WO2018097003A1 - Fluorescent substance for vacuum ultraviolet excitation, luminescent element, and light-emitting device - Google Patents

Fluorescent substance for vacuum ultraviolet excitation, luminescent element, and light-emitting device Download PDF

Info

Publication number
WO2018097003A1
WO2018097003A1 PCT/JP2017/041094 JP2017041094W WO2018097003A1 WO 2018097003 A1 WO2018097003 A1 WO 2018097003A1 JP 2017041094 W JP2017041094 W JP 2017041094W WO 2018097003 A1 WO2018097003 A1 WO 2018097003A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum ultraviolet
phosphor
excited
light
excitation
Prior art date
Application number
PCT/JP2017/041094
Other languages
French (fr)
Japanese (ja)
Inventor
佑樹 田中
紀一郎 江越
Original Assignee
大電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大電株式会社 filed Critical 大電株式会社
Publication of WO2018097003A1 publication Critical patent/WO2018097003A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the phosphor represented by the general formula (Y 1-x Pr x ) AlO 3 (where 0.006 ⁇ x ⁇ 0.014) can be irradiated with vacuum ultraviolet light having an excitation wavelength of 172 nm to 185 nm.
  • high luminous intensity can be obtained by this combination (see Examples described later).
  • Example 1 Manufacture of phosphors Using yttrium oxide (Y 2 O 3 ), praseodymium oxide (Pr 6 O 11 ), aluminum oxide (Al 2 O 3 ) as raw materials, and lithium fluoride (LiF) as flux, The mixture was mixed so that the composition formula stoichiometrically represented by (Y 1-x Pr x ) AlO 3 . As a flux, 0.1 mol of lithium fluoride (LiF) was added. After mixing, the mixture was placed in an alumina crucible and fired at 1350 ° C. for 5 hours in an air atmosphere. Further, after the firing, crushing was performed, and firing was performed at 1200 ° C.
  • Y 2 O 3 yttrium oxide
  • Pr 6 O 11 praseodymium oxide
  • Al 2 O 3 aluminum oxide
  • LiF lithium fluoride
  • FIG. 7 shows a graph showing the correlation between the integrated intensity and the Pr concentration.
  • the phosphor disclosed in the present application has an optimum Pr blending ratio according to the excitation wavelength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

Provided is a mercury-free fluorescent substance for vacuum ultraviolet excitation which emits deep ultraviolet light upon irradiation with vacuum ultraviolet light. The fluorescent substance for vacuum ultraviolet excitation is made up of one or more rare-earth elements comprising yttrium element and of praseodymium element, aluminum element, and oxygen element, the molar content x of praseodymium element satisfying 0<x≤0.018. The fluorescent substance is excited by irradiation with vacuum ultraviolet light to emit ultraviolet light.

