WO2018124106A1 - Fluorescent body having phosphorescence, production method therefor, and phosphorescent light-emission product - Google Patents

Fluorescent body having phosphorescence, production method therefor, and phosphorescent light-emission product Download PDF

Info

Publication number
WO2018124106A1
WO2018124106A1 PCT/JP2017/046734 JP2017046734W WO2018124106A1 WO 2018124106 A1 WO2018124106 A1 WO 2018124106A1 JP 2017046734 W JP2017046734 W JP 2017046734W WO 2018124106 A1 WO2018124106 A1 WO 2018124106A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
phosphorescence
raw material
light
bismuth
Prior art date
Application number
PCT/JP2017/046734
Other languages
French (fr)
Japanese (ja)
Inventor
哲男 土屋
裕子 鵜澤
巖 山口
智彦 中島
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2018124106A1 publication Critical patent/WO2018124106A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium

Definitions

  • the present invention relates to a phosphor having phosphorescence, a phosphorescent light-emitting product comprising the phosphor, and a method for producing the phosphor having phosphorescence.
  • LED lighting technology has been developed from the viewpoint of energy saving, but white light from LED lighting is different from conventional three-wavelength phosphors mixed with red, blue and green, and cerium-based fluorescence in which cerium is added to YAG.
  • the mainstream method is to excite the body with a blue LED light source in the wavelength region near 460 nm.
  • the pseudo white light is a combination of red and green emission colors, the whole is bluish and high color rendering cannot be realized.
  • it is possible to produce white light with high color rendering properties by using a method of illuminating a phosphor using a purple LED having a wavelength range of 450 to 460 nm and having a wavelength shorter than blue.
  • phosphorescent phosphors those that can emit light even after light excitation and have a long afterglow time are known as phosphorescent phosphors (phosphorescent materials).
  • phosphorescent materials phosphorescent materials
  • Such a phosphorescent phosphor is expected as a material for building a safe and secure society because it has a function as a guide sign or illumination even in the event of a disaster or power failure.
  • SrAl 2 O 4 is used as a mother crystal
  • europium is used as an activator
  • cerium, praseodymium, neodymium, samarium, terbium, dysprosium, holmium, erbium are used as coactivators.
  • An aluminate that emits green light and contains at least one element selected from the group consisting of thulium, ytterbium, and lutetium in a specific amount is known (Patent Document 1).
  • blue light having a wavelength range of 450 to 460 nm which is an excitation light source, has a health hazard. Therefore, there is a need for a phosphor that emits light with high brightness at a color temperature of 6500K to 10000K by excitation light in a wavelength range of 400 nm to 449 nm, which is relatively harmless.
  • YAG which is normally used for white LEDs, stops emitting light when the excitation light source is turned off, so it is indispensable to be a phosphorescent phosphor for safe and reliable evacuation guidance during power outages. It is.
  • the aluminate phosphor described in Patent Document 1 has low light absorption at a wavelength of less than 450 nm, and thus has insufficient light emission luminance and afterglow luminance.
  • the color temperature when emitted by excitation light with a wavelength of 420 nm is as high as 15000 K, and its application range is limited.
  • the phosphorescent phosphors described in Patent Documents 2 and 3 also have a low light absorption at a wavelength of less than 450 nm, a high color temperature, and are difficult to use for white LED illumination with excitation light in the wavelength range of 400 nm to 449 nm. is there.
  • An object of the present invention is to provide a phosphor having a phosphorescence that emits light at 10000 K and emits light even after excitation is stopped, a phosphorescent light-emitting product including the phosphor, and a method for producing the phosphor having the phosphorescence.
  • a phosphor having a specific composition formula emits light when excited by a light source having a wavelength range of 400 to 449 nm, and has a wavelength of 400 nm and It has been found that light is emitted at a color temperature of 6500 K to 10000 K with any one or more excitation lights of 420 nm and continues to be emitted even after excitation is stopped, and the present invention has been completed.
  • the phosphor having the phosphorescence of the present invention can eliminate the drawbacks related to the light absorption of the conventional phosphorescent phosphor with respect to the LED light source having a wavelength region of less than 450 nm, and the following composition formula (1a) or (1b): Sr (1-xyz) Mg x Al 2 O 4; Eu z (1a) Sr (1-xyz) Mg x Al 4 O 7; Eu z (1b) And a phosphor having a phosphorescence that emits light with excitation light in the wavelength region of 400 to 449 nm and is excited with one or more light sources of wavelengths 400 nm and 420 nm to emit light at a color temperature of 6500K to 10000K. It is.
  • x, y, and z are 0 ⁇ x ⁇ 0.1, ⁇ 0.2 ⁇ y ⁇ 0.2, and 0.01 ⁇ z ⁇ 0.5, respectively. is there.
  • the phosphors having the phosphorescence include bismuth (Bi), dysprosium (Dy), samarium (Sm), lanthanum (La), praseodymium (Pr), terbium (Tb), holmium (Ho), thulium (Tm), lutetium ( From the viewpoint of controlling the phosphorescence time, it further contains at least one element selected from the group consisting of Lu), ytterbium (Yb), erbium (Er), gadolinium (Gd), neodymium (Nd) and cerium (Ce). ,preferable.
  • the phosphor having the light storage preferably has a fluorescence luminance of 2500 cd / m 2 or more due to excitation light of any one of wavelengths of 400 nm and 420 nm.
  • the present inventors added a bismuth (Bi) inorganic compound or a bismuth (Bi) organic compound to a raw material containing a strontium element, a raw material containing a magnesium element, a raw material containing a europium element, and alumina.
  • a method for producing a phosphor having phosphorescence including a step of obtaining a precursor material and a step of firing the precursor material in a range of 1300 ° C. to 1700 ° C., in particular, suitable for the phosphor having phosphorescence of the present invention.
  • the present invention was completed by finding that the production method can be obtained.
  • the phosphorescent light-emitting product of the present invention includes a phosphor having the phosphorescence of the present invention.
  • light is emitted by excitation light in the wavelength region of 400 to 449 nm, light is emitted at a color temperature of 6500 K to 10000 K by excitation light of any one of wavelengths 400 nm and 420 nm, and light is emitted even after excitation is stopped. It is possible to provide a phosphor having phosphorescence, a phosphorescent light-emitting product including the phosphor having phosphorescence, and a method for producing the phosphor having phosphorescence.
  • 6 is a spectrum showing emission characteristics when the phosphors of Example 2 and Comparative Examples 1 to 3 are irradiated with excitation light having a wavelength of 380 nm.
  • 6 is a spectrum showing emission characteristics when the phosphors of Example 2 and Comparative Examples 1 to 3 are irradiated with excitation light having a wavelength of 390 nm.
  • 6 is a spectrum showing emission characteristics when the phosphors of Example 2 and Comparative Examples 1 to 3 are irradiated with excitation light having a wavelength of 400 nm.
  • 6 is a spectrum showing emission characteristics when the phosphors of Example 2 and Comparative Examples 1 to 3 are irradiated with excitation light having a wavelength of 410 nm.
  • 6 is a spectrum showing emission characteristics when the phosphors of Example 2 and Comparative Examples 1 to 3 are irradiated with excitation light having a wavelength of 420 nm.
  • the phosphor having phosphorescence has the following composition formula (1a) or (1b): Sr (1-xyz) Mg x Al 2 O 4; Eu z (1a) Sr (1-xyz) Mg x Al 4 O 7; Eu z (1b) It is represented by This phosphor is an oxide-based phosphor and has high luminance.
  • the phosphor of this embodiment is also referred to as a “high brightness phosphor”.
  • x which is the composition ratio of Mg is 0 ⁇ x ⁇ 0.1, and more preferably 0.01 ⁇ from the viewpoint of obtaining excellent emission luminance and afterglow luminance.
  • Eu which is the composition ratio of Eu, is 0.01 ⁇ z ⁇ 0.5 from the viewpoint of good luminance, and preferably 0.03 ⁇ z ⁇ 0 from the viewpoint of excellent fluorescence intensity and low cost. .2.
  • Eu takes a bivalent (Eu 2+ ) and / or trivalent (Eu 3+ ) state in the phosphor depending on the synthesis conditions such as the mixing ratio of raw materials and the firing temperature.
  • a large amount of divalent Eu is contained.
  • Such a phosphor is preferably obtained by synthesis using bismuth oxide (Bi 2 O 3 ).
  • the bivalent Eu contained in the phosphor is preferably contained in an amount of 80% by mass or more, and more preferably 90% by mass or more with respect to 100% by mass of the total of divalent and trivalent Eu.
  • the divalent and trivalent Eu can be measured using X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure analysis (XAFS, X-ray Absorption Fine Structure).
  • the phosphor represented by the above composition formula (1a) and containing a large amount of divalent Eu is more preferable because it emits green light with higher luminance. Since red emission occurs when trivalent is present, Eu valence control is effective for high-intensity white light emission using the phosphor of the present embodiment that emits green light by excitation with a purple light source. Found by the inventors.
  • the composition ratio of Sr is 1-xyz from the viewpoint of having good fluorescence luminance and afterglow characteristics.
  • y is ⁇ 0.2 ⁇ y ⁇ 0.2, and is preferably ⁇ 0.05 ⁇ y ⁇ 0.1 from the viewpoint of more effectively and reliably introducing structural distortion due to defects and excess metal from the stoichiometric composition. More preferably, ⁇ 0.01 ⁇ y ⁇ 0.07, and further preferably 0 ⁇ y ⁇ 0.05.
  • 1-xyz is usually 0.2 ⁇ 1-xyz ⁇ 1.18, and from the viewpoint of long-term stability, 0.65 ⁇ 1-xyz ⁇ 1.05 is preferable, and 0.85 ⁇ 1-xyz ⁇ 1 is more preferable.
  • the phosphor having phosphorescence according to the present embodiment emits light at a color temperature of 6500K to 10,000K, preferably 7000K to 8500K, by excitation light having a wavelength of 400 nm or 420 nm.
  • a color temperature in this range is preferable from the viewpoint of increasing brightness.
  • the phosphor having phosphorescence according to the embodiment preferably emits light by being excited by a light source having a wavelength range of 400 to 449 nm, and has a color temperature of 6500 K to 10,000 K by excitation light having a wavelength of 400 nm or 420 nm.
  • the emission color of the excitation light by the excitation light of any one of the wavelengths of 400 nm and 420 nm and the white or green light emission of the phosphor of the present embodiment shows high luminance white light emission of 2500 cd / m 2 or more, It continues to emit light with high brightness even after excitation is stopped.
  • bismuth (Bi), dysprosium (Dy), samarium (Sm), and lanthanium (La) are used in terms of trap level formation for controlling the afterglow time after illumination stop.
  • Pr Praseodymium
  • Tb terbium
  • Ho holmium
  • Tm thulium
  • Tm thulium
  • Lu thulium
  • Lu thulium
  • Yb lutetium
  • Yb lutetium
  • Er gadolinium
  • Nd neodymium
  • Ce cerium
  • Dy dysprosium
  • composition formula (1a) or (1b) are represented by the following composition formula (2a) or (2b), respectively.
  • M is at least one element selected from the group consisting of Bi, Dy, Sm, La, Pr, Tb, Ho, Tm, Lu, Yb, Er, Gd, Nd, and Ce. Indicates.
  • a which is the composition ratio of M is not particularly limited, but is usually 0 ⁇ a ⁇ 0.15, preferably 0.005 ⁇ a ⁇ 0.13, and more preferably 0.01 ⁇ a ⁇ 0.1. 0.12. From the viewpoint of obtaining a high-luminance phosphor having a long afterglow time by controlling the trap level, it is preferable that a which is the composition ratio of M is 0.01 ⁇ a ⁇ 0.04.
  • the composition ratio a is preferably 0.04 ⁇ a ⁇ 0.15, and 0.045 ⁇ a ⁇ 0. 12 is more preferable, and 0.05 ⁇ a ⁇ 0.1 is still more preferable.
  • the phosphor having the phosphorescence represented by the composition formula (1a) or (1b) is a phosphor having the phosphorescence represented by the following composition formula (2c) or (2d).
  • z which is a composition ratio of Eu
  • z is 0.01 ⁇ z ⁇ 0.5 from the point of having good luminance, and from the viewpoint of further excellent fluorescence intensity and low cost.
  • Eu takes a bivalent (Eu 2+ ) and / or trivalent (Eu 3+ ) state in the phosphor depending on the synthesis conditions such as the mixing ratio of raw materials and the firing temperature.
  • Such a phosphor is preferably obtained by synthesis using bismuth oxide (Bi 2 O 3 ).
  • the bivalent Eu contained in the phosphor is preferably contained in an amount of 80% by mass or more, and more preferably 90% by mass or more with respect to 100% by mass of the total of divalent and trivalent Eu.
  • bivalent and trivalent Eu can be measured using X-ray photoelectron spectroscopy and X-ray absorption fine structure analysis as described above.
  • the composition ratio of Sr is 1-yz from the viewpoint of good fluorescence luminance and afterglow characteristics.
  • y is ⁇ 0.2 ⁇ y ⁇ 0.2, and is preferably ⁇ 0.05 ⁇ y ⁇ 0.15 from the viewpoint of more effectively and reliably introducing structural distortion due to defects and excess metal from the stoichiometric composition. More preferably, 0 ⁇ y ⁇ 0.12 from the viewpoint that defects can be suitably introduced from the stoichiometric composition, and more preferably 0.05 ⁇ from the point that a phosphor emitting green light with high luminance can be obtained. y ⁇ 0.12.
  • M is at least one element selected from the group consisting of Bi, Dy, Sm, La, Pr, Tb, Ho, Tm, Lu, Yb, Er, Gd, Nd, and Ce. Indicates.
  • it is Dy from the viewpoint of obtaining a high-luminance phosphor.
  • a which is the composition ratio of M is not particularly limited, but is usually 0 ⁇ a ⁇ 0.15, preferably 0.005 ⁇ a ⁇ 0.13, and more preferably 0.01 ⁇ a ⁇ 0.1. From the point of obtaining a phosphor that emits green light with high brightness, it is more preferably 0.01 ⁇ a ⁇ 0.07.
  • the fluorescence brightness of the phosphor having phosphorescence of the present embodiment is not particularly limited depending on the application, but is preferably 2500 cd / m 2 or more as the fluorescence brightness by excitation light of any one of wavelengths 400 nm and 420 nm. , more preferably 3000 cd / m 2 or more, since it can be used as a white phosphor having a high brightness, still more preferably 4000 cd / m 2 or more, still more not less 4100cd / m 2 or more preferably, more preferably more is at 4500 cd / m 2 or more, most preferably 5000 cd / m 2 or more.
  • the upper limit is not particularly limited, but is usually 25000 cd / m 2 in order to avoid eye damage when viewed directly.
  • the afterglow brightness of the phosphor having phosphorescence of the present embodiment excited by any one or more light sources having wavelengths of 400 nm and 420 nm and 10 minutes after the excitation stop is not particularly limited depending on the application.
  • the luminance is visible to about 0.3 mcd / m 2, so the afterglow luminance is preferably at least 0.3 mcd / m 2 or more, more preferably 3 mcd / m 2 or more, further preferably 10mcd / m 2 or more, and still more preferably at 15mcd / m 2 or more.
  • the afterglow intensity is more preferably 20 mcd / m 2 or more, since it can be used as a guide sign or illumination having excellent afterglow brightness even in the event of a disaster, power failure or after extinguishing.
  • it is 30 mcd / m 2 or more.
  • the phosphor having the phosphorescence represented by the composition formula Sr 0.90 Mg 0.04 Al 2 O 4; Eu 0.04 Dy 0.02 is combined with the green emission of the phosphor obtained by exciting with a violet light source. It is preferable because it emits white light with luminance and continues to emit light with moderate luminance even after excitation is stopped.
  • the phosphor having phosphorescence represented by the composition formula Sr 0.90 Mg 0.04 Al 2 O 4; Eu 0.04 Dy 0.02 includes a raw material containing a strontium element, a raw material containing a magnesium element, a raw material containing a europium element, alumina, It is obtained from a raw material containing a bismuth (Bi) inorganic compound and / or a bismuth (Bi) organic compound. Preferably, these raw materials are mixed and further synthesized.
  • the phosphor having phosphorescence is a phosphor obtained by using at least one selected from the group consisting of a bismuth (Bi) inorganic compound and a bismuth (Bi) organic compound. It is more preferable because white and green light emission of the color and phosphor emits white light with high brightness and continues to emit light with appropriate brightness even after excitation is stopped.
