JP2013139525A - Ultraviolet phosphor, and methods for manufacturing light source and ultraviolet phosphor - Google Patents

Ultraviolet phosphor, and methods for manufacturing light source and ultraviolet phosphor Download PDF

Info

Publication number
JP2013139525A
JP2013139525A JP2012000433A JP2012000433A JP2013139525A JP 2013139525 A JP2013139525 A JP 2013139525A JP 2012000433 A JP2012000433 A JP 2012000433A JP 2012000433 A JP2012000433 A JP 2012000433A JP 2013139525 A JP2013139525 A JP 2013139525A
Authority
JP
Japan
Prior art keywords
phosphor
ultraviolet
oxide
ultraviolet phosphor
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012000433A
Other languages
Japanese (ja)
Other versions
JP5880833B2 (en
Inventor
Kazushige Ueda
和茂 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2012000433A priority Critical patent/JP5880833B2/en
Publication of JP2013139525A publication Critical patent/JP2013139525A/en
Application granted granted Critical
Publication of JP5880833B2 publication Critical patent/JP5880833B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultraviolet phosphor having both a high light emission intensity and chemical stability.SOLUTION: The ultraviolet phosphor has a perovskite structure in which a luminescent center is Gd; a sensitizing ion is Pr: and a base body is YLnAlO, wherein Ln is one or two elements selected from La and Lu. The ultraviolet phosphor is preferably represented by a composition formula (YLn)GdPrAlO, wherein x is 0.005 to 0.20, y is 0.00 to 0.20, and z is 0.0 to 0.30.

Description

本発明は、紫外線蛍光体およびそれを用いる光源ならびに紫外線蛍光体の製造方法に関する。   The present invention relates to an ultraviolet phosphor, a light source using the same, and a method for producing the ultraviolet phosphor.

蛍光灯用やプラズマディスプレイ用の蛍光体を励起するためにいくつかの紫外線が用いられており、その紫外線(UV)は波長によって分類されている。UV−Aは315から380nmの波長範囲になり、UV−Bは280から315nm、UV−Cは200から280nm、真空紫外線(VUV)は200nm未満の波長範囲となる。 Several ultraviolet rays are used to excite phosphors for fluorescent lamps and plasma displays, and the ultraviolet rays (UV) are classified by wavelength. UV-A has a wavelength range of 315 to 380 nm, UV-B has a wavelength range of 280 to 315 nm, UV-C has a wavelength range of 200 to 280 nm, and vacuum ultraviolet light (VUV) has a wavelength range of less than 200 nm.

蛍光灯では、水銀原子から放出される254nmのUV−Cが励起光となっており、またUV−Aを放出するブラックライトでも同じ水銀原子から放出されるUV−Cが励起光となっている。さらに、殺菌灯では水銀原子から放出されるUV−Cが直接用いられている。環境を配慮し、今後水銀の使用を抑えていくことになれば、蛍光灯の可視光源だけでなく紫外線光源が使用できなくなる可能性がある。 In fluorescent lamps, 254 nm UV-C emitted from mercury atoms is excitation light, and even in black light emitting UV-A, UV-C emitted from the same mercury atoms is excitation light. . Furthermore, UV-C emitted from mercury atoms is directly used in germicidal lamps. Considering the environment and reducing the use of mercury in the future, it is possible that not only the visible light source of fluorescent lamps but also the ultraviolet light source cannot be used.

一方、プラズマディスプレイではXe原子・分子から放出されるVUVが用いられており、直接VUVを放出するXeエキシマランプも市販されている。水銀を使用しない紫外線光源と期待されるものの、多くの既存の蛍光体を励起するには波長が短すぎることや、大気中ではVUVが大気に吸収されることなど、一般的には取り扱いにくい側面がある。 On the other hand, VUV emitted from Xe atoms / molecules is used in plasma displays, and Xe excimer lamps that directly emit VUV are also commercially available. Although it is expected to be an ultraviolet light source that does not use mercury, it is generally difficult to handle such as the wavelength is too short to excite many existing phosphors and VUV is absorbed in the atmosphere. There is.

このような背景を受けて、UV−Bである310nm近傍の紫外線を放出するGd3+イオンに注目し、Gd3+を添加した蛍光体を用いた紫外線光源の開発が進められている。Xeエキシマランプと組み合わせて、VUVからUV−Bに変換する方式や、ELデバイスに組み込み、直接UV−Bを得る方式などが報告されている。(先行技術文献1、非特許文献1、2参照)特に後者は、薄膜デバイスであるため、薄い軽量な光源が得られるというメリットが考えられるが、既存の報告されている蛍光体は、フッ化物であるなど化学的に弱い問題点がある。また、蛍光体の結晶構造が基板の結晶構造と関連性がなく、高品質な薄膜を得ることが難しい問題がある。したがって、強い発光強度を示し、デバイス化しやすく化学的に安定な蛍光体の開発が期待されている。 In view of such a background, attention is paid to Gd 3+ ions that emit UV-B near 310 nm, and development of an ultraviolet light source using a phosphor to which Gd 3+ is added is underway. A method of converting from VUV to UV-B in combination with an Xe excimer lamp, a method of obtaining UV-B directly by being incorporated in an EL device, and the like have been reported. (See Prior Art Document 1, Non-Patent Documents 1 and 2) In particular, since the latter is a thin film device, there is a merit that a thin and light source can be obtained. However, an existing reported phosphor is a fluoride. There are problems with chemical weakness. Further, there is a problem that it is difficult to obtain a high-quality thin film because the crystal structure of the phosphor is not related to the crystal structure of the substrate. Therefore, it is expected to develop a phosphor that exhibits strong emission intensity, is easy to be made into a device, and is chemically stable.