Description

真空紫外線励起蛍光体、発光素子、及び発光装置Vacuum ultraviolet excited phosphor, light emitting element, and light emitting device
 本発明は、真空紫外線で励起されることにより紫外光を発光する真空紫外線励起蛍光体に関し、特に、水銀フリーの真空紫外線励起蛍光体に関する。 The present invention relates to a vacuum ultraviolet-excited phosphor that emits ultraviolet light when excited by vacuum ultraviolet light, and particularly relates to a mercury-free vacuum ultraviolet-excited phosphor.
 紫外線発光分野は、紫外線の用途が医療分野や光触媒分野などにも拡大していることに伴って、産業的な価値が高まっており、各種の紫外線発光を呈する発光体の開発が進められてきた。紫外線発光を呈する発光体には、水銀ランプが主に使用されている。この理由は、水銀ランプが、低コストで製造できることや高エネルギーを発揮できる等の利便性が高いためである。 In the ultraviolet light emitting field, the industrial value has increased as the use of ultraviolet light has expanded to the medical field and the photocatalyst field, and the development of phosphors that emit various types of ultraviolet light has been promoted. . A mercury lamp is mainly used as a light emitter that emits ultraviolet light. This is because the mercury lamp is highly convenient in that it can be manufactured at low cost and can exhibit high energy.
 しかし、現在では、水銀は自然環境に与える負荷が大きいことが問題視されてきており、環境保護の観点から、今後は、水銀の製造が禁止される法的規制の施行も予定されている。このような背景から、水銀を使用しない(水銀フリーの)水銀代替光源の開発が早急に求められている。 However, at present, it has been considered that mercury has a large impact on the natural environment. From the viewpoint of environmental protection, enforcement of legal regulations prohibiting the production of mercury is also planned. Against this background, there is an urgent need for the development of mercury alternative light sources that do not use mercury (free of mercury).
 従来の水銀を使用しない光源としては、例えば、真空紫外線により、真空容器の内側のYAlO:Ce3+などの第1の蛍光体層が励起され、第1の光を出射し、第1の光により、真空容器の外側の第2の蛍光体層が励起され、第2の光を出射し、白色系の光を発光する平面光源がある(特許文献1参照)。 As a conventional light source that does not use mercury, for example, the first phosphor layer such as YAlO 3 : Ce 3+ inside the vacuum vessel is excited by vacuum ultraviolet rays, and the first light is emitted. Thus, there is a planar light source that excites the second phosphor layer outside the vacuum vessel, emits second light, and emits white light (see Patent Document 1).
 この他にも、水銀を使用しない蛍光体として、例えば、式M1O・M2 23(式中のM1はMg、Ca、Sr、BaおよびZnからなる群より選ばれる1種以上であり、M2は Sc、Y、B、Al、GaおよびInからなる群より選ばれる1種以上)で表されるスピネル型構造の化合物に付活剤としてLn(ただしLnはCe、Pr、Nd、 Sm、Eu、Tb、Ho、Dy、ErおよびTmからなる群より選ばれる1種以上)が含有されてなる真空紫外線励起発光素子用蛍光体があり、発光強度低下の抑制を図るものがある(特許文献2参照)。 In addition, as a phosphor not using mercury, for example, a formula M 1 O · M 2 2 O 3 (wherein M 1 is one or more selected from the group consisting of Mg, Ca, Sr, Ba and Zn) in and, M 2 is Sc, Y, B, Al, Ln ( although Ln as an activator to compounds of spinel structure represented by one or more selected from the group consisting of Ga and in) is Ce, Pr, Nd, Sm, Eu, Tb, Ho, Dy, Er, and a phosphor for a vacuum ultraviolet ray-excited light emitting element containing at least one selected from the group consisting of Er and Tm. Yes (see Patent Document 2).
特開2009-16268号公報JP 2009-16268 A 特開2006-249120号公報JP 2006-249120 A
 しかし、現在のところ、水銀代替光源は、上述したような真空紫外線励起によって紫外線を発光するものであっても、特に殺菌用途に好適な紫外線領域において十分な発光強度を発揮するものは得られていない。例えば、特許文献1の蛍光体の発光波長は、真空紫外線により励起される光(第一の光)がピーク波長370nmの近紫外線領域ないしは青色領域の波長にとどまっており、特許文献2の蛍光体の発光波長は、可視光領域での発光にとどまっている。すなわち、従来の水銀代替光源としての真空紫外線励起蛍光体では、波長が310nmより短い光、特に殺菌用途において必要とされている波長260nm前後の紫外線領域において、十分に強い紫外光を発光するまでには至っていない。 However, at present, mercury alternative light sources that emit ultraviolet light by excitation with vacuum ultraviolet light as described above have been obtained that exhibit sufficient light emission intensity particularly in the ultraviolet region suitable for sterilization applications. Absent. For example, the light emission wavelength of the phosphor of Patent Document 1 is such that the light (first light) excited by vacuum ultraviolet light remains in the near ultraviolet region or blue region having a peak wavelength of 370 nm. The emission wavelength of is limited to light emission in the visible light region. That is, the conventional vacuum ultraviolet-excited phosphor as an alternative light source for mercury emits sufficiently strong ultraviolet light in the light having a wavelength shorter than 310 nm, particularly in the ultraviolet region around the wavelength of 260 nm required for sterilization applications. Has not reached.
 本発明は前記課題を解決するためになされたものであり、真空紫外線の照射によって、深紫外光を呈する水銀フリーの真空紫外線励起蛍光体の提供を目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a mercury-free vacuum ultraviolet-excited phosphor that exhibits deep ultraviolet light when irradiated with vacuum ultraviolet light.
 本発明者らは、鋭意研究を重ねた結果、プラセオジム元素(Pr)をある配合比で含ませた特定の酸化物系蛍光体を用いることによって、上記課題を解決できることを見出し、本発明を導き出した。 As a result of intensive studies, the present inventors have found that the above problems can be solved by using a specific oxide-based phosphor containing praseodymium element (Pr) at a certain blending ratio. It was.
 すなわち、本願に開示する真空紫外線励起蛍光体としては、少なくともイットリウム元素を含む希土類元素と、プラセオジム元素と、アルミニウム元素と、酸素元素とから構成され、プラセオジム元素の配合モル比率xが、0<x≦0.018である蛍光体であって、真空紫外線の照射により励起されて紫外線を発光するものが提供される。 また、本願に開示する真空紫外線励起蛍光体を含む発光素子も提供される。また、当該発光素子を備える発光装置も提供される。 That is, the vacuum ultraviolet-excited phosphor disclosed in the present application is composed of a rare earth element containing at least an yttrium element, a praseodymium element, an aluminum element, and an oxygen element, and the blending molar ratio x of the praseodymium element is 0 <x A phosphor satisfying ≦ 0.018, which emits ultraviolet rays when excited by irradiation with vacuum ultraviolet rays is provided. Also provided is a light emitting device including the vacuum ultraviolet excitation phosphor disclosed in the present application. A light-emitting device including the light-emitting element is also provided.
本発明に係る真空紫外線励起蛍光体のX線回折結果を示す(Pr:0.0002mol、0.0006mol)。The X-ray-diffraction result of the vacuum ultraviolet-excited fluorescent substance which concerns on this invention is shown (Pr: 0.0002mol, 0.0006mol). 本発明に係る真空紫外線励起蛍光体のX線回折結果を示す(Pr:0.002mol、0.004mol)。The X-ray-diffraction result of the vacuum ultraviolet-excited fluorescent substance which concerns on this invention is shown (Pr: 0.002mol, 0.004mol). 本発明に係る真空紫外線励起蛍光体のX線回折結果を示す(Pr:0.006mol、0.008mol)。The X-ray-diffraction result of the vacuum ultraviolet-excited fluorescent substance which concerns on this invention is shown (Pr: 0.006mol, 0.008mol). 本発明に係る真空紫外線励起蛍光体のX線回折結果を示す(Pr:0.01mol、0.012mol)。The X-ray-diffraction result of the vacuum ultraviolet-excited fluorescent substance which concerns on this invention is shown (Pr: 0.01mol, 0.012mol). 本発明に係る真空紫外線励起蛍光体のX線回折結果を示す(Pr:0.014mol、0.018mol)。The X-ray-diffraction result of the vacuum ultraviolet-excited fluorescent substance which concerns on this invention is shown (Pr: 0.014 mol, 0.018 mol). 本発明に係る真空紫外線励起蛍光体の真空紫外線励起による発光強度の結果を示す。The result of the emitted light intensity by the vacuum ultraviolet ray excitation of the vacuum ultraviolet ray excitation fluorescent substance concerning this invention is shown. 本発明に係る真空紫外線励起蛍光体の積分強度とPr濃度の相関関係を表すグラフを示す。The graph showing the correlation of the integrated intensity | strength and Pr density | concentration of the vacuum ultraviolet-excited fluorescent substance which concerns on this invention is shown.
 本願に開示する真空紫外線励起蛍光体は、上記のように、少なくともイットリウム元素を含む希土類元素と、プラセオジム元素と、アルミニウム元素と、酸素元素とから構成され、プラセオジム元素の配合モル比率xが、0<x≦0.018である蛍光体であれば特に限定されない。より強い発光強度が得られるという点から、プラセオジム元素の配合モル比率xは、0.002≦x≦0.014であることがより好ましい。 As described above, the vacuum ultraviolet-excited phosphor disclosed in the present application is composed of a rare earth element including at least an yttrium element, a praseodymium element, an aluminum element, and an oxygen element, and the blending molar ratio x of the praseodymium element is 0. If it is a fluorescent substance which is <x <= 0.018, it will not specifically limit. From the standpoint that higher emission intensity can be obtained, the blending molar ratio x of the praseodymium element is more preferably 0.002 ≦ x ≦ 0.014.
 このような好適な真空紫外線励起蛍光体の1つとしては、例えば、一般式(Y1-xPrx)AlO(但し、0.002≦x≦0.014)で表されるものが挙げられる。ここで、構成元素として含まれるイットリウム元素の一部を、他の希土類元素で置換してもよい。このような希土類元素としては、スカンジウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。 As one of such suitable vacuum ultraviolet excitation phosphors, for example, those represented by the general formula (Y 1-x Pr x ) AlO 3 (where 0.002 ≦ x ≦ 0.014) can be cited. It is done. Here, a part of the yttrium element contained as a constituent element may be replaced with another rare earth element. Examples of such rare earth elements include scandium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
 本願に係る真空紫外線励起蛍光体の励起源としては、励起波長が200nm以下の真空紫外線を発光できる光源であれば特に限定されず、例えば、励起源として従来から広範に利用されているエキシマランプや重水素ランプをそのまま用いることができる。例えば、クリプトン(Kr)エキシマランプ(波長147nm)、キセノン(Xe)エキシマランプ(波長172nm)、重水素ランプ(波長160nm)、重水素ランプ(波長185nm)等を用いることができる。 The excitation source of the vacuum ultraviolet excitation phosphor according to the present application is not particularly limited as long as it is a light source capable of emitting vacuum ultraviolet light having an excitation wavelength of 200 nm or less. For example, an excimer lamp that has been widely used as an excitation source conventionally, A deuterium lamp can be used as it is. For example, a krypton (Kr) excimer lamp (wavelength 147 nm), a xenon (Xe) excimer lamp (wavelength 172 nm), a deuterium lamp (wavelength 160 nm), a deuterium lamp (wavelength 185 nm), or the like can be used.
 本願に開示する真空紫外線励起蛍光体は、このような励起源からの真空紫外線の照射によって、各種の紫外線領域の紫外線を発光することができ、例えば、各種用途に有用とされる200nm~350nm、例えば、殺菌ランプ等に好適な260nm前後(例えば、247nmや280nm)の紫外線領域の深紫外光(DUV)を発光することができる。このように、本願に開示する真空紫外線励起蛍光体は、紫外線領域のうち従来よりもより短波長の発光ピーク領域で、より強い紫外光を発光することができる。 The vacuum ultraviolet excitation phosphor disclosed in the present application can emit ultraviolet rays in various ultraviolet regions by irradiation with vacuum ultraviolet rays from such an excitation source. For example, 200 nm to 350 nm, which is useful for various applications, For example, it is possible to emit deep ultraviolet light (DUV) in the ultraviolet region of around 260 nm (for example, 247 nm or 280 nm) suitable for a sterilizing lamp or the like. As described above, the vacuum ultraviolet excitation phosphor disclosed in the present application can emit stronger ultraviolet light in the emission peak region having a shorter wavelength than the conventional one in the ultraviolet region.
 さらに、本願に開示する真空紫外線励起蛍光体は、本発明者らが見出したところに拠れば、励起源の励起波長に応じて、最適なプラセオジム元素の配合モル比率を選定することによって、発光強度の高い好適な蛍光体が簡易に得られることが確認されている。すなわち、より高い発光強度を得るという観点から、プラセオジム元素の配合モル比率xが0.002に近い蛍光体については、励起波長が146nmに近い真空紫外線を照射し、プラセオジム元素の配合モル比率xが0.014に近い蛍光体については、励起波長が185nmに近い真空紫外線を照射することが好ましく、当該照射により励起されてより強い紫外線を発光することが可能となる。 Furthermore, the vacuum ultraviolet-excited phosphor disclosed in the present application is based on the finding of the present inventors, and the emission intensity can be selected by selecting the optimal blending molar ratio of praseodymium element according to the excitation wavelength of the excitation source. It has been confirmed that a suitable phosphor having a high value can be easily obtained. That is, from the viewpoint of obtaining a higher emission intensity, a phosphor having a praseodymium element blending molar ratio x close to 0.002 is irradiated with vacuum ultraviolet light whose excitation wavelength is close to 146 nm, and the praseodymium element blending molar ratio x is A phosphor having a wavelength close to 0.014 is preferably irradiated with vacuum ultraviolet light having an excitation wavelength close to 185 nm, and can be excited by the irradiation to emit stronger ultraviolet light.
 例えば、本願に開示する好適な真空紫外線励起蛍光体の1つである一般式(Y1-xPrx)AlO(但し、0.002≦x≦0.014)で表される蛍光体に関しては、一般式(Y1-xPrx)AlO(但し、0.002≦x≦0.006)で表される蛍光体に対しては、励起波長146nm~160nm近傍の真空紫外線を照射することが好ましく、この組み合わせにより高い発光強度が得られる(後述の実施例参照)。一般式(Y1-xPrx)AlO(但し、0.006≦x≦0.014)で表される蛍光体に対しては、励起波長172nm~185nm近傍の真空紫外線を照射することが好ましく、この組み合わせにより高い発光強度が得られる(後述の実施例参照)。 For example, regarding a phosphor represented by the general formula (Y 1-x Pr x ) AlO 3 (where 0.002 ≦ x ≦ 0.014), which is one of the preferred vacuum ultraviolet excitation phosphors disclosed in the present application. Irradiates the phosphor represented by the general formula (Y 1-x Pr x ) AlO 3 (where 0.002 ≦ x ≦ 0.006) with vacuum ultraviolet rays having an excitation wavelength in the vicinity of 146 nm to 160 nm. It is preferable that a high emission intensity can be obtained by this combination (see Examples described later). The phosphor represented by the general formula (Y 1-x Pr x ) AlO 3 (where 0.006 ≦ x ≦ 0.014) can be irradiated with vacuum ultraviolet light having an excitation wavelength of 172 nm to 185 nm. Preferably, high luminous intensity can be obtained by this combination (see Examples described later).
 本願に係る真空紫外線励起蛍光体が、このように優れた効果を奏するメカニズムは未だ詳細には解明されていないが、真空紫外線が照射された場合に、真空紫外線の紫外線領域に対して蛍光体の結晶構造内で、配合モル比率xが0<x≦0.018の範囲でプラセオジム元素が存在していることによって、プラセオジム元素が本来的に有する発光中心としての作用が高められるような構造的要因が内在していることが考えられる。すなわち、真空紫外線が照射された際に、当該配合比率で含有されたプラセオジム元素の存在によって、蛍光体を構成する各原子間の距離と真空紫外線の波長の長さが好適に作用し、原子レベルで紫外線領域の光を特異的に発光するエネルギーレベルに遷移しやすくなっているものと推察される。また、このプラセオジム元素の配合率と、照射される真空紫外線との間に、一定の相関関係があり、より多くのプラセオジム元素が存在している(配合モル比率が0.014に近い)場合(例えば、0.006≦x≦0.014)には、より長波長の真空紫外線(185nmに近い領域、例えば、172nm~185nm近傍)に対して、真空紫外線の長めの1波長間中に多くのプラセオジム元素が高密度に敷き詰まった状態が形成され、その結果として、発光強度が高められる原子間配置が形成されるものと推察される。また、より少ないプラセオジム元素が存在している(配合モル比率が0.002に近い)場合(例えば、0.002≦x≦0.006)には、より短波長の真空紫外線(146nmに近い領域、例えば、146nm~160nm近傍)に対して、真空紫外線の短めの1波長間中に(余分なプラセオジム元素を含むことなく)少なめのプラセオジム元素が高密度に敷き詰まった状態が形成され、その結果として、発光強度が高められる原子間配置が形成されるものと推察される。 The mechanism by which the vacuum ultraviolet-excited phosphor according to the present application exhibits such an excellent effect has not yet been elucidated in detail. However, when vacuum ultraviolet rays are irradiated, Structural factors that enhance the action of the praseodymium element as a luminescent center inherent in the presence of the praseodymium element in the crystal structure within the range where the blending molar ratio x is in the range of 0 <x ≦ 0.018. Is considered to be inherent. That is, when irradiated with vacuum ultraviolet rays, the presence of the praseodymium element contained in the blending ratio favorably affects the distance between the atoms constituting the phosphor and the length of the wavelength of the vacuum ultraviolet rays, and is at the atomic level. It is presumed that the transition to an energy level that specifically emits light in the ultraviolet region is facilitated. In addition, there is a certain correlation between the blending ratio of this praseodymium element and the irradiated vacuum ultraviolet ray, and when more praseodymium element is present (mixing molar ratio is close to 0.014) ( For example, in the case of 0.006 ≦ x ≦ 0.014), a longer wavelength of vacuum ultraviolet rays (region close to 185 nm, for example, near 172 nm to 185 nm), a large number of vacuum ultraviolet rays during one longer wavelength. It is presumed that a state in which praseodymium elements are densely packed is formed, and as a result, an interatomic arrangement that increases the emission intensity is formed. Further, in the case where a smaller amount of praseodymium element is present (mixing molar ratio is close to 0.002) (for example, 0.002 ≦ x ≦ 0.006), a shorter wavelength vacuum ultraviolet ray (region close to 146 nm) For example, a state in which a small amount of praseodymium element is densely packed in one short wavelength of vacuum ultraviolet rays (without including an excess of praseodymium element) as a result, for example, in the vicinity of 146 nm to 160 nm. It is presumed that an interatomic arrangement that increases the emission intensity is formed.
 このような本願に開示する真空紫外線励起蛍光体の製造方法の一例としては、各構成元素の酸化物を原料に用いて、所望とする蛍光体の組成となるような化学量論的な割合で混合する。例えば、本願に係る真空紫外線励起蛍光体の一例として、(Y1-xPrx)AlO(但し、0.002≦x≦0.018)を得る場合には、原材料として、酸化イットリウム(Y2O3)、酸化アルミニウム(Al2O3)、酸化プラセオジム(Pr2O3)の各粉末を用いることができる。 As an example of the method for producing the vacuum ultraviolet-excited phosphor disclosed in the present application, an oxide of each constituent element is used as a raw material at a stoichiometric ratio that provides a desired phosphor composition. Mix. For example, when (Y 1-x Pr x ) AlO 3 (where 0.002 ≦ x ≦ 0.018) is obtained as an example of the vacuum ultraviolet excitation phosphor according to the present application, yttrium oxide (Y 2 O 3), aluminum oxide (Al 2 O 3), powders of praseodymium oxide (Pr 2 O 3) can be used.
 この各粉末を混合し、大気雰囲気下で高温焼成することによって、所望とする蛍光体が得られる。この高温焼成は、例えば、2段階で行うことができ、例えば、大気雰囲気下で温度1000℃~1500℃で、3~10時間焼成を実施し、当該高温焼成後に解砕を行い、還元雰囲気下で温度1000℃~1500℃で、3~10時間焼成を実施することによって、所望とする蛍光体を焼結体として得ることができる。 These desired powders are mixed and fired at a high temperature in an air atmosphere to obtain a desired phosphor. This high-temperature firing can be performed, for example, in two stages. For example, firing is performed in an air atmosphere at a temperature of 1000 ° C. to 1500 ° C. for 3 to 10 hours. The desired phosphor can be obtained as a sintered body by firing at a temperature of 1000 ° C. to 1500 ° C. for 3 to 10 hours.
 このようにして得られる真空紫外線励起蛍光体の用途は多岐にわたる。例えば、本願に係る真空紫外線励起蛍光体が発光する深紫外光(200nm~350nm)、特に260nm前後の紫外光を用いて、各種の殺菌対象物に対して殺菌を行うことによって、紫外線による残留物や環境ダメージが抑制されたクリーンな殺菌を行うことができる。すなわち、本願に係る真空紫外線励起蛍光体から構成される殺菌用ランプは、水銀フリーであると共に、高い殺菌能力を発揮するものとなる。また、この深紫外光を用いることによって、難分解物質(例えばホルムアルデヒド及びPCBなど)の分解処理を行うことや、新規な化学物質の合成(例えば光触媒物質など) を行うこともできる。また、この深紫外光を用いることによって、難治性疾患(例えばアトピー性皮膚炎など)の治療及び院内感染の予防などの各種の医療分野への応用も可能となる。 The use of the vacuum ultraviolet-excited phosphor thus obtained is diverse. For example, by using a deep ultraviolet light (200 nm to 350 nm) emitted by the vacuum ultraviolet excitation phosphor according to the present application, particularly an ultraviolet light of around 260 nm, sterilizing various objects to be sterilized, it is possible to obtain residues due to ultraviolet rays. And clean sterilization with reduced environmental damage. That is, the sterilization lamp composed of the vacuum ultraviolet excitation phosphor according to the present application is mercury-free and exhibits high sterilization ability. Further, by using this deep ultraviolet light, it is possible to perform decomposition treatment of hardly decomposed substances (for example, formaldehyde and PCB) or to synthesize new chemical substances (for example, photocatalytic substance). Further, by using this deep ultraviolet light, it can be applied to various medical fields such as treatment of intractable diseases (for example, atopic dermatitis) and prevention of nosocomial infection.
 本発明の特徴を更に明らかにするため、以下に実施例を示すが、本発明はこの実施例によって制限されるものではない。 In order to further clarify the features of the present invention, examples will be shown below, but the present invention is not limited to these examples.
(実施例)
(1)蛍光体の製造
 原材料に、酸化イットリウム(Y2O3)、酸化プラセオジム(Pr6O11)、酸化アルミニウム(Al2O3)、フラックスとしてフッ化リチウム(LiF)を用いて、化学量論的に(Y1-xPrx)AlOで表される組成式になるような割合に混合した。フラックスとしてフッ化リチウム(LiF)は、0.1mol添加した。混合後、アルミナ坩堝に入れて大気雰囲気下で1350℃、5時間焼成を実施した。さらに、当該焼成後に解砕を行い、カーボン還元雰囲気下で1200℃、3時間焼成を実施して焼結体を得た。この焼結体については、プラセオジム元素の配合モル比率xについて、x=0.0002、0.0006、0.002、0.004、0.006、0.008、0.01、0.012、0.014、0.018の10種類のサンプルを得た。
(Example)
(1) Manufacture of phosphors Using yttrium oxide (Y 2 O 3 ), praseodymium oxide (Pr 6 O 11 ), aluminum oxide (Al 2 O 3 ) as raw materials, and lithium fluoride (LiF) as flux, The mixture was mixed so that the composition formula stoichiometrically represented by (Y 1-x Pr x ) AlO 3 . As a flux, 0.1 mol of lithium fluoride (LiF) was added. After mixing, the mixture was placed in an alumina crucible and fired at 1350 ° C. for 5 hours in an air atmosphere. Further, after the firing, crushing was performed, and firing was performed at 1200 ° C. for 3 hours in a carbon reducing atmosphere to obtain a sintered body. With respect to this sintered body, ten kinds of samples of x = 0.0002, 0.0006, 0.002, 0.004, 0.006, 0.008, 0.01, 0.012, 0.014, 0.018 were obtained with respect to the blending molar ratio x of the praseodymium element.
(2)蛍光体の同定
 上記で得られた焼結体に対して、線源がFeKαのX線回折装置でX線回折結果を取得した。この得られた焼結体の上記10種類のサンプル(x=0.0002~0.018)についてのX線回折結果を図1~図5に示す。いずれのサンプルにおいても、得られたピーク値から、確かに(Y1-xPrx)AlOの組成で結晶化していることが確認された。
(2) Identification of phosphor The X-ray diffraction result of the sintered body obtained above was obtained with an X-ray diffractometer whose source is FeKα. The X-ray diffraction results for the ten types of samples (x = 0.0002 to 0.018) of the obtained sintered body are shown in FIGS. In any samples, from the resulting peak value, that crystallized was confirmed certainly composition of (Y 1-x Pr x) AlO 3.
(3)発光強度の測定
 上記の10種類の(Y1-xPrx)AlO結晶のサンプル(サンプル番号1~10)について、Xeエキシマランプ(波長λ=172nm)による真空紫外線励起による発光強度を確認した。得られた結果を図6に示す。この結果から、本実施例に係る真空紫外線励起蛍光体(Y1-xPrx)AlOは、真空紫外線励起によって、ピーク波長が260nm前後という深紫外領域の光が得られたことが確認された。この得られた紫外光の紫外線領域は、殺菌用途に適した波長であり、各種の殺菌用途への応用(殺菌ランプ等)が可能であることが確認された。
(3) Measurement of luminous intensity Luminous intensity by vacuum ultraviolet excitation by Xe excimer lamp (wavelength λ = 172 nm) for the above 10 types of (Y 1-x Pr x ) AlO 3 crystal samples (sample numbers 1 to 10). It was confirmed. The obtained result is shown in FIG. From this result, VUV-excited phosphor of the present Example (Y 1-x Pr x) AlO 3 is by vacuum ultraviolet excitation, it was confirmed that the peak wavelength was obtained optical deep ultraviolet region of the front and rear 260nm It was. The ultraviolet region of the obtained ultraviolet light has a wavelength suitable for sterilization applications, and it was confirmed that application to various sterilization applications (such as a sterilization lamp) is possible.
 さらに、以下の表に、得られた発光強度について発光波長247nmでの発光強度を示す。この表の結果に基づいて、図7に積分強度とPr濃度の相関関係を表すグラフを示す。 Furthermore, the following table shows the emission intensity at an emission wavelength of 247 nm for the obtained emission intensity. Based on the results of this table, FIG. 7 shows a graph showing the correlation between the integrated intensity and the Pr concentration.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の得られた結果から、発光強度(247nmの発光強度推移)については、励起波長146nmおよび160nmでの励起時には、Prの配合モル比率が0.004の場合に、最も高い発光特性を示した。また、励起波長172nmでの励起時には、Prの配合モル比率が0.01の場合に、最も高い発光特性を示した。また、励起波長185nmでの励起時には、Prの配合モル比率が0.012の場合に、最も高い発光特性を示した。 From the results obtained above, the emission intensity (transmission intensity transition at 247 nm) showed the highest emission characteristics when the excitation molar ratio was 146 nm and 160 nm and the Pr molar ratio was 0.004. . Further, at the time of excitation at an excitation wavelength of 172 nm, the highest light emission characteristics were exhibited when the blending molar ratio of Pr was 0.01. Further, at the time of excitation at an excitation wavelength of 185 nm, the highest light emission characteristics were exhibited when the blending molar ratio of Pr was 0.012.
 これらの結果から、本願に開示する蛍光体は、励起波長に応じた最適なPrの配合比率が存在するという特性が示された。この特性を利用して、既存の真空紫外光による励起源に対して、最適なPrの配合比率を有するような蛍光体を選択的に利用することによって、既存の励起源を変更することなく、本蛍光体から、高い発光強度を有する紫外線が効率的に利用できることが確認された。また、この特性を利用して、既存の複数の真空紫外光による励起源に対して、各々の励起源の励起波長について最適なPrの配合比率を有するような複数の蛍光体を用いることによって、使用する励起源を順次切替えた場合にも、発光強度を低下させることなく、一定の発光強度を維持することができ、本蛍光体から、高い発光強度を有する紫外線が安定的に利用できることが確認された。 From these results, it has been shown that the phosphor disclosed in the present application has an optimum Pr blending ratio according to the excitation wavelength. By utilizing this characteristic and selectively using a phosphor having an optimal Pr blending ratio with respect to an existing excitation source by vacuum ultraviolet light, without changing the existing excitation source, From this phosphor, it was confirmed that ultraviolet rays having high emission intensity can be used efficiently. In addition, by using this characteristic, by using a plurality of phosphors having an optimal Pr blending ratio for the excitation wavelength of each excitation source, with respect to the existing excitation sources by a plurality of vacuum ultraviolet light, Even when the excitation source to be used is switched sequentially, it is possible to maintain a constant emission intensity without reducing the emission intensity, and it is confirmed that ultraviolet rays having high emission intensity can be stably used from this phosphor. It was done.

Claims (8)

  1.  少なくともイットリウム元素を含む希土類元素と、プラセオジム元素と、アルミニウム元素と、酸素元素とから構成され、プラセオジム元素の配合モル比率xが、0<x≦0.018である蛍光体であって、真空紫外線の照射により励起されて紫外線を発光することを特徴とする
     真空紫外線励起蛍光体。
    A phosphor composed of a rare earth element containing at least an yttrium element, a praseodymium element, an aluminum element, and an oxygen element, and the blending molar ratio x of the praseodymium element is 0 <x ≦ 0.018, A vacuum ultraviolet-excited phosphor that emits ultraviolet light when excited by irradiation with UV light.
  2.  請求項1に記載の真空紫外線励起蛍光体において、
     プラセオジム元素の配合モル比率xが、0.002≦x≦0.014である蛍光体であって、真空紫外線の照射により励起されて紫外線を発光することを特徴とする
     真空紫外線励起蛍光体。
    The vacuum ultraviolet-excited phosphor according to claim 1,
    A vacuum ultraviolet-excited phosphor having a praseodymium element blending molar ratio x of 0.002 ≦ x ≦ 0.014, which is excited by irradiation with vacuum ultraviolet rays to emit ultraviolet rays.
  3.  請求項1または請求項2に記載の真空紫外線励起蛍光体において、
     一般式(Y1-xPrx)AlO(但し、0.002≦x≦0.014)で表される蛍光体であって、真空紫外線の照射により励起されて紫外線を発光することを特徴とする
     真空紫外線励起蛍光体。
    In the vacuum ultraviolet excitation fluorescent substance according to claim 1 or 2,
    A phosphor represented by the general formula (Y 1-x Pr x ) AlO 3 (0.002 ≦ x ≦ 0.014), which is excited by irradiation with vacuum ultraviolet rays and emits ultraviolet rays. A vacuum ultraviolet excitation phosphor.
  4.  請求項1~請求項3のいずれかに記載の真空紫外線励起蛍光体において、
     プラセオジム元素の配合モル比率xが0.002に近い場合には、励起波長が146nmに近い真空紫外線の照射により励起されて紫外線を発光し、
     プラセオジム元素の配合モル比率xが0.014に近い場合には、励起波長が185nmに近い真空紫外線の照射により励起されて紫外線を発光することを特徴とする
     真空紫外線励起蛍光体。
    In the vacuum ultraviolet-excited phosphor according to any one of claims 1 to 3,
    When the blending molar ratio x of the praseodymium element is close to 0.002, the excitation wavelength is excited by irradiation with vacuum ultraviolet rays close to 146 nm, and emits ultraviolet rays.
    A vacuum ultraviolet-excited phosphor, which emits ultraviolet rays when excited by irradiation with vacuum ultraviolet rays having an excitation wavelength close to 185 nm when the blending molar ratio x of the praseodymium element is close to 0.014.
  5.  請求項1~請求項4のいずれかに記載の真空紫外線励起蛍光体において、
     一般式(Y1-xPrx)AlO(但し、0.002≦x≦0.006)で表される蛍光体であって、励起波長146nm~160nm近傍の真空紫外線の照射により励起されて紫外線を発光することを特徴とする
     真空紫外線励起蛍光体。
    The vacuum ultraviolet-excited phosphor according to any one of claims 1 to 4,
    A phosphor represented by the general formula (Y 1-x Pr x ) AlO 3 (0.002 ≦ x ≦ 0.006), which is excited by irradiation with vacuum ultraviolet rays having an excitation wavelength in the vicinity of 146 nm to 160 nm. A vacuum ultraviolet excitation phosphor characterized by emitting ultraviolet rays.
  6.  請求項1~請求項4のいずれかに記載の真空紫外線励起蛍光体において、
     一般式(Y1-xPrx)AlO(但し、0.006≦x≦0.014)で表される蛍光体であって、励起波長172nm~185nm近傍の真空紫外線の照射により励起されて紫外線を発光することを特徴とする
     真空紫外線励起蛍光体。
    The vacuum ultraviolet-excited phosphor according to any one of claims 1 to 4,
    A phosphor represented by the general formula (Y 1-x Pr x ) AlO 3 (0.006 ≦ x ≦ 0.014), which is excited by irradiation with vacuum ultraviolet rays having an excitation wavelength in the vicinity of 172 nm to 185 nm. A vacuum ultraviolet excitation phosphor characterized by emitting ultraviolet rays.
  7.  請求項1~請求項6に記載の真空紫外線励起蛍光体を用いることを特徴とする
     発光素子。
    7. A light-emitting element using the vacuum ultraviolet-excited phosphor according to claim 1.
  8.  請求項7に記載の発光素子を備えることを特徴とする
     発光装置。
    A light-emitting device comprising the light-emitting element according to claim 7.
PCT/JP2017/041094 2016-11-25 2017-11-15 Fluorescent substance for vacuum ultraviolet excitation, luminescent element, and light-emitting device WO2018097003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-228768 2016-11-25
JP2016228768A JP6858006B2 (en) 2016-11-25 2016-11-25 Vacuum UV excitation phosphor, light emitting element, and light emitting device

Publications (1)

Publication Number Publication Date
WO2018097003A1 true WO2018097003A1 (en) 2018-05-31

Family

ID=62195117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041094 WO2018097003A1 (en) 2016-11-25 2017-11-15 Fluorescent substance for vacuum ultraviolet excitation, luminescent element, and light-emitting device

Country Status (2)

Country Link
JP (1) JP6858006B2 (en)
WO (1) WO2018097003A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049284A1 (en) * 2004-11-08 2006-05-11 Tohoku Techno Arch Co., Ltd. Pr-CONTAINING SINGLE CRYSTAL FOR SCINTILLATOR, PROCESS FOR PRODUCING THE SAME, RADIATION DETECTOR AND INSPECTION APPARATUS
WO2012007885A1 (en) * 2010-07-13 2012-01-19 Koninklijke Philips Electronics N.V. Uv-a or uv-b-emitting discharge lamp
CN102787357A (en) * 2012-08-14 2012-11-21 中国科学院合肥物质科学研究院 2.7 to 3 micron laser crystals and preparation method thereof
JP2013139525A (en) * 2012-01-05 2013-07-18 Kyushu Institute Of Technology Ultraviolet phosphor, and methods for manufacturing light source and ultraviolet phosphor
CN103964834A (en) * 2014-02-18 2014-08-06 张红卫 Composite fluorescent transparent ceramic used for white-light LED and adopting garnet structure
WO2015031799A1 (en) * 2013-08-30 2015-03-05 The Regents Of The University Of California, A California Corporation Scintillator nanocrystal-containing compositions and methods for their use
JP2016121274A (en) * 2014-12-25 2016-07-07 大電株式会社 Electron-beam excited phosphor, light emitting element, and light emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049284A1 (en) * 2004-11-08 2006-05-11 Tohoku Techno Arch Co., Ltd. Pr-CONTAINING SINGLE CRYSTAL FOR SCINTILLATOR, PROCESS FOR PRODUCING THE SAME, RADIATION DETECTOR AND INSPECTION APPARATUS
WO2012007885A1 (en) * 2010-07-13 2012-01-19 Koninklijke Philips Electronics N.V. Uv-a or uv-b-emitting discharge lamp
JP2013139525A (en) * 2012-01-05 2013-07-18 Kyushu Institute Of Technology Ultraviolet phosphor, and methods for manufacturing light source and ultraviolet phosphor
CN102787357A (en) * 2012-08-14 2012-11-21 中国科学院合肥物质科学研究院 2.7 to 3 micron laser crystals and preparation method thereof
WO2015031799A1 (en) * 2013-08-30 2015-03-05 The Regents Of The University Of California, A California Corporation Scintillator nanocrystal-containing compositions and methods for their use
CN103964834A (en) * 2014-02-18 2014-08-06 张红卫 Composite fluorescent transparent ceramic used for white-light LED and adopting garnet structure
JP2016121274A (en) * 2014-12-25 2016-07-07 大電株式会社 Electron-beam excited phosphor, light emitting element, and light emitting device

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHUNG‐HAO CHIANG HUNG‐YI TSAI HUNG‐YI KUO HAN‐YU LIN SHENG‐YUAN CHU: "The Investigations of the Pr, Gd, Si–N Doping, and Phosphor Curvature Effects on the Performances of YAG‐Based WLEDs", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 98, no. 8, 8 May 2015 (2015-05-08), pages 2493 - 2497, XP055630779, ISSN: 0002-7820, DOI: 10.1111/jace.13629 *
DOROTA A. PAWLAK, KRZYSZTOF WOŹNIAK, ZYGMUNT FRUKACZ, TERY L. BARR, DEAN FIORENTINO, STEVEN HARDCASTLE: "ESCA Studies of Yttrium Orthoaluminum Perovskites", JOURNAL OF PHYSICAL CHEMISTRY B, vol. 103, no. 17, February 1999 (1999-02-01), pages 3332 - 3336, XP055630788, ISSN: 1089-5647, DOI: 10.1021/jp9844516 *
G. ÖZEN, O. FORTE, B. DI BARTOLO: "Upconversion dynamics in Pr-doped YAlO3 and Y3Al5O12 laser crystals", OPTICAL MATERIALS, vol. 27, no. 11, 17 March 2005 (2005-03-17), pages 1664 - 1671, XP029232552, ISSN: 0925-3467, DOI: 10.1016/j.optmat.2004.10.024 *
HUILI ZHANG, DUNLU SUN, JIANQIAO LUO, SHIHAO CAO, ... SHAOTANG YIN: "Growth and spectroscopic investigations of Yb,Ho: YAP and Yb,Ho,Pr:YAP laser crystals", JOURNAL OF LUMINESCENCE, vol. 158, 12 October 2014 (2014-10-12), pages 215 - 219, XP055630716, ISSN: 0022-2313, DOI: 10.1016/j.jlumin.2014.10.003 *
J.Y. JUNG, G.A. HIRATA, G. GUNDIAH, S. DERENZO, ... J. MCKITTRICK: "Identification and development of nanoscintillators for biotechnology applications", JOURNAL OF LUMINESCENCE , vol. 154, 6 June 2014 (2014-06-06), pages 569 - 577, XP029039455, DOI: 10.1016/j.jlumin.2014.05.040 *
MARTIN FIBRICH ET AL: "Pr: YA103 laser generation in the green spectralrange", OPTICS LETTERS, vol. 38, no. 23, 1 December 2013 (2013-12-01), pages 5024 - 5027, XP001585925, ISSN: 0146-9592, DOI: 10.1364/OL.38.005024 *
RONGFENG GUAN ET AL.: "The Luminescence Properties and Energy Transfer from Ce3+ to Pr3+ for YAG:Ce3+Pr3+ Phosphors", JOURNAL OF NANOMATERIALS, vol. 2015, 549208, 2015, pages 1 - 8, XP055630766, ISSN: 1687-4129, DOI: 10.1155/2015/549208 *
YUHEI SHIMIZU, KAZUSHIGE UEDA: "Determination of 4f energy levels for trivalent lanthanide ions in YAlO3 by X-ray photoelectron spectroscopy", THIN SOLID FILMS, vol. 614, 11 March 2016 (2016-03-11), pages 69 - 72, XP029672650, ISSN: 0040-6090, DOI: 10.1016/j.tsf.2016.03.020 *
YUHEI SHIMIZU, YASUKAZU TAKANO, KAZUSHIGE UEDA: "UV emission from Gd3+ ions in Gd3+-Pr3+ codoped YA103 perovskite", JOURNAL OF LUMINESCENE, vol. 141, 23 March 2013 (2013-03-23), pages 44 - 47, XP028554827, ISSN: 0022-2313, DOI: 10.1016/j.jlumin.2013.03.030 *

Also Published As

Publication number Publication date
JP2018083912A (en) 2018-05-31
JP6858006B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP2004529252A5 (en)
JP6630445B2 (en) Ultraviolet light emitting phosphor, light emitting element, and light emitting device
US20020195587A1 (en) Broad-spectrum terbium-containing garnet phosphors and white-light sources incorporating the same
JP2006342336A (en) UVC-EMITTING Sr(Al,Mg)12019:Pr PHOSPHOR AND LAMP CONTAINING THE SAME
JP2007238879A (en) Phosphor material and method for producing the same
JP6181454B2 (en) Phosphor
JP2012531488A (en) Luminescent material with Eu2 + -doped silicate phosphor
JP2006124644A (en) Phosphor
WO2006098305A1 (en) Phosphor
JP6955656B2 (en) Method for producing ultraviolet-emitting phosphor, ultraviolet-emitting device, and ultraviolet-emitting phosphor
JP2008088349A (en) Phosphor
WO2018097003A1 (en) Fluorescent substance for vacuum ultraviolet excitation, luminescent element, and light-emitting device
WO2016136955A1 (en) Ultraviolet light-emitting fluorescent substance, method for producing same, light-emitting element, and light-emitting apparatus
JP4713169B2 (en) Phosphor
JP6618512B2 (en) Ultraviolet light emitting phosphor, light emitting element, and light emitting device
WO2018079661A1 (en) Ultraviolet light-emitting phosphor, light-emitting element, and light-emitting device
JP2006002043A (en) Fluorescent substance to be excited by vacuum ultraviolet rays, method for producing the same, and vacuum ultraviolet ray-excited light-emitting element
EP1258520B1 (en) Quantum-splitting oxide-based phosphors
US8986574B2 (en) Oxynitride-based phosphor and light emitting device including the same
JP2018095755A (en) Ultraviolet light emitting phosphor, light emitting element, and light emitting device
JP6741614B2 (en) Rare earth activated alkaline earth silicate compound Afterglow phosphor
WO2004020550A1 (en) Phosphor and vacuum ultraviolet ray exited luminescent element
KR100447947B1 (en) The composition of Tb-activated green phosphors in ternary system CaO-Gd2O3-Al2O3 for VUV excitation
JP2006206619A (en) Phosphor
WO2018124106A1 (en) Fluorescent body having phosphorescence, production method therefor, and phosphorescent light-emission product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874140

Country of ref document: EP

Kind code of ref document: A1