  • the bismuth (Bi) inorganic compound is not particularly limited, and examples thereof include bismuth oxide, bismuth hydroxide, and bismuth carbonate.
  • bismuth (Bi) oxide that is, bismuth oxide
  • the bismuth (Bi) organic compound is not particularly limited, and examples thereof include bismuth acetate, bismuth 2-ethylhexanoate, bismuth naphthenate, and acetylacetonate bismuth.
  • the phosphorescent phosphors have the following composition formula (3a) to (3d): Sr (1-xyz) Mg x Al 2 O 4; Eu z M a Bi b ⁇ (3a) Sr (1-xyz) Mg x Al 4 O 7; Eu z M a Bi b ⁇ (3b) Sr (1-yz) Al 2 O 4; Eu z M a Bi b ⁇ (3c) Sr (1-yz) Al 4 O 7; Eu z M a Bi b ⁇ (3d) It is represented by
  • composition formulas (3a) and (3b) x, y, z and a are as defined above.
  • M is obtained by removing Bi from M in the composition formulas (2a) and (2b).
  • composition formulas (3c) and (3d) y, z, and a are synonymous with the composition formulas (2c) and (2d).
  • M is obtained by removing Bi from M in the composition formulas (2c) and (2d).
  • Bi which is the composition ratio of Bi, is 0 ⁇ b ⁇ 0.15, preferably 0.01 ⁇ b ⁇ 0.12, and preferably 0.02 ⁇ b ⁇ 0. 11, more preferably 0.04 ⁇ b ⁇ 0.06 from the viewpoint of high fluorescence intensity, good color temperature, and low cost.
  • the method for producing a phosphor having phosphorescence includes a raw material containing a strontium element, a raw material containing a magnesium element, a raw material containing a europium element, alumina (aluminum oxide), bismuth (Bi) inorganic compound, and The method includes a step of obtaining a precursor raw material (mixture) by adding at least one selected from the group consisting of bismuth (Bi) organic compounds, and a step of firing the precursor raw material in the range of 1300 ° C. to 1700 ° C.
  • the method for producing a phosphor having phosphorescence if necessary, at least one selected from the group consisting of dysprosium, samarium, lanthanium, praseodymium, terbium, holmium, thulium, lutetium, ytterbium, erbium, gadolinium, neodymium and cerium.
  • the precursor raw material may be obtained by further mixing raw materials containing these elements.
  • the phosphor having phosphorescence according to this embodiment is not particularly limited, but can be manufactured by dry mixing without using a solvent described later, wet mixing using a solvent, or the like.
  • inorganic compounds and metal organic compounds can be used as precursors (precursors) as the respective raw materials.
  • precursors precursors
  • a metal carbonate, a metal oxide, a metal hydroxide, and / or a metal hydroxide are mentioned, for example, 1 type is used individually or in combination of 2 or more types.
  • a precursor raw material that is a raw material of a phosphor having phosphorescence can be obtained by mixing the inorganic compound with a material that has been uniformly and nanosized with an appropriate mortar or planetary ball mill.
  • a phosphor having phosphorescence that emits light even after excitation is stopped is preferably obtained.
  • the contents of the bismuth (Bi) inorganic compound and the bismuth (Bi) organic compound in the precursor raw material are not particularly limited as long as the effects of the present invention are exhibited, but with respect to 100% by mass of the total raw material in the precursor raw material (mixture)
  • the content is preferably 0.1 to 15% by mass, more preferably 1 to 13% by mass, and still more preferably 4 to 10% by mass.
  • the bismuth (Bi) inorganic compound and the bismuth (Bi) organic compound the above-described inorganic compounds and organic compounds can be used.
  • the precursor raw material (mixture) is fired in the range of 1300 ° C. to 1700 ° C., preferably in the range of 1300 to 1450 ° C. preferable.
  • the content of bismuth oxide (Bi 2 O 3 ) in the precursor raw material is not particularly limited as long as the effect of the present invention is exhibited, but with respect to 100% by mass of the total raw material in the precursor raw material (mixture).
  • the content is preferably 0.1 to 15% by mass, more preferably 1 to 13% by mass, and still more preferably 4 to 10% by mass.
  • boron compounds such as boron oxide (B 2 O 3 ), boron hydroxide, boron nitride and the like as a flux emits light with high brightness by excitation light in the wavelength region of 400 to 449 nm. It is preferable because a phosphor can be suitably obtained.
  • the boron compound since a phosphor with particularly high brightness can be obtained, it is more preferable to mix boron oxide as a flux.
  • the mixing ratio of the boron compound is not particularly limited as long as the effect of the present invention is exhibited, but the boron compound is 0.01 to 15% by mass of the boron raw material with respect to 100% by mass of the total amount of the raw material (mixture).
  • the boron compound is preferably mixed so as to be 0.1 to 10% by mass, more preferably the boron compound is further mixed so as to be 0.5 to 5% by mass. Even more preferably, the boron compound is mixed so as to be ⁇ 3 mass%.
  • the content of boron oxide in the precursor raw material (mixture) is not particularly limited as long as the effect of the present invention is exhibited, but is 0.01 to 15 with respect to 100% by mass of the total raw material in the precursor raw material (mixture). Preferably, it is 0.1% by mass, more preferably 0.1-10% by mass, still more preferably 0.5-5% by mass, and even more preferably 1-3% by mass.
  • aluminum oxide examples include ⁇ -alumina, ⁇ -alumina, and aluminum hydroxide oxide. Of these, firing with ⁇ -alumina ( ⁇ -aluminum oxide) as a raw material is particularly preferable because a phosphor with relatively high luminance and longer persistence can be obtained. Aluminum oxide is used alone or in combination of two or more.
  • metal organic compound examples include metal organic acid salt, ⁇ -diketonate, metal alkoxide, metal acetate, metal 2-ethylhexanoate, metal acetylacetonate, and metal naphthenate. Any metal organic compound that can be dissolved in a solvent can be used without particular limitation.
  • a metal organic compound is used individually by 1 type or in combination of 2 or more types.
  • the solvent is not particularly limited as long as it dissolves the metal organic compound, but methanol, ethanol, propanol, butanol, hexanol, heptanol, ethyl acetate, butyl acetate, toluene, xylene, benzene, acetylacetonate, ethylene glycol, and At least one selected from the group consisting of water is preferred.
  • a compound containing a metal that cannot be dissolved in a solvent for example, a solid material such as a metal oleate or a metal stearate can also be used as a precursor.
  • the manufacturing method of the present embodiment may include a step of drying the precursor raw material.
  • the manufacturing method of the present embodiment includes a step of removing the solvent and organic components at a temperature of 500 ° C. or lower after the mixing step. May be.
  • the step of firing the obtained precursor raw material at 1200 ° C. or higher, preferably 1200 ° C. or higher and 1800 ° C. or lower, more preferably 1300 ° C. or higher and 1700 ° C. or lower from the viewpoint of high crystallinity and Eu valence control.
  • a high-intensity phosphor having phosphorescence can be obtained.
  • Eu 2+ can be generated by using a reducing gas as the atmosphere for firing.
  • a mixed gas in which 4% or less of H 2 (hydrogen) gas is mixed in Ar (argon) gas and / or N 2 (nitrogen) gas is suitable.
  • bismuth may be removed from the body to be fired by firing.
  • the fired body In the firing in which the temperature is changed in multiple stages after completion of the firing process, the fired body (phosphor) is molded into an appropriate shape after any firing process, preferably after the last firing process. As a result, a sintered molded body (luminescent phosphorescent product) can be obtained. Further, the obtained sintered molded body can be appropriately pulverized to obtain a high-intensity phosphor having a pulverized light storage.
  • the high-intensity phosphor having a fine powdery phosphorescence is applied to various object surfaces together with a solid binder or a liquid medium, or mixed with plastics, rubber, vinyl chloride, synthetic resin or glass, A phosphorescent molded body of each color, preferably a red phosphorescent molded body or a fluorescent film can also be used.
  • light is emitted by being excited by a light source having a wavelength range of 400 to 449 nm that is relatively less harmful to health, and a color temperature of 6500K to 10000K is generated by one or more excitation lights having wavelengths of 400 nm and 420 nm.
  • Lights on. Preferably, it emits light when excited by a light source in the wavelength region of 400 to 449 nm, emits light at a color temperature of 6500 K to 10,000 K by any one or more excitation light of wavelengths 400 nm and 420 nm, and any of wavelengths 400 nm and 420 nm.
  • One or more excitation lights emit light with a high luminance of 2500 cd / m 2 or more.
  • the luminance is relatively high, and a high-intensity phosphor having a phosphorescence having a long afterglow phosphorescence property, a phosphorescent light-emitting product comprising the high-luminance phosphor having the phosphorescence, And the manufacturing method of the high-intensity fluorescent substance which has phosphorescence can be provided.
  • the phosphor of the present embodiment can realize high color rendering properties with high luminance as compared with a phosphor obtained by adding cerium to YAG used in a conventional LED that requires an excitation light source of 460 nm, and has a wide range of applications. Can be used.
  • the phosphor having phosphorescence can be suitably applied to energy-saving LED lighting technology, and emits light even at the time of a power failure. Therefore, it is possible to maintain a function as a guidance sign or illumination even at the time of a disaster, power failure, or light extinction.
  • the phosphor having phosphorescence according to the present embodiment can be used as a phosphor for an excellent white light-emitting lighting device that contributes to a safe and secure society. Is possible.
  • the phosphor having phosphorescence of the present embodiment is applied to the surface of various articles, or mixed with plastics, rubber, vinyl chloride, synthetic resin, glass, etc. By doing so, it can be used for road signs, visual indications, ornaments, leisure goods, watches, OA equipment, educational equipment, safety signs, building materials, and the like. Moreover, it can be used as a fluorescent lamp with excellent afterglow by using the phosphor having phosphorescence of this embodiment as a fluorescent film of a fluorescent lamp.
  • ⁇ Test method> Measurement of fluorescence intensity (luminance, cd / m 2 ) and afterglow intensity (luminance, mcd / m 2 )
  • the fluorescence intensity of the obtained sample was measured by a light source (product name “MAX” -302 "), and was measured with a luminance meter (product name” SR-UA1 ") manufactured by Topcon Corporation.
  • a light source product name “MAX” -302”
  • Afterglow intensity first, after being left for 1 hour in a dark place, after being excited for 1 minute at wavelengths of 400 nm and 420 nm using a light source (product name “MAX-302”) manufactured by Asahi Spectroscopy Co., Ltd. Excitation was stopped.
  • the afterglow luminance after 10 minutes was measured with a luminance meter (product name “SR-UA1”) manufactured by Topcon Corporation.
  • the illuminance of the 400 nm excitation light source was 350 lux, and the illuminance of the 420 nm excitation light source was 120 lux.
  • the illuminance was measured with a digital illuminometer LX-105 manufactured by Custom Co., Ltd.
  • ⁇ Raw material> The following raw materials (reagents) were used for the synthesis of phosphors having phosphorescence.
  • Strontium carbonate manufactured by Rare Metallic Co., Ltd., purity: 99.9%
  • ⁇ -aluminum oxide manufactured by Rare Metallic Co., Ltd., purity: 99.9%
  • Magnesium oxide Rare Metallic Co., Ltd., purity: 99.99%)
  • Europium oxide manufactured by Rare Metallic Co., Ltd., purity: 99.99%)
  • Dysprosium oxide Rare Metallic Co., Ltd., purity: 99.9%
  • Bismuth oxide manufactured by Wako Pure Chemical Industries, Ltd., purity: 99.99%)
  • Boron oxide manufactured by Kojundo Chemical Laboratory Co., Ltd., purity: 99.9%
  • Example 1 Sr 0.9 Mg 0.04 Al 2 O 4; Eu 0.04 Dy 0.02 Bi 0.03
  • the above raw materials were weighed so as to obtain a precursor raw material powder by mixing for 2 hours using an automatic mortar (Bi mixing) The amount is 4.8% by mass of Bi raw material with respect to 100% by mass of all raw materials (mixture)).
  • the obtained powder was packed in an alumina firing board and fired in an argon-hydrogen mixed gas (argon amount: 3%) at 1400 ° C. for 3 hours. After firing, it was pulverized in a mortar to obtain a phosphor powder sample. The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Tables 1 and 2.
  • Example 2 Sr 0.9 Mg 0.04 Al 2 O 4; Eu 0.04 Dy 0.02 Bi 0.05
  • the above raw materials were weighed so that the Bi raw material was 7.8% based on 100% by mass of the total raw material (mixture).
  • a sample was prepared in the same manner as in Example 1 except that it was (mass%). The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Tables 1 and 2.
  • the divalent Eu contained in the phosphor powder sample was 90% by mass with respect to 100% by mass of the total of divalent and trivalent Eu.
  • Example 3 Sr 0.9 Mg 0.04 Al 2 O 4; Eu 0.04 Dy 0.02 Bi 0.07
  • the above raw materials were weighed so that the Bi raw material was 10.6 Bi based on 100% by mass of the total raw material (mixture).
  • a sample was prepared in the same manner as in Example 1 except that it was (mass%). The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Tables 1 and 2.
  • Example 4 Sr 0.9 Mg 0.04 Al 2 O 4; Eu 0.04 Dy 0.02 Bi 0.10 Each of the above raw materials was weighed (Bi mixed amount was 100% by mass of all raw materials (mixtures), Bi raw material 14.5 A sample was prepared in the same manner as in Example 1 except that it was (mass%). The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Table 1.
  • Example 5 Sr 0.75 Mg 0.04 Al 4 O 7; Eu 0.2 Dy 0.01
  • boron oxide was added in a boron raw material of 0.73 to 100% by mass of the total raw material (mixture). It added to this raw material so that it might become the mass%, and it mixed for 2 hours using the automatic mortar, and obtained the powder of the precursor raw material.
  • the obtained powder was packed in an alumina firing board and fired in an argon-hydrogen mixed gas (argon amount: 3%) at 1400 ° C. for 3 hours. After firing, it was pulverized in a mortar to obtain a phosphor powder sample. The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Table 5.
  • Example 6 A sample was prepared in the same manner as in Example 5, except that the above raw materials were weighed so as to have a composition ratio of Sr 0.75 Mg 0.04 Al 4 O 7; Eu 0.14 Dy 0.01 . The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Table 5.
  • Example 7 A sample was prepared in the same manner as in Example 5 except that the above raw materials were weighed so that the composition ratio was Sr 0.84 Al 2 O 4; Eu 0.05 Dy 0.05 . The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Table 6. The divalent Eu contained in the phosphor powder sample was 85% by mass with respect to 100% by mass of the total of divalent and trivalent Eu.
  • Example 8 A sample was prepared in the same manner as in Example 5 except that the above raw materials were weighed so as to have a composition ratio of Sr 0.90 Al 2 O 4; Eu 0.04 Dy 0.02 . The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Table 6.
  • Comparative Example 1 As Comparative Example 1, the color temperature and the light emission characteristics of a powder sample of a phosphorescent phosphor having a composition of SrAl 2 O 4 : EuDy (manufactured by Nemoto Lumi Material Co., Ltd., product name “GLL300M”) were measured. The results are shown in Tables 3 and 4 and FIGS. The divalent Eu contained in the phosphor powder sample was 75% by mass with respect to 100% by mass of the total of divalent and trivalent Eu.
  • Comparative Example 2 As Comparative Example 2, the emission characteristics of YAG (cerium phosphor) powder used in a commercially available LED were measured in the same manner as in Example 1. The results are shown in FIGS.
  • Comparative Example 3 As Comparative Example 3, the light emission characteristics of a phosphor sample having a composition of SrAl 2 O 4 : EuDy (manufactured by Nemoto Lumi Material Co., Ltd., product name “GLL300FF”) were measured. The results are shown in FIGS.
  • phosphors having phosphorescence according to this embodiment include conventional YAG cerium phosphors, Comparative Example 2 and commercially available phosphorescent materials (Comparative Examples 1 and 3). It can be seen that the brightness is higher than that of ().
  • the phosphor having phosphorescence of the present invention is, for example, a proof using LED such as a lighting device for road signs, safety signs and visual indications, ornaments, leisure goods, watches, OA equipment, educational equipment and building materials. Widely applicable to technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Luminescent Compositions (AREA)