特願2009−504863Japanese Patent Application No. 2009-504863

H. Yoshida et al., Journal of Luminescence, 2007, Vol.122−123, 488−491H. Yoshida et al. , Journal of Luminescence, 2007, Vol. 122-123, 488-491 N. Miura et al., Japanese Journal of Applied Physics, 1991, Vol.30 L1815−L1816N. Miura et al. , Japan Journal of Applied Physics, 1991, Vol. 30 L1815-L1816

解決しようとする問題点は、従来のGd3+を添加した蛍光体は、高い発光強度と化学的安定性を十分に兼ね備えておらず、また基板との組み合わせで高品質な蛍光体薄膜を得にくい点である。 The problem to be solved is that the phosphor added with the conventional Gd 3+ does not have high emission intensity and chemical stability sufficiently, and it is difficult to obtain a high-quality phosphor thin film in combination with the substrate. Is a point.

本発明に係る紫外線蛍光体は、発光中心がGd3+であり、増感イオンがPr3+であり、母体がY1−zLnAlOからなるペロブスカイト構造であって、LnはLaおよびLuのなかから選ばれる1または2の元素であることを特徴とする。 Ultraviolet phosphor according to the present invention is a light emitting center Gd 3+, a sensitizing ions Pr 3+, a perovskite structure matrix consists of Y 1-z Ln z AlO 3 , Ln is the La and Lu It is characterized by being one or two elements selected from among them.

また、本発明に係る紫外線蛍光体は、好ましくは、組成式(Y1−zLn1−x−yGdPrAlOで示され、xが0.00〜0.20、yが0.00〜0.20、zが0.0〜0.30、であることを特徴とする。 The ultraviolet phosphor according to the present invention are preferably represented by the composition formula (Y 1-z Ln z) 1-x-y Gd x Pr y AlO 3, x is .00-.20, y Is 0.00 to 0.20, and z is 0.0 to 0.30.

また、本発明に係る光源は、上記の紫外線蛍光体を含む蛍光層を備えることを特徴とする。   Moreover, the light source which concerns on this invention is equipped with the fluorescent layer containing said ultraviolet fluorescent substance, It is characterized by the above-mentioned.

また、本発明に係る紫外線蛍光体の製造方法は、上記の紫外線蛍光体を固相反応で製造する方法であって、     Further, the method for producing an ultraviolet phosphor according to the present invention is a method for producing the aforementioned ultraviolet phosphor by a solid phase reaction,

、Ln酸化物、Al酸化物、Gd、Pr酸化物を、Y:Ln:Gd:Pr:Al=0.30〜1.00:0.00〜0.30:0.00〜0.20:0.00〜0.20:1のモル比になるように配合し、混合粉末を得る工程と、
該混合粉末を、大気雰囲気下、1000〜1600℃の温度で1〜10時間1回以上焼成する工程と、を有することを特徴とする。
Y 2 O 3 , Ln oxide, Al oxide, Gd 2 O 3 , Pr oxide, Y: Ln: Gd: Pr: Al = 0.30 to 1.00: 0.00 to 0.30: 0 Compounding so as to have a molar ratio of 0.00 to 0.20: 0.00 to 0.20: 1 to obtain a mixed powder;
And baking the mixed powder at a temperature of 1000 to 1600 ° C. for 1 to 10 hours at least once in an air atmosphere.

また、本発明に係る紫外線蛍光体の製造方法は、好ましくは、Al酸化物がγ−Alであり、Pr酸化物がPr11またはPrであり、Ln酸化物がLaまたはLuであることを特徴とする。 In the method for producing an ultraviolet phosphor according to the present invention, preferably, the Al oxide is γ-Al 2 O 3 , the Pr oxide is Pr 6 O 11 or Pr 2 O 3 , and the Ln oxide is It is characterized by being La 2 O 3 or Lu 2 O 3 .

本発明に係る紫外線酸化物蛍光体は、発光中心がGd3+であり、増感イオンがPr3+であり、母体がY1−zLnAlOからなるペロブスカイト構造であって、LnはLaおよびLuのなかから選ばれる1または2の元素である。
このため、紫外線蛍光体は、高い発光強度を示し、酸化物であるため化学的安定性を兼ね備え、ペロブスカイト単結晶基板に高品質な薄膜を作製できる。紫外線蛍光体は、蛍光波長310nm近傍にあり、紫外線光源用の蛍光体として好ましい。
また、本発明に係る光源は、上記の紫外線蛍光体を含む蛍光層を備えるため、紫外線蛍光体の効果を好適に得ることができる。特に、高品質な薄膜が得やすいため、上記の紫外線蛍光体を用いた発光デバイスへの応用に適している
また、本発明に係る紫外線蛍光体の製造方法は、上記の紫外線蛍光体を固相反応で製造する方法であって、
、Ln酸化物、Al酸化物、Gd、Pr酸化物を、Y:Ln:Gd:Pr:Al=0.30〜1.00:0.00〜0.30:0.00〜0.20:0.00〜0.20:1のモル比になるように配合し、混合粉末を得る工程と、
該混合粉末を、大気雰囲気下、1000〜1600℃の温度で1〜10時間1回以上焼成する工程と
を有するため、上記の紫外線蛍光体を好適に得ることができる。
Ultraviolet oxide phosphor according to the present invention is a light emitting center Gd 3+, sensitizing ions are Pr 3+, a perovskite structure matrix consists of Y 1-z Ln z AlO 3 , Ln is La and 1 or 2 elements selected from Lu.
For this reason, since the ultraviolet phosphor exhibits high emission intensity and is an oxide, it has chemical stability and can produce a high-quality thin film on a perovskite single crystal substrate. The ultraviolet phosphor is in the vicinity of a fluorescence wavelength of 310 nm and is preferable as a phosphor for an ultraviolet light source.
Moreover, since the light source which concerns on this invention is equipped with the fluorescent layer containing said ultraviolet fluorescent substance, the effect of an ultraviolet fluorescent substance can be acquired suitably. In particular, since it is easy to obtain a high-quality thin film, it is suitable for application to a light-emitting device using the above-mentioned ultraviolet phosphor. Also, the method for producing an ultraviolet phosphor according to the present invention uses the above-described ultraviolet phosphor as a solid phase. A process for producing by reaction,
Y 2 O 3 , Ln oxide, Al oxide, Gd 2 O 3 , Pr oxide, Y: Ln: Gd: Pr: Al = 0.30 to 1.00: 0.00 to 0.30: 0 Compounding so as to have a molar ratio of 0.00 to 0.20: 0.00 to 0.20: 1 to obtain a mixed powder;
Since the mixed powder includes a step of baking at least 1 to 10 hours at a temperature of 1000 to 1600 ° C. in an air atmosphere, the above-described ultraviolet phosphor can be suitably obtained.

図1は実施例1の蛍光体のなかで、x=0.10、y=0.03の蛍光体のX線回折パターンを示す図である。FIG. 1 is a diagram showing an X-ray diffraction pattern of a phosphor with x = 0.10 and y = 0.03 among the phosphors of Example 1. FIG. 図2は実施例1の蛍光体の発光スペクトル示す図である。2 is a diagram showing an emission spectrum of the phosphor of Example 1. FIG. 図3は実施例1の蛍光体の蛍光強度のPr濃度依存性を示す図である。FIG. 3 is a graph showing the Pr concentration dependence of the fluorescence intensity of the phosphor of Example 1. 図3は実施例2の蛍光体の蛍光強度のGd濃度依存性を示す図である。FIG. 3 is a graph showing the Gd concentration dependency of the fluorescence intensity of the phosphor of Example 2. 図5は実施例1、2の蛍光体と市販蛍光体(LaPO:Tb3+,Ce3+)との蛍光強度の比較を示す図である。FIG. 5 is a graph showing a comparison of fluorescence intensities between the phosphors of Examples 1 and 2 and commercially available phosphors (LaPO 4 : Tb 3+ , Ce 3+ ). 図6は実施例3の蛍光体の蛍光強度のLn濃度依存性を示す図である。6 is a graph showing the Ln concentration dependency of the fluorescence intensity of the phosphor of Example 3. FIG. 図7は実施例3の蛍光体の格子定数のLn濃度依存性を示す図である。FIG. 7 is a graph showing the Ln concentration dependence of the lattice constant of the phosphor of Example 3. 図8は本実施の形態に係る深赤色蛍光体の母体の結晶構造を示す図である。FIG. 8 is a diagram showing the crystal structure of the matrix of the deep red phosphor according to the present embodiment.

本発明の実施の形態について、以下に説明する。     Embodiments of the present invention will be described below.

本発明に係る紫外線酸化物蛍光体は、発光中心がGd3+であり、増感イオンがPr3+であり、母体がY1−zLnAlOからなるペロブスカイト構造であって、LnはLaおよびLuのなかから選ばれる1または2の元素である。
上記のペロブスカイト構造において、ABOで示されるOの数が実際には3からわずかに変動することは当業者に周知な事項であり、本発明はこの変動範囲のものを含む。
また、紫外線蛍光体は、好ましくは、組成式(Y1−zLn1−x−yGdPrAlOで示され、xが0.005〜0.20、yが0.00〜0.20、zが0.0〜0.30、であることを特徴とする。
Ultraviolet oxide phosphor according to the present invention is a light emitting center Gd 3+, sensitizing ions are Pr 3+, a perovskite structure matrix consists of Y 1-z Ln z AlO 3 , Ln is La and 1 or 2 elements selected from Lu.
In the perovskite structure described above, it is well known to those skilled in the art that the number of Os represented by ABO 3 actually varies slightly from 3, and the present invention includes this range of fluctuation.
The ultraviolet phosphor is preferably represented by the composition formula (Y 1-z Ln z) 1-x-y Gd x Pr y AlO 3, x is 0.005 to 0.20, y is 0.00 -0.20, z is 0.0-0.30, It is characterized by the above-mentioned.

ここで、Pr3+を母体に含む目的は、Gd3+発光強度を増加させることにある。Pr3+の4d軌道で吸収されたエネルギーが効果的にGd3+へ移動する現象が、いくつかの蛍光体で知られており、本発明に係る紫外線蛍光体においても、これら添加物と母体の組み合わせで、その現象が有効的に働き、Gd3+発光強度を増加する。 Here, the purpose of including Pr 3+ in the matrix is to increase Gd 3+ emission intensity. The phenomenon in which the energy absorbed in the Pr 3+ 4d orbitals is effectively transferred to Gd 3+ is known in some phosphors, and also in the ultraviolet phosphor according to the present invention, the combination of these additives and the matrix Then, the phenomenon works effectively and increases the Gd 3+ emission intensity.

一方、La3+やLu3+を母体に含む目的は、Gd3+発光強度に大きな変化を与えない状態で、母体のペロブスカイト構造の格子定数を変化させるためである。La3+やLu3+は発光に関与するエネルギー準位が無く、Gd3+の発光を直接阻害する要因を持たない。一方、La3+とLu3+のイオン半径(9配位)は、それぞれ1.216, 1.032Åであり、Y3+のイオン半径1.075ÅよりもLa3+は大きく、Lu3+は小さい。これにより、La3+やLu3+は母体のYAlOのYと置換して、母体の格子定数を増減させることが可能になる。市販されている単結晶基板、SrTiOやLaAlOなどに格子定数を対応させて、高品質な薄膜およびデバイスを作製することが可能になる。 On the other hand, the purpose of including La 3+ and Lu 3+ in the matrix is to change the lattice constant of the perovskite structure of the matrix in a state where no significant change is made in the Gd 3+ emission intensity. La 3+ and Lu 3+ have no energy level involved in light emission, and do not have a factor that directly inhibits light emission of Gd 3+ . On the other hand, the ionic radii (9-coordinates) of La 3+ and Lu 3+ are 1.216 and 1.032 そ れ ぞ れ, respectively, and La 3+ is larger and Lu 3+ is smaller than the ionic radius 1.075 Y of Y 3+ . Thereby, La 3+ and Lu 3+ can be replaced with Y of the parent YAlO 3 to increase or decrease the lattice constant of the parent. It becomes possible to produce a high-quality thin film and device by making the lattice constant correspond to a commercially available single crystal substrate, such as SrTiO 3 or LaAlO 3 .

本実施の形態に係る紫外線蛍光体の母体の結晶構造を図8に示す。
本発明の母体酸化物YAlOは、一般的な立方晶のペロブスカイト構造ABOと比較して、結晶構造は少し歪んでおり、図8の単位格子では4倍の原子数になっている。母体は、ペロブスカイト構造のAサイトをイオン半径の大きい(1.075Å)Yが占有し、Bサイトをイオン半径の小さい(0.535Å)Alが占有している。
添加物であるGd3+のイオン半径(9配位)は1.107Åであり、Al3+より十分大きくまたY3+のイオン半径に近いため、Aサイトを置換し発光中心となる。同じ理由で、イオン半径が1.179ÅであるPr3+はAサイトを置換し、Gd3+の発光の増感イオンとなる。前述のとおり、La3+やLu3+もAサイトを置換して、母体の格子定数の制御を可能にする。
FIG. 8 shows the crystal structure of the matrix of the ultraviolet phosphor according to the present embodiment.
The base oxide YAlO 3 of the present invention has a slightly distorted crystal structure as compared with a general cubic perovskite structure ABO 3, and has four times the number of atoms in the unit cell of FIG. In the matrix, the A site of the perovskite structure is occupied by Y having a large ionic radius (1.075 Å), and the B site is occupied by Al having a small ionic radius (0.535 Å).
The additive has an ionic radius (9-coordinate) of Gd 3+ of 1.107 mm, which is sufficiently larger than Al 3+ and close to the ionic radius of Y 3+ , so that it replaces the A site and becomes the emission center. For the same reason, Pr 3+ having an ionic radius of 1.179Å replaces the A site and becomes a sensitized ion of Gd 3+ emission. As described above, La 3+ and Lu 3+ also replace the A site to enable control of the matrix lattice constant.

Gd3+は4f−4f遷移による約310nmの波長の紫外線を放出する。増感イオンのPr3+は、Gd3+の発光に関係する4f軌道(始状態)よりも高エネルギー側に5d軌道を有しており、その軌道でGd3+の軌道よりも強い光吸収を起こす。吸収された光エネルギーは本発明の蛍光体母体中で効率よくGd3+に移動し、Gd3+の紫外線発光を促進する。一方、La3+やLu3+では、4f軌道は完全に開殻または閉殻状態であり、またそれらの5d軌道はPr3+と同様にGd3+の4f軌道(始状態)よりも高エネルギー側にあるため、発光に関与しない。
したがって、本実施の形態では増感剤としてPr3+を、デバイス化のための格子定数の制御を目的として、La3+やLu3+を用いる。
Gd 3+ emits ultraviolet light having a wavelength of about 310 nm due to the 4f-4f transition. Pr 3+ sensitizing ions, than the 4f orbit (start state) relating to the emission of Gd 3+ has a 5d orbital to a higher energy side, causing strong optical absorption than the trajectory of the Gd 3+ in its orbit. The absorbed light energy is efficiently transferred to Gd 3+ in the phosphor matrix of the present invention, and promotes ultraviolet emission of Gd 3+ . On the other hand, in La 3+ and Lu 3+ , the 4f orbits are completely open or closed, and their 5d orbits are on the higher energy side than the 4f orbits (starting state) of Gd 3+ as in Pr 3+. , Not involved in luminescence.
Therefore, in the present embodiment, Pr 3+ is used as a sensitizer, and La 3+ or Lu 3+ is used for the purpose of controlling the lattice constant for device formation.

本実施の形態に係る紫外線蛍光体の製造方法は、紫外線蛍光体を固相反応で製造する方法であって、Y、Ln酸化物、Al酸化物、Gd、Pr酸化物を、Y:Ln:Gd:Pr:Al=0.30〜1.00:0.00〜0.30:0.00〜0.20:0.00〜0.20:1のモル比になるように配合し、混合粉末を得る工程と、該混合粉末を、大気雰囲気下、1000〜1600℃の温度で1〜10時間1回以上焼成する工程と、を有する。
Al酸化物としてγ−Alを、Pr酸化物としてPr11またはPrを、Ln酸化物としてLaまたはLuを用いることは好適な実施態様である。
The method for producing an ultraviolet phosphor according to the present embodiment is a method for producing an ultraviolet phosphor by a solid phase reaction, and includes Y 2 O 3 , Ln oxide, Al oxide, Gd 2 O 3 , and Pr oxide. Y: Ln: Gd: Pr: Al = 0.30 to 1.00: 0.00 to 0.30: 0.00 to 0.20: 0.00 to 0.20: 1 So that the mixed powder is obtained, and the mixed powder is calcined at a temperature of 1000 to 1600 ° C. once or more for 1 to 10 hours in an air atmosphere.
It is a preferred embodiment to use γ-Al 2 O 3 as the Al oxide, Pr 6 O 11 or Pr 2 O 3 as the Pr oxide, and La 2 O 3 or Lu 2 O 3 as the Ln oxide. .

これらの原料を所定のモル比になるように秤量し、メノウ乳鉢を用いて、原料100質量部に対して例えばエタノールを500質量部加えて湿式混合する。乾燥後に得られた混合粉末を上記の条件で1回以上焼成する。不純物相が残り1回の焼成で単一相が得られなければ、再度粉砕・混合・焼成の過程を繰り返し、できる限り不純物相を低減することが好ましい。 These raw materials are weighed so as to have a predetermined molar ratio, and using an agate mortar, for example, 500 parts by mass of ethanol is added to 100 parts by mass of the raw material and wet-mixed. The mixed powder obtained after drying is fired at least once under the above conditions. If the impurity phase remains and a single phase cannot be obtained by one firing, it is preferable to repeat the process of pulverization, mixing and firing again to reduce the impurity phase as much as possible.

本実施の形態に係る紫外線蛍光体は、フッ素を含まないため化学的安定に優れ、また、紫外線150〜250nmの励起で、波長310nmにおいて高い発光強度を有する。
つぎに、本実施の形態に係る光源は、本実施の形態に係る紫外線蛍光体を含む蛍光層を備える。紫外線蛍光体を含む蛍光層は、単結晶上の薄膜や、紫外線蛍光体を含有させた例えばシリコン樹脂シートとすることができる。
これにより、エキシマランプと組み合わせて、直接UV−Bの光源に応用できる。また、電圧印加により、直接UV−Bを発光する面発光光源に応用できる。
また、これらのUV−B光源は、光触媒と組み合わせることで、軽量・薄型の空気清浄器などに用いられる。また、皮膚に照射し、皮膚病の治療に応用できる。さらに、高効率の可視蛍光体と組み合わせることで、照明や表示素子として利用できる。
The ultraviolet phosphor according to the present embodiment is excellent in chemical stability because it does not contain fluorine, and has high emission intensity at a wavelength of 310 nm by excitation with ultraviolet rays of 150 to 250 nm.
Next, the light source according to the present embodiment includes a fluorescent layer including the ultraviolet phosphor according to the present embodiment. The fluorescent layer containing the ultraviolet phosphor can be a thin film on a single crystal or, for example, a silicon resin sheet containing the ultraviolet phosphor.
Thus, it can be directly applied to a UV-B light source in combination with an excimer lamp. Further, it can be applied to a surface emitting light source that directly emits UV-B by voltage application.
In addition, these UV-B light sources are used in light and thin air purifiers by combining with a photocatalyst. It can also be applied to the treatment of skin diseases by irradiating the skin. Furthermore, it can be used as an illumination or display element by combining with a highly efficient visible phosphor.

本発明の無機酸化物蛍光体を表す式(Y1−zLn1−x−yGdPrAlOの実験を行った。なお、本発明は、以下に説明する実施例に限定されるものではない。 An inorganic oxide phosphor represented formula (Y 1-z Ln z) experiments 1-x-y Gd x Pr y AlO 3 of the present invention was performed. In addition, this invention is not limited to the Example demonstrated below.

(実施例1)
本発明の無機酸化物蛍光体を表す式(Y0.90−yGd0.10Pr)AlOの実施例1の実験を行った。実施例1ではLn濃度zを0.00にGd濃度xを0.10に固定し、Pr濃度は、y=0.01、0.03、0.05、0.07、0.10と変化させた。母体原料としてY とγ−Alを使用し、添加させる物質の原料としてGd、Pr11 を用いた。前記各原料の所定量を秤量後、メノウ乳鉢を用いて湿式混合し、1400℃で6時間、2回焼成した。焼成時の電気炉の雰囲気は空気とした。
図1に、実施例1で得られた無機酸化物蛍光体の試料のX線回折パターンを示した。実施例1ではPr濃度に関係なく結晶構造から計算されるシミュレーションのパターンとほぼ同一であった。また、異相として僅かにYAl12とYAlの不純物が現れた。これら異相は、蛍光強度にほとんど影響を及ぼしていない。
図2は実施例1の無機酸化物蛍光体を蛍光光度計で励起波長を215nmして測定した発光スペクトルである。実施例1の無機酸化物蛍光体は、励起波長約215nmで最大の蛍光強度を示した。発光スペクトルではシャープなピークが現れ、その波長は約314nmであった。これは紫外線光の発光であり、Pr濃度が変化すると、そのスペクトル形状には顕著な変化が現れなかったが、スペクトル強度は大きく変化した。
図3は、実施例1の無機酸化物蛍光体の発光相対強度のPr濃度依存性を示す。実施例1の無機酸化物蛍光体の最適なPr濃度はy=0.03であった。
Example 1
Experiment of Example 1 of the formula (Y 0.90-y Gd 0.10 Pr y ) AlO 3 representing the inorganic oxide phosphor of the present invention was conducted. In Example 1, the Ln concentration z is fixed to 0.00 and the Gd concentration x is fixed to 0.10, and the Pr concentration changes as y = 0.01, 0.03, 0.05, 0.07, and 0.10. I let you. Y 2 O 3 and γ-Al 2 O 3 were used as base materials, and Gd 2 O 3 and Pr 6 O 11 were used as materials for the substances to be added. A predetermined amount of each raw material was weighed, wet-mixed using an agate mortar, and fired twice at 1400 ° C. for 6 hours. The atmosphere of the electric furnace during firing was air.
FIG. 1 shows an X-ray diffraction pattern of a sample of the inorganic oxide phosphor obtained in Example 1. In Example 1, the simulation pattern calculated from the crystal structure was almost the same regardless of the Pr concentration. The impurity slightly as the hetero-phase Y 3 Al 5 O 12 and Y 4 Al 2 O 9 appeared. These heterogeneous phases have little influence on the fluorescence intensity.
FIG. 2 is an emission spectrum obtained by measuring the inorganic oxide phosphor of Example 1 with an excitation wavelength of 215 nm using a fluorometer. The inorganic oxide phosphor of Example 1 showed the maximum fluorescence intensity at an excitation wavelength of about 215 nm. A sharp peak appeared in the emission spectrum, and its wavelength was about 314 nm. This is emission of ultraviolet light, and when the Pr concentration is changed, the spectral shape does not change significantly, but the spectral intensity changes greatly.
FIG. 3 shows the Pr concentration dependence of the emission relative intensity of the inorganic oxide phosphor of Example 1. The optimum Pr concentration of the inorganic oxide phosphor of Example 1 was y = 0.03.

(実施例2)
本発明の無機酸化物蛍光体を表す式(Y0.97−xGdPr0.03)AlOの実施例2の実験を行った。実施例2ではLn濃度zを0.00にPr濃度yを0.03に固定し、Gd濃度は、x=0.005、0.01、0.03、0.05、0.07、0.10と変化させた 。母体原料としてY とγ−Alを使用し、添加させる物質の原料としてGd、Pr11 を用いた。前記各原料の所定量を秤量後、メノウ乳鉢を用いて湿式混合し、1400℃で6時間、2回焼成した。焼成時の電気炉の雰囲気は空気とした。
実施例2で得られた無機酸化物蛍光体の試料のX線回折パターンはGd濃度に関係なく、結晶構造から計算されたパターンとほぼ同一であった。また、異相として僅かにYAl12とYAlの不純物が現れた。これら異相は、蛍光強度にほとんど影響を及ぼしていない。
実施例2の無機酸化物蛍光体は、励起波長約215nmで最大の蛍光強度を示し、蛍光光度計で励起波長を215nmとして発光スペクトルを測定した。実施例2の無機酸化物蛍光体は実施例1のときと同様にシャープなピークを示し、その波長は約314nmであった。紫外線光の発光であり、Gd濃度が変化しても、そのスペクトル形状には顕著な変化が現れなかった。
図4は、実施例2の無機酸化物蛍光体の発光相対強度のGd濃度依存性を示す。実施例2の無機酸化物蛍光体の最適なGd濃度はx=0.07であった。
図5は、実施例2で得られた最適組成での無機酸化物蛍光体の発光スペクトルである。蛍光体の発光波長は314nm、最適励起波長は215nmであり、市販品蛍光体LaPO4:Tb,Ceと比べた最適励起波長における相対的な発光強度は図5のようにピークトップで1.3倍となった。
(Example 2)
Experiment of Example 2 of the formula (Y 0.97-x Gd x Pr 0.03 ) AlO 3 representing the inorganic oxide phosphor of the present invention was conducted. In Example 2, the Ln concentration z is fixed to 0.00 and the Pr concentration y is fixed to 0.03, and the Gd concentrations are x = 0.005, 0.01, 0.03, 0.05, 0.07, 0. .10 and changed. Y 2 O 3 and γ-Al 2 O 3 were used as base materials, and Gd 2 O 3 and Pr 6 O 11 were used as materials for the substances to be added. A predetermined amount of each raw material was weighed, wet-mixed using an agate mortar, and fired twice at 1400 ° C. for 6 hours. The atmosphere of the electric furnace during firing was air.
The X-ray diffraction pattern of the inorganic oxide phosphor sample obtained in Example 2 was almost the same as the pattern calculated from the crystal structure regardless of the Gd concentration. The impurity slightly as the hetero-phase Y 3 Al 5 O 12 and Y 4 Al 2 O 9 appeared. These heterogeneous phases have little influence on the fluorescence intensity.
The inorganic oxide phosphor of Example 2 showed the maximum fluorescence intensity at an excitation wavelength of about 215 nm, and the emission spectrum was measured with a fluorometer at an excitation wavelength of 215 nm. The inorganic oxide phosphor of Example 2 showed a sharp peak as in Example 1, and its wavelength was about 314 nm. It was an ultraviolet light emission, and even if the Gd concentration changed, the spectral shape did not change significantly.
FIG. 4 shows the Gd concentration dependence of the emission relative intensity of the inorganic oxide phosphor of Example 2. The optimum Gd concentration of the inorganic oxide phosphor of Example 2 was x = 0.07.
FIG. 5 is an emission spectrum of the inorganic oxide phosphor having the optimum composition obtained in Example 2. The emission wavelength of the phosphor is 314 nm and the optimum excitation wavelength is 215 nm. The relative emission intensity at the optimum excitation wavelength compared to the commercially available phosphor LaPO4: Tb, Ce is 1.3 times the peak top as shown in FIG. It became.

(実施例3,4)
本発明の無機酸化物蛍光体を表す式(Y1−zLa0.90Gd0.07Pr0.03AlOの実施例3と式(Y1−zLu0.90Gd0.07Pr0.03AlOの実施例4の実験を行った。
実施例3,4ではGd濃度xを0.07にPr濃度yを0.03に固定し、LaまたはLu濃度は、z=0.00、0.05、0.10、0.20、0.30、0.40、0.50、と変化させた 。母体原料としてY とLaまたはLuとγ−Alを使用し、添加させる物質の原料としてGd、Pr11 を用いた。さらに、前記各原料の所定量を秤量後、メノウ乳鉢を用いて湿式混合し、1400℃で6時間、2回焼成した。焼成時の電気炉の雰囲気は空気とした。
実施例3,4で得られた無機酸化物蛍光体の試料のX線回折パターンはLaやLuの濃度が低いときは、結晶構造から計算されたパターンとほぼ同一であった。また、異相として僅かにYAl12とYAlの不純物が現れた。これら異相は、蛍光強度にほとんど影響を及ぼしていない。LaやLuの濃度が高いときは、不純物相の回折ピークが増大し、不純物相の存在量が大きくなった。
実施例3,4の無機酸化物蛍光体は、励起波長約215nmで最大の蛍光強度を示し、蛍光光度計で励起波長を215nmとして発光スペクトルを測定した。実施例2の無機酸化物蛍光体は実施例1のときと同様にシャープなピークを示し、その波長は約314nmであった。紫外線光の発光であり、Gd濃度が変化しても、そのスペクトル形状には顕著な変化が現れなかった。
図6は、実施例3,4の無機酸化物蛍光体の発光相対強度のLaまたはLu濃度依存性を示す。濃度の低い領域では、発光強度はあまり変化せず、わずかに減少するだけだが、z=0.30以上の高濃度領域では、不純物相が増えるため、発光強度は著しく減少した。
図7は、実施例3,4の無機酸化物蛍光体の格子定数のLaまたはLu濃度依存性を示す。蛍光体の結晶構造は斜方晶であるが、比較しやすくするため立方晶ペロブスカイト構造の格子定数aに換算して示してある。Laを添加することにより、格子定数は3.72Å程度まで大きくなり、Luを添加することにより、3.705Å程度まで小さくなった。
(Examples 3 and 4)
Example 3 and of the formula (Y 1-z La z) 0.90 Gd 0.07 Pr 0.03 AlO 3 representing an inorganic oxide phosphor of the present invention (Y 1-z Lu z) 0.90 Gd The experiment of Example 4 of 0.07 Pr 0.03 AlO 3 was performed.
In Examples 3 and 4, the Gd concentration x is fixed to 0.07 and the Pr concentration y is fixed to 0.03, and the La or Lu concentration is z = 0.00, 0.05, 0.10, 0.20, 0 .30, 0.40, 0.50. Y 2 O 3 and La 2 O 3 or Lu 2 O 3 and γ-Al 2 O 3 were used as base materials, and Gd 2 O 3 and Pr 6 O 11 were used as raw materials for the substance to be added. Further, after weighing a predetermined amount of each of the raw materials, wet mixing was performed using an agate mortar, and the mixture was fired twice at 1400 ° C. for 6 hours. The atmosphere of the electric furnace during firing was air.
The X-ray diffraction patterns of the inorganic oxide phosphor samples obtained in Examples 3 and 4 were almost the same as the patterns calculated from the crystal structure when the concentrations of La and Lu were low. The impurity slightly as the hetero-phase Y 3 Al 5 O 12 and Y 4 Al 2 O 9 appeared. These heterogeneous phases have little influence on the fluorescence intensity. When the concentration of La or Lu was high, the diffraction peak of the impurity phase increased and the abundance of the impurity phase increased.
The inorganic oxide phosphors of Examples 3 and 4 showed the maximum fluorescence intensity at an excitation wavelength of about 215 nm, and the emission spectrum was measured with a fluorometer at an excitation wavelength of 215 nm. The inorganic oxide phosphor of Example 2 showed a sharp peak as in Example 1, and its wavelength was about 314 nm. It was an ultraviolet light emission, and even if the Gd concentration changed, the spectral shape did not change significantly.
FIG. 6 shows the La or Lu concentration dependence of the emission relative intensity of the inorganic oxide phosphors of Examples 3 and 4. In the low concentration region, the emission intensity does not change so much and only slightly decreases. However, in the high concentration region where z = 0.30 or more, the impurity phase increases, and thus the emission intensity significantly decreases.
FIG. 7 shows the La or Lu concentration dependence of the lattice constant of the inorganic oxide phosphors of Examples 3 and 4. Although the crystal structure of the phosphor is orthorhombic, it is shown in terms of a lattice constant ap of a cubic perovskite structure for easy comparison. By adding La, the lattice constant increased to about 3.72 、, and by adding Lu, it decreased to about 3.705 格子.

Claims (5)

発光中心がGd3+であり、増感イオンがPr3+であり、母体がY1−zLnAlOからなるペロブスカイト構造であって、LnはLaおよびLuのなかから選ばれる1または2の元素である紫外線蛍光体。 The emission center is Gd 3+ , the sensitizing ion is Pr 3+ , and the matrix is a perovskite structure consisting of Y 1-z Ln z AlO 3 , where Ln is one or two elements selected from La and Lu Is an ultraviolet phosphor. 組成式(Y1−zLn1−x−yGdPrAlOで示され、xが0.005〜0.20、yが0.00〜0.20、zが0.0〜0.30、であることを特徴とする請求項1記載の紫外線蛍光体。 Is represented by a composition formula (Y 1-z Ln z) 1-x-y Gd x Pr y AlO 3, x is 0.005 to 0.20, y is 0.00-.20, z is 0.0 The ultraviolet phosphor according to claim 1, which is ˜0.30. 請求項1〜2のいずれか1項に記載の紫外線蛍光体を含む蛍光層を備えることを特徴とする光源。     A light source comprising a fluorescent layer containing the ultraviolet phosphor according to claim 1. 請求項1〜3のいずれか1項に記載の紫外線蛍光体を固相反応で製造する方法であって、
、Ln酸化物、Al酸化物、Gd、Pr酸化物を、Y:Ln:Gd:Pr:Al=0.30〜1.00:0.00〜0.30:0.00〜0.20:0.00〜0.20:1のモル比になるように配合し、混合粉末を得る工程と、
該混合粉末を、大気雰囲気下、1000〜1600℃の温度で1〜10時間1回以上焼成する工程と、
を有することを特徴とする、紫外線蛍光体の製造方法。
A method for producing the ultraviolet phosphor according to any one of claims 1 to 3 by a solid phase reaction,
Y 2 O 3 , Ln oxide, Al oxide, Gd 2 O 3 , Pr oxide, Y: Ln: Gd: Pr: Al = 0.30 to 1.00: 0.00 to 0.30: 0 Compounding so as to have a molar ratio of 0.00 to 0.20: 0.00 to 0.20: 1 to obtain a mixed powder;
Firing the mixed powder at a temperature of 1000 to 1600 ° C. in an air atmosphere at least once for 1 to 10 hours;
A method for producing an ultraviolet phosphor, comprising:
Al酸化物がγ−Alであり、Pr酸化物がPr11またはPrであり、Ln酸化物がLaまたはLuであることを特徴とする請求項4記載の紫外線蛍光体の製造方法。 The Al oxide is γ-Al 2 O 3 , the Pr oxide is Pr 6 O 11 or Pr 2 O 3 , and the Ln oxide is La 2 O 3 or Lu 2 O 3. Item 5. A method for producing an ultraviolet phosphor according to Item 4.
JP2012000433A 2012-01-05 2012-01-05 Ultraviolet phosphor, light source, and method for producing ultraviolet phosphor Expired - Fee Related JP5880833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000433A JP5880833B2 (en) 2012-01-05 2012-01-05 Ultraviolet phosphor, light source, and method for producing ultraviolet phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000433A JP5880833B2 (en) 2012-01-05 2012-01-05 Ultraviolet phosphor, light source, and method for producing ultraviolet phosphor

Publications (2)

Publication Number Publication Date
JP2013139525A true JP2013139525A (en) 2013-07-18
JP5880833B2 JP5880833B2 (en) 2016-03-09

Family

ID=49037294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000433A Expired - Fee Related JP5880833B2 (en) 2012-01-05 2012-01-05 Ultraviolet phosphor, light source, and method for producing ultraviolet phosphor

Country Status (1)

Country Link
JP (1) JP5880833B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097003A1 (en) * 2016-11-25 2018-05-31 大電株式会社 Fluorescent substance for vacuum ultraviolet excitation, luminescent element, and light-emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172624A (en) * 1999-12-15 2001-06-26 Nec Kansai Ltd Ultraviolet luminescent substance, ultraviolet light emitting fluorescent lamp and ultraviolet light emitting element using the same
WO2011121497A1 (en) * 2010-03-31 2011-10-06 Koninklijke Philips Electronics N.V. Uv-c-emitting discharge lamp
JP2014523945A (en) * 2011-06-29 2014-09-18 コーニンクレッカ フィリップス エヌ ヴェ Luminescent substance particles comprising a coating and lighting unit comprising said luminescent substance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172624A (en) * 1999-12-15 2001-06-26 Nec Kansai Ltd Ultraviolet luminescent substance, ultraviolet light emitting fluorescent lamp and ultraviolet light emitting element using the same
WO2011121497A1 (en) * 2010-03-31 2011-10-06 Koninklijke Philips Electronics N.V. Uv-c-emitting discharge lamp
JP2014523945A (en) * 2011-06-29 2014-09-18 コーニンクレッカ フィリップス エヌ ヴェ Luminescent substance particles comprising a coating and lighting unit comprising said luminescent substance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF LUMINESCENCE, vol. 141, JPN6015027953, 2013, pages 44 - 47, ISSN: 0003212063 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097003A1 (en) * 2016-11-25 2018-05-31 大電株式会社 Fluorescent substance for vacuum ultraviolet excitation, luminescent element, and light-emitting device
JP2018083912A (en) * 2016-11-25 2018-05-31 大電株式会社 Vacuum ultraviolet-excited phosphor, light-emitting element, and light emitting device

Also Published As

Publication number Publication date
JP5880833B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
Zhang et al. A zero-thermal-quenching and color-tunable phosphor LuVO4: Bi3+, Eu3+ for NUV LEDs
Kang et al. Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5: Eu3+, Bi3+ phosphor for ultraviolet converted LEDs
Das et al. Controllable white light emission from Dy 3+–Eu 3+ co-doped KCaBO 3 phosphor
Gao et al. Fabrication and luminescence properties of Dy3+ doped CaMoO4 powders
Sokolnicki et al. Synthesis and spectroscopic investigations of Sr2Y8 (SiO4) 6O2: Eu2+, Eu3+ phosphor for white LEDs
Feng et al. Co-precipitation synthesis and photoluminescence properties of Ba1− xMoO4: xEu3+ red phosphors
JP2007277549A (en) Ultraviolet-radiating phosphor and lamp containing the same
Xu et al. Synthesis and luminescence properties of double-perovskite white emitting phosphor Ca 3 WO 6: Dy 3+
Zhai et al. CaMoO4: Dy3+, Eu3+ phosphors: microwave synthesis, characterization, tunable luminescence properties and energy transfer mechanism
Manhas et al. Effect of alkali metal ions (Li+, Na+ and K+) on the luminescence properties of CaMgB2O5: Sm3+ nanophosphor
Dalal et al. Energy transfer and photoluminescent analysis of a novel color-tunable Ba2Y1-xV3O11: xSm3+ nanophosphor for single-phased phosphor-converted white LEDs
Manjunath et al. Optical transition probabilities of white light emitting Sr2SiO4: Dy3+ nanophosphors for lighting applications using Judd− Ofelt analysis
Zeng et al. Significant enhancement of luminescence intensity of CaTiO 3: Eu 3+ red phosphor prepared by sol–gel method and co-doped with Bi 3+ and Mg 2+
Hooda et al. Photoluminescent and structural properties of color tunable trivalent europium doped SrGdAlO 4 nanophosphors
Liu et al. Preparation and its luminescent properties of AlPO4: Eu3+ phosphor for w-LED applications
Liang et al. Spectroscopic properties of Ce3+ doped MBPO5 (M= Ca, Sr, Ba) under VUV excitation
Singh et al. VUV and UV photoluminescence of green emitting Sr2P2O7: Tb3+ phosphors for PDP applications
Wu et al. Photoluminescence and energy transfer in Sr3La (BO3) 3: Ce, Sm and Sr2TiO4: Sm, Eu phosphors
Yao et al. Concentration quenching of Eu2+ in Ba2Mg (BO3) 2: Eu2+ phosphor
Yang et al. Energy transfer from Ce3+ to Eu3+ through Tb3+ chain in YPO4: Ce3+/Tb3+/Eu3+ phosphors
Verma et al. Photoluminescent and thermoluminescent studies of Dy 3+ and Eu 3+ doped Y 2 O 3 phosphors
Munirathnam et al. Spectral change and far-red emission of Mn2+ ions co-doped NaSrB5O9: Dy3+ luminescence material for plant growth LEDs
Gokhe et al. Synthesis and photoluminescence properties of near-UV pumped novel Sm3+ doped β-LiAlSiO4 phosphor for red-orange LEDs
Vidyadharan et al. Synthesis and luminescence characterization of Pr3+ doped Sr1. 5Ca0. 5SiO4 phosphor
Li et al. Ce 3+ and Tb 3+ activated Ba 3 P 4 O 13 phosphors based on energy transfer behavior

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160119

R150 Certificate of patent or registration of utility model

Ref document number: 5880833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees