil laminates disclosed in the prior art.
  • Laminate When the metal foil-clad laminate is applied to the preparation of a printed circuit board, it has superior electrical properties, which meets the requirements for high speed and high frequency.
  • the present invention provides a high frequency circuit substrate comprising at least one prepreg as described above.
  • the present invention has the following beneficial effects:
  • the present invention obtains the styrylsiloxy polyphenylene ether resin by introducing a styryl group and a siloxy group into a polyphenylene ether end group, the resin simultaneously combining a styrene-based cured low dielectric and siloxy group.
  • Heat resistance, weather resistance, flame retardancy, dielectric properties and low water absorption giving greater play to the application advantages of polyphenylene ether resin in copper clad laminates, and providing excellent dielectric properties required for high-frequency high-speed copper clad laminates , heat and humidity resistance and heat resistance.
  • styrylsiloxy-modified polyphenylene ether resin prepared in Example 1, 20 parts by weight of phenylhydrogen resin SH303, dissolved in an appropriate amount of methyl ethyl ketone solvent, and adjusted To the viscosity. A total of 10 ppm of platinum catalyst was added and stirred well. The gas was evacuated under vacuum for a period of time to remove bubbles and butanone from the gum system. Pour the treated glue into the mold and place it at 50 ° C for 1 hour. After molding, the mold is vacuum laminated and cured in the press for 90 min, the curing pressure is 32 kg/cm 2 , and the curing temperature is 200 ° C to obtain 0.5-2.0 mm thick.
  • Sheet-like cured product For the obtained cured product, the dielectric constant and dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method; the 5% weight reduction temperature under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min (Td 5%) The glass transition temperature was tested by DMA; the performance test results are shown in Table 1.
  • the mold After molding, the mold is vacuum laminated and cured in the press for 90 min, the curing pressure is 32 kg/cm 2 , and the curing temperature is 200 ° C to obtain 0.5-2.0 mm thick. Sheet-like cured product.
  • the dielectric constant and dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method; the 5% weight reduction temperature under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min (Td 5%)
  • Td 5% temperature increase rate of 10 ° C / min
  • the glass transition temperature was tested by DMA; the performance test results are shown in Table 1.
  • the mold After molding, the mold is vacuum laminated and cured in the press for 90 min, the curing pressure is 32 kg/cm 2 , and the curing temperature is 200 ° C to obtain 0.5-2.0 mm thick. Sheet-like cured product.
  • the dielectric constant and dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method; the 5% weight reduction temperature under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min (Td 5%)
  • Td 5% temperature increase rate of 10 ° C / min
  • the glass transition temperature was tested by DMA; the performance test results are shown in Table 1.
  • the dielectric constant and dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method; the 5% weight reduction temperature under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min (Td 5%) The glass transition temperature was tested by DMA; the performance test results are shown in Table 1.
  • the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method.
  • the 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min.
  • the glass transition temperature was tested using DMA. The performance test results are shown in Table 1.
  • the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method.
  • the 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min.
  • the glass transition temperature was tested using DMA. The performance test results are shown in Table 1.
  • styrylsiloxy-modified polyphenylene ether resin (resin c) prepared in Example 3 20 parts by weight of styrene-butadiene copolymer Ricon 100, and 3 parts by weight of dicumyl peroxide ( DCP) is dissolved in an appropriate amount of methyl ethyl ketone solvent and adjusted to a suitable viscosity and stirred uniformly.
  • the gas was evacuated under vacuum for a period of time to remove bubbles and butanone from the gum system. Pour the processed glue into the mold and leave it at 120 °C for 2 hours.
  • the mold After molding, the mold is vacuum laminated and cured in the press for 90 min, the curing pressure is 32 kg/cm 2 , and the curing temperature is 200 ° C to obtain 0.5-2.0 mm thick. Sheet-like cured product. With respect to the obtained cured product, the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method. The 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min. The glass transition temperature was tested using DMA. The performance test results are shown in Table 1.
  • the processed gum solution was poured into molds, left for 2 hours at 120 deg.] C, after forming the mold in the vacuum lamination press cured 90min, curable pressure of 32kg / cm 2, the curing temperature 200 °C, to give a thickness of 0.5-2.0mm Sheet-like cured product.
  • the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method.
  • the 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min.
  • the glass transition temperature was tested using DMA.
  • the performance test results are shown in Table 1.
  • styrylsiloxy-modified polyphenylene ether resin (resin c) prepared in Example 3 20 parts by weight of styrene-butadiene copolymer Ricon 100, and 3 parts by weight of dicumyl peroxide ( DCP) is dissolved in an appropriate amount of methyl ethyl ketone solvent and adjusted to a suitable viscosity and stirred uniformly.
  • DCP dicumyl peroxide
  • the above glue is impregnated with a 2116 glass fiber cloth, and then the solvent is removed by drying to obtain a prepreg; the two prepregs thus formed are laminated, and a copper foil of 1/2 oz (ounce) thickness is pressed on both sides thereof.
  • Curing was carried out for 130 minutes in a press, the curing pressure was 60 kg/cm 2 , and the curing temperature was 200 ° C to obtain a copper clad laminate.
  • the above glue is impregnated with 1080 fiberglass cloth, and then the solvent is removed by drying to obtain a prepreg; three prepregs have been laminated, and the release film is laminated on both sides, and cured in a press for 2 hours.
  • the curing pressure was 50 kg/cm 2 and the curing temperature was 190 ° C to obtain a laminate.
  • the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method.
  • the 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min.
  • the glass transition temperature was tested using DMA. The performance test results are shown in Table 2.
  • the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method.
  • the 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min.
  • the glass transition temperature was tested using DMA. The performance test results are shown in Table 2.
  • 77 parts by weight of methacrylate phenyl ether resin MX9000, 20 parts by weight of styrene-butadiene copolymer Ricon 100, and 3 parts by weight of dicumyl peroxide (DCP) are dissolved in an appropriate amount of methyl ethyl ketone solvent and adjusted to a suitable viscosity. Stir well. The gas was evacuated under vacuum for a period of time to remove bubbles and butanone from the gum system.
  • the processed gum solution was poured into molds, left for 2 hours at 120 deg.] C, after forming the mold in the vacuum lamination press cured 90min, curable pressure of 32kg / cm 2, the curing temperature 200 °C, to give a thickness of 0.5-2.0mm Sheet-like cured product.
  • the dielectric constant and the dielectric loss factor at 23 ° C and 1 GHz were measured by a plate capacitance method.
  • the 5% weight loss temperature (Td 5%) under a nitrogen atmosphere was evaluated by TGA at a temperature increase rate of 10 ° C / min.
  • the glass transition temperature was tested using DMA.
  • the performance test results are shown in Table 2.
  • Methacrylate-based polyphenylene ether resin MX9000, Sabic.
  • Styrene-butadiene copolymer Ricon 100, Sartomer.
  • Phenylsilicone resin SH303, Runhe Chemical.
  • Vinyl phenyl silicone resin SP606, Runhe Chemical.
  • test criteria or methods for the parameters involved in Table 1 are as follows:
  • Glass transition temperature (Tg) Measured according to the DMA test method specified in IPC-TM-650 2.4.24.4 using a DMA test.
  • Td 5% Thermal decomposition temperature
  • the cured product prepared from the composition of the styrylsiloxypolyphenylene ether resin of the present invention has a dielectric constant (1 GHz) of 2.33 to 2.41 and a dielectric loss (1 GHz) of 0.0032 to 0.0040, vitrification.
  • the transition temperature Tg is as high as 190 ° C or higher, the thermal decomposition temperature is up to 425 ° C or higher, the flame retardancy can reach V-1 level, the water absorption rate is 0.05% or less, the low dielectric property and high heat resistance and good flame retardancy are obtained. Sex and low absorption rate.
  • Examples 4-6 show a resin composition containing the styrylsiloxy-modified polyphenylene ether resin synthesized by the present invention, and a general vinyl phenyl silicone resin.
  • the cured product thereof has more excellent dielectric properties and a higher glass transition temperature.
  • Examples 7 to 11 show that the styrylsiloxy-modified polyphenylene ether resin synthesized by the present invention is also superior in comparison with the methacrylate-based polyphenylene ether resin (Comparative Examples 2 and 3). Dielectric properties, higher glass transition temperatures and higher pyrolysis temperatures. Therefore, the styrylsiloxy-modified polyphenylene ether resin is a resin with superior comprehensive performance, and can be used for preparation of a high-frequency circuit substrate, and has great application value.
  • the present invention describes the styrylsiloxy polyphenylene ether resin of the present invention and the preparation method and application thereof by the above embodiments, but the present invention is not limited to the above embodiments, that is, it does not mean that the invention must It can be implemented depending on the above embodiment. It should be apparent to those skilled in the art that any modifications of the present invention, equivalent substitution of the various materials of the products of the present invention, addition of auxiliary components, selection of specific means, and the like, are all within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

苯乙烯基硅氧基聚苯醚树脂及其制备方法和应用,利用较简单的合成方法将苯乙烯基和硅氧基引入到聚苯醚端基中得到所述苯乙烯基硅氧基聚苯醚树脂,该树脂同时结合了苯乙烯基固化的低介电和硅氧基的耐热性、耐候性、阻燃性、介电性能及低吸水率,更大地发挥聚苯醚树脂在覆铜板中的应用优势,能够提供高频高速覆铜板所需的优良的介电性能、耐湿热性和耐热性等。

Description

一种苯乙烯基硅氧基聚苯醚树脂及其制备方法和应用 技术领域
本发明属于覆铜板技术领域,涉及一种苯乙烯基硅氧基聚苯醚树脂及其制备方法和应用。
背景技术
随着近年来的信息通讯量的增加,高频印刷电路板的需求越来越高。为了减少高频带的传输损耗,电气特性优异的电气绝缘材成为覆铜板领域的研究重点。同时,使用这些电气绝缘材料的印刷基板或者电子零件为了在安装时能够应对高温的回流焊以及高多层组装,又需要材料具有高耐热性高玻璃化转变温度。对于这些要求,很多专利提出了使用具有多种化学结构的乙烯基苄基醚化合物的树脂。聚苯醚树脂分子结构中含有大量的苯环结构,且无强极性基团,赋予了聚苯醚树脂优异的性能,如玻璃化转变温度高、尺寸稳定性好、线性膨胀系数小、吸水率低,尤其是出色的低介电常数和低介电损耗。而在高频高速领域,具有乙烯基苄基醚结构的聚苯醚树脂由于具有良好的机械特性与优异介电性能,越来越成为高频印刷电路板基板首选的树脂材料,其依靠端基的双键与其他含有双键的树脂通过自由基反应或自固化来制备层压板,具有高玻璃化转变温度,高耐热性,高耐湿热性的特点。
具有多种化学结构的乙烯基苄基醚化合物的树脂已被用于高频高速领域,而具有乙烯基苄基醚结构的聚苯醚树脂由于具有良好的机械特性与优异介电性能,越来越成为高频印刷电路板的基板首选的树脂材料。目前制备乙烯基苄基-聚苯醚化合物的方法,如公知的在碱金属氢氧化物的存在下,将聚苯醚化合物与卤化甲基苯乙烯(乙烯基苄基卤化物)在甲苯溶液中反应,然后用酸中和该 反应溶液,洗涤后,用大量的甲醇进行再沉淀的方法(日本国特开2009-96953号公报);或如CN104072751A公开了在碱金属氢氧化物水溶液的存在下,在包括芳香烃和脂肪醇的溶剂中,使得末端具有酚性羟基的聚苯醚与乙烯基苄基卤化物在相转移催化剂的存在下反应,把反应物先后经过碱金属氢氧化物水溶液和盐酸洗涤后,得到乙烯基苄基-聚苯醚化合物,然而其并未公开该聚苯醚用于高频电路基板时的性能改善情况。
在本领域,期望能够通过对聚苯醚树脂进行改性而得到具有优异介电性能以及耐热性、阻燃性等的树脂材料。
发明内容
针对现有技术的不足,本发明的目的在于提供一种苯乙烯基硅氧基聚苯醚树脂及其制备方法和应用。本发明的苯乙烯基硅氧基聚苯醚树脂将不饱和C=C双键和硅氧基引入到聚苯醚树脂的侧链中,使得该树脂同时结合了双键固化的低介电和硅氧基的耐热性、耐候性、阻燃性、介电性能及低吸水率。
为达此目的,本发明采用以下技术方案:
一方面,本发明提供一种苯乙烯基硅氧基聚苯醚树脂,所述苯乙烯基硅氧基聚苯醚树脂具有如下式I所示的结构:
Figure PCTCN2017076527-appb-000001
其中,R1
Figure PCTCN2017076527-appb-000002
R不存在或选自取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基,-O-、-S-、
Figure PCTCN2017076527-appb-000003
或-SO2- 中的任意一种,R5、R6、R7、R8、R9、R10、R11和R12独立地选自氢、取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基、取代或未取代的C2-C10的直链烯基、取代或未取代的C2-C10的支链烯基或取代或未取代的苯基中的任意一种,m为0或1;R2和R3独立地选自取代或未取代的C1-C10直链烷基、取代或未取代的C1-C10支链烷基,取代或未取代的C2-C10的直链烯基、取代或未取代的C2-C10的支链烯基、取代或未取代的环烷基、取代或未取代的芳基或取代或未取代的烷基芳基中的任意一种;R4选自氢或满足其化学环境的C1-C20的任意有机基团,n1和n2为大于0的整数,且满足4≤n1+n2≤25。
在本发明中,所述R为取代或未取代的C1-C8直链烷基即R可以为取代或未取代的C1、C2、C3、C4、C5、C6、C7或C8直链烷基,例如可以为-CH2-、-CH2CH2-、-CH2CH2CH2-或-CH2CH2CH2CH2-等。
在本发明中,所述R为取代或未取代的C1-C8支链烷基即R可以为取代或未取代的C2、C3、C4、C5、C6、C7或C8支链烷基,例如
Figure PCTCN2017076527-appb-000004
Figure PCTCN2017076527-appb-000005
在本发明中,所述R5、R6、R7、R8、R9、R10、R11和R12独立地为取代或未取代的C1-C8直链烷基是指可以为取代或未取代的C1、C2、C3、C4、C5、C6、C7或C8直链烷基,例如可以为-CH3、-CH2CH3、-CH2CH2CH3、-CH2CH2CH2CH3或-CH2CH2CH2CH2CH3等。
在本发明中,所述R5、R6、R7、R8、R9、R10、R11和R12独立地为取代或未取代的C1-C8支链烷基是指可以为取代或未取代的C1、C2、C3、C4、C5、C6、 C7或C8支链烷基,例如可以为
Figure PCTCN2017076527-appb-000006
等。
在本发明中,所述R5、R6、R7、R8、R9、R10、R11和R12独立地为取代或未取代的C2-C10的直链烯基是指可以为C2、C3、C4、C5、C6、C7、C8、C9或C10直链烯基,例如可以为H2C=CH-、H3C-HC=CH-或CH2=CH-HC=CH-等。
在本发明中,所述R5、R6、R7、R8、R9、R10、R11和R12独立地为取代或未取代的C2-C10的支链烯基是指可以为C2、C3、C4、C5、C6、C7、C8、C9或C10支链烯基,例如可以为
Figure PCTCN2017076527-appb-000007
等。
优选地,R1
Figure PCTCN2017076527-appb-000008
Figure PCTCN2017076527-appb-000009
Ra选自H、烯丙基或异烯丙基中的任意一种。
在本发明中,所述R2和R3选自取代或未取代的C1-C10直链烷基是指可以为取代或未取代的C1、C2、C3、C4、C5、C6、C7、C8、C9或C10直链烷基,例如可以为-CH3、-CH2CH3、-CH2CH2CH3、-CH2CH2CH2CH3或-CH2CH2CH2CH2CH3等。
在本发明中,所述R2和R3选自取代或未取代的C1-C10支链烷基是指可以为取代或未取代的C1、C2、C3、C4、C5、C6、C7、C8、C9或C10支链烷基,例如可以为
Figure PCTCN2017076527-appb-000010
等。
在本发明中,所述R2和R3选自取代或未取代的C2-C10的直链烯基是指可以为取代或未取代的C2、C3、C4、C5、C6、C7、C8、C9或C10直链烯基, 例如H2C=CH-、H3C-HC=CH-或CH2=CH-HC=CH-。
在本发明中,所述R2和R3选自取代或未取代的C2-C10的支链烯基是指可以为取代或未取代的C2、C3、C4、C5、C6、C7、C8、C9或C10支链烯基,例如
Figure PCTCN2017076527-appb-000011
等。
在本发明中,所述R2和R3选自取代或未取代的环烷基优选地为选自取代或未取代的C3-C10(例如C3、C4、C5、C6、C7、C8、C9或C10)环烷基,例如可以为
Figure PCTCN2017076527-appb-000012
等。
在本发明中,所述R2和R3选自取代或未取代的芳基是指可以为取代的或未取代的苯基、取代的或未取代的萘基、取代的或未取代的杂芳基等。
在本发明中,所述R2和R3选自取代或未取代的烷基芳基是指可以为取代的或未取代的烷基苯基、取代的或未取代的烷基萘基、取代的或未取代的烷基杂芳基等。
优选地,R2和R3选自
Figure PCTCN2017076527-appb-000013
-CH2CH3或-CH3中的任意一种,R2和R3可以相同也可以不同。
在本发明中,所述R4选自满足其化学环境的C1-C20的任意有机基团是指R4为满足其化学环境的C1、C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19或C20的任意有机基团,所述有机基团可以是含有杂原子(例如N、O或F)的有机基团,也可以是不含有杂原子的有机基团,例如可以为满足所述碳原子数的烷基、环烷基、芳基或杂芳基等。
在本发明中,所述n1和n2为大于0的整数,且满足4≤n1+n2≤25,例如n1 可以为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、22、23或24,n2可以为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、22、23或24,并且4≤n1+n2≤25,例如n1+n2等于5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23或24,优选6≤n1+n2≤20,进一步优选8≤n1+n2≤15。
优选地,所述苯乙烯基硅氧基聚苯醚树脂为具有如下式a-d所示结构中的化合物中的任意一种或至少两种的组合:
Figure PCTCN2017076527-appb-000014
其中R1
Figure PCTCN2017076527-appb-000015
Figure PCTCN2017076527-appb-000016
Ra选自H、烯丙基或异烯丙基中的任意一种;n1和n2为大于0的整数,且满足4≤n1+n2≤25。
第二方面,本发明提供了如上所述的苯乙烯基硅氧基聚苯醚树脂的制备方法,所述方法包括以下步骤:
(1)式II所示二氯硅烷单体与式III所示聚苯醚树脂反应得到式IV所示改性聚苯醚树脂,反应式如下:
Figure PCTCN2017076527-appb-000017
(2)步骤(1)得到的式IV所示改性聚苯醚树脂与式V所示带乙烯基的酚类单体反应,得到式I所示的苯乙烯基硅氧基聚苯醚树脂,反应式如下:
Figure PCTCN2017076527-appb-000018
其中,R1
Figure PCTCN2017076527-appb-000019
R不存在或选自取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基,-O-、-S-、
Figure PCTCN2017076527-appb-000020
或-SO2- 中的任意一种,R5、R6、R7、R8、R9、R10、R11和R12独立地选自氢、取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基、取代或未取代的C2-C10的直链烯基、取代或未取代的C2-C10的支链烯基或取代或未取代的苯基中的任意一种,m为0或1;R2和R3独立地选自取代或未取代的C1-C10直链烷基、取代或未取代的C1-C10支链烷基,取代或未取代的C2-C10的直链烯基、取代或未取代的C2-C10的支链烯基、取代或未取代的环烷基、取代或未取代的芳基或取代或未取代的烷基芳基中的任意一种;R4选自氢或满足其化学环境的C1-C20的任意有机基团,n1和n2为大于0的整数,且满足4≤n1+n2≤25。
优选地,步骤(1)所述式II所示二氯硅烷单体与式III所示聚苯醚树脂的酚羟基摩尔比为(1-1.5)∶1,例如1∶1、1.1∶1、1.2∶1、1.3∶1、1.4∶1或1.5∶1。
优选地,步骤(1)所述反应的温度为0-60℃,例如0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃。
优选地,步骤(1)所述反应的时间为2-24小时,例如2小时、3小时、5小时、6小时、7小时、9小时、11小时、13小时、15小时、16小时、17小时、19小时、20小时、22小时或24小时,优选3-22小时,进一步优选4-20小时。
优选地,在步骤(1)中,将式II所示二氯硅烷单体滴加至含有式III所示聚苯醚树脂的反应体系中。
优选地,所述滴加时的温度为0-20℃,例如0℃、3℃、5℃、8℃、10℃、12℃、15℃、18℃或20℃。
优选地,式II所示二氯硅烷单体滴加完毕后在0-20℃(例如0℃、3℃、5℃、8℃、10℃、12℃、15℃、18℃或20℃)反应5-10小时(例如5小时、6小时、7小时、8小时、9小时或10小时),而后升温到40-60℃(例如40℃、45℃、50℃、55℃或60℃)反应1-5小时(例如1小时、2小时、3小时、4小时或5 小时)。
优选地,步骤(2)中,式V所示带乙烯基的酚类单体与式IV所示改性聚苯醚树脂中Cl基团的摩尔比为(0.65-1)∶1,例如0.65∶1、0.7∶1、0.75∶1、0.8∶1、0.85∶1、0.9∶1、0.95∶1或1∶1。
优选地,步骤(2)所述反应的温度为0-60℃,例如0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃。
优选地,步骤(2)所述反应的时间为2-10小时,例如2小时、3小时、4小时、5小时、6小时、7小时、8小时、9小时或10小时,优选3-9小时,进一步优选4-8小时。
优选地,步骤(1)和步骤(2)所述反应在无水有机溶剂中进行。
优选地,所述无水有机溶剂选自四氢呋喃、二氯甲烷、丙酮或丁酮中的任意一种或至少两种的混合物;所述混合物的典型但非限制性的实例包括四氢呋喃和二氯甲烷的混合物,二氯甲烷和丁酮的混合物,四氢呋喃和丁酮的混合物,丙酮、四氢呋喃和丁酮的混合物。
优选地,步骤(1)和步骤(2)所述反应在保护性气体保护下进行;所述保护性气体优选为氮气。
另一方面,本发明提供一种苯乙烯基硅氧基聚苯醚树脂组合物,所述苯乙烯基硅氧基聚苯醚树脂组合物包括如上所述的苯乙烯基硅氧基聚苯醚树脂。
优选地,所述苯乙烯基硅氧基聚苯醚树脂在苯乙烯基硅氧基聚苯醚树脂组合物中的重量百分比含量为10-97%,例如12%、15%、18%、20%、25%、28%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或95%等。
本领域的技术人员可以根据需要选择所述苯乙烯基硅氧基聚苯醚树脂组合 物的其他组成成分。
优选地,所述苯乙烯基硅氧基聚苯醚树脂组合物还包括其他带有双键的树脂。
在本发明中,所述其他带有双键的树脂是指除本发明所述的苯乙烯基硅氧基聚苯醚树脂之外的其他带有双键的树脂。
优选地,所述其他带有双键的树脂选自聚烯烃树脂或带有双键的有机硅树脂。
优选地,所述聚烯烃树脂选自苯乙烯-丁二烯共聚物、聚丁二烯或苯乙烯-丁二烯-二乙烯基苯共聚物中的任意一种或者至少两种的混合物。
优选地,所述聚烯烃树脂选自氨基改性的、马来酸酐改性的、环氧基改性的、丙烯酸酯改性的、羟基改性的或羧基改性的苯乙烯-丁二烯共聚物、聚丁二烯、苯乙烯-丁二烯-二乙烯基苯共聚物中的任意一种或者至少两种的混合物。例如Sartomer的苯乙烯-丁二烯共聚物R100、日本曹达的聚丁二烯B-1000或Sartomer的苯乙烯-丁二烯-二乙烯基苯共聚物R250。
优选地,所述带有双键的有机硅树脂选自如下式A或式B所示的有机硅化合物中的任意一种或至少两种的组合:
Figure PCTCN2017076527-appb-000021
式A中,R13、R14和R15独立地选自取代或未取代的C1-C8的直链烷基、取代或未取代的C1-C8支链烷基、取代或未取代的苯基或取代或未取代的C2-C10烯基;且R13、R14和R15三者中至少有一个为取代或未取代的C2-C10烯基;p为0-100的整数;
Figure PCTCN2017076527-appb-000022
式B中,R16选自取代或未取代的C1-C12直链烷基或取代或未取代的C1-C12支链烷基;q为2-10的整数。
优选地,所述苯乙烯基硅氧基聚苯醚树脂组合物还可包括硅氢树脂。
优选地,所述硅氢树脂选自如下式C或式D所示的含有硅氢键的有机硅化合物结构中的任意一种或至少两种的组合:
Figure PCTCN2017076527-appb-000023
式C中,R17、R18和R19独立地选自取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基、取代或未取代的苯基或氢;且R17、R18和R19三者中至少有一个为氢;i为0-100的整数;
Figure PCTCN2017076527-appb-000024
式D中,R20选自取代或未取代的C1-C12直链烷基或取代或未取代的C1-C12支链烷基;k为2-10的整数。
优选地,所述苯乙烯基硅氧基聚苯醚树脂组合物还包括引发剂或铂金催化剂。
在本发明中,当树脂组合物中的树脂全部为苯乙烯基硅氧基聚苯醚树脂时,或者为苯乙烯基硅氧基聚苯醚树脂与其他带有双键的树脂时,则组合物中可包 含引发剂;当树脂组合物中含有硅氢树脂时,则组合物中可应用铂金催化剂作为催化剂。
优选地,所述引发剂为自由基引发剂,所述自由基引发剂选自有机过氧化物引发剂。
优选地,所述有机过氧化物引发剂选自二叔丁基过氧化物、过氧化二月桂酰、过氧化二苯甲酰、过氧化新癸酸异丙苯酯、过氧化新癸酸叔丁酯、过氧化特戊酸特戊酯、过氧化特戊酸叔丁酯、叔丁基过氧化异丁酸酯、叔丁基过氧化-3,5,5-三甲基己酸酯、过氧化乙酸叔丁酯、过氧化苯甲酸叔丁酯、1,1-二叔丁基过氧化-3,5,5-三甲基环己烷、1,1-二叔丁基过氧化环己烷、2,2-二(叔丁基过氧化)丁烷、双(4-叔丁基环己基)过氧化二碳酸酯、过氧化二碳酸酯十六酯、过氧化二碳酸酯十四酯、二特戊己过氧化物、二异丙苯过氧化物、双(叔丁基过氧化异丙基)苯、2,5-二甲基-2,5-二叔丁基过氧化己烷、2,5-二甲基-2,5-二叔丁基过氧化己炔、二异丙苯过氧化氢、异丙苯过氧化氢、特戊基过氧化氢、叔丁基过氧化氢、叔丁基过氧化异丙苯、二异丙苯过氧化氢、过氧化碳酸酯-2-乙基己酸叔丁酯、叔丁基过氧化碳酸-2-乙基己酯、4,4-二(叔丁基过氧化)戊酸正丁酯、过氧化甲乙酮或过氧化环己烷中的任意一种或至少两种的混合物。
优选地,所述苯乙烯基硅氧基聚苯醚树脂组合物还包括无机填料。
优选地,所述无机填料选自氢氧化铝、勃姆石、二氧化硅、滑石粉、云母、硫酸钡、立德粉、碳酸钙、硅灰石、高岭土、水镁石、硅藻土、膨润土或浮石粉中的任意一种或至少两种的混合物。
优选地,所述苯乙烯基硅氧基聚苯醚树脂组合物还包括阻燃剂。
优选地,所述阻燃剂为有机阻燃剂和/或无机阻燃剂。
优选地,所述有机阻燃剂选自卤系有机阻燃剂、磷系有机阻燃剂或氮系有 机阻燃剂中的任意一种或至少两种的混合物。
优选地,所述有机阻燃剂选自三(2,6-二甲基苯基)膦、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2,6-二(2,6-二甲基苯基)膦基苯、10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、苯氧基膦腈化合物、氮磷系膨胀型有机阻燃剂、含磷酚醛树脂或含磷双马来酰亚胺中的任意一种或至少两种的混合物。
优选地,所述无机阻燃剂为硼酸锌。
作为本发明所述苯乙烯基硅氧基聚苯醚树脂组合物的制备方法之一,可以通过公知的方法将其组成成分搅拌混合制备得到。
另一方面,本发明提供一种树脂胶液,所述树脂胶液是将如上所述的苯乙烯基硅氧基聚苯醚树脂组合物溶解或分散在溶剂中得到。
作为本发明中的溶剂,没有特别限定。作为具体实例,所述溶剂为醇类、酮类、芳香族烃类、醚类、酯类或含氮类有机溶剂中的一种或者至少两种的组合,优选甲醇、乙醇、丁醇、乙基溶纤剂、丁基溶纤剂、乙二醇-甲醚、卡必醇、丁基卡必醇、丙酮、丁酮、甲基乙基酮、甲基异丁基酮、环己酮、甲苯、二甲苯、均三甲苯、乙氧基乙基乙酸酯、醋酸乙酯、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺或N-甲基-2-吡咯烷酮中的任意一种或至少两种的混合物。上述溶剂可以单独使用一种,也可以两种或者两种以上混合使用,优选芳香族烃类溶剂与酮类熔剂的混合物,优选甲苯和/或二甲苯与丙酮、丁酮、甲基乙基甲酮、甲基异丁基甲酮或环己酮中的任意一种或至少两种混合使用。
在本发明中,对于所述溶剂的使用量,本领域技术人员可以根据经验来选择,使得到的树脂胶液达到适于使用的粘度即可。
在如上所述的树脂组合物溶解或分散在溶剂的过程中,可以添加乳化剂。 通过乳化剂进行分散,可以使无机填料等在胶液中分散均匀。
另一方面,本发明提供一种固化物,所述固化物是将如上所述的苯乙烯基硅氧基聚苯醚树脂组合物固化后得到。
另一方面,本发明提供一种预浸料,所述预浸料是通过将增强材料浸润如上所述的树脂胶液后干燥得到。
所述增强材料选自碳纤维、玻璃纤维布、芳族聚酰胺纤维或无纺布。碳纤维例如有日本东丽公司的T300、T700、T800,芳香族聚酰胺纤维如Kevlar纤维,示例性的玻璃纤维布如7628玻纤布或2116玻纤布。
另一方面,本发明提供一种绝缘板,其包括至少一张如上所述的预浸料。
另一方面,本发明提供一种覆金属箔层压板,所述覆金属箔层压板含有至少一张如上所述的预浸料以及覆于叠合后的预浸料一侧或两侧的金属箔。
覆金属箔层压板(例如覆铜板)的制备为已有技术,所属领域的技术人员完全有能力根据现有技术中所公开的金属箔层压板的制备技术,制备得到本发明所述覆金属箔层压板。将该覆金属箔层压板应用于印刷电路板的制备时,具有优越的电气性质,其符合高速化和高频化的需求。
另一方面,本发明提供一种高频电路基板,所述高频电路基板包括至少一张如上所述的预浸料。
与现有技术相比,本发明具有以下有益效果:
本发明通过将苯乙烯基和硅氧基引入到聚苯醚端基中得到所述苯乙烯基硅氧基聚苯醚树脂,该树脂同时结合了苯乙烯基固化的低介电和硅氧基的耐热性、耐候性、阻燃性、介电性能及低吸水率,更大地发挥聚苯醚树脂在覆铜板中的应用优势,能够提供高频高速覆铜板所需的优良的介电性能、耐湿热性和耐热性等。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
将73重量份聚苯醚树脂MX90与1000mL无水四氢呋喃于装有搅拌器、滴液漏斗、温度计和导气管(通氮气)的反应釜中搅拌直至完全溶解成均匀的溶液,持续通氮气0.5-1小时除去反应釜中的水汽,并且整个反应过程中都保持通氮气。使反应釜内温度保持20℃以下,然后缓慢滴加19.5重量份二苯基二氯硅烷。滴加完毕后反应釜内保持20℃以下反应8小时,接着把温度升高到55℃反应3小时。随后滴加7.5重量份的对羟基苯乙烯于反应釜中,55℃下反应5小时。反应结束后通过减压蒸馏除去四氢呋喃,得到含有苯乙烯基硅氧基改性的聚苯醚树脂,记为树脂a。
实施例2
将80重量份聚苯醚树脂MX90与1000mL无水四氢呋喃于装有搅拌器、滴液漏斗、温度计和导气管(通氮气)的反应釜中搅拌直至完全溶解成均匀的溶液,持续通氮气0.5-1小时除去反应釜中的水汽,并且整个反应过程中都保持通氮气。同时使反应釜内温度保持20℃以下,然后缓慢滴加12重量份甲基乙烯基二氯硅烷。滴加完毕后反应釜内保持20℃以下反应8小时,接着把温度升高到55℃反应3小时。随后滴加8重量份的对羟基苯乙烯于反应釜中,55℃下反应5小时。反应结束后通过减压蒸馏除去四氢呋喃,得到含有苯乙烯基硅氧基改性的聚苯醚树脂,记为树脂b。
实施例3
将80重量份聚苯醚树脂MX90与1000mL无水四氢呋喃于装有搅拌器、滴液 漏斗、温度计和导气管(通氮气)的反应釜中搅拌直至完全溶解成均匀的溶液,持续通氮气0.5-1小时除去反应釜中的水汽,并且整个反应过程中都保持通氮气。同时使反应釜内温度保持20℃以下,然后缓慢滴加11重量份二甲基二氯硅烷。滴加完毕后反应釜内保持20℃以下反应9小时,接着把温度升高到50℃反应4小时。随后滴加9重量份的对羟基苯乙烯于反应釜中,52℃下反应6小时。反应结束后通过减压蒸馏除去四氢呋喃,得到含有苯乙烯基硅氧基改性的聚苯醚树脂,记为树脂c。
实施例4
将80重量份的实施例1中所制备的苯乙烯基硅氧基改性的聚苯醚树脂(树脂a)、20重量份的苯基硅氢树脂SH303溶解于适量丁酮溶剂中,并调节至适合粘度。加入总计10ppm的铂金催化剂,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,50℃下放置1小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5-2.0mm厚的片状固化物。对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数;利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%);利用DMA测试其玻璃化转变温度;性能测试结果示于表1。
实施例5
将79重量份的实施例2中所制备的苯乙烯基硅氧基改性的聚苯醚树脂(树脂b)、21重量份的苯基硅氢树脂SH303溶解于适量丁酮溶剂中,并调节至适合粘度。加入总计10ppm的铂金催化剂,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,50℃下放置1小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度 200℃,得到0.5-2.0mm厚的片状固化物。对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数;利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%);利用DMA测试其玻璃化转变温度;性能测试结果示于表1。
实施例6
将79重量份的实施例2中所制备的苯乙烯基硅氧基改性的聚苯醚树脂(树脂c)、21重量份的苯基硅氢树脂SH303溶解于适量丁酮溶剂中,并调节至适合粘度。加入总计10ppm的铂金催化剂,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,50℃下放置1小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5-2.0mm厚的片状固化物。对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数;利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%);利用DMA测试其玻璃化转变温度;性能测试结果示于表1。
实施例7
将97重量份的实施例2中所制备的苯乙烯基硅氧基改性的聚苯醚树脂(树脂a)、3重量份的过氧化二异丙苯(DCP)溶解于适量丁酮溶剂中,并调节至适合粘度,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,120℃下放置2小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5-2.0mm厚的片状固化物。对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数;利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%);利用DMA测试其玻璃化转变温度;性能测试结果示于表1。
实施例8
将97重量份的实施例2中所制备的苯乙烯基硅氧基改性的聚苯醚树脂(树脂b)、3重量份的过氧化二异丙苯(DCP)溶解于适量丁酮溶剂中,并调节至适合粘度,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,120℃下放置2小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5-2.0mm厚的片状固化物。对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。其性能测试结果示于表1。
实施例9
将97重量份的实施例3中所制备的苯乙烯基硅氧基改性的聚苯醚树脂(树脂c)、3重量份的过氧化二异丙苯(DCP)溶解于适量丁酮溶剂中,并调节至适合粘度,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,120℃下放置2小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5-2.0mm厚的片状固化物。对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。性能测试结果示于表1。
实施例10
将77重量份的实施例3中所制备的苯乙烯基硅氧基改性的聚苯醚树脂(树脂c)、20重量份丁苯共聚物Ricon100、3重量份的过氧化二异丙苯(DCP)溶解于适量丁酮溶剂中,并调节至适合粘度,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,120℃下放置2 小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5-2.0mm厚的片状固化物。对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。性能测试结果示于表1。
实施例11
将20重量份的实施例3中所制备的苯乙烯基硅氧基改性的聚苯醚树脂(树脂c)、77重量份丁苯共聚物Ricon100、3重量份的过氧化二异丙苯(DCP)溶解于适量丁酮溶剂中,并调节至适合粘度,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,120℃下放置2小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5-2.0mm厚的片状固化物。对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。性能测试结果示于表1。
实施例12
将77重量份的实施例3中所制备的苯乙烯基硅氧基改性的聚苯醚树脂(树脂c)、20重量份丁苯共聚物Ricon100、3重量份的过氧化二异丙苯(DCP)溶解于适量丁酮溶剂中,并调节至适合粘度,搅拌均匀。
用2116玻纤布浸渍以上胶液,然后烘干去掉溶剂后制得半固化片;将两张已制成的半固化片相叠合,在其两侧压覆1/2oz(盎司)厚度的铜箔,在压机中进行130分钟固化,固化压力为60kg/cm2,固化温度为200℃,制得覆铜箔层压板。
实施例13
将97重量份的实施例3中所制备的苯乙烯基硅氧基改性的聚苯醚树脂(树脂c)、3重量份的过氧化二异丙苯(DCP)溶解于适量丁酮溶剂中,并调节至适合粘度,搅拌均匀。
用1080玻纤布浸渍以上胶液,然后烘干去掉溶剂后制得半固化片;将三张已制成的半固化片相叠合,在其两侧叠合离型膜,在压机中进行2小时固化,固化压力为50kg/cm2,固化温度为190℃,制得层压板。
对比例1
将61重量份的乙烯基苯基硅树脂,39重量份的苯基硅氢树脂,加入总计10ppm的铂金催化剂,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,50℃下放置5小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5-2.0mm厚的片状固化物。对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。性能测试结果示于表2。
对比例2
将97重量份的甲基丙烯酸酯基聚苯醚树脂MX9000、3重量份的过氧化二异丙苯(DCP)溶解于适量丁酮溶剂中,并调节至适合粘度,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,120℃下放置2小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5-2.0mm厚的片状固化物。对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在 10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。性能测试结果示于表2。
对比例3
将77重量份的甲基丙烯酸酯基苯醚树脂MX9000、20重量份丁苯共聚物Ricon100、3重量份的过氧化二异丙苯(DCP)溶解于适量丁酮溶剂中,并调节至适合粘度,搅拌均匀。在真空下抽气一段时间以除去胶液体系中的气泡和丁酮。把处理完毕的胶液倒入模具中,120℃下放置2小时,成型后把模具在压机中真空层压固化90min,固化压力32kg/cm2,固化温度200℃,得到0.5-2.0mm厚的片状固化物。对于所得到的固化物,利用平板电容法测定23℃、1GHz的介电常数和介电损耗因数。利用TGA在10℃/min的升温速度下评价氮气气氛下的5%重量减少温度(Td5%)。利用DMA测试其玻璃化转变温度。性能测试结果示于表2。
如上实施例和对比例中所用的材料具体如下:
甲基丙烯酸酯基聚苯醚树脂:MX9000,Sabic。
丁苯共聚物:Ricon100,Sartomer。
过氧化二异丙苯:上海高桥。
苯基硅氢树脂:SH303,润禾化工。
乙烯基苯基硅树脂:SP606,润禾化工。
表1中所涉及参数的检测标准或方法如下:
(1)玻璃化转变温度(Tg):使用DMA测试,按照IPC-TM-650 2.4.24.4所规定的DMA测试方法进行测定。
(2)介电常数和介电损耗因子:按照IPC-TM-650 2.5.5.9的方法进行测试,测试频率为1GHz。
(3)热分解温度(Td5%):根据热重分析法(TGA),按照IPC-TM-650 2.4.24所规定的TGA方法进行测定。
(4)燃烧性:按照UL94所规定的燃烧性方法进行测定。
(5)吸水率:按照IPC-TM-60 2.6.2.1所规定的吸水率方法进行测定。
表1
Figure PCTCN2017076527-appb-000025
表2
Figure PCTCN2017076527-appb-000026
由表1可知,由本发明的苯乙烯基硅氧基聚苯醚树脂的组合物制备得到的固化物的介电常数(1GHz)为2.33-2.41,介质损耗(1GHz)为0.0032-0.0040,玻璃化转变温度Tg高达190℃以上,热分解温度高达425℃以上,阻燃性可达到V-1级别,吸水率为0.05%以下,具有低介电性和高的耐热性能以及较好的阻燃性和低的吸收率。
由表1和表2的对比可以看出,实施例4-6表明含有本发明所合成的苯乙烯基硅氧基改性聚苯醚树脂的树脂组合物,与一般的乙烯基苯基硅树脂(对比例1)相比,其固化物具有更优异的介电特性,更高玻璃化转变温度。实施例7-11表明本发明所合成的苯乙烯基硅氧基改性聚苯醚树脂,与甲基丙烯酸酯基聚苯醚树脂(对比例2和3)相比,也同样具有更优异的介电特性,更高玻璃化转变温度并且具有更高的热分解温度。因此该苯乙烯基硅氧基改性的聚苯醚树脂是一种综合性能更加优异的树脂,可用于高频电路基板的制备,具有较大应用价值。
申请人声明,本发明通过上述实施例来说明本发明的苯乙烯基硅氧基聚苯醚树脂及其制备方法和应用,但本发明并不局限于上述实施例,即不意味着本发明必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种苯乙烯基硅氧基聚苯醚树脂,其特征在于,所述苯乙烯基硅氧基聚苯醚树脂具有如下式I所示的结构:
    Figure PCTCN2017076527-appb-100001
    其中,R1
    Figure PCTCN2017076527-appb-100002
    R不存在或选自取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基,-O-、-S-、
    Figure PCTCN2017076527-appb-100003
    或-SO2-中的任意一种,R5、R6、R7、R8、R9、R10、R11和R12独立地选自氢、取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基、取代或未取代的C2-C10的直链烯基、取代或未取代的C2-C10的支链烯基或取代或未取代的苯基中的任意一种,m为0或1;R2和R3独立地选自取代或未取代的C1-C10直链烷基、取代或未取代的C1-C10支链烷基,取代或未取代的C2-C10的直链烯基、取代或未取代的C2-C10的支链烯基、取代或未取代的环烷基、取代或未取代的芳基或取代或未取代的烷基芳基中的任意一种;R4选自氢或满足其化学环境的C1-C20的任意有机基团,n1和n2为大于0的整数,且满足4≤n1+n2≤25。
  2. 根据权利要求1所述的苯乙烯基硅氧基聚苯醚树脂,其特征在于,R1
    Figure PCTCN2017076527-appb-100004
    Figure PCTCN2017076527-appb-100005
    Ra选自H、烯丙基或异烯丙基中的任意一种;
    优选地,R2和R3选自
    Figure PCTCN2017076527-appb-100006
    -CH2CH3或-CH3中的任意一种;
    优选地,所述苯乙烯基硅氧基聚苯醚树脂为具有如下式a-d所示结构中的化合物中的任意一种或至少两种的组合:
    Figure PCTCN2017076527-appb-100007
    其中R1
    Figure PCTCN2017076527-appb-100008
    Figure PCTCN2017076527-appb-100009
    Ra选自H、 烯丙基或异烯丙基中的任意一种;n1和n2为大于0的整数,且满足4≤n1+n2≤25。
  3. 根据权利要求1或2所述的苯乙烯基聚苯醚树脂的制备方法,其特征在于,所述方法包括以下步骤:
    (1)式II所示二氯硅烷单体与式III所示聚苯醚树脂反应得到式IV所示改性聚苯醚树脂,反应式如下:
    Figure PCTCN2017076527-appb-100010
    (2)步骤(1)得到的式IV所示改性聚苯醚树脂与式V所示带乙烯基的酚类单体反应,得到式I所示的苯乙烯基硅氧基聚苯醚树脂,反应式如下:
    Figure PCTCN2017076527-appb-100011
    其中,R1
    Figure PCTCN2017076527-appb-100012
    R不存在或选自取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基,-O-、-S-、
    Figure PCTCN2017076527-appb-100013
    或-SO2-中的任意一种,R5、R6、R7、R8、R9、R10、R11和R12独立地选自氢、取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基、取代或未取代的 C2-C10的直链烯基、取代或未取代的C2-C10的支链烯基或取代或未取代的苯基中的任意一种,m为0或1;R2和R3独立地选自取代或未取代的C1-C10直链烷基、取代或未取代的C1-C10支链烷基,取代或未取代的C2-C10的直链烯基、取代或未取代的C2-C10的支链烯基、取代或未取代的环烷基、取代或未取代的芳基或取代或未取代的烷基芳基中的任意一种;R4选自氢或满足其化学环境的C1-C20的任意有机基团,n1和n2为大于0的整数,且满足4≤n1+n2≤25;
    优选地,步骤(1)所述式II所示二氯硅烷单体与式III所示聚苯醚树脂的酚羟基摩尔比为(1-1.5)∶1;
    优选地,步骤(1)所述反应的温度为0-60℃;
    优选地,步骤(1)所述反应的时间为2-24小时,优选3-22小时,进一步优选4-20小时;
    优选地,在步骤(1)中,将式II所示二氯硅烷单体滴加至含有式III所示聚苯醚树脂的反应体系中;
    优选地,所述滴加时的温度为0-20℃;
    优选地,式II所示二氯硅烷单体滴加完毕后在0-20℃反应5-10小时,而后升温到40-60℃,反应1-5小时;
    优选地,步骤(2)中,式V所示带乙烯基的酚类单体与式IV所示改性聚苯醚树脂中Cl基团的摩尔比为(0.65-1)∶1;
    优选地,步骤(2)所述反应的温度为0-60℃;
    优选地,步骤(2)所述反应的时间为2-10小时,优选3-9小时,进一步优选4-8小时;
    优选地,步骤(1)和步骤(2)所述反应在无水有机溶剂中进行;
    优选地,所述无水有机溶剂选自四氢呋喃、二氯甲烷、丙酮或丁酮中的任 意一种或至少两种的混合物;
    优选地,步骤(1)和步骤(2)所述反应在保护性气体保护下进行;所述保护性气体优选为氮气。
  4. 一种苯乙烯基硅氧基聚苯醚树脂组合物,其特征在于,所述苯乙烯基硅氧基聚苯醚树脂组合物包括如权利要求1或2所述的苯乙烯基硅氧基聚苯醚树脂;
    优选地,所述苯乙烯基硅氧基聚苯醚树脂在苯乙烯基硅氧基聚苯醚树脂组合物中的重量百分比含量为10-97%;
    优选地,所述苯乙烯基硅氧基聚苯醚树脂组合物还包括其他带有双键的树脂;
    优选地,所述其他带有双键的树脂选自聚烯烃树脂或带有双键的有机硅树脂;
    优选地,所述聚烯烃树脂选自苯乙烯-丁二烯共聚物、聚丁二烯或苯乙烯-丁二烯-二乙烯基苯共聚物中的任意一种或者至少两种的混合物;
    优选地,所述聚烯烃树脂选自氨基改性的、马来酸酐改性的、环氧基改性的、丙烯酸酯改性的、羟基改性的或羧基改性的苯乙烯-丁二烯共聚物、聚丁二烯、苯乙烯-丁二烯-二乙烯基苯共聚物中的任意一种或者至少两种的混合物;
    优选地,所述带有双键的有机硅树脂选自如下式A或式B所示的有机硅化合物中的任意一种或至少两种的组合:
    Figure PCTCN2017076527-appb-100014
    式A中,R13、R14和R15独立地选自取代或未取代的C1-C8的直链烷基、 取代或未取代的C1-C8支链烷基、取代或未取代的苯基或取代或未取代的C2-C10烯基;且R13、R14和R15三者中至少有一个为取代或未取代的C2-C10烯基;p为0-100的整数;
    Figure PCTCN2017076527-appb-100015
    式B中,R16选自取代或未取代的C1-C12直链烷基或取代或未取代的C1-C12支链烷基;q为2-10的整数;
    优选地,所述苯乙烯基硅氧基聚苯醚树脂组合物还包括硅氢树脂;
    优选地,所述硅氢树脂选自如下式C或式D所示的含有硅氢键的有机硅化合物结构中的任意一种或至少两种的组合:
    Figure PCTCN2017076527-appb-100016
    式C中,R17、R18和R19独立地选自取代或未取代的C1-C8直链烷基、取代或未取代的C1-C8支链烷基、取代或未取代的苯基或氢;且R17、R18和R19三者中至少有一个为氢;i为0-100的整数;
    Figure PCTCN2017076527-appb-100017
    式D中,R20选自取代或未取代的C1-C12直链烷基或取代或未取代的C1-C12支链烷基;k为2-10的整数;
    优选地,所述苯乙烯基硅氧基聚苯醚树脂组合物还包括引发剂或铂金催化 剂;
    优选地,所述引发剂为自由基引发剂,所述自由基引发剂选自有机过氧化物引发剂;
    优选地,所述有机过氧化物引发剂选自二叔丁基过氧化物、过氧化二月桂酰、过氧化二苯甲酰、过氧化新癸酸异丙苯酯、过氧化新癸酸叔丁酯、过氧化特戊酸特戊酯、过氧化特戊酸叔丁酯、叔丁基过氧化异丁酸酯、叔丁基过氧化-3,5,5-三甲基己酸酯、过氧化乙酸叔丁酯、过氧化苯甲酸叔丁酯、1,1-二叔丁基过氧化-3,5,5-三甲基环己烷、1,1-二叔丁基过氧化环己烷、2,2-二(叔丁基过氧化)丁烷、双(4-叔丁基环己基)过氧化二碳酸酯、过氧化二碳酸酯十六酯、过氧化二碳酸酯十四酯、二特戊己过氧化物、二异丙苯过氧化物、双(叔丁基过氧化异丙基)苯、2,5-二甲基-2,5-二叔丁基过氧化己烷、2,5-二甲基-2,5-二叔丁基过氧化己炔、二异丙苯过氧化氢、异丙苯过氧化氢、特戊基过氧化氢、叔丁基过氧化氢、叔丁基过氧化异丙苯、二异丙苯过氧化氢、过氧化碳酸酯-2-乙基己酸叔丁酯、叔丁基过氧化碳酸-2-乙基己酯、4,4-二(叔丁基过氧化)戊酸正丁酯、过氧化甲乙酮或过氧化环己烷中的任意一种或至少两种的混合物;
    优选地,所述苯乙烯基硅氧基聚苯醚树脂组合物还包括无机填料;
    优选地,所述无机填料选自氢氧化铝、勃姆石、二氧化硅、滑石粉、云母、硫酸钡、立德粉、碳酸钙、硅灰石、高岭土、水镁石、硅藻土、膨润土或浮石粉中的任意一种或至少两种的混合物;
    优选地,所述苯乙烯基硅氧基聚苯醚树脂组合物还包括阻燃剂;
    优选地,所述阻燃剂为有机阻燃剂和/或无机阻燃剂;
    优选地,所述有机阻燃剂选自卤系有机阻燃剂、磷系有机阻燃剂或氮系有机阻燃剂中的任意一种或至少两种的混合物;
    优选地,所述有机阻燃剂选自三(2,6-二甲基苯基)膦、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、2,6-二(2,6-二甲基苯基)膦基苯、10-苯基-9,10-二氢-9-氧杂-10-膦菲-10-氧化物、苯氧基膦腈化合物、氮磷系膨胀型有机阻燃剂、含磷酚醛树脂或含磷双马来酰亚胺中的任意一种或至少两种的混合物;
    优选地,所述无机阻燃剂为硼酸锌。
  5. 一种树脂胶液,其特征在于,所述树脂胶液是将如权利要求4所述的苯乙烯基硅氧基聚苯醚树脂组合物溶解或分散在溶剂中得到。
  6. 一种固化物,其特征在于,所述固化物是将如权利要求4所述的苯乙烯基硅氧基聚苯醚树脂组合物固化后得到。
  7. 一种预浸料,其特征在于,所述预浸料是通过将增强材料浸润如权利要求5所述的树脂胶液后干燥得到。
  8. 一种绝缘板,其特征在于,其包括至少一张如权利要求7所述的预浸料。
  9. 一种覆金属箔层压板,其特征在于,所述覆金属箔层压板含有至少一张如权利要求7所述的预浸料以及覆于叠合后的预浸料一侧或两侧的金属箔。
  10. 一种高频电路基板,其特征在于,所述高频电路基板包括至少一张如权利要求7所述的预浸料。
PCT/CN2017/076527 2016-12-02 2017-03-14 苯乙烯基硅氧基聚苯醚树脂及其制备方法和应用 WO2018098924A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/465,193 US20200002473A1 (en) 2016-12-02 2017-03-14 Styryl siloxy polyphenylene ether resin, preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611095529.1 2016-12-02
CN201611095529.1A CN108148196B (zh) 2016-12-02 2016-12-02 一种苯乙烯基硅氧基聚苯醚树脂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2018098924A1 true WO2018098924A1 (zh) 2018-06-07

Family

ID=62241239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076527 WO2018098924A1 (zh) 2016-12-02 2017-03-14 苯乙烯基硅氧基聚苯醚树脂及其制备方法和应用

Country Status (3)

Country Link
US (1) US20200002473A1 (zh)
CN (1) CN108148196B (zh)
WO (1) WO2018098924A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109749525A (zh) * 2018-12-30 2019-05-14 宜兴市王者塑封有限公司 耐刮擦涂层及其制备方法
CN110423342B (zh) * 2019-07-15 2022-03-11 同宇新材料(广东)股份有限公司 一种有机硅改性的聚苯醚树脂及其制备方法和用途
CN112409592A (zh) * 2019-08-21 2021-02-26 穗晔实业股份有限公司 硅烷改质聚苯醚树脂及其制备方法
CN112250994B (zh) * 2020-10-15 2022-12-13 常熟生益科技有限公司 一种树脂组合物及使用其制备的半固化片、层压板和印刷电路板
CN113185751A (zh) * 2021-04-23 2021-07-30 艾蒙特成都新材料科技有限公司 一种无卤硅系阻燃型乙烯基树脂及其制备方法和在覆铜板中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010014723A1 (en) * 1999-12-15 2001-08-16 Satoru Moritomi Thermoplastic resin, process for producing same and theroplastic resin composition
JP2009096953A (ja) * 2007-10-19 2009-05-07 Dai Ichi Kogyo Seiyaku Co Ltd ビニルベンジル化ポリフェニレンエーテル化合物の製造方法
CN104072751A (zh) * 2013-03-28 2014-10-01 第一工业制药株式会社 乙烯基苄基-聚苯醚化合物的制备方法
CN104761719A (zh) * 2015-04-01 2015-07-08 广东生益科技股份有限公司 一种活性酯以及含有该活性酯的热固性树脂组合物、预浸料和层压板
CN104774476A (zh) * 2015-03-10 2015-07-15 广东生益科技股份有限公司 含磷阻燃组合物以及使用它的含磷聚苯醚树脂组合物、预浸料和层压板
CN105086417A (zh) * 2014-05-06 2015-11-25 广东生益科技股份有限公司 一种树脂组合物及其在高频电路板中的应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4421840B2 (ja) * 2003-05-02 2010-02-24 株式会社カネカ 樹脂組成物及びその製造方法
JP4300905B2 (ja) * 2003-06-25 2009-07-22 パナソニック電工株式会社 ポリフェニレンエーテル樹脂組成物、プリプレグ、積層板
JP5649773B2 (ja) * 2007-05-31 2015-01-07 三菱瓦斯化学株式会社 硬化性樹脂組成物および硬化性フィルムならびにそれらの硬化物
CN102181056B (zh) * 2011-01-14 2015-04-29 四川大学 共聚型高性能阻尼硅橡胶及其制备方法
DE102011003150A1 (de) * 2011-01-26 2012-07-26 Evonik Goldschmidt Gmbh Silikonpolyetherblock-Copolymere mit hochmolekularen Polyetherresten und deren Verwendung als Stabilisatoren zur Herstellung von Polyurethanschäumen
US9217062B2 (en) * 2012-08-02 2015-12-22 The United States Of America, As Represented By The Secretary Of The Navy C-substituted, 1H-azoles for amphoteric, solvent-less proton conductivity
US9255185B2 (en) * 2012-08-13 2016-02-09 International Business Machines Corporation Flame retardant fillers prepared from bridged polysilsesquioxanes
CN102993683B (zh) * 2012-11-27 2015-04-15 广东生益科技股份有限公司 一种树脂组合物及其用途
JP2015009171A (ja) * 2013-06-27 2015-01-19 富士フイルム株式会社 インクジェット吐出方法、パターン形成方法、および、パターン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010014723A1 (en) * 1999-12-15 2001-08-16 Satoru Moritomi Thermoplastic resin, process for producing same and theroplastic resin composition
JP2009096953A (ja) * 2007-10-19 2009-05-07 Dai Ichi Kogyo Seiyaku Co Ltd ビニルベンジル化ポリフェニレンエーテル化合物の製造方法
CN104072751A (zh) * 2013-03-28 2014-10-01 第一工业制药株式会社 乙烯基苄基-聚苯醚化合物的制备方法
CN105086417A (zh) * 2014-05-06 2015-11-25 广东生益科技股份有限公司 一种树脂组合物及其在高频电路板中的应用
CN104774476A (zh) * 2015-03-10 2015-07-15 广东生益科技股份有限公司 含磷阻燃组合物以及使用它的含磷聚苯醚树脂组合物、预浸料和层压板
CN104761719A (zh) * 2015-04-01 2015-07-08 广东生益科技股份有限公司 一种活性酯以及含有该活性酯的热固性树脂组合物、预浸料和层压板

Also Published As

Publication number Publication date
CN108148196B (zh) 2020-01-24
CN108148196A (zh) 2018-06-12
US20200002473A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
WO2017107589A1 (zh) 一种有机硅改性的聚苯醚树脂、制备方法及用途
WO2018098924A1 (zh) 苯乙烯基硅氧基聚苯醚树脂及其制备方法和应用
KR101565907B1 (ko) 저열팽창성 저유전 손실 프리프레그 및 그 응용품
CN110218436B (zh) 一种低介电树脂组合物及其制备方法
JP3771160B2 (ja) 硬化性ポリフェニレンエーテル樹脂、その組成物、および該樹脂の製造方法
US10465069B2 (en) Polyphenyl ether resin composition and prepreg, laminated board and printed circuit board containing same
CN110317541B (zh) 一种粘结片以及高速覆铜板的制备方法
US11015052B2 (en) Halogen-free low dielectric resin composition, and prepreg, metal-clad laminate, and printed circuit board prepared using the same
WO2017107588A1 (zh) 有机硅改性的酚醛树脂、制备方法及用途
CN110423342B (zh) 一种有机硅改性的聚苯醚树脂及其制备方法和用途
EP3037475A1 (en) Phenoxy cyclotriphosphazene active ester, halogen-free resin composition and use thereof
JP2008266408A (ja) プリプレグ、それを用いた多層基配線板及び電子部品
WO2018120564A1 (zh) 一种含磷活性酯及其无卤组合物与覆铜箔基板
WO2018098917A1 (zh) 一种苯乙烯基聚硅苯醚树脂及其制备方法和应用
WO2017067140A1 (zh) 一种聚苯醚树脂组合物以及含有它的预浸料、层压板和印制电路板
WO2018098923A1 (zh) 一种苯乙烯基硅氧基酚醛树脂及其制备方法和应用
TWI650361B (zh) 一種熱固性樹脂組合物、由其製作之半固化片、覆金屬箔層壓板及高頻電路板
TWI658095B (zh) 一種熱固性樹脂組合物、由其製作之半固化片、覆金屬箔層壓板及高頻電路板
CN113121981B (zh) 一种树脂组合物以及使用其的预浸片和绝缘板
JP2007526347A (ja) ナノ多孔質積層体
US20020072585A1 (en) PPE derivatives and resin composition having the same
CN112062914A (zh) 树脂组合物及使用其制作的半固化片及层压板
WO2017107590A1 (zh) 多元酚化合物、制备方法及用途
WO2017107584A1 (zh) 一种环氧树脂改性聚苯乙烯树脂、制备方法及其用途
CN112079722A (zh) 活性酯化合物、树脂组合物及具有其的半固化片、绝缘薄膜、覆金属箔层压板、印制线路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876707

Country of ref document: EP

Kind code of ref document: A1