Abstract

The fluorescent body having phosphorescence according to the present invention is represented by (1a): Sr(1–x–y-z)MgxAl2O4;Euz or (1b): Sr(1–x–y-z)MgxAl4O7;Euz (in formulae (1a) and (1b), x, y, and z satisfy 0 ≤ x ≤ 0.1, -0.2 ≤ y < 0.2, and 0.01 ≤ z ≤ 0.5, respectively), emits light by excitation light in a wavelength region of 400-449 nm, and emits light at a color temperature of 6500-10000 K by excitation light having a wavelength of 400 nm and/or a wavelength of 420 nm.

Description

蓄光を有する蛍光体及びその製造方法、並びに蓄光性発光製品Phosphor having phosphorescence, method for producing the same, and phosphorescent luminescent product
 本発明は、蓄光を有する蛍光体、該蛍光体を含んでなる蓄光性発光製品、及び蓄光を有する蛍光体の製造方法に関する。 The present invention relates to a phosphor having phosphorescence, a phosphorescent light-emitting product comprising the phosphor, and a method for producing the phosphor having phosphorescence.
 近年、省エネルギーの観点からLED照明技術が開発されてきているが、LED照明による白色光は、従来の赤、青及び緑の混合した三波長蛍光体と異なり、YAGにセリウムを添加したセリウム系蛍光体を460nm付近の波長域のブルーLED光源で励起する方法が主流である。しかし、この方法では、高い発光効率を得ることはできるが、赤と緑の発光色を組み合わせている疑似白色光であるため、全体が青白く、高い演色性を実現できないとの問題がある。この問題に対しては、450~460nmの波長域を有する、青色よりも波長の短い紫色LEDを用いて蛍光体を光らせる方法を使えば、演色性の高い白色光を作り出すことが可能である。 In recent years, LED lighting technology has been developed from the viewpoint of energy saving, but white light from LED lighting is different from conventional three-wavelength phosphors mixed with red, blue and green, and cerium-based fluorescence in which cerium is added to YAG. The mainstream method is to excite the body with a blue LED light source in the wavelength region near 460 nm. However, with this method, although high luminous efficiency can be obtained, there is a problem that since the pseudo white light is a combination of red and green emission colors, the whole is bluish and high color rendering cannot be realized. To solve this problem, it is possible to produce white light with high color rendering properties by using a method of illuminating a phosphor using a purple LED having a wavelength range of 450 to 460 nm and having a wavelength shorter than blue.
 また、蛍光体の中でも、光の励起後も発光が可能であり、残光時間の長いものは蓄光性蛍光体(蓄光性材料)として知られている。このような蓄光性蛍光体は、災害、停電時においても誘導標識や照明としての機能があるため、安全、安心な社会を構築するための材料として期待されている。 Among phosphors, those that can emit light even after light excitation and have a long afterglow time are known as phosphorescent phosphors (phosphorescent materials). Such a phosphorescent phosphor is expected as a material for building a safe and secure society because it has a function as a guide sign or illumination even in the event of a disaster or power failure.
 これまでに長残光を示す蓄光性材料としては、SrAl24を母結晶とすると共に、賦活剤としてユーロピウムを、共賦活剤としてセリウム、プラセオジム、ネオジム、サマリウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムからなる群の少なくとも1つ以上の元素をそれぞれ特定量で含む、緑色発光を示すアルミン酸塩が知られている(特許文献1)。また、屋外での使用に適合した残光輝度を有する蓄光性材料としては、マグネシウム又はカルシウムが添加された(Sr1-a-b-x-yMgaBabEuxDyy)Al24(aは0.02≦a≦0.1であり、bは0.03≦b≦0.15であり、xは0.001≦x≦0.04であり、yは、0.004≦y≦0.05であり、(a+b)は0.08≦(a+b)≦0.2である)が知られている(特許文献2)。更に、高温における残光輝度を有する蓄光性蛍光体としては、リチウム、ナトリウムやカリウム等のアルカリ金属元素を少量含む材料が知られている(特許文献3)。 As phosphorescent materials exhibiting long afterglow, SrAl 2 O 4 is used as a mother crystal, europium is used as an activator, and cerium, praseodymium, neodymium, samarium, terbium, dysprosium, holmium, erbium are used as coactivators. An aluminate that emits green light and contains at least one element selected from the group consisting of thulium, ytterbium, and lutetium in a specific amount is known (Patent Document 1). As the phosphorescent material having afterglow luminance adapted for outdoor use, magnesium or calcium is added (Sr 1-abxy Mg a Ba b Eu x Dy y) Al 2 O 4 (a 0. 02 ≦ a ≦ 0.1, b is 0.03 ≦ b ≦ 0.15, x is 0.001 ≦ x ≦ 0.04, and y is 0.004 ≦ y ≦ 0.05. (A + b) is 0.08 ≦ (a + b) ≦ 0.2) (Patent Document 2). Furthermore, as phosphorescent phosphors having afterglow luminance at high temperatures, materials containing a small amount of alkali metal elements such as lithium, sodium and potassium are known (Patent Document 3).
特許第2543825号公報Japanese Patent No. 2543825 国際公開第2011/155428号International Publication No. 2011/155428 特許第4932189号公報Japanese Patent No. 4932189
 しかし、励起光源である450~460nmの波長域を有するブルーライト光には、健康被害があることが報告されている。それゆえ、比較的無害である400nm~449nmの波長域の励起光によって色温度6500K~10000Kで高輝度に発光する蛍光体が求められている。 However, it has been reported that blue light having a wavelength range of 450 to 460 nm, which is an excitation light source, has a health hazard. Therefore, there is a need for a phosphor that emits light with high brightness at a color temperature of 6500K to 10000K by excitation light in a wavelength range of 400 nm to 449 nm, which is relatively harmless.
 また、通常白色LEDに使われるYAGは、励起光源の電源が切れた際に発光が停止するため、停電時の安全、安心な避難誘導のためには、蓄光型蛍光体であることが必要不可欠である。 In addition, YAG, which is normally used for white LEDs, stops emitting light when the excitation light source is turned off, so it is indispensable to be a phosphorescent phosphor for safe and reliable evacuation guidance during power outages. It is.
 この点、特許文献1に記載のアルミン酸塩の蛍光体は、450nm未満の波長での光吸収が小さいため、発光輝度及び残光輝度が十分でない。また、420nm波長の励起光によって発光した場合の色温度も15000Kと非常に高く、その応用範囲が限られる。特許文献2及び3に記載の蓄光性蛍光体においても、450nm未満の波長での光吸収が小さく、色温度も高く、400nm~449nmの波長域の励起光による白色LED照明に用いることが困難である。 In this regard, the aluminate phosphor described in Patent Document 1 has low light absorption at a wavelength of less than 450 nm, and thus has insufficient light emission luminance and afterglow luminance. In addition, the color temperature when emitted by excitation light with a wavelength of 420 nm is as high as 15000 K, and its application range is limited. The phosphorescent phosphors described in Patent Documents 2 and 3 also have a low light absorption at a wavelength of less than 450 nm, a high color temperature, and are difficult to use for white LED illumination with excitation light in the wavelength range of 400 nm to 449 nm. is there.
 そこで、本発明は、上記課題に鑑みてなされたものであり、400~449nmの波長域の励起光によって発光し、かつ、波長400nm及び420nmのいずれか一つ以上の励起光によって色温度6500K~10000Kで発光し、励起停止後も発光する蓄光を有する蛍光体、該蛍光体を含んでなる蓄光性発光製品、及び蓄光を有する蛍光体の製造方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and emits light with excitation light having a wavelength range of 400 to 449 nm, and has a color temperature of 6500 K to 1600 with excitation light having a wavelength of 400 nm or 420 nm. An object of the present invention is to provide a phosphor having a phosphorescence that emits light at 10000 K and emits light even after excitation is stopped, a phosphorescent light-emitting product including the phosphor, and a method for producing the phosphor having the phosphorescence.
 本発明者らは、上記の課題を解決するために鋭意検討した結果、特定の組成式を有する蛍光体が、400~449nmの波長域の光源により励起することで発光し、かつ、波長400nm及び420nmのいずれか一つ以上の励起光によって色温度6500K~10000Kで発光し、励起停止後も発光し続けることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a phosphor having a specific composition formula emits light when excited by a light source having a wavelength range of 400 to 449 nm, and has a wavelength of 400 nm and It has been found that light is emitted at a color temperature of 6500 K to 10000 K with any one or more excitation lights of 420 nm and continues to be emitted even after excitation is stopped, and the present invention has been completed.
 本発明の蓄光を有する蛍光体は、450nm未満の波長域を有するLED光源に対する従来の蓄光性蛍光体の光吸収に関する欠点を解消でき、下記組成式(1a)又は(1b):
 Sr(1-x-y-z)MgxAl24;Euz・・・(1a)
 Sr(1-x-y-z)MgxAl47;Euz・・・(1b)
で表され、400~449nmの波長域の励起光によって発光し、かつ、波長400nm及び420nmのいずれか一つ以上の光源で励起して、色温度6500K~10000Kで発光する、蓄光を有する蛍光体である。ここで、式(1a)及び(1b)中、x、y及びzは、それぞれ0≦x≦0.1、-0.2≦y<0.2及び0.01≦z≦0.5である。
The phosphor having the phosphorescence of the present invention can eliminate the drawbacks related to the light absorption of the conventional phosphorescent phosphor with respect to the LED light source having a wavelength region of less than 450 nm, and the following composition formula (1a) or (1b):
Sr (1-xyz) Mg x Al 2 O 4; Eu z (1a)
Sr (1-xyz) Mg x Al 4 O 7; Eu z (1b)
And a phosphor having a phosphorescence that emits light with excitation light in the wavelength region of 400 to 449 nm and is excited with one or more light sources of wavelengths 400 nm and 420 nm to emit light at a color temperature of 6500K to 10000K. It is. Here, in the formulas (1a) and (1b), x, y, and z are 0 ≦ x ≦ 0.1, −0.2 ≦ y <0.2, and 0.01 ≦ z ≦ 0.5, respectively. is there.
 該蓄光を有する蛍光体は、ビスマス(Bi)、ジスプロシウム(Dy)、サマリウム(Sm)、ランタニウム(La)、プラセオジム(Pr)、テルビウム(Tb)、ホルミウム(Ho)、ツリウム(Tm)、ルテチウム(Lu)、イッテルビウム(Yb)、エルビウム(Er)、ガドリニウム(Gd)、ネオジム(Nd)及びセリウム(Ce)からなる群より選ばれる少なくとも一種の元素を更に含むことが、蓄光時間を制御する観点から、好ましい。 The phosphors having the phosphorescence include bismuth (Bi), dysprosium (Dy), samarium (Sm), lanthanum (La), praseodymium (Pr), terbium (Tb), holmium (Ho), thulium (Tm), lutetium ( From the viewpoint of controlling the phosphorescence time, it further contains at least one element selected from the group consisting of Lu), ytterbium (Yb), erbium (Er), gadolinium (Gd), neodymium (Nd) and cerium (Ce). ,preferable.
 該蓄光を有する蛍光体は、波長400nm及び420nmのいずれか一つ以上の励起光による蛍光輝度が、2500cd/m2以上であることが好ましい。 The phosphor having the light storage preferably has a fluorescence luminance of 2500 cd / m 2 or more due to excitation light of any one of wavelengths of 400 nm and 420 nm.
 また、本発明者らは、ストロンチウム元素を含む原料と、マグネシウム元素を含む原料と、ユーロピウム元素を含む原料と、アルミナとに、ビスマス(Bi)無機化合物又はビスマス(Bi)有機化合物を添加して前駆体原料を得る工程と、前記前駆体原料を1300℃~1700℃の範囲で焼成する工程とを含む、蓄光を有する蛍光体の製造方法が、特に、本発明の蓄光を有する蛍光体を好適に得られる製造方法であることを見出し、本発明を完成するに至った。 In addition, the present inventors added a bismuth (Bi) inorganic compound or a bismuth (Bi) organic compound to a raw material containing a strontium element, a raw material containing a magnesium element, a raw material containing a europium element, and alumina. A method for producing a phosphor having phosphorescence, including a step of obtaining a precursor material and a step of firing the precursor material in a range of 1300 ° C. to 1700 ° C., in particular, suitable for the phosphor having phosphorescence of the present invention. The present invention was completed by finding that the production method can be obtained.
 該蓄光を有する蛍光体の製造方法では、前記混合に際し、前記前駆体原料100質量%に対して、前記ビスマス(Bi)無機化合物及び/又はビスマス(Bi)有機化合物を0.1~15質量%添加することが好ましい。 In the method for producing the phosphor having phosphorescence, 0.1 to 15% by mass of the bismuth (Bi) inorganic compound and / or bismuth (Bi) organic compound with respect to 100% by mass of the precursor raw material during the mixing. It is preferable to add.
 該蓄光を有する蛍光体の製造方法では、前記前駆体原料を得る工程において、ボロン化合物を更に添加することが好ましい。 In the method for producing a phosphor having phosphorescence, it is preferable to further add a boron compound in the step of obtaining the precursor raw material.
 本発明の蓄光性発光製品は、本発明の蓄光を有する蛍光体を含む。 The phosphorescent light-emitting product of the present invention includes a phosphor having the phosphorescence of the present invention.
 本発明によれば、400~449nmの波長域の励起光によって発光し、かつ、波長400nm及び420nmのいずれか一つ以上の励起光によって色温度6500K~10000Kで発光し、励起停止後も発光する蓄光を有する蛍光体、該蓄光を有する蛍光体を含んでなる蓄光性発光製品及び蓄光を有する蛍光体の製造方法を提供することができる。 According to the present invention, light is emitted by excitation light in the wavelength region of 400 to 449 nm, light is emitted at a color temperature of 6500 K to 10000 K by excitation light of any one of wavelengths 400 nm and 420 nm, and light is emitted even after excitation is stopped. It is possible to provide a phosphor having phosphorescence, a phosphorescent light-emitting product including the phosphor having phosphorescence, and a method for producing the phosphor having phosphorescence.
実施例2及び比較例1~3の蛍光体に、波長380nmの励起光を照射した場合の発光特性を示すスペクトルである。6 is a spectrum showing emission characteristics when the phosphors of Example 2 and Comparative Examples 1 to 3 are irradiated with excitation light having a wavelength of 380 nm. 実施例2及び比較例1~3の蛍光体に、波長390nmの励起光を照射した場合の発光特性を示すスペクトルである。6 is a spectrum showing emission characteristics when the phosphors of Example 2 and Comparative Examples 1 to 3 are irradiated with excitation light having a wavelength of 390 nm. 実施例2及び比較例1~3の蛍光体に、波長400nmの励起光を照射した場合の発光特性を示すスペクトルである。6 is a spectrum showing emission characteristics when the phosphors of Example 2 and Comparative Examples 1 to 3 are irradiated with excitation light having a wavelength of 400 nm. 実施例2及び比較例1~3の蛍光体に、波長410nmの励起光を照射した場合の発光特性を示すスペクトルである。6 is a spectrum showing emission characteristics when the phosphors of Example 2 and Comparative Examples 1 to 3 are irradiated with excitation light having a wavelength of 410 nm. 実施例2及び比較例1~3の蛍光体に、波長420nmの励起光を照射した場合の発光特性を示すスペクトルである。6 is a spectrum showing emission characteristics when the phosphors of Example 2 and Comparative Examples 1 to 3 are irradiated with excitation light having a wavelength of 420 nm.
 (蓄光を有する蛍光体)
 本発明の一実施形態の蓄光を有する蛍光体は、下記組成式(1a)又は(1b):
 Sr(1-x-y-z)MgxAl24;Euz・・・(1a)
 Sr(1-x-y-z)MgxAl47;Euz・・・(1b)
で表される。この蛍光体は、酸化物系の蛍光体であり、高い輝度を有するものである。以下、本実施形態の蛍光体を「高輝度蛍光体」ともいう。
(Phosphor with phosphorescence)
The phosphor having phosphorescence according to one embodiment of the present invention has the following composition formula (1a) or (1b):
Sr (1-xyz) Mg x Al 2 O 4; Eu z (1a)
Sr (1-xyz) Mg x Al 4 O 7; Eu z (1b)
It is represented by This phosphor is an oxide-based phosphor and has high luminance. Hereinafter, the phosphor of this embodiment is also referred to as a “high brightness phosphor”.
 式(1a)及び(1b)中、Mgの組成比であるxは、0≦x≦0.1であり、更に優れた発光輝度と残光輝度が得られる点から、好ましくは0.01≦x≦0.08であり、より好ましくは0.02≦x≦0.08であり、更に好ましくは0.03≦x≦0.06である。 In the formulas (1a) and (1b), x which is the composition ratio of Mg is 0 ≦ x ≦ 0.1, and more preferably 0.01 ≦≦ from the viewpoint of obtaining excellent emission luminance and afterglow luminance. x ≦ 0.08, more preferably 0.02 ≦ x ≦ 0.08, and further preferably 0.03 ≦ x ≦ 0.06.
 Euの組成比であるzは、良好な輝度を有する点から、0.01≦z≦0.5であり、更に優れた蛍光強度や低コストの点から、好ましくは0.03≦z≦0.2である。Euは、原料の配合比及び焼成温度などの合成条件により、蛍光体中において、2価(Eu2+)及び/又は3価(Eu3+)の状態をとる。本実施形態において、高輝度に緑色発光する蛍光体を得るためには、2価のEuが多く含まれることが好ましい。このような蛍光体は、酸化ビスマス(Bi)を用いて合成を行うことで得ることが好ましい。蛍光体中に含まれる2価のEuは、2価及び3価のEuの合計100質量%に対して、80質量%以上含まれることが好ましく、90質量%以上含まれることがより好ましい。なお、2価及び3価のEuは、X線光電子分光法(XPS、X-ray Photoelectron Spectroscopy)及びX線吸収微細構造解析(XAFS、X-ray Absorption Fine Structure)を用いて測定できる。 Eu, which is the composition ratio of Eu, is 0.01 ≦ z ≦ 0.5 from the viewpoint of good luminance, and preferably 0.03 ≦ z ≦ 0 from the viewpoint of excellent fluorescence intensity and low cost. .2. Eu takes a bivalent (Eu 2+ ) and / or trivalent (Eu 3+ ) state in the phosphor depending on the synthesis conditions such as the mixing ratio of raw materials and the firing temperature. In the present embodiment, in order to obtain a phosphor that emits green light with high luminance, it is preferable that a large amount of divalent Eu is contained. Such a phosphor is preferably obtained by synthesis using bismuth oxide (Bi 2 O 3 ). The bivalent Eu contained in the phosphor is preferably contained in an amount of 80% by mass or more, and more preferably 90% by mass or more with respect to 100% by mass of the total of divalent and trivalent Eu. The divalent and trivalent Eu can be measured using X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure analysis (XAFS, X-ray Absorption Fine Structure).
 また、上記組成式(1a)で表され、かつ、2価のEuを多く含む蛍光体は、より高輝度に緑色発光するため、より好ましい。3価が存在すると赤色発光が起きるため、紫光源での励起によって緑色発光する本実施形態の蛍光体を用いた高輝度な白色発光には、Euの価数制御が有効であることが、本発明者らによって見出された。 Further, the phosphor represented by the above composition formula (1a) and containing a large amount of divalent Eu is more preferable because it emits green light with higher luminance. Since red emission occurs when trivalent is present, Eu valence control is effective for high-intensity white light emission using the phosphor of the present embodiment that emits green light by excitation with a purple light source. Found by the inventors.
 Srの組成比は、良好な蛍光輝度及び残光特性を有する点から、1-x-y-zである。yは、-0.2≦y<0.2であり、定比組成から欠損や過剰金属による構造歪みをより有効かつ確実に導入する点から、好ましくは-0.05≦y≦0.1であり、より好ましくは-0.01≦y≦0.07であり、更に好ましくは0≦y≦0.05である。また、1-x-y-zは、通常0.2≦1-x-y-z≦1.18であり、長期安定性の観点からから、0.65≦1-x-y-z≦1.05であることが好ましく、0.85≦1-x-y-z≦1であることがより好ましい。 The composition ratio of Sr is 1-xyz from the viewpoint of having good fluorescence luminance and afterglow characteristics. y is −0.2 ≦ y <0.2, and is preferably −0.05 ≦ y ≦ 0.1 from the viewpoint of more effectively and reliably introducing structural distortion due to defects and excess metal from the stoichiometric composition. More preferably, −0.01 ≦ y ≦ 0.07, and further preferably 0 ≦ y ≦ 0.05. In addition, 1-xyz is usually 0.2 ≦ 1-xyz ≦ 1.18, and from the viewpoint of long-term stability, 0.65 ≦ 1-xyz ≦ 1.05 is preferable, and 0.85 ≦ 1-xyz ≦ 1 is more preferable.
 本実施形態の蓄光を有する蛍光体は、波長400nm及び420nmのいずれか一つ以上の励起光によって、色温度6500K~10000Kで、好ましくは7000K~8500Kで発光する。色温度がこの範囲にあることで、高輝度化の観点から好ましい。また、実施形態の蓄光を有する蛍光体は、好ましくは、400~449nmの波長域の光源により励起することで発光し、波長400nm及び420nmのいずれか一つ以上の励起光によって色温度6500K~10000Kで、かつ、波長400nm及び420nmのいずれか一つ以上の励起光によって励起光の発光色と本実施形態の蛍光体の白色又は緑色発光により2500cd/m以上の高輝度な白色発光を示し、励起停止後も高輝度で発光し続ける。 The phosphor having phosphorescence according to the present embodiment emits light at a color temperature of 6500K to 10,000K, preferably 7000K to 8500K, by excitation light having a wavelength of 400 nm or 420 nm. A color temperature in this range is preferable from the viewpoint of increasing brightness. In addition, the phosphor having phosphorescence according to the embodiment preferably emits light by being excited by a light source having a wavelength range of 400 to 449 nm, and has a color temperature of 6500 K to 10,000 K by excitation light having a wavelength of 400 nm or 420 nm. In addition, the emission color of the excitation light by the excitation light of any one of the wavelengths of 400 nm and 420 nm and the white or green light emission of the phosphor of the present embodiment shows high luminance white light emission of 2500 cd / m 2 or more, It continues to emit light with high brightness even after excitation is stopped.
 本実施形態の蓄光を有する蛍光体は、照明停止後の残光時間を制御するためのトラップ準位形成の点から、ビスマス(Bi)、ジスプロシウム(Dy)、サマリウム(Sm)、ランタニウム(La)、プラセオジム(Pr)、テルビウム(Tb)、ホルミウム(Ho)、ツリウム(Tm)、ルテチウム(Lu)、イッテルビウム(Yb)、エルビウム(Er)、ガドリニウム(Gd)、ネオジム(Nd)及びセリウム(Ce)からなる群より選ばれる少なくとも一種の元素を更に含むことが好ましく、良好な蛍光輝度及び残光特性を有することから、ジスプロシウム(Dy)がより好ましい。 In the phosphor having phosphorescence of this embodiment, bismuth (Bi), dysprosium (Dy), samarium (Sm), and lanthanium (La) are used in terms of trap level formation for controlling the afterglow time after illumination stop. , Praseodymium (Pr), terbium (Tb), holmium (Ho), thulium (Tm), lutetium (Lu), ytterbium (Yb), erbium (Er), gadolinium (Gd), neodymium (Nd) and cerium (Ce) It is preferable to further contain at least one element selected from the group consisting of: dysprosium (Dy) is more preferable because it has good fluorescence luminance and afterglow characteristics.
 これらの元素が含まれる場合、上記組成式(1a)又は(1b)で表される蓄光を有する蛍光体は、それぞれ下記組成式(2a)又は(2b)で表される。 When these elements are contained, the phosphors having the phosphorescence represented by the composition formula (1a) or (1b) are represented by the following composition formula (2a) or (2b), respectively.
 Sr(1-x-y-z)MgxAl24;Euza・・・(2a)
 Sr(1-x-y-z)MgxAl47;Euza・・・(2b)
Sr (1-xyz) Mg x Al 2 O 4; Eu z M a ··· (2a)
Sr (1-xyz) Mg x Al 4 O 7; Eu z M a ··· (2b)
 式(2a)及び(2b)中、x、y及びzは、上記と同義である。 In the formulas (2a) and (2b), x, y, and z are as defined above.
 式(2a)及び(2b)中、Mは、Bi、Dy、Sm、La、Pr、Tb、Ho、Tm、Lu、Yb、Er、Gd、Nd及びCeからなる群より選ばれる少なくとも一種の元素を示す。また、Mの組成比であるaは、特に限定されないが、通常0≦a≦0.15であり、好ましくは0.005≦a≦0.13であり、より好ましくは0.01≦a≦0.12である。トラップ準位を制御し長い残光時間を有する高輝度蛍光体を得る点からは、Mの組成比であるaは、0.01≦a≦0.04であることが好ましい。一方、短い残光時間を有する高輝度蛍光体を得る点からは、Mの組成比であるaは、0.04<a≦0.15であることが好ましく、0.045≦a≦0.12であることがより好ましく、0.05≦a≦0.1であることが更に好ましい。 In the formulas (2a) and (2b), M is at least one element selected from the group consisting of Bi, Dy, Sm, La, Pr, Tb, Ho, Tm, Lu, Yb, Er, Gd, Nd, and Ce. Indicates. Further, a which is the composition ratio of M is not particularly limited, but is usually 0 ≦ a ≦ 0.15, preferably 0.005 ≦ a ≦ 0.13, and more preferably 0.01 ≦ a ≦ 0.1. 0.12. From the viewpoint of obtaining a high-luminance phosphor having a long afterglow time by controlling the trap level, it is preferable that a which is the composition ratio of M is 0.01 ≦ a ≦ 0.04. On the other hand, from the viewpoint of obtaining a high-luminance phosphor having a short afterglow time, the composition ratio a is preferably 0.04 <a ≦ 0.15, and 0.045 ≦ a ≦ 0. 12 is more preferable, and 0.05 ≦ a ≦ 0.1 is still more preferable.
 また、上記組成式(1a)又は(1b)で表される蓄光を有する蛍光体は、それぞれ下記組成式(2c)又は(2d)で表される蓄光を有する蛍光体であることも好ましい。 Moreover, it is also preferable that the phosphor having the phosphorescence represented by the composition formula (1a) or (1b) is a phosphor having the phosphorescence represented by the following composition formula (2c) or (2d).
 Sr(1-y-z)Al24;Euza・・・(2c)
 Sr(1-y-z)Al47;Euza・・・(2d)
Sr (1-yz) Al 2 O 4; Eu z M a ··· (2c)
Sr (1-yz) Al 4 O 7; Eu z M a ··· (2d)
 式(2c)及び(2d)中、Euの組成比であるzは、良好な輝度を有する点から、0.01≦z≦0.5であり、更に優れた蛍光強度や低コストの点から、好ましくは0.02≦z≦0.2であり、より好ましくは0.03≦z≦0.06である。Euは、原料の配合比及び焼成温度などの合成条件により、蛍光体中において、2価(Eu2+)及び/又は3価(Eu3+)の状態をとる。本実施形態において、高輝度に緑色発光する蛍光体を得るためには、2価のEuが多く含まれることが好ましい。このような蛍光体は、酸化ビスマス(Bi)を用いて合成を行うことで得ることが好ましい。蛍光体中に含まれる2価のEuは、2価及び3価のEuの合計100質量%に対して、80質量%以上含まれることが好ましく、90質量%以上含まれることがより好ましい。なお、2価及び3価のEuは、前記と同様に、X線光電子分光法及びX線吸収微細構造解析を用いて測定できる。 In the formulas (2c) and (2d), z, which is a composition ratio of Eu, is 0.01 ≦ z ≦ 0.5 from the point of having good luminance, and from the viewpoint of further excellent fluorescence intensity and low cost. Preferably, 0.02 ≦ z ≦ 0.2, and more preferably 0.03 ≦ z ≦ 0.06. Eu takes a bivalent (Eu 2+ ) and / or trivalent (Eu 3+ ) state in the phosphor depending on the synthesis conditions such as the mixing ratio of raw materials and the firing temperature. In the present embodiment, in order to obtain a phosphor that emits green light with high luminance, it is preferable that a large amount of divalent Eu is contained. Such a phosphor is preferably obtained by synthesis using bismuth oxide (Bi 2 O 3 ). The bivalent Eu contained in the phosphor is preferably contained in an amount of 80% by mass or more, and more preferably 90% by mass or more with respect to 100% by mass of the total of divalent and trivalent Eu. In addition, bivalent and trivalent Eu can be measured using X-ray photoelectron spectroscopy and X-ray absorption fine structure analysis as described above.
 式(2c)及び(2d)中、Srの組成比は、良好な蛍光輝度及び残光特性を有する点から、1-y-zである。yは、-0.2≦y<0.2であり、定比組成から欠損や過剰金属による構造歪みをより有効かつ確実に導入する点から、好ましくは-0.05≦y≦0.15であり、より好ましくは、定比組成から欠損を好適に導入できる点から、0≦y≦0.12であり、更に好ましくは高輝度に緑色発光する蛍光体が得られる点から0.05≦y≦0.12である。 In the formulas (2c) and (2d), the composition ratio of Sr is 1-yz from the viewpoint of good fluorescence luminance and afterglow characteristics. y is −0.2 ≦ y <0.2, and is preferably −0.05 ≦ y ≦ 0.15 from the viewpoint of more effectively and reliably introducing structural distortion due to defects and excess metal from the stoichiometric composition. More preferably, 0 ≦ y ≦ 0.12 from the viewpoint that defects can be suitably introduced from the stoichiometric composition, and more preferably 0.05 ≦ from the point that a phosphor emitting green light with high luminance can be obtained. y ≦ 0.12.
 式(2c)及び(2d)中、Mは、Bi、Dy、Sm、La、Pr、Tb、Ho、Tm、Lu、Yb、Er、Gd、Nd及びCeからなる群より選ばれる少なくとも一種の元素を示す。好ましくは、高輝度蛍光体を得る点から、Dyである。また、Mの組成比であるaは、特に限定されないが、通常0≦a≦0.15であり、好ましくは0.005≦a≦0.13であり、より好ましくは0.01≦a≦0.10であり、高輝度に緑色発光する蛍光体を得る点から、更に好ましくは0.01≦a≦0.07である。 In the formulas (2c) and (2d), M is at least one element selected from the group consisting of Bi, Dy, Sm, La, Pr, Tb, Ho, Tm, Lu, Yb, Er, Gd, Nd, and Ce. Indicates. Preferably, it is Dy from the viewpoint of obtaining a high-luminance phosphor. Further, a which is the composition ratio of M is not particularly limited, but is usually 0 ≦ a ≦ 0.15, preferably 0.005 ≦ a ≦ 0.13, and more preferably 0.01 ≦ a ≦ 0.1. From the point of obtaining a phosphor that emits green light with high brightness, it is more preferably 0.01 ≦ a ≦ 0.07.
 本実施形態の蓄光を有する蛍光体の蛍光輝度は、用途に応じて特に限定されないが、波長400nm及び420nmのいずれか一つ以上の励起光による蛍光輝度として2500cd/m2以上であることが好ましく、3000cd/m2以上であることがより好ましく、高輝度を有する白色蛍光体として用いることができることから、4000cd/m2以上であることが更に好ましく、4100cd/m2以上であることが更により好ましく、4500cd/m2以上であることがより更に好ましく、5000cd/m2以上であることが最も好ましい。上限は、特に限定されないが、直視した際の目の損傷を避けるため、通常、25000cd/m2である。 The fluorescence brightness of the phosphor having phosphorescence of the present embodiment is not particularly limited depending on the application, but is preferably 2500 cd / m 2 or more as the fluorescence brightness by excitation light of any one of wavelengths 400 nm and 420 nm. , more preferably 3000 cd / m 2 or more, since it can be used as a white phosphor having a high brightness, still more preferably 4000 cd / m 2 or more, still more not less 4100cd / m 2 or more preferably, more preferably more is at 4500 cd / m 2 or more, most preferably 5000 cd / m 2 or more. The upper limit is not particularly limited, but is usually 25000 cd / m 2 in order to avoid eye damage when viewed directly.
 本実施形態の蓄光を有する蛍光体の、波長400nm及び420nmのいずれか一つ以上の光源で励起し、励起停止から10分後の残光輝度は、用途に応じて特に限定されない。暗所では、輝度が約0.3mcd/m2程度まで視認可能なため、残光輝度は少なくとも0.3mcd/m2以上であることが好ましく、3mcd/m2以上であることがより好ましく、10mcd/m2以上であることが更に好ましく、15mcd/m2以上であることが更により好ましい。また、その残光強度は、災害、停電時や消灯後においても優れた残光輝度を有する誘導標識や照明として用いることができることから、20mcd/m2以上であることがより更により好ましく、最も好ましくは、30mcd/m2以上である。 The afterglow brightness of the phosphor having phosphorescence of the present embodiment excited by any one or more light sources having wavelengths of 400 nm and 420 nm and 10 minutes after the excitation stop is not particularly limited depending on the application. In a dark place, the luminance is visible to about 0.3 mcd / m 2, so the afterglow luminance is preferably at least 0.3 mcd / m 2 or more, more preferably 3 mcd / m 2 or more, further preferably 10mcd / m 2 or more, and still more preferably at 15mcd / m 2 or more. Further, the afterglow intensity is more preferably 20 mcd / m 2 or more, since it can be used as a guide sign or illumination having excellent afterglow brightness even in the event of a disaster, power failure or after extinguishing. Preferably, it is 30 mcd / m 2 or more.
 本実施形態では、組成式Sr0.90Mg0.04Al24;Eu0.04Dy0.02で表される蓄光を有する蛍光体が、紫光源で励起することで得られる蛍光体の緑色発光と合わせて、高輝度で白色発光し、励起停止後も適度な輝度で発光し続けるため好ましい。組成式Sr0.90Mg0.04Al24;Eu0.04Dy0.02で表される蓄光を有する蛍光体は、ストロンチウム元素を含む原料と、マグネシウム元素を含む原料と、ユーロピウム元素を含む原料と、アルミナと、ビスマス(Bi)無機化合物及び/又はビスマス(Bi)有機化合物とを含む原料から得られ、好ましくは、これらの原料を混合し、更に合成して得られる。 In the present embodiment, the phosphor having the phosphorescence represented by the composition formula Sr 0.90 Mg 0.04 Al 2 O 4; Eu 0.04 Dy 0.02 is combined with the green emission of the phosphor obtained by exciting with a violet light source. It is preferable because it emits white light with luminance and continues to emit light with moderate luminance even after excitation is stopped. The phosphor having phosphorescence represented by the composition formula Sr 0.90 Mg 0.04 Al 2 O 4; Eu 0.04 Dy 0.02 includes a raw material containing a strontium element, a raw material containing a magnesium element, a raw material containing a europium element, alumina, It is obtained from a raw material containing a bismuth (Bi) inorganic compound and / or a bismuth (Bi) organic compound. Preferably, these raw materials are mixed and further synthesized.
 本実施形態では、蓄光を有する蛍光体が、ビスマス(Bi)無機化合物及びビスマス(Bi)有機化合物からなる群より選ばれる少なくとも一種を用いて得られた蛍光体であることが、励起光の発光色と蛍光体の白色又は緑色発光により高輝度で白色発光し、励起停止後も適度な輝度で発光し続けるため、より好ましい。 In the present embodiment, the phosphor having phosphorescence is a phosphor obtained by using at least one selected from the group consisting of a bismuth (Bi) inorganic compound and a bismuth (Bi) organic compound. It is more preferable because white and green light emission of the color and phosphor emits white light with high brightness and continues to emit light with appropriate brightness even after excitation is stopped.
 ビスマス(Bi)無機化合物としては、特に限定されないが、例えば、酸化ビスマス、水酸化ビスマス、及び炭酸ビスマスが挙げられる。これらの中では、高輝度で白色又は緑色発光し、励起停止後も適度な輝度で発光し続けるため、ビスマス(Bi)酸化物、すなわち酸化ビスマスが好ましい。また、ビスマス(Bi)有機化合物としては、特に限定されないが、例えば、酢酸ビスマス、2-エチルヘキサン酸ビスマス、ナフテン酸ビスマス、及びアセチルアセトナートビスマスが挙げられる。これらのビスマス(Bi)無機化合物及びビスマス(Bi)有機化合物は、1種単独又は複数種を適宜混合して用いることができる。 The bismuth (Bi) inorganic compound is not particularly limited, and examples thereof include bismuth oxide, bismuth hydroxide, and bismuth carbonate. Among these, bismuth (Bi) oxide, that is, bismuth oxide, is preferable because it emits white or green light with high brightness and continues to emit light with moderate brightness even after excitation is stopped. The bismuth (Bi) organic compound is not particularly limited, and examples thereof include bismuth acetate, bismuth 2-ethylhexanoate, bismuth naphthenate, and acetylacetonate bismuth. These bismuth (Bi) inorganic compounds and bismuth (Bi) organic compounds can be used singly or in appropriate combination.
 本実施形態の蓄光を有する蛍光体にビスマス(Bi)無機化合物及びビスマス(Bi)有機化合物からなる群より選ばれる少なくとも一種が含まれる場合、その蓄光性蛍光体は、下記組成式(3a)~(3d):
 Sr(1-x-y-z)MgxAl24;EuzaBib・・・(3a)
 Sr(1-x-y-z)MgxAl47;EuzaBib・・・(3b)
 Sr(1-y-z)Al24;EuzaBib・・・(3c)
 Sr(1-y-z)Al47;EuzaBib・・・(3d)
で表される。
When the phosphor having phosphorescence of this embodiment includes at least one selected from the group consisting of bismuth (Bi) inorganic compounds and bismuth (Bi) organic compounds, the phosphorescent phosphors have the following composition formula (3a) to (3d):
Sr (1-xyz) Mg x Al 2 O 4; Eu z M a Bi b ··· (3a)
Sr (1-xyz) Mg x Al 4 O 7; Eu z M a Bi b ··· (3b)
Sr (1-yz) Al 2 O 4; Eu z M a Bi b ··· (3c)
Sr (1-yz) Al 4 O 7; Eu z M a Bi b ··· (3d)
It is represented by
 組成式(3a)及び(3b)中、x、y、z及びaは、上記と同義である。また、組成式(3a)及び(3b)中、Mは、組成式(2a)及び(2b)におけるMからBiを除いたものである。 In the composition formulas (3a) and (3b), x, y, z and a are as defined above. In the composition formulas (3a) and (3b), M is obtained by removing Bi from M in the composition formulas (2a) and (2b).
 組成式(3c)及び(3d)中、y、z及びaは、組成式(2c)及び(2d)と同義である。また、組成式(3c)及び(3d)中、Mは、組成式(2c)及び(2d)におけるMからBiを除いたものである。 Y In the composition formulas (3c) and (3d), y, z, and a are synonymous with the composition formulas (2c) and (2d). In the composition formulas (3c) and (3d), M is obtained by removing Bi from M in the composition formulas (2c) and (2d).
 Biの組成比であるbは、良好な輝度を有する点から、0≦b≦0.15であり、0.01≦b≦0.12であることが好ましく、0.02≦b≦0.11であることがより好ましく、蛍光強度が高く、良好な色温度を有し、さらに低コストである点から、更により好ましくは0.04≦b≦0.06である。 Bi, which is the composition ratio of Bi, is 0 ≦ b ≦ 0.15, preferably 0.01 ≦ b ≦ 0.12, and preferably 0.02 ≦ b ≦ 0. 11, more preferably 0.04 ≦ b ≦ 0.06 from the viewpoint of high fluorescence intensity, good color temperature, and low cost.
 (蓄光を有する蛍光体の製造方法)
 本実施形態の蓄光を有する蛍光体の製造方法は、ストロンチウム元素を含む原料と、マグネシウム元素を含む原料と、ユーロピウム元素を含む原料と、アルミナ(酸化アルミニウム)とに、ビスマス(Bi)無機化合物及びビスマス(Bi)有機化合物からなる群より選ばれる少なくとも一種を添加して前駆体原料(混合物)を得る工程と、その前駆体原料を1300℃~1700℃の範囲で焼成する工程とを含むものである。
(Method for producing phosphor having phosphorescence)
The method for producing a phosphor having phosphorescence according to the present embodiment includes a raw material containing a strontium element, a raw material containing a magnesium element, a raw material containing a europium element, alumina (aluminum oxide), bismuth (Bi) inorganic compound, and The method includes a step of obtaining a precursor raw material (mixture) by adding at least one selected from the group consisting of bismuth (Bi) organic compounds, and a step of firing the precursor raw material in the range of 1300 ° C. to 1700 ° C.
 また、蓄光を有する蛍光体の製造方法では、必要に応じて、ジスプロシウム、サマリウム、ランタニウム、プラセオジム、テルビウム、ホルミウム、ツリウム、ルテチウム、イッテルビウム、エルビウム、ガドリニウム、ネオジム及びセリウムからなる群より選ばれる少なくとも一種の元素を含む原料を更に混合して、前記前駆体原料を得てもよい。 Further, in the method for producing a phosphor having phosphorescence, if necessary, at least one selected from the group consisting of dysprosium, samarium, lanthanium, praseodymium, terbium, holmium, thulium, lutetium, ytterbium, erbium, gadolinium, neodymium and cerium. The precursor raw material may be obtained by further mixing raw materials containing these elements.
 本実施形態の蓄光を有する蛍光体は、特に限定されないが、後述する溶媒を用いない乾式混合や、溶媒を用いた湿式混合等によって製造することができる。蓄光を有する蛍光体を作製するためには、上記各原料として、無機化合物及び金属有機化合物を先駆体(前駆体)に用いることが可能である。無機化合物としては、例えば、金属炭酸塩、金属酸化物、金属水酸化物及び/又は金属水酸化酸化物が挙げられ、1種を単独で又は2種以上を組み合わせて用いられる。その無機化合物を、適宜乳鉢又は遊星ボールミル等で均一かつナノサイズ化した材料を混合することで、蓄光を有する蛍光体の原料である前駆体原料を得ることができる。上記材料を混合するに際し、ビスマス(Bi)無機化合物及びビスマス(Bi)有機化合物からなる群より選ばれる少なくとも一種をも混合することが好ましい。これにより、波長400nm及び420nmのいずれか一つ以上の励起光によって色温度6500K~10000Kで発光し、かつ、波長400nm及び420nmのいずれか一つ以上の励起光によって2500cd/m2以上で発光し、励起停止後も発光する蓄光を有する蛍光体を好適に得られる。前駆体原料におけるビスマス(Bi)無機化合物及びビスマス(Bi)有機化合物の含有量は、本発明の効果を奏する限り特に限定されないが、前駆体原料(混合物)中の全原料100質量%に対して、0.1~15質量%であることが好ましく、1~13質量%であることがより好ましく、4~10質量%であることが更に好ましい。ビスマス(Bi)無機化合物及びビスマス(Bi)有機化合物としては、上記の無機化合物及び有機化合物を用いることができる。 The phosphor having phosphorescence according to this embodiment is not particularly limited, but can be manufactured by dry mixing without using a solvent described later, wet mixing using a solvent, or the like. In order to produce a phosphor having phosphorescence, inorganic compounds and metal organic compounds can be used as precursors (precursors) as the respective raw materials. As an inorganic compound, a metal carbonate, a metal oxide, a metal hydroxide, and / or a metal hydroxide are mentioned, for example, 1 type is used individually or in combination of 2 or more types. A precursor raw material that is a raw material of a phosphor having phosphorescence can be obtained by mixing the inorganic compound with a material that has been uniformly and nanosized with an appropriate mortar or planetary ball mill. In mixing the materials, it is preferable to mix at least one selected from the group consisting of a bismuth (Bi) inorganic compound and a bismuth (Bi) organic compound. As a result, light is emitted at a color temperature of 6500 K to 10,000 K by any one or more excitation lights having a wavelength of 400 nm or 420 nm, and is emitted at 2500 cd / m 2 or more by any one or more excitation lights having a wavelength of 400 nm or 420 nm. A phosphor having phosphorescence that emits light even after excitation is stopped is preferably obtained. The contents of the bismuth (Bi) inorganic compound and the bismuth (Bi) organic compound in the precursor raw material are not particularly limited as long as the effects of the present invention are exhibited, but with respect to 100% by mass of the total raw material in the precursor raw material (mixture) The content is preferably 0.1 to 15% by mass, more preferably 1 to 13% by mass, and still more preferably 4 to 10% by mass. As the bismuth (Bi) inorganic compound and the bismuth (Bi) organic compound, the above-described inorganic compounds and organic compounds can be used.
 2価のEuが多く含まれる高輝度に緑色発光する蛍光体を得る場合には、前駆体原料(混合物)を1300℃~1700℃の範囲、好ましくは1300~1450℃の範囲で焼成することが好ましい。また、この場合、前駆体原料における酸化ビスマス(Bi)の含有量は、本発明の効果を奏する限り特に限定されないが、前駆体原料(混合物)中の全原料100質量%に対して、0.1~15質量%であることが好ましく、1~13質量%であることがより好ましく、4~10質量%であることが更に好ましい。 In the case of obtaining a phosphor that emits green light with high luminance and contains a large amount of divalent Eu, the precursor raw material (mixture) is fired in the range of 1300 ° C. to 1700 ° C., preferably in the range of 1300 to 1450 ° C. preferable. Further, in this case, the content of bismuth oxide (Bi 2 O 3 ) in the precursor raw material is not particularly limited as long as the effect of the present invention is exhibited, but with respect to 100% by mass of the total raw material in the precursor raw material (mixture). The content is preferably 0.1 to 15% by mass, more preferably 1 to 13% by mass, and still more preferably 4 to 10% by mass.
 上記材料を混合するに際し、酸化ホウ素(B)、水酸化ホウ素、窒化ホウ素等のボロン化合物を融剤として混合することが、400~449nmの波長域の励起光によって高輝度に発光する蛍光体を好適に得られることから、好ましい。ボロン化合物としては、特に高輝度な蛍光体が得られることから、酸化ホウ素を融剤として混合することが、より好ましい。 When mixing the above materials, mixing boron compounds such as boron oxide (B 2 O 3 ), boron hydroxide, boron nitride and the like as a flux emits light with high brightness by excitation light in the wavelength region of 400 to 449 nm. It is preferable because a phosphor can be suitably obtained. As the boron compound, since a phosphor with particularly high brightness can be obtained, it is more preferable to mix boron oxide as a flux.
 特に、上記組成式(2b)で表される蛍光体を得る場合、上記材料と共に、酸化ホウ素を融剤として混合することで、高輝度で、より色温度の高い蛍光体を得ることができるため、好ましい。この理由は定かではないが、本発明者らは、発光に寄与する2価のEu(Eu2+)が結晶格子に均一に固溶するためと推測している。 In particular, when obtaining the phosphor represented by the composition formula (2b), it is possible to obtain a phosphor with high brightness and higher color temperature by mixing boron oxide as a flux together with the above materials. ,preferable. The reason for this is not clear, but the present inventors speculate that divalent Eu (Eu 2+ ) contributing to light emission is uniformly dissolved in the crystal lattice.
 ボロン化合物の混合割合は、本発明の効果を奏する限り特に限定されないが、ボロン化合物を全原料(混合物)100質量%に対して、ボロン原料で0.01~15質量%になるようにボロン化合物を混合することが好ましく、0.1~10質量%になるようにボロン化合物を混合することがより好ましく、0.5~5質量%になるようにボロン化合物を混合することが更に好ましく、1~3質量%になるようにボロン化合物を混合することが更により好ましい。 The mixing ratio of the boron compound is not particularly limited as long as the effect of the present invention is exhibited, but the boron compound is 0.01 to 15% by mass of the boron raw material with respect to 100% by mass of the total amount of the raw material (mixture). The boron compound is preferably mixed so as to be 0.1 to 10% by mass, more preferably the boron compound is further mixed so as to be 0.5 to 5% by mass. Even more preferably, the boron compound is mixed so as to be ˜3 mass%.
 酸化ホウ素の前駆体原料(混合物)中での含有量は、本発明の効果を奏する限り特に限定されないが、前駆体原料(混合物)中の全原料100質量%に対して、0.01~15質量%であることが好ましく、0.1~10質量%であることがより好ましく、0.5~5質量%であることが更に好ましく、1~3質量%であることが更により好ましい。 The content of boron oxide in the precursor raw material (mixture) is not particularly limited as long as the effect of the present invention is exhibited, but is 0.01 to 15 with respect to 100% by mass of the total raw material in the precursor raw material (mixture). Preferably, it is 0.1% by mass, more preferably 0.1-10% by mass, still more preferably 0.5-5% by mass, and even more preferably 1-3% by mass.
 酸化アルミニウムとしては、例えば、α-アルミナ、γ-アルミナ及び水酸化酸化アルミニウムが挙げられる。これらの中では、特に、α-アルミナ(α-酸化アルミニウム)を原料として用いて焼成した場合、輝度が比較的高く、より長残光な蛍光体が得られるため好ましい。酸化アルミニウムは1種を単独で又は2種以上を組み合わせて用いられる。 Examples of aluminum oxide include α-alumina, γ-alumina, and aluminum hydroxide oxide. Of these, firing with α-alumina (α-aluminum oxide) as a raw material is particularly preferable because a phosphor with relatively high luminance and longer persistence can be obtained. Aluminum oxide is used alone or in combination of two or more.
 また、金属有機化合物としては、例えば、金属有機酸塩、β-ジケトナート、金属アルコキシド、金属酢酸塩、金属2-エチルヘキサン酸塩、金属アセチルアセトナート及び金属ナフテン酸塩が挙げられる。溶媒に溶解する金属有機化合物であれば、特に制限なく用いることができる。金属有機化合物は1種を単独で又は2種以上を組み合わせて用いられる。 Examples of the metal organic compound include metal organic acid salt, β-diketonate, metal alkoxide, metal acetate, metal 2-ethylhexanoate, metal acetylacetonate, and metal naphthenate. Any metal organic compound that can be dissolved in a solvent can be used without particular limitation. A metal organic compound is used individually by 1 type or in combination of 2 or more types.
 溶媒は、金属有機化合物を溶解する溶媒であれば特に限定されないが、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、ヘプタノール、酢酸エチル、酢酸ブチル、トルエン、キシレン、ベンゼン、アセチルアセトナート、エチレングリコール、及び水からなる群より選ばれる少なくとも1種が好ましい。また、溶媒等に解けない金属を含む化合物、例えば、金属オレイン酸塩、金属ステアリン酸塩等の固体材料も、先駆体として用いることができる。 The solvent is not particularly limited as long as it dissolves the metal organic compound, but methanol, ethanol, propanol, butanol, hexanol, heptanol, ethyl acetate, butyl acetate, toluene, xylene, benzene, acetylacetonate, ethylene glycol, and At least one selected from the group consisting of water is preferred. A compound containing a metal that cannot be dissolved in a solvent, for example, a solid material such as a metal oleate or a metal stearate can also be used as a precursor.
 このように各原料を混合する方法が、溶媒を用いた湿式混合の場合、その後に溶媒を除去するために、本実施形態の製造方法は、前駆体原料を乾燥する工程を有してもよい。また、金属を含む有機金属化合物や硝酸塩を原料に用いた場合、本実施形態の製造方法は、混合する工程の後に、500℃以下の温度において溶媒及び有機成分の除去を行う工程を有していてもよい。 Thus, when the method of mixing each raw material is wet mixing using a solvent, in order to remove the solvent thereafter, the manufacturing method of the present embodiment may include a step of drying the precursor raw material. . In addition, when an organometallic compound containing metal or nitrate is used as a raw material, the manufacturing method of the present embodiment includes a step of removing the solvent and organic components at a temperature of 500 ° C. or lower after the mixing step. May be.
 次いで、得られた前駆体原料を、1200℃以上、好ましくは1200℃以上1800℃以下、より好ましくは、高結晶性やEuの価数制御の点から、1300℃以上1700℃以下で焼成する工程を経ることで、蓄光を有する高輝度蛍光体を得ることができる。本実施形態では、温度を多段階で変化させながら前駆体原料を焼成する工程を含むことが好ましい。このように温度を多段階で変化させた焼成は、それによって分解蒸発による組成ずれや不純物相の生成がより有効かつ確実に防止されるので、長残光特性を得る上で望ましい。なお、各温度での焼成の間において、被焼成体の粉砕、混合、及び錠剤成形(加圧成形)を行うと、組成ずれや不純物相の生成をより有効且つ確実に防止する上でより望ましい。ただし、各温度での焼成の間において、被焼成体の粉砕や錠剤成形(加圧成形)を行うことなく、温度を多段階で変化させた焼成を行っても、長残光特性を得る上で有効である。これらの焼成する際の雰囲気として還元性ガスを用いることにより、Eu2+を生成することができる。特にAr(アルゴン)ガス及び/又はN2(窒素)ガス中に4%以下のH2(水素)ガスを混合した混合ガスが適している。なお、焼成により、ビスマスが被焼成体から除去されてもよい。 Next, the step of firing the obtained precursor raw material at 1200 ° C. or higher, preferably 1200 ° C. or higher and 1800 ° C. or lower, more preferably 1300 ° C. or higher and 1700 ° C. or lower from the viewpoint of high crystallinity and Eu valence control. By passing through this, a high-intensity phosphor having phosphorescence can be obtained. In this embodiment, it is preferable to include a step of firing the precursor raw material while changing the temperature in multiple stages. Firing in which the temperature is changed in multiple stages in this way is desirable for obtaining long afterglow characteristics, because composition deviation and generation of impurity phases due to decomposition evaporation are thereby more effectively and reliably prevented. Note that, during firing at each temperature, pulverization, mixing, and tablet molding (pressure molding) of the body to be fired are more desirable in preventing composition deviation and impurity phase generation more effectively and reliably. . However, it is possible to obtain long afterglow characteristics even if firing is performed at various temperatures without firing the object to be fired or tableting (pressing) during firing at each temperature. It is effective in. Eu 2+ can be generated by using a reducing gas as the atmosphere for firing. In particular, a mixed gas in which 4% or less of H 2 (hydrogen) gas is mixed in Ar (argon) gas and / or N 2 (nitrogen) gas is suitable. Note that bismuth may be removed from the body to be fired by firing.
 焼成工程終了後に、あるいは、温度を多段階で変化させた焼成においては、いずれかの焼成工程の後に、好ましくは最後の焼成工程の後に、被焼成体(蛍光体)を適宜の形状に成型して焼結成型体(蓄光性発光製品)を得ることができる。また、得られた焼結成型体を適宜微粉化して、微粉状の蓄光を有する高輝度蛍光体を得ることもできる。 In the firing in which the temperature is changed in multiple stages after completion of the firing process, the fired body (phosphor) is molded into an appropriate shape after any firing process, preferably after the last firing process. As a result, a sintered molded body (luminescent phosphorescent product) can be obtained. Further, the obtained sintered molded body can be appropriately pulverized to obtain a high-intensity phosphor having a pulverized light storage.
 該微粉状の蓄光を有する高輝度蛍光体は、固体状バインダーや液状媒体等と共に種々の物体表面に塗布したり、プラスチックス、ゴム、塩化ビニール、合成樹脂又はガラス等と混合したりして、各色の蓄光性成型体、好ましくは赤色蓄光性成型体や蛍光膜とすることもできる。 The high-intensity phosphor having a fine powdery phosphorescence is applied to various object surfaces together with a solid binder or a liquid medium, or mixed with plastics, rubber, vinyl chloride, synthetic resin or glass, A phosphorescent molded body of each color, preferably a red phosphorescent molded body or a fluorescent film can also be used.
 本実施形態によれば、比較的健康被害が少ない400~449nmの波長域の光源により励起することで発光し、かつ、波長400nm及び420nmのいずれか一つ以上の励起光によって色温度6500K~10000Kで発光する。好ましくは、400~449nmの波長域の光源により励起することで発光し、波長400nm及び420nmのいずれか一つ以上の励起光によって色温度6500K~10000Kで発光し、かつ、波長400nm及び420nmのいずれか一つ以上の励起光によって2500cd/m2以上の高輝度で発光する。本実施形態によれば、励起停止後も比較的輝度が高く、長残光な蓄光特性を有する蓄光を有する高輝度蛍光体、該蓄光を有する高輝度蛍光体を含んでなる蓄光性発光製品、及び蓄光を有する高輝度蛍光体の製造方法を提供することができる。 According to this embodiment, light is emitted by being excited by a light source having a wavelength range of 400 to 449 nm that is relatively less harmful to health, and a color temperature of 6500K to 10000K is generated by one or more excitation lights having wavelengths of 400 nm and 420 nm. Lights on. Preferably, it emits light when excited by a light source in the wavelength region of 400 to 449 nm, emits light at a color temperature of 6500 K to 10,000 K by any one or more excitation light of wavelengths 400 nm and 420 nm, and any of wavelengths 400 nm and 420 nm. One or more excitation lights emit light with a high luminance of 2500 cd / m 2 or more. According to the present embodiment, after the excitation is stopped, the luminance is relatively high, and a high-intensity phosphor having a phosphorescence having a long afterglow phosphorescence property, a phosphorescent light-emitting product comprising the high-luminance phosphor having the phosphorescence, And the manufacturing method of the high-intensity fluorescent substance which has phosphorescence can be provided.
 そのため、本実施形態の蛍光体は、460nmの励起光源が必要な従来型のLEDに用いられているYAGにセリウムを添加した蛍光体に比べて、高い輝度と共に高い演色性を実現でき、広い用途への利用が可能である。蓄光を有する蛍光体を省エネルギーのLED照明技術に好適に適用でき、停電時においても発光するため、災害、停電時や消灯後においても誘導標識や照明としての機能を保持することが可能である。その結果、本実施形態の蓄光を有する蛍光体は、安全、安心な社会に資する優れた白色発光照明装置用の蛍光体として用いることができ、例えば、安全な避難誘導が行える照明器具への展開が可能である。 Therefore, the phosphor of the present embodiment can realize high color rendering properties with high luminance as compared with a phosphor obtained by adding cerium to YAG used in a conventional LED that requires an excitation light source of 460 nm, and has a wide range of applications. Can be used. The phosphor having phosphorescence can be suitably applied to energy-saving LED lighting technology, and emits light even at the time of a power failure. Therefore, it is possible to maintain a function as a guidance sign or illumination even at the time of a disaster, power failure, or light extinction. As a result, the phosphor having phosphorescence according to the present embodiment can be used as a phosphor for an excellent white light-emitting lighting device that contributes to a safe and secure society. Is possible.
 更に、本実施形態の蓄光を有する蛍光体を種々の物品の表面に塗布したり、プラスチックス、ゴム、塩化ビニ-ル、合成樹脂又はガラス等に混合したりして、成型体又は蛍光膜とすることにより、道路標識、視認表示、装飾品、レジャー用品、時計、OA機器、教育機器、安全標識及び建築材等に利用することができる。また、本実施形態の蓄光を有する蛍光体を蛍光ランプの蛍光膜として用いることで、残光性の優れた蛍光ランプとして使用することができる。 Further, the phosphor having phosphorescence of the present embodiment is applied to the surface of various articles, or mixed with plastics, rubber, vinyl chloride, synthetic resin, glass, etc. By doing so, it can be used for road signs, visual indications, ornaments, leisure goods, watches, OA equipment, educational equipment, safety signs, building materials, and the like. Moreover, it can be used as a fluorescent lamp with excellent afterglow by using the phosphor having phosphorescence of this embodiment as a fluorescent film of a fluorescent lamp.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 The embodiment described above is for facilitating the understanding of the present invention, and is not intended to limit the present invention. Each element included in the embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate. In addition, the structures shown in different embodiments can be partially replaced or combined.
 以下、本発明の特徴を実施例に基づいて、さらに詳しく説明する。なお、以下の説明は、本発明の理解を容易にするためのものであり、これに制限されるものではない。すなわち、本発明の技術思想に基づく変形、実施態様、他の例は、本発明に含まれるものである。 Hereinafter, the features of the present invention will be described in more detail based on examples. In addition, the following description is for making an understanding of this invention easy, and is not restrict | limited to this. That is, modifications, embodiments, and other examples based on the technical idea of the present invention are included in the present invention.
 <試験方法>
 (1)蛍光強度(輝度、cd/m2)及び残光強度(輝度、mcd/m2)の測定
 得られた試料の蛍光強度は、朝日分光(株)社製の光源(製品名「MAX-302」)を用いて400nm及び420nmの波長で励起して、(株)トプコン社製の輝度計(製品名「SR-UA1」)で測定した。
 残光強度の測定では、まず、暗所で1時間放置後、朝日分光(株)社製の光源(製品名「MAX-302」)を用いて400nm及び420nmの波長で1分間励起した後、励起を停止した。そして、その10分後の残光輝度を(株)トプコン社製の輝度計(製品名「SR-UA1」)で測定した。なお、400nmの励起光源の照度は、350ルクスであり、420nmの励起光源の照度は、120ルクスであった。照度は、株式会社カスタム(CUSTOM)社製デジタル照度計LX-105で測定した。
<Test method>
(1) Measurement of fluorescence intensity (luminance, cd / m 2 ) and afterglow intensity (luminance, mcd / m 2 ) The fluorescence intensity of the obtained sample was measured by a light source (product name “MAX” -302 "), and was measured with a luminance meter (product name" SR-UA1 ") manufactured by Topcon Corporation.
In the measurement of afterglow intensity, first, after being left for 1 hour in a dark place, after being excited for 1 minute at wavelengths of 400 nm and 420 nm using a light source (product name “MAX-302”) manufactured by Asahi Spectroscopy Co., Ltd. Excitation was stopped. Then, the afterglow luminance after 10 minutes was measured with a luminance meter (product name “SR-UA1”) manufactured by Topcon Corporation. The illuminance of the 400 nm excitation light source was 350 lux, and the illuminance of the 420 nm excitation light source was 120 lux. The illuminance was measured with a digital illuminometer LX-105 manufactured by Custom Co., Ltd.
 (2)色温度(K)
 得られた試料の色温度(K)及び蛍光強度(輝度、cd/m2)は、朝日分光(株)社製の光源(製品名「MAX-302」)を用いて400nm及び420nmの波長で励起して、(株)トプコン社製の輝度計(製品名「SR-UA1」)で測定した。
(2) Color temperature (K)
The color temperature (K) and fluorescence intensity (luminance, cd / m 2 ) of the obtained sample were measured at wavelengths of 400 nm and 420 nm using a light source (product name “MAX-302”) manufactured by Asahi Spectroscopy Co., Ltd. It was excited and measured with a luminance meter (product name “SR-UA1”) manufactured by Topcon Corporation.
 (3)発光特性
 (株)島津製作所社製蛍光光度計RF5300を用いて、得られた試料及び市販の蛍光体に対して、380nm、390nm、400nm、410nm及び420nmの波長で励起した場合の蛍光スペクトルを測定した。
(3) Luminescence characteristics Fluorescence when excited at wavelengths of 380 nm, 390 nm, 400 nm, 410 nm, and 420 nm with respect to the obtained sample and commercially available phosphor using Shimadzu Corporation's fluorometer RF5300 The spectrum was measured.
 (4)Euの価数及び定量
 Euの価数は、XAFS(高エネルギー加速器研究機構:PF(フォトンファクトリー)のBL-9Cビームラインにより、EuのK吸収端を用いて測定した。
 詳細には、サンプル(粉末試料)1.5gをメチルセルロース0.1g(バインダー)と良く混合しφ8mmの大きさにペレット成形した。成形したサンプルをXAFS(高エネルギー加速器研究機構:PF)のBL-9Cビームラインにて透過法を用いEu L edgeのXANESスペクトルを測定した。Eu2+とEu3+はスペクトルのピーク分離後、各々の面積比から算出した。
(4) Eu valence and quantification Eu valence was measured using a BL-9C beamline of XAFS (High Energy Accelerator Research Organization: PF (Photon Factory)) using the Eu K absorption edge.
Specifically, 1.5 g of a sample (powder sample) was mixed well with 0.1 g of methyl cellulose (binder) and pelletized to a size of φ8 mm. The XANES spectrum of Eu L 3 edge was measured for the molded sample using the transmission method at the BL-9C beam line of XAFS (High Energy Accelerator Research Organization: PF). Eu 2+ and Eu 3+ were calculated from the respective area ratios after spectral peak separation.
 <原料>
 蓄光を有する蛍光体の合成に際して、以下の原料(試薬)を用いた。
 (1)炭酸ストロンチウム((株)レアメタリック社製、純度:99.9%)
 (2)α-酸化アルミニウム((株)レアメタリック社製、純度:99.9%)
 (3)酸化マグネシウム((株)レアメタリック社製、純度:99.99%)
 (4)酸化ユウロピウム((株)レアメタリック社製、純度:99.99%)
 (5)酸化ジスプロシウム((株)レアメタリック社製、純度:99.9%)
 (6)酸化ビスマス(和光純薬工業社製、純度:99.99%)
 (7)酸化ホウ素((株)高純度化学研究所製、純度:99.9%)
<Raw material>
The following raw materials (reagents) were used for the synthesis of phosphors having phosphorescence.
(1) Strontium carbonate (manufactured by Rare Metallic Co., Ltd., purity: 99.9%)
(2) α-aluminum oxide (manufactured by Rare Metallic Co., Ltd., purity: 99.9%)
(3) Magnesium oxide (Rare Metallic Co., Ltd., purity: 99.99%)
(4) Europium oxide (manufactured by Rare Metallic Co., Ltd., purity: 99.99%)
(5) Dysprosium oxide (Rare Metallic Co., Ltd., purity: 99.9%)
(6) Bismuth oxide (manufactured by Wako Pure Chemical Industries, Ltd., purity: 99.99%)
(7) Boron oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity: 99.9%)
 (実施例1)
 Sr0.9Mg0.04Al24;Eu0.04Dy0.02Bi0.03の組成比になるように上記各原料を秤量し、自動乳鉢を用いて2時間混合して前駆体原料の粉末を得た(Bi混合量は、全原料(混合物)100質量%に対して、Bi原料4.8質量%である)。得られた粉末をアルミナ製の焼成ボードに充填し、アルゴン-水素混合ガス(アルゴン量:3%)中、1400℃にて3時間焼成した。焼成後、乳鉢で粉砕して、蛍光体粉末試料とした。該試料について、蛍光強度及び残光強度を測定した。その結果を表1及び2に示す。
Example 1
Sr 0.9 Mg 0.04 Al 2 O 4; Eu 0.04 Dy 0.02 Bi 0.03 The above raw materials were weighed so as to obtain a precursor raw material powder by mixing for 2 hours using an automatic mortar (Bi mixing) The amount is 4.8% by mass of Bi raw material with respect to 100% by mass of all raw materials (mixture)). The obtained powder was packed in an alumina firing board and fired in an argon-hydrogen mixed gas (argon amount: 3%) at 1400 ° C. for 3 hours. After firing, it was pulverized in a mortar to obtain a phosphor powder sample. The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Tables 1 and 2.
 (実施例2)
 Sr0.9Mg0.04Al24;Eu0.04Dy0.02Bi0.05の組成比になるように上記各原料を秤量(Bi混合量は、全原料(混合物)100質量%に対して、Bi原料7.8質量%である)した以外は、実施例1と同様にして、試料を調製した。該試料について、蛍光強度及び残光強度を測定した。その結果を表1及び2に示す。なお、蛍光体粉末試料中に含まれる2価のEuは、2価及び3価のEuの合計100質量%に対して、90質量%であった。
(Example 2)
Sr 0.9 Mg 0.04 Al 2 O 4; Eu 0.04 Dy 0.02 Bi 0.05 The above raw materials were weighed so that the Bi raw material was 7.8% based on 100% by mass of the total raw material (mixture). A sample was prepared in the same manner as in Example 1 except that it was (mass%). The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Tables 1 and 2. The divalent Eu contained in the phosphor powder sample was 90% by mass with respect to 100% by mass of the total of divalent and trivalent Eu.
 また、該試料を用いて、蛍光体試料の色温度及び発光特性を測定した。それらの結果を表1~4及び図1~図5に示す。 In addition, the color temperature and light emission characteristics of the phosphor sample were measured using the sample. The results are shown in Tables 1 to 4 and FIGS.
 (実施例3)
 Sr0.9Mg0.04Al24;Eu0.04Dy0.02Bi0.07の組成比になるように上記各原料を秤量(Bi混合量は、全原料(混合物)100質量%に対して、Bi原料10.6質量%である)した以外は、実施例1と同様にして、試料を調製した。該試料について、蛍光強度及び残光強度を測定した。その結果を表1及び2に示す。
(Example 3)
Sr 0.9 Mg 0.04 Al 2 O 4; Eu 0.04 Dy 0.02 Bi 0.07 The above raw materials were weighed so that the Bi raw material was 10.6 Bi based on 100% by mass of the total raw material (mixture). A sample was prepared in the same manner as in Example 1 except that it was (mass%). The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Tables 1 and 2.
 (実施例4)
 Sr0.9Mg0.04Al24;Eu0.04Dy0.02Bi0.10の組成比になるように上記各原料を秤量(Bi混合量は、全原料(混合物)100質量%に対して、Bi原料14.5質量%である)した以外は、実施例1と同様にして、試料を調製した。該試料について、蛍光強度及び残光強度を測定した。その結果を表1に示す。
Example 4
Sr 0.9 Mg 0.04 Al 2 O 4; Eu 0.04 Dy 0.02 Bi 0.10 Each of the above raw materials was weighed (Bi mixed amount was 100% by mass of all raw materials (mixtures), Bi raw material 14.5 A sample was prepared in the same manner as in Example 1 except that it was (mass%). The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Table 1.
 (実施例5)
 Sr0.75Mg0.04Al47;Eu0.2Dy0.01の組成比になるように上記各原料を秤量し、さらに、酸化ホウ素を全原料(混合物)100質量%に対して、ボロン原料で0.73質量%になるように該原料に添加して、自動乳鉢を用いて2時間混合して前駆体原料の粉末を得た。得られた粉末をアルミナ製の焼成ボードに充填し、アルゴン-水素混合ガス(アルゴン量:3%)中、1400℃にて3時間焼成した。焼成後、乳鉢で粉砕して、蛍光体粉末試料とした。該試料について、蛍光強度及び残光強度を測定した。その結果を表5に示す。
(Example 5)
Sr 0.75 Mg 0.04 Al 4 O 7; Eu 0.2 Dy 0.01 Each of the above raw materials was weighed, and boron oxide was added in a boron raw material of 0.73 to 100% by mass of the total raw material (mixture). It added to this raw material so that it might become the mass%, and it mixed for 2 hours using the automatic mortar, and obtained the powder of the precursor raw material. The obtained powder was packed in an alumina firing board and fired in an argon-hydrogen mixed gas (argon amount: 3%) at 1400 ° C. for 3 hours. After firing, it was pulverized in a mortar to obtain a phosphor powder sample. The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Table 5.
 (実施例6)
 Sr0.75Mg0.04Al47;Eu0.14Dy0.01の組成比になるように上記各原料を秤量した以外は、実施例5と同様にして、試料を調製した。該試料について、蛍光強度及び残光強度を測定した。その結果を表5に示す。
(Example 6)
A sample was prepared in the same manner as in Example 5, except that the above raw materials were weighed so as to have a composition ratio of Sr 0.75 Mg 0.04 Al 4 O 7; Eu 0.14 Dy 0.01 . The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Table 5.
 (実施例7)
 Sr0.84Al24;Eu0.05Dy0.05の組成比になるように上記各原料を秤量した以外は、実施例5と同様にして、試料を調製した。該試料について、蛍光強度及び残光強度を測定した。その結果を表6に示す。なお、蛍光体粉末試料中に含まれる2価のEuは、2価及び3価のEuの合計100質量%に対して、85質量%であった。
(Example 7)
A sample was prepared in the same manner as in Example 5 except that the above raw materials were weighed so that the composition ratio was Sr 0.84 Al 2 O 4; Eu 0.05 Dy 0.05 . The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Table 6. The divalent Eu contained in the phosphor powder sample was 85% by mass with respect to 100% by mass of the total of divalent and trivalent Eu.
 (実施例8)
 Sr0.90Al24;Eu0.04Dy0.02の組成比になるように上記各原料を秤量した以外は、実施例5と同様にして、試料を調製した。該試料について、蛍光強度及び残光強度を測定した。その結果を表6に示す。
(Example 8)
A sample was prepared in the same manner as in Example 5 except that the above raw materials were weighed so as to have a composition ratio of Sr 0.90 Al 2 O 4; Eu 0.04 Dy 0.02 . The sample was measured for fluorescence intensity and afterglow intensity. The results are shown in Table 6.
 (比較例1)
 比較例1として、SrAl24:EuDyの組成を有する蓄光性蛍光体(株式会社ネモト・ルミマテリアル社製、製品名「GLL300M」)の粉末試料について、色温度及び発光特性を測定した。それらの結果を表3、4及び図1~図5に示す。なお、蛍光体粉末試料中に含まれる2価のEuは、2価及び3価のEuの合計100質量%に対して、75質量%であった。
(Comparative Example 1)
As Comparative Example 1, the color temperature and the light emission characteristics of a powder sample of a phosphorescent phosphor having a composition of SrAl 2 O 4 : EuDy (manufactured by Nemoto Lumi Material Co., Ltd., product name “GLL300M”) were measured. The results are shown in Tables 3 and 4 and FIGS. The divalent Eu contained in the phosphor powder sample was 75% by mass with respect to 100% by mass of the total of divalent and trivalent Eu.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (比較例2)
 比較例2として市販のLEDに用いられているYAG(セリウム蛍光体)粉末を実施例1と同様にして発光特性を測定した。その結果を図1~図5に示す。
(Comparative Example 2)
As Comparative Example 2, the emission characteristics of YAG (cerium phosphor) powder used in a commercially available LED were measured in the same manner as in Example 1. The results are shown in FIGS.
 (比較例3)
 比較例3として、SrAl24:EuDyの組成を有する蓄光性蛍光体(株式会社ネモト・ルミマテリアル社製、製品名「GLL300FF」)の粉末試料について、発光特性を測定した。その結果を図1~図5に示す。
(Comparative Example 3)
As Comparative Example 3, the light emission characteristics of a phosphor sample having a composition of SrAl 2 O 4 : EuDy (manufactured by Nemoto Lumi Material Co., Ltd., product name “GLL300FF”) were measured. The results are shown in FIGS.
 上記表1~5及び図1~図5に示すとおり、本実施形態の蓄光を有する蛍光体は、従来型のYAGセリウム蛍光体、比較例2及び市販されている蓄光材料(比較例1及び3)に比して、高輝度であることが分かる。 As shown in Tables 1 to 5 and FIGS. 1 to 5, phosphors having phosphorescence according to this embodiment include conventional YAG cerium phosphors, Comparative Example 2 and commercially available phosphorescent materials (Comparative Examples 1 and 3). It can be seen that the brightness is higher than that of ().
 1…実施例2、2…比較例2、3…比較例3、4…比較例1。 1 ... Example 2, 2 ... Comparative Example 2, 3 ... Comparative Example 3, 4 ... Comparative Example 1.
 本出願は、2016年12月28日出願の日本特許出願(特願2016-255849)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2016-255849) filed on Dec. 28, 2016, the contents of which are incorporated herein by reference.
 本発明の蓄光を有する蛍光体は、例えば、道路標識、安全標識及び視認表示等のための照明装置、装飾品、レジャー用品、時計、OA機器、教育機器及び建築材等のLEDを用いた証明技術に幅広く適用できる。 The phosphor having phosphorescence of the present invention is, for example, a proof using LED such as a lighting device for road signs, safety signs and visual indications, ornaments, leisure goods, watches, OA equipment, educational equipment and building materials. Widely applicable to technology.

Claims (7)

  1.  下記組成式(1a)又は(1b):
     Sr(1-x-y-z)MgxAl24;Euz・・・(1a)
     Sr(1-x-y-z)MgxAl47;Euz・・・(1b)
    (式(1a)及び(1b)中、x、y及びzは、それぞれ0≦x≦0.1、-0.2≦y<0.2及び0.01≦z≦0.5である。)
    で表され、
     400~449nmの波長域の励起光によって発光し、かつ、波長400nm及び420nmのいずれか一つ以上の励起光によって色温度6500K~10000Kで発光する、蓄光を有する蛍光体。
    The following composition formula (1a) or (1b):
    Sr (1-xyz) Mg x Al 2 O 4; Eu z (1a)
    Sr (1-xyz) Mg x Al 4 O 7; Eu z (1b)
    (In the formulas (1a) and (1b), x, y, and z are 0 ≦ x ≦ 0.1, −0.2 ≦ y <0.2, and 0.01 ≦ z ≦ 0.5, respectively. )
    Represented by
    A phosphor having phosphorescence that emits light with excitation light in a wavelength region of 400 to 449 nm and emits light with a color temperature of 6500 K to 10000 K with excitation light of any one of wavelengths of 400 nm and 420 nm.
  2.  ビスマス、ジスプロシウム、サマリウム、ランタニウム、プラセオジム、テルビウム、ホルミウム、ツリウム、ルテチウム、イッテルビウム、エルビウム、ガドリニウム、ネオジム及びセリウムからなる群より選ばれる少なくとも一種の元素を更に含む、請求項1に記載の蓄光を有する蛍光体。 The phosphorous composition according to claim 1, further comprising at least one element selected from the group consisting of bismuth, dysprosium, samarium, lanthanium, praseodymium, terbium, holmium, thulium, lutetium, ytterbium, erbium, gadolinium, neodymium and cerium. Phosphor.
  3.  波長400nm及び420nmのいずれか一つ以上の励起光によって2500cd/m2以上の蛍光輝度で発光する、請求項1又は2に記載の蓄光を有する蛍光体。 The phosphor having phosphorescence according to claim 1 or 2, which emits light with a fluorescence luminance of 2500 cd / m 2 or more by excitation light having a wavelength of 400 nm or 420 nm.
  4.  請求項1~3のいずれか一項に記載の蓄光を有する蛍光体を含む、蓄光性発光製品。 A phosphorescent light-emitting product comprising the phosphor having a phosphorescent according to any one of claims 1 to 3.
  5.  請求項1~3のいずれか一項に記載の蓄光を有する蛍光体の製造方法であって、
     ストロンチウム元素を含む原料と、マグネシウム元素を含む原料と、ユーロピウム元素を含む原料と、アルミナとに、ビスマス無機化合物及びビスマス有機化合物からなる群より選ばれる少なくとも一種を添加して前駆体原料を得る工程と、前記前駆体原料を1300℃~1700℃の範囲で焼成する工程とを含む、製造方法。
    A method for producing a phosphor having phosphorescence according to any one of claims 1 to 3,
    A step of obtaining a precursor raw material by adding at least one selected from the group consisting of a bismuth inorganic compound and a bismuth organic compound to a raw material containing a strontium element, a raw material containing a magnesium element, a raw material containing a europium element, and alumina And a step of firing the precursor raw material in the range of 1300 ° C. to 1700 ° C.
  6.  前記前駆体原料100質量%に対して、前記ビスマス無機化合物及びビスマス有機化合物からなる群より選ばれる少なくとも一種を0.1~15質量%添加する、請求項5に記載の蓄光を有する蛍光体の製造方法。 6. The phosphor having phosphorescence according to claim 5, wherein 0.1 to 15% by mass of at least one selected from the group consisting of the bismuth inorganic compound and the bismuth organic compound is added to 100% by mass of the precursor raw material. Production method.
  7.  前記前駆体原料を得る工程において、ボロン化合物を更に添加する、請求項5又は6に記載の蓄光を有する蛍光体の製造方法。 The method for producing a phosphor having phosphorescence according to claim 5 or 6, wherein a boron compound is further added in the step of obtaining the precursor raw material.
PCT/JP2017/046734 2016-12-28 2017-12-26 Fluorescent body having phosphorescence, production method therefor, and phosphorescent light-emission product WO2018124106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016255849 2016-12-28
JP2016-255849 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018124106A1 true WO2018124106A1 (en) 2018-07-05

Family

ID=62709415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046734 WO2018124106A1 (en) 2016-12-28 2017-12-26 Fluorescent body having phosphorescence, production method therefor, and phosphorescent light-emission product

Country Status (1)

Country Link
WO (1) WO2018124106A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429432A (en) * 2008-12-12 2009-05-13 江苏苏博特新材料股份有限公司 Superfine grain size high light efficiency long afterglow fluorescent powder and its production method
WO2011155428A1 (en) * 2010-06-11 2011-12-15 株式会社ネモト・ルミマテリアル Light-storing phosphor and light-storing pigment
CN104674377A (en) * 2014-12-05 2015-06-03 江苏旷达汽车织物集团股份有限公司 Preparation method of luminescent low-stretch yarn for inner decorating materials for automobile
JP2016121264A (en) * 2014-12-25 2016-07-07 国立大学法人長岡技術科学大学 Phosphor and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429432A (en) * 2008-12-12 2009-05-13 江苏苏博特新材料股份有限公司 Superfine grain size high light efficiency long afterglow fluorescent powder and its production method
WO2011155428A1 (en) * 2010-06-11 2011-12-15 株式会社ネモト・ルミマテリアル Light-storing phosphor and light-storing pigment
CN104674377A (en) * 2014-12-05 2015-06-03 江苏旷达汽车织物集团股份有限公司 Preparation method of luminescent low-stretch yarn for inner decorating materials for automobile
JP2016121264A (en) * 2014-12-25 2016-07-07 国立大学法人長岡技術科学大学 Phosphor and method for producing the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CAO RENPING ET AL.: "Energy transfer and luminescence properties of Sr[1-3(x+y)/2]A12B207:xEu3+,yBi3+ phosphor", SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, vol. 146, no. 2015, 13 March 2015 (2015-03-13) - 5 July 2015 (2015-07-05), pages 38 - 42, XP055605217, ISSN: 1386-1425, DOI: 10.1016/j.saa.2015.03.036 *
CHANG CHENGKANG: "Preparation of long persistent SrO . 2A1203 ceramics and their luminescent properties", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 348, 2003, pages 224 - 230, XP004396815, ISSN: 0925-8388, DOI: doi:10.1016/S0925-8388(02)00836-8 *
KSHATRI, D. S. ET AL.: "Characterization and optical properties of Dy3+ doped nanocrystalline SrA1204:Eu2+ phosphor", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 588, 2014, pages 488 - 495, XP028814922, ISSN: 0925-8388, DOI: doi:10.1016/j.jallcom.2013.11.045 *
LIANG CHEN-JUI ET AL.: "Calcining Temperatures of Sr1-3xEuxDy2xA1204(x=0-0. 12) Phophors Prepared Using the Potassium Carbonate Coprecipitation method", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 669, 1 February 2016 (2016-02-01), pages 38 - 45, XP029450549, ISSN: 0925-8388, DOI: doi:10.1016/j.jallcom.2016.01.227 *
YANG FENG ET AL.: "Influence of alkaline earth elements (Mg2+, Ca2+, Ba2+) to luminescent properties of long persistent phosphors SrA12 04: Eu2+, Dy3+", JOURNAL OF THE CHINESE RARE EARTH SOCIETY, vol. 26, no. 5, 2008, pages 561 - 565, ISSN: 1000-4343 *

Similar Documents

Publication Publication Date Title
TWI377242B (en) Aluminate-based blue phosphors
US6596195B2 (en) Broad-spectrum terbium-containing garnet phosphors and white-light sources incorporating the same
TWI374178B (en) Novel aluminate-based green phosphors
JP2004107623A (en) Fluorescent material containing oxides of alkaline earth metal and group iiib metal, and light source incorporating the fluorescent material
JP5652967B2 (en) Luminescent phosphor and phosphorescent pigment
WO2008058462A1 (en) An aluminate phosphor containing bivalence metal elements, its preparation and the light emitting devices incorporating the same
WO2012055729A1 (en) Borophosphate phosphor and light source
JP6465417B2 (en) Luminescent phosphor and method for producing the same
US20130140491A1 (en) Green to Yellow Light-Emitting Aluminate Phosphors
WO2015029284A1 (en) Phosphor and light-emitting device using same
EP2565253B1 (en) Silicate luminescent material and production method thereof
WO2018124106A1 (en) Fluorescent body having phosphorescence, production method therefor, and phosphorescent light-emission product
JP2009249396A (en) Luminous white light emitting phosphor, fluorescent lamp, luminous display, and luminous molded product
KR20140043119A (en) Phosphor precursor composition
US20110147783A1 (en) Red phosphor and forming method thereof for use in solid state lighting
JPWO2007034609A1 (en) Ultraviolet emission afterglow phosphor
CN111778022A (en) Alkali metal enhanced orange light fluorescent powder and preparation method and application thereof
JP3754701B2 (en) Phosphor and light emitting device using the same
JP4503321B2 (en) Phosphor
JP7266215B2 (en) Phosphor and light-emitting device using the same
JP2011105933A (en) Red phosphor for ultraviolet excitation light source
CN118043979A (en) Phosphor, light emitting device, illumination device, image display device, and display lamp for vehicle
KR101427529B1 (en) Oxy-nitride phosphor with the improved thermal degradation characteristics, manufacturing method thereof, and white-light emitting device comprising the same
KR20150088668A (en) Oxynitride-base yellow phosphor and light emitting device comprising the same
JP2015117334A (en) Phosphor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP