WO2015029284A1 - Phosphor and light-emitting device using same - Google Patents

Phosphor and light-emitting device using same Download PDF

Info

Publication number
WO2015029284A1
WO2015029284A1 PCT/JP2014/002508 JP2014002508W WO2015029284A1 WO 2015029284 A1 WO2015029284 A1 WO 2015029284A1 JP 2014002508 W JP2014002508 W JP 2014002508W WO 2015029284 A1 WO2015029284 A1 WO 2015029284A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
emitting device
light emitting
wavelength
Prior art date
Application number
PCT/JP2014/002508
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 圭一
大塩 祥三
惠美 宮崎
真治 柴本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015029284A1 publication Critical patent/WO2015029284A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a phosphor and a light emitting device using the phosphor. More specifically, the present invention relates to a phosphor whose color tone is controlled to obtain preferable illumination light and a light emitting device using the same.
  • yttrium aluminum garnet (YAG; Y 3 Al 2 (AlO 4 ) 3 ) including a light emission center is known as a phosphor.
  • YAG Y 3 Al 2 (AlO 4 ) 3
  • Ce phosphor activated with Ce 3+ is known as a high-efficiency phosphor and is used in many light emitting devices.
  • a YAG: Ce phosphor is excited when irradiated with a particle beam or an electromagnetic wave, and has a characteristic of emitting yellow to green visible light with ultrashort afterglow (see, for example, Non-Patent Document 1).
  • fluorescent lamps that reduce yellowing of an object color and show the object color vividly are known. Specifically, this is a fluorescent lamp in which a phosphor layer is formed on the inner surface of a glass tube, and a glass thin film (Nd glass frit) containing Nd 3+ ions is formed between the glass tube and the phosphor layer. . (For example, refer to Patent Document 1).
  • the phosphor of the present invention contains a luminescent center and light-absorbing ions in the matrix, and the light-absorbing ions have a wavelength region that can partially absorb the fluorescent component emitted by the luminescent center. And the emission spectrum of this fluorescent substance has a hollow in the wavelength range which can absorb light absorption ion.
  • a desired special fluorescence spectrum shape can be obtained without using a member having an optical filter function (hereinafter referred to as an “optical filter member”) such as the glass thin film containing Nd 3+ ions. That is, a phosphor having a color tone controlled can be obtained.
  • an optical filter member such as the glass thin film containing Nd 3+ ions. That is, a phosphor having a color tone controlled can be obtained.
  • a phosphor according to an embodiment of the present invention that emits an emission spectrum whose color tone is controlled without using an optical filter member, and a light emitting device using the phosphor will be described in detail.
  • the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
  • the phosphor in the embodiment of the present invention contains a luminescent center and light absorbing ions in the matrix.
  • the light-absorbing ions can partially absorb the fluorescent component emitted by the emission center.
  • the emission spectrum of this phosphor has a depression in a wavelength region where light absorbing ions can be absorbed.
  • a phosphor is a compound in which a part of an element constituting a crystalline compound is partially substituted with an element that can be an ion having a fluorescence emission property. Ions having such characteristics are called emission centers. In the phosphor of the present embodiment, ions that are the emission center are introduced into the matrix that is a crystalline compound. Thereby, this fluorescent substance is easily excited by an external stimulus and can emit fluorescence. Examples of external stimuli include irradiation with particle beams ( ⁇ rays, ⁇ rays, electron beams) and electromagnetic waves ( ⁇ rays, X rays, vacuum ultraviolet rays, ultraviolet rays, visible rays).
  • the phosphor of this embodiment light absorbing ions capable of partially absorbing the fluorescent component emitted from the emission center are introduced into the above-described general phosphor as a base.
  • the light absorption ion contained in a fluorescent substance acts so that a part of fluorescent component may be absorbed. That is, the phosphor itself has the function of an optical filter member.
  • the shape of the emission spectrum which this fluorescent substance emits becomes the same shape as the case where an optical filter member is used. That is, the phosphor of the present embodiment can exhibit the same effects as when a general phosphor and an optical filter member are used without using an optical filter member.
  • FIG. 6 shows a case where yttrium aluminum garnet (Y 3 Al 2 (AlO 4 ) 3 ) is used as a base, Ce 3+ is introduced into the emission center, and light absorbing ions are further introduced. Shows the emission spectrum of the phosphor into which Nd 3+ is introduced.
  • X is the molar fraction of Nd 3+ that becomes light absorbing ions in 1 mol of the phosphor.
  • a phosphor into which light-absorbing ions are not introduced has a broad emission spectrum distribution (component) in the visible light region, and emits fluorescence close to the spectrum distribution of black body radiation.
  • Nd 3+ is introduced as light absorbing ions, the intensity around 580 nm is reduced in the emission spectrum. The evaluation of the specific example shown in FIG. 6 will be described later.
  • the light absorbing ions absorb a part of the fluorescent component (fluorescence spectrum). Therefore, in the fluorescent component due to the emission center (for example, Ce 3+ ), the intensity of the wavelength region corresponding to the light absorption of the light absorbing ions is lowered.
  • the emission spectrum is induced by light-absorbing ions and has a partial depression. Therefore, the phosphor of this embodiment can emit an emission spectrum controlled to a desired color tone without using an optical filter member in the phosphor itself.
  • the depression of the emission spectrum refers to a phenomenon in which the intensity of the emission spectrum is partially reduced or reduced due to the introduction of light-absorbing ions into the phosphor.
  • the phosphor of the present embodiment may be an inorganic compound or an organic compound as long as a depression is generated in the emission spectrum.
  • the phosphor of the present embodiment is preferably an inorganic compound.
  • Many inorganic compounds are relatively thermally and chemically stable as compared to organic compounds.
  • many phosphors that have been put into practical use have a track record. Therefore, in an apparatus (for example, a light-emitting device) to which this phosphor is applied, reliability is improved by using an inorganic compound as the phosphor.
  • the phosphor of the present embodiment preferably has the maximum intensity of the fluorescent component in the wavelength region of visible light. That is, this phosphor preferably has the maximum intensity of the fluorescent component (fluorescence spectrum) in the visible light region having a wavelength of 380 nm or more and 780 nm or less. This is because, in general, many light emitting devices using phosphors use visible light, so the range of applications of the phosphors is widened.
  • the wavelength region having the maximum intensity a wavelength region of 420 nm or more and less than 660 nm is preferable. This is because by selecting this region, which is a wavelength region with high visibility, it is possible to improve the efficiency of the device using this phosphor.
  • the maximum intensity is preferably in any of the wavelength regions of the three primary colors of light. That is, any one of a wavelength region of 420 nm or more and less than 500 nm that is blue light, a wavelength region of 520 nm or more and less than 600 nm that is green light to orange light, or a wavelength region that is 600 nm or more and less than 660 nm that is red light . This is because, in addition to the effect of increasing the efficiency described above, it is easy to design a light color in a wide range in chromaticity coordinates.
  • the matrix constituting the phosphor of the present embodiment preferably has a garnet crystal structure.
  • a phosphor using a compound having a garnet-type crystal structure as a matrix has a high practical record as can be seen from the fact that it is used in LED lighting.
  • There are also many types of light-emitting devices that apply this phosphor. Therefore, a phosphor using a compound having a garnet-type crystal structure as a matrix is a phosphor having high industrial utility value.
  • the garnet-type compound that can be used as a base is not particularly limited as long as the above-described effects are obtained.
  • Y 3 Al 2 (AlO 4 ) 3 Y 3 Al 2 (AlO 4 ) 3 , Lu 3 Al 2 (AlO 4 ) 3 , Y 3 Ga 2 (AlO 4 ) 3 , (Y, Gd) 3 Al 2 (AlO 4 ) 3 as the base material.
  • An aluminum garnet type compound such as can be used.
  • Ca 3 Sc 2 (SiO 4 ) 3 or the like is also preferable.
  • Y 3 Al 2 (AlO 4 ) 3 having high luminous efficiency is particularly preferable.
  • the fluorescence spectrum since the fluorescence spectrum has a wide distribution in the visible light region, it is relatively easy to obtain light having a spectral distribution close to blackbody radiation.
  • the components of the fluorescence spectrum are distributed over a wide wavelength range, it is possible to easily obtain a fluorescence spectrum with conspicuous depressions. It becomes easy to demonstrate the effect by the dent.
  • the luminescent center constituting the phosphor of the present embodiment may be a compound that functions as the host of the phosphor. That is, the emission center may be any ion that can emit fluorescence by electron energy transition in the host crystal.
  • the emission center may be any ion that can emit fluorescence by electron energy transition in the host crystal.
  • specific emission centers at least Sn 2+ , Sb 3+ , Tl + , Pb 2+ and Bi 3+ called ns 2 ion emission centers and Cr 3+ , Mn 4+ , Mn 2+ and Fe 3+ called transition metal ion emission centers are used. It is preferable to use one.
  • the emission center is particularly preferably Ce 3+ .
  • the phosphor having Ce 3+ as the emission center has many practical achievements in LED lighting and the like. Furthermore, there are many types of light emitting devices that apply this phosphor. By using Ce 3+ as the emission center, it is possible to easily realize a phosphor having high industrial utility value.
  • the wavelength region in which the light-absorbing ions can be absorbed in the phosphor of the present embodiment is in the wavelength region of 560 nm or more and less than 600 nm.
  • the above-mentioned depression is in a wavelength region of 560 nm or more and less than 600 nm.
  • the fluorescence spectrum has a relatively small intensity of the yellow light component that causes yellowing. Therefore, by using this fluorescence for illumination light, the illumination light can enhance the vividness of the appearance of the object, and the whiteness and cleanliness can be emphasized.
  • the intensity at a wavelength of 580 nm is preferably less than 70% with respect to the maximum intensity.
  • the emission intensity at 580 nm with respect to the emission intensity at 550 nm is preferably less than 70%.
  • This is an emission spectrum in which the intensity of the yellow light component that causes yellowing is significantly suppressed. Therefore, by using this emission spectrum for the illumination light, it is possible to enhance the vividness of the appearance of the object and to emphasize the whiteness and cleanliness.
  • the intensity at a wavelength of 580 nm is preferably 60% or more with respect to the maximum intensity.
  • the light-absorbing ions introduced into the phosphor of this embodiment are not particularly limited as long as it partially absorbs the fluorescent component emitted by the emission center and induces a depression in the fluorescence spectrum.
  • the light absorption ions are preferably trivalent rare earth element ions. Since trivalent rare earth element ions often have steep absorption characteristics, that is, specific absorption characteristics in their absorption spectrum, it is easy to obtain a specific fluorescence spectrum.
  • Examples of the trivalent rare earth element ion include at least one selected from the group consisting of Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+, and Eu 3+ .
  • Examples of the trivalent rare earth element ion include at least one selected from the group consisting of Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ , and Yb 3+ .
  • the light absorbing ions are preferably at least one of Nd 3+ and Eu 3+ , and particularly preferably Nd 3+ . Since Nd 3+ and Eu 3+ have strong absorption characteristics in the visible light region, it is possible to easily control the color tone in the emission spectrum. In particular, since Nd 3+ has a strong absorption characteristic in the yellow wavelength region, it is possible to effectively reduce the intensity of the yellow light component.
  • the amount of light absorbing ions added is preferably 0.01 mol or more and less than 0.5 mol per mol of the phosphor.
  • the amount of light absorbing ions added is 0.01 mol or more, the fluorescent component absorbs and the phosphor itself has the function of an optical filter.
  • the addition amount of light absorption ion is less than 0.5 mol, it becomes possible to suppress the fall of the emitted light intensity of fluorescent substance.
  • the amount of light absorbing ions added is more preferably 0.01 mol or more and 0.1 mol or less per mol of the phosphor. , 0.03 mol or more and 0.1 mol or less is particularly preferable.
  • the phosphor of this embodiment can be used in the form of a slurry, paste, sol, or gel by appropriately mixing with a solvent such as water, an organic solvent, a resin, or water glass.
  • the light absorbing ions absorb a part of the fluorescent component by introducing the light absorbing ions. Therefore, the emission spectrum is induced by light absorbing ions and has a partial depression. As a result, this phosphor has an unprecedented characteristic that it can emit light whose color tone is controlled without using an optical filter member.
  • the light emitting device of the present embodiment includes the phosphor described above. As described above, the phosphor of this embodiment emits light having a desired special spectral shape and color tone control. For this reason, the light emitting device of the present embodiment has a configuration in which the phosphor and an excitation source for exciting the phosphor are combined. With this configuration, it is possible to output light whose color tone is effectively controlled.
  • the excitation source 1 is a light source that generates primary light for exciting the phosphor 2.
  • particle beams such as ⁇ -rays, ⁇ -rays, electron beams, ⁇ -rays, X-rays, vacuum ultraviolet rays, ultraviolet rays, visible light (especially short-wavelength visible light such as violet light and blue light).
  • a radiation device that emits electromagnetic waves such as can be used.
  • the excitation source 1 various radiation generators, electron beam emitters, discharge light generators, solid state light emitting elements, solid state light emitters, and the like can be used.
  • Typical examples of the excitation source 1 include an electron gun, an X-ray tube, a rare gas discharge device, a mercury discharge device, a light emitting diode, a laser light generator including a semiconductor laser, and an inorganic or organic electroluminescence element. Can do.
  • the output light 4 is fluorescence emitted by the phosphor 2 excited by an excitation line or excitation light (hereinafter referred to as “excitation light”) 3 emitted by the excitation source 1.
  • excitation light an excitation line or excitation light (hereinafter referred to as “excitation light”) 3 emitted by the excitation source 1.
  • the output light 4 is used as illumination light or display light in the light emitting device.
  • FIG. 1A shows a light emitting device having a structure in which output light 4 from the phosphor 2 is emitted in a direction in which the phosphor 2 is irradiated with excitation rays or excitation light 3.
  • examples of the light-emitting device illustrated in FIG. 1A include a white LED light source, a fluorescent lamp, and an electron tube.
  • FIG. 1B shows a light emitting device having a structure in which output light 4 from the phosphor 2 is emitted in a direction opposite to the direction in which the phosphor 2 is irradiated with excitation rays or excitation light 3.
  • a plasma display device, a light source device using a phosphor wheel with a reflector, a projector, and the like can be given.
  • the phosphor 2 may be arranged in the optical path of the primary light emitted from the excitation source 1.
  • Preferred examples of the light emitting device of this embodiment are a semiconductor light emitting device, an illumination light source, an illumination device, a liquid crystal panel with an LED backlight, an LED projector, a laser projector, and the like configured using a phosphor.
  • a particularly preferred light-emitting device has a structure that excites a phosphor with short-wavelength visible light, and the short-wavelength visible light has a structure that a solid-state light emitting element emits.
  • the light emitting device of the present embodiment widely includes electronic devices having a function of emitting light, and is not particularly limited as long as it is an electronic device that emits some light. That is, the light emitting device of the present embodiment is a light emitting device that uses at least the phosphor of the present embodiment and further uses light emitted from the phosphor as at least output light.
  • the light-emitting device of this embodiment combines a phosphor and an excitation source that excites the phosphor. And this fluorescent substance absorbs the energy which an excitation source emits, and converts the absorbed energy into the fluorescence by which the color tone was controlled.
  • the excitation source can be appropriately selected from a discharge device, an electron gun, a solid light emitting element, etc. according to the excitation characteristics of the phosphor.
  • a fluorescent lamp, an electron tube, a plasma display panel (PDP), a white LED, and a detection device using a phosphor correspond to this.
  • an illumination light source and an illumination device using a phosphor, a display device, and the like are also light emitting devices, and a projector including a laser diode, a liquid crystal display including an LED backlight, and the like can be regarded as the light emitting device.
  • the light-emitting device of this embodiment can be classified according to the type of fluorescence emitted by the phosphor, this classification will be described.
  • Fluorescence phenomena used in electronic devices are academically divided into several categories, and are distinguished by terms such as photoluminescence, cathodoluminescence, and electroluminescence.
  • Photoluminescence refers to fluorescence emitted by a phosphor when the phosphor is irradiated with an electromagnetic wave. Note that the term “electromagnetic wave” collectively refers to X-rays, ultraviolet rays, visible light, infrared rays, and the like.
  • Cathodeluminescence refers to fluorescence emitted by a phosphor when the phosphor is irradiated with an electron beam.
  • Electroluminescence refers to fluorescence emitted when electrons are injected into a phosphor or an electric field is applied.
  • thermalluminescence as fluorescence close to photoluminescence. This refers to the fluorescence emitted by the phosphor when heat is applied to the phosphor.
  • radioluminescence radioluminescence
  • cathodoluminescence cathodoluminescence in principle. This refers to the fluorescence emitted by the phosphor when the phosphor is irradiated with radiation.
  • the light emitting device uses at least the fluorescence emitted from the above-described phosphor as output light. Since the fluorescence here can be classified at least as described above, the fluorescence can be replaced with at least one fluorescence phenomenon selected from the luminescence.
  • Typical examples of the light emitting device that uses the photoluminescence of the phosphor as output light include an X-ray image intensifier, a fluorescent lamp, a white LED, a semiconductor laser projector using a phosphor and a laser diode, and a PDP. .
  • Typical examples of a light emitting device that uses cathodoluminescence as output light include an electron tube, a fluorescent display tube, and a field emission display (FED).
  • typical examples of a light-emitting device that uses electroluminescence as output light include inorganic electroluminescence displays (inorganic EL), light-emitting diodes (LED), semiconductor lasers (LD), and organic electroluminescence elements (OLED).
  • FIG. 2 is a cross-sectional view schematically showing the semiconductor light emitting device 12.
  • FIG. 2 is a cross-sectional view, and hatching indicating a cross section of the translucent resin 10 is omitted in consideration of easy viewing of the drawing.
  • the semiconductor light emitting device 12 has a wavelength conversion layer 9 including a solid light emitting element 6 as an excitation source and the phosphor 2.
  • the solid light emitting element 6 is fixed to the substrate 5.
  • the substrate 5 is made of ceramics such as Al 2 O 3 and AlN, metals such as Al and Cu, glass, silicone resin, and resin such as filler-filled silicone resin.
  • the solid state light emitting device 6 has a feeding electrode 8. Power is supplied to the solid state light emitting element 6 by electrically connecting the power supply electrode 8 and the wiring conductor 7 using a gold wire or the like.
  • the solid state light emitting device 6 that is a light source that generates primary light converts electrical energy into light energy such as near ultraviolet light, purple light, or blue light.
  • the electrical energy is supplied to the solid state light emitting device 6 as at least one power selected from direct current, alternating current, and pulse.
  • the solid light-emitting element 6 an LED, a laser diode (LD), an inorganic electroluminescence (EL) element, an organic EL element, or the like can be used.
  • the solid-state light emitting element 6 is preferably an LED or an LD.
  • FIG. 2 shows a configuration in which an LED having an InGaN-based compound as a light emitting layer is used as the solid light emitting element 6.
  • the wavelength conversion layer 9 includes the phosphor 2 and covers the solid light emitting element 6.
  • the phosphor 2 converts the wavelength of the primary light emitted from the solid light emitting element 6 into secondary light having a relatively long wavelength.
  • the wavelength conversion layer 9 is surrounded by the side wall 11.
  • the particles of the phosphor 2 described in the present embodiment are dispersed in the translucent resin 10 constituting the wavelength conversion layer 9.
  • the wavelength conversion layer 9 covers the upper surface and side surfaces of the solid light emitting element 6.
  • the arrangement of the wavelength conversion layer 9 is not limited to this form.
  • the wavelength conversion layer 9 should just be arrange
  • the wavelength conversion layer 9 may be configured such that the phosphor 2 is contained in a light-transmitting light-emitting material such as fluorescent resin, fluorescent ceramics, or fluorescent glass.
  • the phosphor 2 of the present embodiment can be used alone as a phosphor. If necessary, a phosphor different from the phosphor 2 of this embodiment may be added. Moreover, you may use combining the fluorescent substance 2 from which at least any one of luminescent color or a composition differs in multiple types.
  • the phosphor that is different from the phosphor 2 of the present embodiment and that can be used for the wavelength conversion layer 9 absorbs the primary light emitted from the solid-state light emitting element 6 and has a relatively long wavelength. Wavelength conversion to secondary light. Such a phosphor does not contain light absorbing ions. By appropriately selecting from various phosphors that emit blue light, green blue light, blue green light, green light, yellow light, orange light, and red light, the semiconductor light emitting device 12 emits output light of a desired color. can do.
  • the phosphor 2 into which the light absorbing ions of this embodiment are introduced can be used.
  • the phosphor that can be used in combination with the phosphor 2 include the following existing phosphors.
  • an oxide phosphor such as an oxide or acid halide activated by at least one of Eu 2+ , Ce 3+ , Tb 3+ , and Mn 2+ can be used.
  • nitride phosphors such as nitrides and oxynitrides activated by at least one of Eu 2+ , Ce 3+ , Tb 3+ and Mn 2+
  • sulfide phosphors such as sulfides and oxysulfides are also included. Can be used.
  • BaMgAl 10 O 17 : Eu 2+ , CaMgSi 2 O 6 : Eu 2+ , Ba 3 MgSi 2 O 8 : Eu 2+ , Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ Etc. can be used as the blue phosphor.
  • Sr 4 Si 3 O 8 Cl 4 : Eu 2+ , Sr 4 Al 14 O 24 : Eu 2+ , BaAl 8 O 13 : Eu 2+ , Ba 2 SiO 4 : Eu 2+ is used as the green-blue or blue-green phosphor. Can do.
  • a green-blue or blue-green phosphor for example, BaZrSi 3 O 9 : Eu 2+ , Ca 2 YZr 2 (AlO 4 ) 3 : Ce 3+ , Ca 2 YHf 2 (AlO 4 ) 3 : Ce 3+ , Ca 2 YZr 2 ( AlO 4 ) 3 : Ce 3+ , Tb 3+ can be used.
  • the green phosphor for example, (Ba, Sr) 2 SiO 4 : Eu 2+ , Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu 2+ , Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu 2+ , Mn 2+ are used. Can be used.
  • the green phosphor for example, BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , CeMgAl 11 O 19 : Mn 2+ , Y 3 Al 2 (AlO 4 ) 3 : Ce 3+ , Lu 3 Al 2 (AlO 4 ) 3 : Ce 3+ can be used. Also, as the green phosphor, for example, Y 3 Ga 2 (AlO 4 ) 3: Ce 3+, Ca 3 Sc 2 Si 3 O 12: Ce 3+, CaSc 2 O 4: Ce 3+, ⁇ -Si 3 N 4: Eu 2+ , SrSi 2 O 2 N 2 : Eu 2+ can be used.
  • green phosphors examples include Ba 3 Si 6 O 12 N 2 : Eu 2+ , Sr 3 Si 13 Al 3 O 2 N 21 : Eu 2+ , YTbSi 4 N 6 C: Ce 3+ , SrGa 2 S 4 : Eu 2+ .
  • a green phosphor for example, Ca 2 LaZr 2 (AlO 4 ) 3: Ce 3+, Ca 2 TbZr 2 (AlO 4) 3: Ce 3+, Ca 2 TbZr 2 (AlO 4) 3: Ce 3+, using Pr 3+ be able to.
  • Zn 2 SiO 4 : Mn 2+ , MgGa 2 O 4 : Mn 2+ can be used as the green phosphor.
  • the green phosphor for example, LaPO 4 : Ce 3+ , Tb 3+ , Y 2 SiO 4 : Ce 3+ , CeMgAl 11 O 19 : Tb 3+ , GdMgB 5 O 10 : Ce 3+ , Tb 3+ can be used.
  • the yellow or orange phosphor for example, (Sr, Ba) 2 SiO 4 : Eu 2+ , (Y, Gd) 3 Al 5 O 12 : Ce 3+ , ⁇ -Ca—SiAlON: Eu 2+ can be used.
  • Y 2 Si 4 N 6 C Ce 3+
  • La 3 Si 6 N 11 Ce 3+
  • Y 3 MgAl (AlO 4 ) 2 (SiO 4 ): Ce 3+ can be used.
  • the red phosphor include Sr 2 Si 5 N 8 : Eu 2+ , CaAlSiN 3 : Eu 2+ , SrAlSi 4 N 7 : Eu 2+ , CaS: Eu 2+ , La 2 O 2 S: Eu 3+ , Y 3 Mg 2 (AlO 4 ) (SiO 4 ) 2 : Ce 3+ can be used.
  • red phosphor for example, Y 2 O 3 : Eu 3+ , Y 2 O 2 S: Eu 3+ , Y (P, V) O 4 : Eu 3+ , YVO 4 : Eu 3+ can be used.
  • red phosphor for example, 3.5 MgO.0.5 MgF 2 .GeO 2 : Mn 4+ , K 2 SiF 6 : Mn 4+ , GdMgB 5 O 10 : Ce 3+ , Mn 2+ can be used.
  • the low-cost semiconductor light-emitting device 12 is realizable by making all the fluorescent substance to use an oxide.
  • the solid state light emitting element 6 is fixed on the substrate 5 on which the wiring conductor 7 is formed by using a mounting technique.
  • the power supply electrode 8 of the solid light emitting element 6 and the wiring conductor 7 are electrically connected using a wire bonding technique or the like.
  • a light-transmitting resin 10 such as an uncured silicone resin and the phosphor 2 are sufficiently mixed to produce a phosphor paste adjusted to have a predetermined viscosity.
  • the weight ratio of the phosphor 2 in the phosphor paste is set to several% to several tens%.
  • the light extraction surface of the solid light emitting element 6 is covered by dropping the phosphor paste onto the solid light emitting element 6 that is electrically connected with the phosphor paste. Then, the phosphor paste is solidified. Thereby, the semiconductor light emitting device 12 having the wavelength conversion layer 9 can be obtained.
  • the solid state light emitting device 6 When a predetermined power is supplied to the solid state light emitting device 6 in the semiconductor light emitting device 12, the solid state light emitting device 6 emits primary light.
  • This primary light is, for example, violet light having an emission peak in a wavelength range of 380 nm or more and less than 420 nm, or blue light having an emission peak in a wavelength range of 420 nm or more and less than 470 nm.
  • This primary light is converted into secondary light whose color tone is controlled by the wavelength conversion layer 9 including the phosphor 2.
  • the primary light is irradiated to the phosphor 2 included in the wavelength conversion layer 9 and part of the light is absorbed by the phosphor 2.
  • the primary light absorbed by the phosphor 2 is wavelength-converted by the phosphor 2 into secondary light having a relatively long wavelength.
  • the secondary light passes through the translucent resin 10 and is emitted from the semiconductor light emitting device 12.
  • the primary light that has not been absorbed by the phosphor 2 passes through the translucent resin 10 and is emitted from the semiconductor light emitting device.
  • both the primary light and the secondary light are emitted from the semiconductor light emitting device 12. That is, the semiconductor light emitting device 12 outputs both of them in an additive color mixed state.
  • the thickness and light transmittance of the wavelength conversion layer 9, the type and mixing ratio of the phosphors 2 contained in the wavelength conversion layer 9, the wavelength of the primary light emitted from the solid light emitting element 6 and the like can be adjusted as appropriate. That is, the semiconductor light emitting device 12 can be designed to output light of a desired light color. In some cases, all of the primary light is absorbed by the phosphor 2 and wavelength-converted. In this case, the emitted light from the semiconductor light emitting device 12 is only the secondary light wavelength-converted by the phosphor.
  • the semiconductor light emitting device 12 is configured by a combination of the solid light emitting element 6 and the phosphor 2 that absorbs light emitted from the solid light emitting element 6 and emits fluorescence whose color tone is controlled.
  • the semiconductor light emitting device 12 can emit fluorescence with a relatively small intensity of the yellow light component that causes yellowing. Therefore, by using the emitted light from the semiconductor light emitting device 12 as illumination light, the object looks like a color with little yellowing or a color without yellowing. That is, the vividness of the object color can be enhanced.
  • the semiconductor light emitting device 12 for an illumination light source or an illumination device, it is possible to easily obtain illumination light that makes whiteness and cleanliness stand out.
  • the same operational effects as when the optical filter member is used can be obtained without using the optical filter member. With this configuration, it is possible to reduce the number of components of the semiconductor light emitting device 12 and the number of manufacturing steps thereof.
  • the semiconductor light emitting device 12 can be widely used as an illumination light source, a backlight of a liquid crystal display, a light source of a display device, and the like.
  • the semiconductor light emitting device 12 can emit light that enhances the vividness of an object and highlights a sense of whiteness and cleanliness. Therefore, when the semiconductor light emitting device 12 is used as an illumination light source or the like, it is possible to provide an illumination light source with high color rendering properties and high efficiency, and a display device capable of displaying a wide color gamut on a high luminance screen.
  • the illumination light source is an example of the light-emitting device of the present embodiment, and includes a semiconductor light-emitting device 12, a lighting circuit 13 that operates and lights the semiconductor light-emitting device 12, and a base part 14 that connects the illumination light source such as a base to a lighting fixture. is doing.
  • the lighting circuit has a function of supplying a constant current to the semiconductor light emitting device 12, for example. Electric power is supplied to the lighting circuit 13 from the outside of the illumination light source via the base part 14.
  • the block of the lighting device is shown in FIG.
  • the lighting device is an example of the light emitting device of the present embodiment, and includes a semiconductor light emitting device 12 and a control circuit 15 that controls power supplied to the semiconductor light emitting device 12.
  • the control circuit has a function of controlling supply power based on a signal from the outside of the lighting device, for example. Power is supplied to the control circuit from the outside of the lighting device.
  • An illumination system is a system having a function of controlling a plurality of illumination light sources and illumination devices.
  • the display device is a modification of the light emitting device, and includes a plurality of semiconductor light emitting devices 12 arranged in a matrix and a signal circuit for turning the semiconductor light emitting devices 12 on and off.
  • a liquid crystal panel with an LED backlight can be given.
  • a plurality of semiconductor light emitting devices 12 are arranged in a line shape or a matrix shape.
  • a liquid crystal panel backlight with LED backlight, a lighting circuit for turning on the backlight or a control circuit for ON / OFF control of the backlight, and a liquid crystal panel are combined.
  • the light emitting device since the light emitting device has good characteristics in terms of visibility and visibility, it can be widely used for the above-described illumination light source, illumination device, display device, and the like.
  • Yttrium oxide (Y 2 O 3 ) purity 3N
  • AKP-G008 manufactured by Sumitomo Chemical Co., Ltd. is used for the above aluminum oxide for the purpose of increasing the reactivity between the raw materials.
  • the present invention is not limited to this.
  • the compound powder used as a flux (reaction accelerator) and its purity are as follows.
  • each raw material and reaction accelerator are weighed so as to have the ratio shown in Table 1.
  • these raw materials and reaction accelerator are mixed with an appropriate amount of solvent, and stirred for 1 hour using a ball mill.
  • the raw material after mixing is moved to a container, and it dries at 150 degreeC for 2 hours using a dryer.
  • the mixed raw material after drying is pulverized using a mortar and pestle. This pulverized mixed raw material is a calcined raw material.
  • the firing raw material is transferred to an alumina crucible with a lid, and fired in an atmosphere at 1600 ° C. for 2 hours using a box-type electric furnace.
  • FIG. 5 shows the X-ray diffraction (XRD) patterns of these compounds.
  • FIG. 7 shows an emission spectrum obtained by simulation and an average color rendering index Ra in the spectrum.
  • the color rendering index is an index for evaluating the color appearance defined in JIS (Japanese Industrial Standards). It is measured using black body radiation, which is natural light, as reference light, and is measured using 15 types of evaluation color charts. It is indicated by 15 indices (R1 to R15) corresponding to each color chart.
  • the average color rendering index Ra indicates an average value of eight indexes R1 to R8. The maximum value is 100, and the closer to 100, the better.
  • Ra of 80 or more is used as a measure of high color rendering properties.
  • the Ra of a three-wavelength fluorescent lamp that is an existing light source is 80 or more.
  • an existing light source with high color rendering properties there is a three-wavelength fluorescent lamp. According to this embodiment, it is possible to obtain illumination light that is comparable to a three-wavelength fluorescent lamp.
  • X 0.5 or more
  • X is preferably 0.1 or less in consideration of an increase in the amount of expensive neodymium used compared to yttrium and a decrease in light emission efficiency.
  • the present invention is not limited to these, and various modifications are possible within the scope of the gist of the present invention.
  • phosphors with partial depressions in the emission spectrum due to absorption of light-absorbing ions may emit light that makes an object look vivid even without using an optical filter member. it can.

Abstract

A phosphor containing a luminescent center and light-absorbing ions in a matrix. The light-absorbing ions have a wavelength range over which fluorescent components emitted by the luminescent center can be partially absorbed and have a light-emitting spectrum that has a depression over said wavelength range. Light emission that is color controlled and that has a desired and specific light-emitting spectrum shape can thereby be achieved, even without using a member that has an optical filtering function.

Description

蛍光体及びこれを用いた発光装置Phosphor and light emitting device using the same
 本発明は、蛍光体及びこれを用いた発光装置に関する。詳細には、本発明は、好ましい照明光を得るために色調制御された蛍光体及びこれを用いた発光装置に関する。 The present invention relates to a phosphor and a light emitting device using the phosphor. More specifically, the present invention relates to a phosphor whose color tone is controlled to obtain preferable illumination light and a light emitting device using the same.
 従来より、蛍光体として、発光中心を含むイットリウムアルミニウムガーネット(YAG;YAl(AlO)が知られている。そして、特にCe3+で付活したYAG:Ce蛍光体は高効率蛍光体として知られ、数多くの発光装置に利用されている。YAG:Ce蛍光体は、粒子線又は電磁波を照射されると励起されて、超短残光性の黄~緑色の可視光を放つ特性を有している(例えば、非特許文献1参照)。 Conventionally, yttrium aluminum garnet (YAG; Y 3 Al 2 (AlO 4 ) 3 ) including a light emission center is known as a phosphor. In particular, the YAG: Ce phosphor activated with Ce 3+ is known as a high-efficiency phosphor and is used in many light emitting devices. A YAG: Ce phosphor is excited when irradiated with a particle beam or an electromagnetic wave, and has a characteristic of emitting yellow to green visible light with ultrashort afterglow (see, for example, Non-Patent Document 1).
 この蛍光体が放つ蛍光において、黄色光成分の強度が大きい場合、この蛍光に照らされた物体の色は、黄ばみが目立ち、鮮やかさの低い色として視認されることがある。従来より、物体色の黄ばみを低減し、物体色を鮮やかに見せる蛍光ランプが知られている。具体的には、ガラス管の内面に蛍光体層が形成され、さらにガラス管と蛍光体層との間にNd3+イオンを含んだガラス薄膜(Ndガラスフリット)が形成されている蛍光ランプである。(例えば、特許文献1参照)。 In the fluorescence emitted by the phosphor, when the intensity of the yellow light component is large, the color of the object illuminated by the fluorescence may be visually recognized as a color with a low vividness due to the conspicuous yellowing. 2. Description of the Related Art Conventionally, fluorescent lamps that reduce yellowing of an object color and show the object color vividly are known. Specifically, this is a fluorescent lamp in which a phosphor layer is formed on the inner surface of a glass tube, and a glass thin film (Nd glass frit) containing Nd 3+ ions is formed between the glass tube and the phosphor layer. . (For example, refer to Patent Document 1).
特開2000-11954号公報Japanese Patent Application Laid-Open No. 2000-11954
 本発明の蛍光体は、母体に発光中心と光吸収イオンとを含有し、光吸収イオンは、発光中心が放つ蛍光成分を部分的に吸収可能な波長領域を有する。そして、この蛍光体の発光スペクトルは、光吸収イオンの吸収可能な波長領域に窪みを有する。 The phosphor of the present invention contains a luminescent center and light-absorbing ions in the matrix, and the light-absorbing ions have a wavelength region that can partially absorb the fluorescent component emitted by the luminescent center. And the emission spectrum of this fluorescent substance has a hollow in the wavelength range which can absorb light absorption ion.
 以上の構成により、上述のNd3+イオンを含むガラス薄膜のように光学フィルター機能を持つ部材(以下、「光学フィルター部材」と呼ぶ。)を使用しなくても、所望する特殊な蛍光スペクトルの形状を有する蛍光体、すなわち色調の制御のなされた蛍光体を得ることができる。 With the above configuration, a desired special fluorescence spectrum shape can be obtained without using a member having an optical filter function (hereinafter referred to as an “optical filter member”) such as the glass thin film containing Nd 3+ ions. That is, a phosphor having a color tone controlled can be obtained.
本発明の実施形態の発光装置を説明するための概略図Schematic for demonstrating the light-emitting device of embodiment of this invention. 本発明の実施形態の発光装置を説明するための概略図Schematic for demonstrating the light-emitting device of embodiment of this invention. 本発明の実施形態おける発光装置の一例である半導体発光装置を模式的に示す断面図Sectional drawing which shows typically the semiconductor light-emitting device which is an example of the light-emitting device in embodiment of this invention 本発明の実施形態における発光装置の一例を説明するためのブロック図The block diagram for demonstrating an example of the light-emitting device in embodiment of this invention 本発明の実施形態における発光装置の一例を説明するためのブロック図The block diagram for demonstrating an example of the light-emitting device in embodiment of this invention 本発明の実施形態における化合物(蛍光体)のXRDパターンの図The figure of the XRD pattern of the compound (phosphor) in the embodiment of the present invention 本発明の実施形態における化合物(蛍光体)の発光スペクトルの図Diagram of emission spectrum of compound (phosphor) in an embodiment of the present invention 青色LEDと、本発明の実施形態における化合物(蛍光体)と、赤色蛍光体の各発光スペクトルを用いて行ったシミュレーションから得られる発光スペクトルと平均演色評価数Raの図Diagram of emission spectrum and average color rendering index Ra obtained from simulation performed using each emission spectrum of blue LED, compound (phosphor) in embodiment of the present invention, and red phosphor
 本発明の実施形態の説明に先立ち、従来の蛍光体における課題を説明する。 Prior to the description of the embodiments of the present invention, problems in conventional phosphors will be described.
 一般に、蛍光体の発光スペクトルにおいて、光学フィルター部材(特許文献1を参照)を利用せずに特定の波長域の強度を低下させ、所望する特殊な発光スペクトル形状を得ることは困難である。光学フィルター部材を使用して発光スペクトルの色調を制御するとコスト及び工数が増加する。 In general, it is difficult to obtain a desired special emission spectrum shape by reducing the intensity of a specific wavelength region without using an optical filter member (see Patent Document 1) in the emission spectrum of a phosphor. Controlling the color tone of the emission spectrum using an optical filter member increases costs and man-hours.
 以下、光学フィルター部材を使用することなく、色調制御のなされた発光スペクトルを発する本発明の実施形態に係る蛍光体及びこの蛍光体を用いた発光装置について詳細に説明する。なお図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, a phosphor according to an embodiment of the present invention that emits an emission spectrum whose color tone is controlled without using an optical filter member, and a light emitting device using the phosphor will be described in detail. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 [蛍光体]
 本発明の実施形態における蛍光体は、母体に発光中心と光吸収イオンとを含有する。光吸収イオンは、発光中心が放つ蛍光成分を部分的に吸収可能である。この蛍光体の発光スペクトルは、光吸収イオンの吸収可能な波長領域に窪みを有する。
[Phosphor]
The phosphor in the embodiment of the present invention contains a luminescent center and light absorbing ions in the matrix. The light-absorbing ions can partially absorb the fluorescent component emitted by the emission center. The emission spectrum of this phosphor has a depression in a wavelength region where light absorbing ions can be absorbed.
 一般に蛍光体は、結晶質の化合物を構成する元素の一部を、蛍光を放つ特性を持つイオンとなり得る元素で部分置換した化合物である。このような特性を持つイオンは、発光中心と呼ばれる。そして、本実施形態の蛍光体において、結晶質の化合物である母体に、発光中心であるイオンが導入されている。これにより、この蛍光体は、外部刺激によって容易に励起され、蛍光を放つことが可能となる。外部刺激の例として、粒子線(α線、β線、電子線)や電磁波(γ線、X線、真空紫外線、紫外線、可視光線)の照射などがある。 Generally, a phosphor is a compound in which a part of an element constituting a crystalline compound is partially substituted with an element that can be an ion having a fluorescence emission property. Ions having such characteristics are called emission centers. In the phosphor of the present embodiment, ions that are the emission center are introduced into the matrix that is a crystalline compound. Thereby, this fluorescent substance is easily excited by an external stimulus and can emit fluorescence. Examples of external stimuli include irradiation with particle beams (α rays, β rays, electron beams) and electromagnetic waves (γ rays, X rays, vacuum ultraviolet rays, ultraviolet rays, visible rays).
 さらに、本実施形態の蛍光体において、ベースとなる上記の一般的蛍光体に、発光中心の放つ蛍光成分を部分的に吸収することのできる光吸収イオンが導入されている。これにより、蛍光体に含まれる光吸収イオンが、蛍光成分の一部を吸収するように作用する。すなわち、蛍光体自身が光学フィルター部材の機能を持つことになる。そして、この蛍光体が放つ発光スペクトルの形状は、光学フィルター部材を用いた場合と同様の形状になる。すなわち、本実施形態の蛍光体は、光学フィルター部材を用いなくとも、一般的な蛍光体と光学フィルター部材を用いた場合と同様の作用効果を発揮することが可能となる。 Furthermore, in the phosphor of this embodiment, light absorbing ions capable of partially absorbing the fluorescent component emitted from the emission center are introduced into the above-described general phosphor as a base. Thereby, the light absorption ion contained in a fluorescent substance acts so that a part of fluorescent component may be absorbed. That is, the phosphor itself has the function of an optical filter member. And the shape of the emission spectrum which this fluorescent substance emits becomes the same shape as the case where an optical filter member is used. That is, the phosphor of the present embodiment can exhibit the same effects as when a general phosphor and an optical filter member are used without using an optical filter member.
 より詳細に説明すると、本実施形態の具体例として、図6は、母体にイットリウムアルミニウムガーネット(YAl(AlO)を用い、発光中心にCe3+を導入し、さらに光吸収イオンにNd3+を導入した蛍光体の発光スペクトルを示す。ここで、Xは蛍光体1モルにおける光吸収イオンとなるNd3+のモル分率である。X=0の発光スペクトルは光吸収イオンを導入していない蛍光体の発光スペクトルを示し、X=0.001、0.01、0.1の発光スペクトルは光吸収イオンを導入した蛍光体の発光スペクトルをそれぞれ示す。図6に示すように、光吸収イオンを導入していない蛍光体は、可視光領域に広く発光スペクトルの分布(成分)を持ち、黒体輻射のスペクトル分布に近い蛍光を放出する。しかし、光吸収イオンとしてNd3+を導入した場合には、その発光スペクトルにおいて、580nm付近の強度が低下している。なお、図6に示す具体例の評価について、後ほど説明する。 More specifically, as a specific example of the present embodiment, FIG. 6 shows a case where yttrium aluminum garnet (Y 3 Al 2 (AlO 4 ) 3 ) is used as a base, Ce 3+ is introduced into the emission center, and light absorbing ions are further introduced. Shows the emission spectrum of the phosphor into which Nd 3+ is introduced. Here, X is the molar fraction of Nd 3+ that becomes light absorbing ions in 1 mol of the phosphor. The emission spectrum of X = 0 indicates the emission spectrum of the phosphor not having the light absorbing ion introduced therein, and the emission spectra of X = 0.001, 0.01, 0.1 are the emission of the phosphor having the light absorbing ion introduced therein. Each spectrum is shown. As shown in FIG. 6, a phosphor into which light-absorbing ions are not introduced has a broad emission spectrum distribution (component) in the visible light region, and emits fluorescence close to the spectrum distribution of black body radiation. However, when Nd 3+ is introduced as light absorbing ions, the intensity around 580 nm is reduced in the emission spectrum. The evaluation of the specific example shown in FIG. 6 will be described later.
 このように、蛍光体に光吸収イオンを導入することにより、光吸収イオンが蛍光成分(蛍光スペクトル)の一部を吸収する。そのため、発光中心(例えば、Ce3+)による蛍光成分において、光吸収イオンの光吸収に対応する波長領域の強度が下がる。言い換えると、この蛍光体において、発光スペクトルは、光吸収イオンに誘発され、部分的な窪みを持つこととなる。したがって、本実施形態の蛍光体は、蛍光体自身において、光学フィルター部材を使用しなくても、所望する色調に制御のなされた発光スペクトルを発することができる。なお、本明細書において、発光スペクトルの窪みとは、蛍光体への光吸収イオンの導入により、発光スペクトルの強度が部分的に低下していること、または、低下する現象をいう。 In this way, by introducing light absorbing ions into the phosphor, the light absorbing ions absorb a part of the fluorescent component (fluorescence spectrum). Therefore, in the fluorescent component due to the emission center (for example, Ce 3+ ), the intensity of the wavelength region corresponding to the light absorption of the light absorbing ions is lowered. In other words, in this phosphor, the emission spectrum is induced by light-absorbing ions and has a partial depression. Therefore, the phosphor of this embodiment can emit an emission spectrum controlled to a desired color tone without using an optical filter member in the phosphor itself. In the present specification, the depression of the emission spectrum refers to a phenomenon in which the intensity of the emission spectrum is partially reduced or reduced due to the introduction of light-absorbing ions into the phosphor.
 本実施形態の蛍光体は、発光スペクトルに窪みが生ずるものであれば、無機化合物でも有機化合物でも構わない。ただし、本実施形態の蛍光体は、むしろ無機化合物であることが好ましい。無機化合物は、有機化合物と比較すると相対的に熱的にも化学的にも安定なものが多い。さらに実用化された蛍光体として、実績を持つものも多い。そのため、この蛍光体を応用した装置(例えば、発光装置)において、無機化合物を蛍光体として使用することにより信頼性が向上する。 The phosphor of the present embodiment may be an inorganic compound or an organic compound as long as a depression is generated in the emission spectrum. However, the phosphor of the present embodiment is preferably an inorganic compound. Many inorganic compounds are relatively thermally and chemically stable as compared to organic compounds. In addition, many phosphors that have been put into practical use have a track record. Therefore, in an apparatus (for example, a light-emitting device) to which this phosphor is applied, reliability is improved by using an inorganic compound as the phosphor.
 さらに、本実施形態の蛍光体は、可視光線の波長領域に蛍光成分の最大強度を持つことが好ましい。つまり、この蛍光体は、波長380nm以上780nm以下の可視光領域に、蛍光成分(蛍光スペクトル)の最大強度を有することが好ましい。一般的に、蛍光体を利用した発光装置は、可視光を利用するものが多いため、この蛍光体の応用の幅が広がるからである。 Furthermore, the phosphor of the present embodiment preferably has the maximum intensity of the fluorescent component in the wavelength region of visible light. That is, this phosphor preferably has the maximum intensity of the fluorescent component (fluorescence spectrum) in the visible light region having a wavelength of 380 nm or more and 780 nm or less. This is because, in general, many light emitting devices using phosphors use visible light, so the range of applications of the phosphors is widened.
 また、上記の最大強度を有する波長領域として、420nm以上、660nm未満の波長領域が好ましい。視感度の高い波長領域であるこの領域を選択することにより、この蛍光体を応用した装置の高効率化を図ることができるからである。さらに最大強度は、光の三原色の波長領域のいずれかにあることが好ましい。すなわち、青色光である420nm以上、500nm未満の波長領域、緑色光から橙色光である520nm以上、600nm未満の波長領域、または、赤色光である600nm以上、660nm未満の波長領域のいずれかである。上記の高効率化の効果に加えて、色度座標において、広い範囲での光色設計が容易になるからである。 Further, as the wavelength region having the maximum intensity, a wavelength region of 420 nm or more and less than 660 nm is preferable. This is because by selecting this region, which is a wavelength region with high visibility, it is possible to improve the efficiency of the device using this phosphor. Furthermore, the maximum intensity is preferably in any of the wavelength regions of the three primary colors of light. That is, any one of a wavelength region of 420 nm or more and less than 500 nm that is blue light, a wavelength region of 520 nm or more and less than 600 nm that is green light to orange light, or a wavelength region that is 600 nm or more and less than 660 nm that is red light . This is because, in addition to the effect of increasing the efficiency described above, it is easy to design a light color in a wide range in chromaticity coordinates.
 本実施形態の蛍光体を構成する母体は、ガーネット型の結晶構造を持つことが好ましい。ガーネット型の結晶構造を持つ化合物を母体として用いた蛍光体は、LED照明で使われていることからも分かるように、高い実用実績を有している。また、この蛍光体を応用する発光装置の種類も多い。そのため、ガーネット型の結晶構造を持つ化合物を母体として用いた蛍光体は、産業上の利用価値の高い蛍光体となる。ここで、母体として用いられ得るガーネット型の化合物は、上記効果が得られる限り特に限定されない。好ましくは、母体として、例えばYAl(AlO、LuAl(AlO、YGa(AlO、(Y,Gd)Al(AlOなどのアルミニウムガーネットタイプの化合物を用いることができる。また、CaSc(SiOなども好ましい。この中でも、発光効率が高いYAl(AlOが特に好ましい。 The matrix constituting the phosphor of the present embodiment preferably has a garnet crystal structure. A phosphor using a compound having a garnet-type crystal structure as a matrix has a high practical record as can be seen from the fact that it is used in LED lighting. There are also many types of light-emitting devices that apply this phosphor. Therefore, a phosphor using a compound having a garnet-type crystal structure as a matrix is a phosphor having high industrial utility value. Here, the garnet-type compound that can be used as a base is not particularly limited as long as the above-described effects are obtained. Preferably, for example, Y 3 Al 2 (AlO 4 ) 3 , Lu 3 Al 2 (AlO 4 ) 3 , Y 3 Ga 2 (AlO 4 ) 3 , (Y, Gd) 3 Al 2 (AlO 4 ) 3 as the base material. An aluminum garnet type compound such as can be used. Further, Ca 3 Sc 2 (SiO 4 ) 3 or the like is also preferable. Among these, Y 3 Al 2 (AlO 4 ) 3 having high luminous efficiency is particularly preferable.
 本実施形態の蛍光体において、母体に光吸収イオンを含まず、発光イオンのみを含む蛍光体、すなわちベースとなる蛍光体の放つ蛍光スペクトルの半値幅(FWHM)は、50nm以上、150nm未満であることが好ましい。つまり、図6の例において、光吸収イオンとしてのNd3+を含まない、ベースとなるYAG:Ce3+の蛍光スペクトル(X=0)の半値幅が、50nm以上、150nm未満であることが好ましい。この場合、蛍光スペクトルは可視光領域に広くその分布を持つため、黒体輻射に近い分光分布の光を得ることが比較的容易となる。また、広い波長範囲に亘って蛍光スペクトルの成分が分布するので、窪みの目立つ蛍光スペクトルを容易に得ることが可能となる。窪みによる効果を発揮しやすくなる。 In the phosphor of the present embodiment, the half width (FWHM) of the fluorescence spectrum emitted from the phosphor that does not include light-absorbing ions and includes only luminescent ions, that is, the base phosphor, is 50 nm or more and less than 150 nm. It is preferable. That is, in the example of FIG. 6, it is preferable that the half width of the fluorescence spectrum (X = 0) of the base YAG: Ce 3+ not containing Nd 3+ as light absorbing ions is 50 nm or more and less than 150 nm. In this case, since the fluorescence spectrum has a wide distribution in the visible light region, it is relatively easy to obtain light having a spectral distribution close to blackbody radiation. In addition, since the components of the fluorescence spectrum are distributed over a wide wavelength range, it is possible to easily obtain a fluorescence spectrum with conspicuous depressions. It becomes easy to demonstrate the effect by the dent.
 本実施形態の蛍光体を構成する発光中心は、蛍光体の母体として機能する化合物であればよい。すなわち発光中心は、母体の結晶中で、電子エネルギー遷移によって蛍光を放ち得るイオンであればよい。具体的発光中心として、ns形イオン発光中心と呼ばれるSn2+、Sb3+、Tl、Pb2+及びBi3+や、遷移金属イオン発光中心と呼ばれるCr3+,Mn4+,Mn2+及びFe3+の少なくとも一つを使用することが好ましい。また、希土類イオン発光中心と呼ばれるCe3+、Pr3+、Sm3+、Tb3+、Gd3+、Dy3+、Ho3+、Tm3+、Yb3+、Sm2+、Eu2+、Eu3+及びYb2+の少なくとも一つを使用することも好ましい。この中でも、発光中心は、Ce3+であることが特に好ましい。Ce3+を発光中心とする蛍光体は、LED照明用などにおいて、多くの実用実績を有する。さらにこの蛍光体を応用する発光装置の種類も多い。発光中心としてCe3+を用いることにより、産業上の利用価値の高い蛍光体を容易に実現することが可能となる。 The luminescent center constituting the phosphor of the present embodiment may be a compound that functions as the host of the phosphor. That is, the emission center may be any ion that can emit fluorescence by electron energy transition in the host crystal. As specific emission centers, at least Sn 2+ , Sb 3+ , Tl + , Pb 2+ and Bi 3+ called ns 2 ion emission centers and Cr 3+ , Mn 4+ , Mn 2+ and Fe 3+ called transition metal ion emission centers are used. It is preferable to use one. Further, at least one of Ce 3+ called rare earth ions luminescence center, Pr 3+, Sm 3+, Tb 3+, Gd 3+, Dy 3+, Ho 3+, Tm 3+, Yb 3+, Sm 2+, Eu 2+, Eu 3+ and Yb 2+ It is also preferred to use Among these, the emission center is particularly preferably Ce 3+ . The phosphor having Ce 3+ as the emission center has many practical achievements in LED lighting and the like. Furthermore, there are many types of light emitting devices that apply this phosphor. By using Ce 3+ as the emission center, it is possible to easily realize a phosphor having high industrial utility value.
 本実施形態の蛍光体における光吸収イオンの吸収可能な波長領域は、560nm以上、600nm未満の波長領域にあることが好ましい。 It is preferable that the wavelength region in which the light-absorbing ions can be absorbed in the phosphor of the present embodiment is in the wavelength region of 560 nm or more and less than 600 nm.
 また、本実施形態の蛍光体の発光スペクトルにおいて、上記の窪みは560nm以上、600nm未満の波長領域にあることが好ましい。この場合、黄ばみの原因になる黄色光成分の強度が相対的に小さい蛍光スペクトルになる。そのため、この蛍光を照明光に用いることにより、照明光が物体の見た目の鮮やかさを引き立て、白さ感及び清潔感を際立たせることができる。 Further, in the emission spectrum of the phosphor of the present embodiment, it is preferable that the above-mentioned depression is in a wavelength region of 560 nm or more and less than 600 nm. In this case, the fluorescence spectrum has a relatively small intensity of the yellow light component that causes yellowing. Therefore, by using this fluorescence for illumination light, the illumination light can enhance the vividness of the appearance of the object, and the whiteness and cleanliness can be emphasized.
 さらに、本実施形態の蛍光体の蛍光スペクトルにおいて、波長580nmにおける強度が最大強度に対して70%未満であることが好ましい。図6の示す発光スペクトルにおいて、550nmに最大強度を示していることから、550nmの発光強度に対する580nmの発光強度が70%未満であることが好ましい。これが黄ばみの原因になる黄色光成分の強度を大幅に抑制した発光スペクトルである。そのため、この発光スペクトルを照明光に用いることにより、物体の見た目の鮮やかさを引き立て、白さ感及び清潔感を際立たせることができる。さらに、蛍光体の発光効率の低下を制限するために、波長580nmにおける強度が最大強度に対して60%以上であることが好ましい。 Furthermore, in the fluorescence spectrum of the phosphor of the present embodiment, the intensity at a wavelength of 580 nm is preferably less than 70% with respect to the maximum intensity. In the emission spectrum shown in FIG. 6, since the maximum intensity is shown at 550 nm, the emission intensity at 580 nm with respect to the emission intensity at 550 nm is preferably less than 70%. This is an emission spectrum in which the intensity of the yellow light component that causes yellowing is significantly suppressed. Therefore, by using this emission spectrum for the illumination light, it is possible to enhance the vividness of the appearance of the object and to emphasize the whiteness and cleanliness. Furthermore, in order to limit the decrease in the luminous efficiency of the phosphor, the intensity at a wavelength of 580 nm is preferably 60% or more with respect to the maximum intensity.
 本実施形態の蛍光体に導入される光吸収イオンは、発光中心が放つ蛍光成分を部分的に吸収して、蛍光スペクトルの窪みを誘発するものであれば、特に限定されない。ただし、色調制御を効率的に行う観点から、光吸収イオンは3価の希土類元素イオンであることが好ましい。3価の希土類元素イオンは、その吸収スペクトルにおいて、急峻な吸収特性、すなわち特異な吸収特性を持つものが多いため、特異な蛍光スペクトルを得ることが容易となる。 The light-absorbing ions introduced into the phosphor of this embodiment are not particularly limited as long as it partially absorbs the fluorescent component emitted by the emission center and induces a depression in the fluorescence spectrum. However, from the viewpoint of efficiently controlling the color tone, the light absorption ions are preferably trivalent rare earth element ions. Since trivalent rare earth element ions often have steep absorption characteristics, that is, specific absorption characteristics in their absorption spectrum, it is easy to obtain a specific fluorescence spectrum.
 3価の希土類元素イオンとしては、Ce3+,Pr3+,Nd3+,Sm3+及びEu3+からなる群より選ばれる少なくとも一つを挙げることができる。また、3価の希土類元素イオンとしては、Gd3+,Tb3+,Dy3+,Ho3+,Er3+,Tm3+,及びYb3+からなる群より選ばれる少なくとも一つも挙げることができる。この中でも光吸収イオンは、Nd3+及びEu3+の少なくともいずれか一方であることが好ましく、Nd3+であることが特に好ましい。Nd3+及びEu3+は、可視光領域に強い吸収特性を持つため、発光スペクトルにおいて、容易に色調の制御をすることが可能となる。特に、Nd3+は黄色の波長領域に強い吸収特性を持つので、黄色光成分の強度を効果的に低下させることが可能となる。 Examples of the trivalent rare earth element ion include at least one selected from the group consisting of Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+, and Eu 3+ . Examples of the trivalent rare earth element ion include at least one selected from the group consisting of Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ , and Yb 3+ . Among these, the light absorbing ions are preferably at least one of Nd 3+ and Eu 3+ , and particularly preferably Nd 3+ . Since Nd 3+ and Eu 3+ have strong absorption characteristics in the visible light region, it is possible to easily control the color tone in the emission spectrum. In particular, since Nd 3+ has a strong absorption characteristic in the yellow wavelength region, it is possible to effectively reduce the intensity of the yellow light component.
 本実施形態の蛍光体の蛍光スペクトルにおいて、光吸収イオンの添加量は、蛍光体1モル当たり0.01モル以上0.5モル未満であることが好ましい。光吸収イオンの添加量が0.01モル以上の場合には、蛍光成分の吸収作用が発揮され、蛍光体自身が光学フィルターの機能を持つようになる。また、光吸収イオンの添加量が0.5モル未満の場合には、蛍光体の発光強度の低下を抑制することが可能となる。なお、発光強度が高く、さらに高度に色調制御された蛍光体を得る観点から、光吸収イオンの添加量は、蛍光体1モル当たり0.01モル以上0.1モル以下であることがより好ましく、0.03モル以上0.1モル以下であることが特に好ましい。 In the fluorescence spectrum of the phosphor of this embodiment, the amount of light absorbing ions added is preferably 0.01 mol or more and less than 0.5 mol per mol of the phosphor. When the amount of light absorbing ions added is 0.01 mol or more, the fluorescent component absorbs and the phosphor itself has the function of an optical filter. Moreover, when the addition amount of light absorption ion is less than 0.5 mol, it becomes possible to suppress the fall of the emitted light intensity of fluorescent substance. In addition, from the viewpoint of obtaining a phosphor with high emission intensity and high color tone control, the amount of light absorbing ions added is more preferably 0.01 mol or more and 0.1 mol or less per mol of the phosphor. , 0.03 mol or more and 0.1 mol or less is particularly preferable.
 なお、本実施形態の蛍光体は、水、有機溶剤、樹脂などの溶媒や水ガラスなどと適宜混合して、スラリー状、ペースト状、ゾル状、ゲル状にしたものを利用することができる。 It should be noted that the phosphor of this embodiment can be used in the form of a slurry, paste, sol, or gel by appropriately mixing with a solvent such as water, an organic solvent, a resin, or water glass.
 上述のように、本実施形態の蛍光体は、光吸収イオンを導入することにより、光吸収イオンが蛍光成分の一部を吸収する。そのため、発光スペクトルに、光吸収イオンに誘発され、部分的な窪みを持つことになる。その結果、この蛍光体は、光学フィルター部材を使用しなくても、色調制御のなされた光を発することができるという従来にはない特性を有する。 As described above, in the phosphor of the present embodiment, the light absorbing ions absorb a part of the fluorescent component by introducing the light absorbing ions. Therefore, the emission spectrum is induced by light absorbing ions and has a partial depression. As a result, this phosphor has an unprecedented characteristic that it can emit light whose color tone is controlled without using an optical filter member.
 [発光装置]
 次に、本発明の実施形態における発光装置を説明する。本実施形態の発光装置は、上記蛍光体を備えることを特徴とする。上述のように、本実施形態の蛍光体は、所望する特殊なスペクトル形状を有し、かつ、色調の制御のなされた光を放出する。このため、本実施形態の発光装置は、上記蛍光体とこの蛍光体を励起する励起源とを組み合わせた構成である。この構成によって、効果的に色調制御された光を出力することが可能となる。
[Light emitting device]
Next, the light emitting device in the embodiment of the present invention will be described. The light emitting device of the present embodiment includes the phosphor described above. As described above, the phosphor of this embodiment emits light having a desired special spectral shape and color tone control. For this reason, the light emitting device of the present embodiment has a configuration in which the phosphor and an excitation source for exciting the phosphor are combined. With this configuration, it is possible to output light whose color tone is effectively controlled.
 以下、図面を参考にしながら本実施形態の発光装置を説明する。図1A、図1Bは、本実施形態に係る発光装置の概略図である。図1A及び図1Bにおいて、励起源1は、蛍光体2を励起するための一次光を生成する光源である。一次光を発する励起源1として、α線、β線、電子線などの粒子線や、γ線、X線、真空紫外線、紫外線、可視光(特に紫色光や青色光などの短波長可視光)などの電磁波を放つ放射装置を用いることができる。また励起源1としては、各種の放射線発生装置や電子ビーム放射装置、放電光発生装置、固体発光素子、固体発光装置なども用いることができる。励起源1の代表的なものとして、電子銃、X線管球、希ガス放電装置、水銀放電装置、発光ダイオード、半導体レーザーを含むレーザー光発生装置、無機又は有機のエレクトロルミネッセンス素子などを挙げることができる。 Hereinafter, the light emitting device of this embodiment will be described with reference to the drawings. 1A and 1B are schematic views of a light emitting device according to this embodiment. In FIG. 1A and FIG. 1B, the excitation source 1 is a light source that generates primary light for exciting the phosphor 2. As an excitation source 1 that emits primary light, particle beams such as α-rays, β-rays, electron beams, γ-rays, X-rays, vacuum ultraviolet rays, ultraviolet rays, visible light (especially short-wavelength visible light such as violet light and blue light). A radiation device that emits electromagnetic waves such as can be used. As the excitation source 1, various radiation generators, electron beam emitters, discharge light generators, solid state light emitting elements, solid state light emitters, and the like can be used. Typical examples of the excitation source 1 include an electron gun, an X-ray tube, a rare gas discharge device, a mercury discharge device, a light emitting diode, a laser light generator including a semiconductor laser, and an inorganic or organic electroluminescence element. Can do.
 また、図1A及び図1Bにおいて、出力光4は、励起源1が放つ励起線又は励起光(以下、「励起光」と呼ぶ。)3によって励起された蛍光体2が放つ蛍光である。そして出力光4は、発光装置において照明光や表示光として利用される。 1A and 1B, the output light 4 is fluorescence emitted by the phosphor 2 excited by an excitation line or excitation light (hereinafter referred to as “excitation light”) 3 emitted by the excitation source 1. The output light 4 is used as illumination light or display light in the light emitting device.
 図1Aでは、励起線又は励起光3を蛍光体2に照射する方向に、蛍光体2からの出力光4が放出される構造の発光装置を示す。なお、図1Aに示す発光装置として、白色LED光源や蛍光ランプ、電子管などを挙げることができる。一方、図1Bでは、励起線又は励起光3を蛍光体2に照射する方向とは逆の方向に、蛍光体2からの出力光4が放出される構造の発光装置を示す。図1Bに示す発光装置として、プラズマディスプレイ装置や反射板付き蛍光体ホイールを利用する光源装置、プロジェクターなどを挙げることができる。 FIG. 1A shows a light emitting device having a structure in which output light 4 from the phosphor 2 is emitted in a direction in which the phosphor 2 is irradiated with excitation rays or excitation light 3. Note that examples of the light-emitting device illustrated in FIG. 1A include a white LED light source, a fluorescent lamp, and an electron tube. On the other hand, FIG. 1B shows a light emitting device having a structure in which output light 4 from the phosphor 2 is emitted in a direction opposite to the direction in which the phosphor 2 is irradiated with excitation rays or excitation light 3. As the light emitting device shown in FIG. 1B, a plasma display device, a light source device using a phosphor wheel with a reflector, a projector, and the like can be given.
 なお、蛍光体2と励起源1の配置において、蛍光体2は、励起源1の発する一次光の光路内に配置されればよい。 In the arrangement of the phosphor 2 and the excitation source 1, the phosphor 2 may be arranged in the optical path of the primary light emitted from the excitation source 1.
 本実施形態の発光装置の具体例として好ましいものは、蛍光体を利用して構成した半導体発光装置、照明光源、照明装置、LEDバックライト付き液晶パネル、LEDプロジェクター、レーザープロジェクターなどである。特に好ましい発光装置は、短波長可視光によって蛍光体を励起する構造を持ち、短波長可視光は固体発光素子が放つようにした構造を有するものである。 Preferred examples of the light emitting device of this embodiment are a semiconductor light emitting device, an illumination light source, an illumination device, a liquid crystal panel with an LED backlight, an LED projector, a laser projector, and the like configured using a phosphor. A particularly preferred light-emitting device has a structure that excites a phosphor with short-wavelength visible light, and the short-wavelength visible light has a structure that a solid-state light emitting element emits.
 本実施形態の発光装置は、発光する機能を備えた電子装置を広く包含するものであり、何らかの光を発する電子装置であれば特に限定されるものではない。つまり、本実施形態の発光装置は、少なくとも本実施形態の蛍光体を利用しており、さらにこの蛍光体の放つ光を少なくとも出力光として利用する発光装置である。 The light emitting device of the present embodiment widely includes electronic devices having a function of emitting light, and is not particularly limited as long as it is an electronic device that emits some light. That is, the light emitting device of the present embodiment is a light emitting device that uses at least the phosphor of the present embodiment and further uses light emitted from the phosphor as at least output light.
 上述の通り、本実施形態の発光装置は、蛍光体とこの蛍光体を励起する励起源とを組み合わせている。そして、この蛍光体は、励起源が放つエネルギーを吸収し、吸収したエネルギーを色調の制御のなされた蛍光に変換するものである。なお、励起源は、蛍光体の励起特性に合わせて、放電装置、電子銃、固体発光素子などから適宜選択することができる。 As described above, the light-emitting device of this embodiment combines a phosphor and an excitation source that excites the phosphor. And this fluorescent substance absorbs the energy which an excitation source emits, and converts the absorbed energy into the fluorescence by which the color tone was controlled. The excitation source can be appropriately selected from a discharge device, an electron gun, a solid light emitting element, etc. according to the excitation characteristics of the phosphor.
 蛍光体を利用する発光装置は数多くある。例えば蛍光灯や電子管、プラズマディスプレイパネル(PDP)、白色LED、さらには蛍光体を利用する検出装置などがこれに該当する。広義には、蛍光体を利用する照明光源及び照明装置並びに表示装置なども発光装置であり、レーザーダイオードを備えるプロジェクターやLEDバックライトを備える液晶ディスプレイなども発光装置とみなすことができる。ここで、本実施形態の発光装置は、蛍光体が放つ蛍光の種別によって分類できるため、この分類について説明する。 There are many light emitting devices that use phosphors. For example, a fluorescent lamp, an electron tube, a plasma display panel (PDP), a white LED, and a detection device using a phosphor correspond to this. In a broad sense, an illumination light source and an illumination device using a phosphor, a display device, and the like are also light emitting devices, and a projector including a laser diode, a liquid crystal display including an LED backlight, and the like can be regarded as the light emitting device. Here, since the light-emitting device of this embodiment can be classified according to the type of fluorescence emitted by the phosphor, this classification will be described.
 電子装置に利用される蛍光現象は、学術的に幾つかに区分されており、フォトルミネッセンス、カソードルミネッセンス、エレクトロルミネッセンスなどの用語で区別されている。「フォトルミネッセンス(photoluminescence)」とは、蛍光体に電磁波を照射したときに蛍光体が放つ蛍光をいう。なお、「電磁波」という用語は、X線、紫外線、可視光及び赤外線などを総称して指す。「カソードルミネッセンス(cathodeluminescence)」とは、蛍光体に電子線を照射したときに蛍光体が放つ蛍光をいう。また、エレクトロルミネッセンス(electroluminescence)とは、蛍光体に電子を注入したり電界をかけたりしたときに放つ蛍光をいう。原理的にフォトルミネッセンスに近い蛍光として、サーモルミネッセンス(thermoluminescence)という用語もある。これは蛍光体に熱を加えたときに蛍光体が放つ蛍光をいう。また、原理的にカソードルミネッセンスに近い蛍光として、ラジオルミネッセンス(radioluminescence)という用語もある。これは蛍光体に放射線を照射したときに蛍光体が放つ蛍光をいう。 Fluorescence phenomena used in electronic devices are academically divided into several categories, and are distinguished by terms such as photoluminescence, cathodoluminescence, and electroluminescence. “Photoluminescence” refers to fluorescence emitted by a phosphor when the phosphor is irradiated with an electromagnetic wave. Note that the term “electromagnetic wave” collectively refers to X-rays, ultraviolet rays, visible light, infrared rays, and the like. “Cathodeluminescence” refers to fluorescence emitted by a phosphor when the phosphor is irradiated with an electron beam. Electroluminescence refers to fluorescence emitted when electrons are injected into a phosphor or an electric field is applied. In principle, there is also a term “thermoluminescence” as fluorescence close to photoluminescence. This refers to the fluorescence emitted by the phosphor when heat is applied to the phosphor. In addition, there is also a term of radioluminescence (radioluminescence) as fluorescence close to cathodoluminescence in principle. This refers to the fluorescence emitted by the phosphor when the phosphor is irradiated with radiation.
 先に説明したように、本実施形態の発光装置は、上述の蛍光体が放つ蛍光を少なくとも出力光として利用するものである。そして、ここでいう蛍光は少なくとも上述のように区分することができるため、当該蛍光は、上記ルミネッセンスから選ばれる少なくとも一つの蛍光現象として置き換えることができる。 As described above, the light emitting device according to the present embodiment uses at least the fluorescence emitted from the above-described phosphor as output light. Since the fluorescence here can be classified at least as described above, the fluorescence can be replaced with at least one fluorescence phenomenon selected from the luminescence.
 なお、蛍光体のフォトルミネッセンスを出力光として利用する発光装置の典型例としては、X線イメージインテンシファイア、蛍光灯、白色LED、蛍光体とレーザーダイオードを利用する半導体レーザープロジェクター及びPDPが挙げられる。また、カソードルミネッセンスを出力光とする発光装置の典型例としては、電子管、蛍光表示管及びフィールドエミッションディスプレイ(FED)が挙げられる。さらに、エレクトロルミネッセンスを出力光とする発光装置の典型例としては、無機エレクトロルミネッセンスディスプレイ(無機EL)、発光ダイオード(LED)、半導体レーザー(LD)及び有機エレクトロルミネッセンス素子(OLED)が挙げられる。 Typical examples of the light emitting device that uses the photoluminescence of the phosphor as output light include an X-ray image intensifier, a fluorescent lamp, a white LED, a semiconductor laser projector using a phosphor and a laser diode, and a PDP. . Typical examples of a light emitting device that uses cathodoluminescence as output light include an electron tube, a fluorescent display tube, and a field emission display (FED). Furthermore, typical examples of a light-emitting device that uses electroluminescence as output light include inorganic electroluminescence displays (inorganic EL), light-emitting diodes (LED), semiconductor lasers (LD), and organic electroluminescence elements (OLED).
 具体的な発光装置の一例として、図2に示す半導体発光装置12を説明する。図2は、半導体発光装置12を模式的に示す断面図である。図2は断面図であるところ、図面の見易さを考慮して透光性樹脂10の断面を示すハッチングは省略している。半導体発光装置12は、励起源としての固体発光素子6と蛍光体2を含む波長変換層9を有している。 2 will be described as an example of a specific light emitting device. FIG. 2 is a cross-sectional view schematically showing the semiconductor light emitting device 12. FIG. 2 is a cross-sectional view, and hatching indicating a cross section of the translucent resin 10 is omitted in consideration of easy viewing of the drawing. The semiconductor light emitting device 12 has a wavelength conversion layer 9 including a solid light emitting element 6 as an excitation source and the phosphor 2.
 図2において、固体発光素子6は基板5に固定されている。基板5は、Al及びAlNなどのセラミックス、Al及びCuなどの金属、ガラス、シリコーン樹脂及びフィラー入りシリコーン樹脂などの樹脂により構成される。 In FIG. 2, the solid light emitting element 6 is fixed to the substrate 5. The substrate 5 is made of ceramics such as Al 2 O 3 and AlN, metals such as Al and Cu, glass, silicone resin, and resin such as filler-filled silicone resin.
 また、基板5には配線導体7が設けられている。固体発光素子6は給電電極8を有している。給電電極8と配線導体7とを、金ワイヤーなどを用いて電気的に接続することによって、固体発光素子6に給電している。 In addition, a wiring conductor 7 is provided on the substrate 5. The solid state light emitting device 6 has a feeding electrode 8. Power is supplied to the solid state light emitting element 6 by electrically connecting the power supply electrode 8 and the wiring conductor 7 using a gold wire or the like.
 一次光を生成する光源である固体発光素子6は、電気エネルギーを近紫外線、紫色光又は青色光などの光エネルギーに変換する。電気エネルギーは、直流、交流又はパルスの中から選ばれる少なくともいずれかの電力として固体発光素子6に供給される。固体発光素子6としては、LED、レーザーダイオード(LD)、無機エレクトロルミネッセンス(EL)素子、有機EL素子などを用いることができる。特に、高出力かつ狭スペクトル半値幅の一次光を得るために、固体発光素子6はLED又はLDが好ましい。なお図2は、固体発光素子6として、InGaN系化合物を発光層とするLEDを用いる構成を示している。 The solid state light emitting device 6 that is a light source that generates primary light converts electrical energy into light energy such as near ultraviolet light, purple light, or blue light. The electrical energy is supplied to the solid state light emitting device 6 as at least one power selected from direct current, alternating current, and pulse. As the solid light-emitting element 6, an LED, a laser diode (LD), an inorganic electroluminescence (EL) element, an organic EL element, or the like can be used. In particular, in order to obtain primary light having a high output and a narrow spectral half width, the solid-state light emitting element 6 is preferably an LED or an LD. FIG. 2 shows a configuration in which an LED having an InGaN-based compound as a light emitting layer is used as the solid light emitting element 6.
 波長変換層9は、蛍光体2を含み、固体発光素子6を覆っている。蛍光体2は固体発光素子6の放つ一次光を、相対的に長波長である二次光に波長変換する。また、図2に示すように、波長変換層9は、側壁11で囲まれている。さらに波長変換層9を構成する透光性樹脂10中に、本実施形態で述べた蛍光体2の粒子が分散されている。なお、図2において、波長変換層9は固体発光素子6の上面及び側面を覆っている。ただし、波長変換層9の配置はこの形態に限定されない。固体発光素子6の発する光の光路内に波長変換層9が配置されればよい。例えば、固体発光素子6の上面のみへの配置、あるいは固体発光素子6と直接、接することなく、その上方に配置することも可能である。固体発光素子6の下方に配置してもよい。波長変換層9は、蛍光樹脂、蛍光セラミックス、蛍光ガラスなどの光透過性の発光材料にこの蛍光体2を含ませた構成にすることもできる。 The wavelength conversion layer 9 includes the phosphor 2 and covers the solid light emitting element 6. The phosphor 2 converts the wavelength of the primary light emitted from the solid light emitting element 6 into secondary light having a relatively long wavelength. As shown in FIG. 2, the wavelength conversion layer 9 is surrounded by the side wall 11. Furthermore, the particles of the phosphor 2 described in the present embodiment are dispersed in the translucent resin 10 constituting the wavelength conversion layer 9. In FIG. 2, the wavelength conversion layer 9 covers the upper surface and side surfaces of the solid light emitting element 6. However, the arrangement of the wavelength conversion layer 9 is not limited to this form. The wavelength conversion layer 9 should just be arrange | positioned in the optical path of the light which the solid light emitting element 6 emits. For example, it is also possible to dispose only on the upper surface of the solid light emitting element 6 or to dispose it above the solid light emitting element 6 without directly contacting it. You may arrange | position under the solid light emitting element 6. FIG. The wavelength conversion layer 9 may be configured such that the phosphor 2 is contained in a light-transmitting light-emitting material such as fluorescent resin, fluorescent ceramics, or fluorescent glass.
 波長変換層9には、蛍光体として本実施形態の蛍光体2を単独で使用することもできる。必要に応じて、本実施形態の蛍光体2とは異なる蛍光体を追加してもよい。また、発光色又は組成の少なくともいずれかひとつが異なる蛍光体2を複数種類組み合わせて用いてもよい。 In the wavelength conversion layer 9, the phosphor 2 of the present embodiment can be used alone as a phosphor. If necessary, a phosphor different from the phosphor 2 of this embodiment may be added. Moreover, you may use combining the fluorescent substance 2 from which at least any one of luminescent color or a composition differs in multiple types.
 本実施形態の蛍光体2とは異なる蛍光体であって、かつ、波長変換層9に用いることができる蛍光体は、固体発光素子6の放つ一次光を吸収して相対的に長波長である二次光に波長変換する。このような蛍光体は光吸収イオンを含まない。青色光、緑青色光、青緑色光、緑色光、黄色光、橙色光、赤色光を放つ各種の蛍光体から適宜選択することにより、半導体発光装置12が所望の色の出力光を放つようにすることができる。 The phosphor that is different from the phosphor 2 of the present embodiment and that can be used for the wavelength conversion layer 9 absorbs the primary light emitted from the solid-state light emitting element 6 and has a relatively long wavelength. Wavelength conversion to secondary light. Such a phosphor does not contain light absorbing ions. By appropriately selecting from various phosphors that emit blue light, green blue light, blue green light, green light, yellow light, orange light, and red light, the semiconductor light emitting device 12 emits output light of a desired color. can do.
 上述のように、固体発光素子6をLED又はLDとした場合の半導体発光装置12の蛍光体としては、本実施形態の光吸収イオンを導入した蛍光体2を用いることができる。蛍光体2と組合わせて使用できる蛍光体として、以下のような既存の蛍光体がある。例えば、Eu2+、Ce3+、Tb3+、Mn2+の少なくともいずれかで付活した酸化物や酸ハロゲン化物などの酸化物系蛍光体も用いることができる。また、Eu2+、Ce3+、Tb3+、Mn2+の少なくともいずれかで付活した窒化物や酸窒化物などの窒化物系蛍光体、又は硫化物や酸硫化物などの硫化物系蛍光体も用いることができる。 As described above, as the phosphor of the semiconductor light emitting device 12 when the solid state light emitting element 6 is an LED or LD, the phosphor 2 into which the light absorbing ions of this embodiment are introduced can be used. Examples of the phosphor that can be used in combination with the phosphor 2 include the following existing phosphors. For example, an oxide phosphor such as an oxide or acid halide activated by at least one of Eu 2+ , Ce 3+ , Tb 3+ , and Mn 2+ can be used. Further, nitride phosphors such as nitrides and oxynitrides activated by at least one of Eu 2+ , Ce 3+ , Tb 3+ and Mn 2+ , and sulfide phosphors such as sulfides and oxysulfides are also included. Can be used.
 具体的には、青色蛍光体として、例えば、BaMgAl1017:Eu2+、CaMgSi:Eu2+、BaMgSi:Eu2+、Sr10(POCl:Eu2+などを用いることができる。緑青又は青緑色蛍光体として、例えば、SrSiCl:Eu2+、SrAl1424:Eu2+、BaAl13:Eu2+、BaSiO:Eu2+を用いることができる。さらに緑青又は青緑色蛍光体として、例えば、BaZrSi:Eu2+、CaYZr(AlO:Ce3+、CaYHf(AlO:Ce3+、CaYZr(AlO:Ce3+,Tb3+を用いることができる。緑色蛍光体として、例えば、(Ba,Sr)SiO:Eu2+、CaMg(SiOCl:Eu2+、CaMg(SiOCl:Eu2+,Mn2+を用いることができる。さらに緑色蛍光体として、例えば、BaMgAl1017:Eu2+,Mn2+、CeMgAl1119:Mn2+、YAl(AlO:Ce3+、LuAl(AlO:Ce3+を用いることができる。また、緑色蛍光体として、例えば、YGa(AlO:Ce3+、CaScSi12:Ce3+、CaSc:Ce3+、β-Si:Eu2+、SrSi:Eu2+を用いることができる。緑色蛍光体として、例えば、BaSi12:Eu2+、SrSi13Al21:Eu2+、YTbSiC:Ce3+、SrGa:Eu2+を用いることができる。緑色蛍光体として、例えば、CaLaZr(AlO:Ce3+、CaTbZr(AlO:Ce3+、CaTbZr(AlO:Ce3+,Pr3+を用いることができる。緑色蛍光体として、例えば、ZnSiO:Mn2+、MgGa:Mn2+を用いることができる。緑色蛍光体として、例えば、LaPO:Ce3+,Tb3+、YSiO:Ce3+,CeMgAl1119:Tb3+、GdMgB10:Ce3+,Tb3+を用いることができる。黄又は橙色蛍光体として、例えば、(Sr,Ba)SiO:Eu2+、(Y,Gd)Al12:Ce3+、α-Ca-SiAlON:Eu2+を用いることができる。黄又は橙色蛍光体として、例えば、YSiC:Ce3+、LaSi11:Ce3+、YMgAl(AlO(SiO):Ce3+を用いることができる。赤色蛍光体としては、例えば、SrSi:Eu2+、CaAlSiN:Eu2+、SrAlSi:Eu2+、CaS:Eu2+、LaS:Eu3+、YMg(AlO)(SiO:Ce3+を用いることができる。また、赤色蛍光体として、例えば、Y:Eu3+、YS:Eu3+、Y(P,V)O:Eu3+、YVO:Eu3+を用いることができる。赤色蛍光体として、例えば、3.5MgO・0.5MgF・GeO:Mn4+、KSiF:Mn4+、GdMgB10:Ce3+,Mn2+を用いることができる。 Specifically, as the blue phosphor, for example, BaMgAl 10 O 17 : Eu 2+ , CaMgSi 2 O 6 : Eu 2+ , Ba 3 MgSi 2 O 8 : Eu 2+ , Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ Etc. can be used. For example, Sr 4 Si 3 O 8 Cl 4 : Eu 2+ , Sr 4 Al 14 O 24 : Eu 2+ , BaAl 8 O 13 : Eu 2+ , Ba 2 SiO 4 : Eu 2+ is used as the green-blue or blue-green phosphor. Can do. Further, as a green-blue or blue-green phosphor, for example, BaZrSi 3 O 9 : Eu 2+ , Ca 2 YZr 2 (AlO 4 ) 3 : Ce 3+ , Ca 2 YHf 2 (AlO 4 ) 3 : Ce 3+ , Ca 2 YZr 2 ( AlO 4 ) 3 : Ce 3+ , Tb 3+ can be used. As the green phosphor, for example, (Ba, Sr) 2 SiO 4 : Eu 2+ , Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu 2+ , Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu 2+ , Mn 2+ are used. Can be used. Further, as the green phosphor, for example, BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , CeMgAl 11 O 19 : Mn 2+ , Y 3 Al 2 (AlO 4 ) 3 : Ce 3+ , Lu 3 Al 2 (AlO 4 ) 3 : Ce 3+ can be used. Also, as the green phosphor, for example, Y 3 Ga 2 (AlO 4 ) 3: Ce 3+, Ca 3 Sc 2 Si 3 O 12: Ce 3+, CaSc 2 O 4: Ce 3+, β-Si 3 N 4: Eu 2+ , SrSi 2 O 2 N 2 : Eu 2+ can be used. Examples of green phosphors include Ba 3 Si 6 O 12 N 2 : Eu 2+ , Sr 3 Si 13 Al 3 O 2 N 21 : Eu 2+ , YTbSi 4 N 6 C: Ce 3+ , SrGa 2 S 4 : Eu 2+ . Can be used. As a green phosphor, for example, Ca 2 LaZr 2 (AlO 4 ) 3: Ce 3+, Ca 2 TbZr 2 (AlO 4) 3: Ce 3+, Ca 2 TbZr 2 (AlO 4) 3: Ce 3+, using Pr 3+ be able to. For example, Zn 2 SiO 4 : Mn 2+ , MgGa 2 O 4 : Mn 2+ can be used as the green phosphor. As the green phosphor, for example, LaPO 4 : Ce 3+ , Tb 3+ , Y 2 SiO 4 : Ce 3+ , CeMgAl 11 O 19 : Tb 3+ , GdMgB 5 O 10 : Ce 3+ , Tb 3+ can be used. As the yellow or orange phosphor, for example, (Sr, Ba) 2 SiO 4 : Eu 2+ , (Y, Gd) 3 Al 5 O 12 : Ce 3+ , α-Ca—SiAlON: Eu 2+ can be used. As the yellow or orange phosphor, for example, Y 2 Si 4 N 6 C: Ce 3+ , La 3 Si 6 N 11 : Ce 3+ , Y 3 MgAl (AlO 4 ) 2 (SiO 4 ): Ce 3+ can be used. . Examples of the red phosphor include Sr 2 Si 5 N 8 : Eu 2+ , CaAlSiN 3 : Eu 2+ , SrAlSi 4 N 7 : Eu 2+ , CaS: Eu 2+ , La 2 O 2 S: Eu 3+ , Y 3 Mg 2 (AlO 4 ) (SiO 4 ) 2 : Ce 3+ can be used. Further, as the red phosphor, for example, Y 2 O 3 : Eu 3+ , Y 2 O 2 S: Eu 3+ , Y (P, V) O 4 : Eu 3+ , YVO 4 : Eu 3+ can be used. As the red phosphor, for example, 3.5 MgO.0.5 MgF 2 .GeO 2 : Mn 4+ , K 2 SiF 6 : Mn 4+ , GdMgB 5 O 10 : Ce 3+ , Mn 2+ can be used.
 なお、使用する蛍光体を全て酸化物とすることで、低コストの半導体発光装置12を実現することができる。 In addition, the low-cost semiconductor light-emitting device 12 is realizable by making all the fluorescent substance to use an oxide.
 ここで、図2に示す半導体発光装置12の製造方法の一例を説明する。まず、配線導体7を形成した基板5上に、実装技術を用いて、固体発光素子6を固定する。次に、ワイヤーボンディング技術等を用いて、固体発光素子6の給電電極8と配線導体7とを電気的に接続する。一方で、未硬化のシリコーン樹脂などの透光性樹脂10と蛍光体2とを十分に混合し、所定の粘度となるように調整された蛍光体ペーストを作製する。蛍光体ペースト中の蛍光体2の重量割合は、数%~数10%程度となるようにする。この蛍光体ペーストで電気的接続済みの固体発光素子6上に蛍光体ペーストを滴下するなどして、固体発光素子6の光取り出し面を覆う。そして、蛍光体ペーストを固化する。これにより、波長変換層9を有する半導体発光装置12を得ることができる。 Here, an example of a manufacturing method of the semiconductor light emitting device 12 shown in FIG. 2 will be described. First, the solid state light emitting element 6 is fixed on the substrate 5 on which the wiring conductor 7 is formed by using a mounting technique. Next, the power supply electrode 8 of the solid light emitting element 6 and the wiring conductor 7 are electrically connected using a wire bonding technique or the like. On the other hand, a light-transmitting resin 10 such as an uncured silicone resin and the phosphor 2 are sufficiently mixed to produce a phosphor paste adjusted to have a predetermined viscosity. The weight ratio of the phosphor 2 in the phosphor paste is set to several% to several tens%. The light extraction surface of the solid light emitting element 6 is covered by dropping the phosphor paste onto the solid light emitting element 6 that is electrically connected with the phosphor paste. Then, the phosphor paste is solidified. Thereby, the semiconductor light emitting device 12 having the wavelength conversion layer 9 can be obtained.
 半導体発光装置12において、固体発光素子6に所定の電力を供給すると、固体発光素子6が一次光を発光する。この一次光は、例えば380nm以上420nm未満の波長範囲に発光ピークを有する紫色光、又は420nm以上470nm未満の波長範囲に発光ピークを有する青色光である。この一次光は、蛍光体2を含む波長変換層9によって、色調制御のなされた二次光に変換される。 When a predetermined power is supplied to the solid state light emitting device 6 in the semiconductor light emitting device 12, the solid state light emitting device 6 emits primary light. This primary light is, for example, violet light having an emission peak in a wavelength range of 380 nm or more and less than 420 nm, or blue light having an emission peak in a wavelength range of 420 nm or more and less than 470 nm. This primary light is converted into secondary light whose color tone is controlled by the wavelength conversion layer 9 including the phosphor 2.
 一次光は波長変換層9に含まれる蛍光体2に照射され、一部が蛍光体2に吸収される。蛍光体2に吸収された一次光は、蛍光体2によって、相対的に長波長である二次光に波長変換される。そして、二次光が透光性樹脂10を通り抜けて半導体発光装置12から出射する。同時に、蛍光体2に吸収されなかった一次光も、透光性樹脂10を通り抜けて半導体発光装置から出射する。この結果、半導体発光装置12からは、一次光と二次光の両方が出射することになる。つまり、半導体発光装置12からは、これら双方は加色混合された状態で出力される。 The primary light is irradiated to the phosphor 2 included in the wavelength conversion layer 9 and part of the light is absorbed by the phosphor 2. The primary light absorbed by the phosphor 2 is wavelength-converted by the phosphor 2 into secondary light having a relatively long wavelength. Then, the secondary light passes through the translucent resin 10 and is emitted from the semiconductor light emitting device 12. At the same time, the primary light that has not been absorbed by the phosphor 2 passes through the translucent resin 10 and is emitted from the semiconductor light emitting device. As a result, both the primary light and the secondary light are emitted from the semiconductor light emitting device 12. That is, the semiconductor light emitting device 12 outputs both of them in an additive color mixed state.
 なお、波長変換層9の厚みや光透過率、波長変換層9に含まれる蛍光体2の種類やその混合割合、固体発光素子6が放つ一次光の波長などは適宜調整することができる。すなわち、半導体発光装置12が、所望する光色の光を出力するように、設計することができる。なお一次光が全て蛍光体2に吸収されて波長変換される場合もあり、この場合には半導体発光装置12からの出射光は蛍光体で波長変換された二次光のみとなる。 It should be noted that the thickness and light transmittance of the wavelength conversion layer 9, the type and mixing ratio of the phosphors 2 contained in the wavelength conversion layer 9, the wavelength of the primary light emitted from the solid light emitting element 6 and the like can be adjusted as appropriate. That is, the semiconductor light emitting device 12 can be designed to output light of a desired light color. In some cases, all of the primary light is absorbed by the phosphor 2 and wavelength-converted. In this case, the emitted light from the semiconductor light emitting device 12 is only the secondary light wavelength-converted by the phosphor.
 以上説明したように、半導体発光装置12は、固体発光素子6と、固体発光素子6の発した光を吸収して色調制御のなされた蛍光を放つ蛍光体2との組み合わせで構成されている。特に、半導体発光装置12は、黄ばみの原因になる黄色光成分の強度が相対的に小さい蛍光を放射することができる。そのため、半導体発光装置12からの出射光を照明光に用いることにより、物体は、黄ばみの少ない色、あるいは黄ばみのない色に見える。すなわち、物体色の鮮やかさを引き立てることができる。照明光源や照明装置に半導体発光装置12を用いることにより、白さ感及び清潔感を際立たせる照明光を容易に得ることが可能となる。 As described above, the semiconductor light emitting device 12 is configured by a combination of the solid light emitting element 6 and the phosphor 2 that absorbs light emitted from the solid light emitting element 6 and emits fluorescence whose color tone is controlled. In particular, the semiconductor light emitting device 12 can emit fluorescence with a relatively small intensity of the yellow light component that causes yellowing. Therefore, by using the emitted light from the semiconductor light emitting device 12 as illumination light, the object looks like a color with little yellowing or a color without yellowing. That is, the vividness of the object color can be enhanced. By using the semiconductor light emitting device 12 for an illumination light source or an illumination device, it is possible to easily obtain illumination light that makes whiteness and cleanliness stand out.
 半導体発光装置12において、光学フィルター部材を用いなくとも、光学フィルター部材を用いる場合と同様の作用効果を得ることができる。本構成により、半導体発光装置12の部品数やその製造工程数を削減することが可能となる。 In the semiconductor light emitting device 12, the same operational effects as when the optical filter member is used can be obtained without using the optical filter member. With this configuration, it is possible to reduce the number of components of the semiconductor light emitting device 12 and the number of manufacturing steps thereof.
 なお、半導体発光装置12は、照明光源や液晶ディスプレイのバックライト、表示装置の光源などに広く利用可能である。半導体発光装置12は、物体の鮮やかさを引き立て、白さ感及び清潔感を際立たせる光を放ち得る。そのため、半導体発光装置12を照明光源等に用いた場合、高演色性かつ高効率の照明光源や、高輝度画面の広色域表示が可能な表示装置を提供することができる。 The semiconductor light emitting device 12 can be widely used as an illumination light source, a backlight of a liquid crystal display, a light source of a display device, and the like. The semiconductor light emitting device 12 can emit light that enhances the vividness of an object and highlights a sense of whiteness and cleanliness. Therefore, when the semiconductor light emitting device 12 is used as an illumination light source or the like, it is possible to provide an illumination light source with high color rendering properties and high efficiency, and a display device capable of displaying a wide color gamut on a high luminance screen.
 照明光源のブロック図を図3に示す。照明光源は本実施形態の発光装置の一例であり、半導体発光装置12と、半導体発光装置12を動作点灯させる点灯回路13と、口金など照明光源を照明器具との接続する口金部品14とを有している。点灯回路は、例えば、半導体発光装置12に一定の電流を供給する機能を有する。照明光源の外部から口金部品14を介して、点灯回路13に電力が供給される。 A block diagram of the illumination light source is shown in FIG. The illumination light source is an example of the light-emitting device of the present embodiment, and includes a semiconductor light-emitting device 12, a lighting circuit 13 that operates and lights the semiconductor light-emitting device 12, and a base part 14 that connects the illumination light source such as a base to a lighting fixture. is doing. The lighting circuit has a function of supplying a constant current to the semiconductor light emitting device 12, for example. Electric power is supplied to the lighting circuit 13 from the outside of the illumination light source via the base part 14.
 照明装置のブロックを図4に示す。照明装置は本実施形態の発光装置の一例であり、半導体発光装置12と、半導体発光装置12への供給電力を制御する制御回路15とを有している。制御回路は、例えば、照明装置の外部からの信号に基づき供給電力を制御する機能を有する。照明装置の外部から制御回路に電力が供給される。 The block of the lighting device is shown in FIG. The lighting device is an example of the light emitting device of the present embodiment, and includes a semiconductor light emitting device 12 and a control circuit 15 that controls power supplied to the semiconductor light emitting device 12. The control circuit has a function of controlling supply power based on a signal from the outside of the lighting device, for example. Power is supplied to the control circuit from the outside of the lighting device.
 照明システムとは、照明光源や照明装置を複数、制御する機能を有するシステムである。 An illumination system is a system having a function of controlling a plurality of illumination light sources and illumination devices.
 表示装置は発光装置の変形例であり、マトリックス状に配置した複数の半導体発光装置12と、半導体発光装置12をON-OFFする信号回路とを有している。また、表示装置として、LEDバックライト付き液晶パネルを挙げることができる。バックライトにおいて、複数の半導体発光装置12がライン状又はマトリックス状に配置されている。LEDバックライト付き液晶パネルバックライトと、バックライトを点灯する点灯回路又はバックライトをON-OFF制御する制御回路と、液晶パネルとを組み合わせて構成される。 The display device is a modification of the light emitting device, and includes a plurality of semiconductor light emitting devices 12 arranged in a matrix and a signal circuit for turning the semiconductor light emitting devices 12 on and off. As a display device, a liquid crystal panel with an LED backlight can be given. In the backlight, a plurality of semiconductor light emitting devices 12 are arranged in a line shape or a matrix shape. A liquid crystal panel backlight with LED backlight, a lighting circuit for turning on the backlight or a control circuit for ON / OFF control of the backlight, and a liquid crystal panel are combined.
 このように、発光装置は、視感度や視認性の面で良好な特性を有するため、上述の照明光源、照明装置、表示装置など広く利用することができる。 Thus, since the light emitting device has good characteristics in terms of visibility and visibility, it can be widely used for the above-described illumination light source, illumination device, display device, and the like.
 以下、本実施形態を具体例によりさらに詳細に説明する。但し、本発明はこれに限定されるものではない。 Hereinafter, the present embodiment will be described in more detail with specific examples. However, the present invention is not limited to this.
 [原料]
 固相反応を利用する調製手法を用いて、蛍光体を合成し、その特性を評価している。原料として使用している化合物粉末とその純度は以下の通りである。
[material]
Using a preparation method that utilizes a solid-phase reaction, phosphors are synthesized and their characteristics are evaluated. The compound powder used as a raw material and its purity are as follows.
 酸化イットリウム(Y):純度3N、
 酸化アルミニウム(θ-Al):純度4N5、
 酸化ネオジム(Nd):純度3N、
 酸化セリウム(CeO):純度4N。
Yttrium oxide (Y 2 O 3 ): purity 3N,
Aluminum oxide (θ-Al 2 O 3 ): purity 4N5,
Neodymium oxide (Nd 2 O 3 ): purity 3N,
Cerium oxide (CeO 2 ): purity 4N.
 なお、原料同士の反応性を高める目的で、上記酸化アルミニウムに、住友化学株式会社製のAKP-G008を使用している。ただし、これに限るものではない。 Note that AKP-G008 manufactured by Sumitomo Chemical Co., Ltd. is used for the above aluminum oxide for the purpose of increasing the reactivity between the raw materials. However, the present invention is not limited to this.
 また、フラックス(反応促進剤)として使用している化合物粉末とその純度は以下の通りである。 Also, the compound powder used as a flux (reaction accelerator) and its purity are as follows.
 フッ化アルミニウム(AlF):純度3N、
 炭酸カリウム(KCO):純度2N5。
Aluminum fluoride (AlF 3 ): purity 3N,
Potassium carbonate (K 2 CO 3 ): purity 2N5.
 [試料の調製]
 まず、上記の各原料及び反応促進剤を表1に示す割合になるように秤量する。次に、これらの原料及び反応促進剤を適量の溶媒と共に混合し、ボールミルを用いて、1時間攪拌する。そして、混合後の原料を容器に移し、乾燥機を用いて150℃で2時間乾燥する。乾燥後の混合原料を乳鉢と乳棒を用いて粉砕する。この粉砕した混合原料が焼成原料である。その後、焼成原料を蓋付きのアルミナるつぼに移し、箱型電気炉を用いて、1600℃の大気中で2時間焼成する。
[Sample preparation]
First, each raw material and reaction accelerator are weighed so as to have the ratio shown in Table 1. Next, these raw materials and reaction accelerator are mixed with an appropriate amount of solvent, and stirred for 1 hour using a ball mill. And the raw material after mixing is moved to a container, and it dries at 150 degreeC for 2 hours using a dryer. The mixed raw material after drying is pulverized using a mortar and pestle. This pulverized mixed raw material is a calcined raw material. Thereafter, the firing raw material is transferred to an alumina crucible with a lid, and fired in an atmosphere at 1600 ° C. for 2 hours using a box-type electric furnace.
 このようにして、組成式が(Y1-0.02-xCe0.02NdAl12(X=0、0.001、0.01、0.03、0.1、0.5)で表される化合物を調製することができる。これらの化合物を使用し、以下の評価を行う。なお、XはNdのモル分率を示す。 In this way, the composition formula is (Y 1-0.02-x Ce 0.02 Nd x ) 3 Al 5 O 12 (X = 0, 0.001, 0.01, 0.03, 0.1, 0.5) can be prepared. These compounds are used for the following evaluation. X represents the molar fraction of Nd.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [結晶構造解析]
 上記の各化合物の結晶構造解析について説明する。図5はそれら化合物のX線回折(XRD)パターンを示す。X=0、0.001、0.01、0.1の各化合物のXRDパターンは、形状面及び強度比の特徴において概ね一致している。このことは、これらの化合物は、それぞれYAl(AlOと同じガーネット型の結晶構造を有することを示している。
[Crystal structure analysis]
The crystal structure analysis of each compound will be described. FIG. 5 shows the X-ray diffraction (XRD) patterns of these compounds. The XRD patterns of the compounds of X = 0, 0.001, 0.01, and 0.1 are almost the same in terms of the shape and strength ratio. This indicates that these compounds each have the same garnet-type crystal structure as Y 3 Al 2 (AlO 4 ) 3 .
 [発光特性評価]
 次に上記の各化合物の発光特性について説明する。発光特性は、分光測定器を用いて評価している。図6は、上記化合物(X=0、0.001、0.01、0.1)の各蛍光スペクトルを示す。これらの発光スペクトル測定時の励起波長は、250nmである。各発光スペクトルは、それぞれ最大強度を1に規格化して示している。
[Light emission characteristic evaluation]
Next, the light emission characteristics of each compound will be described. The light emission characteristics are evaluated using a spectrophotometer. FIG. 6 shows each fluorescence spectrum of the compound (X = 0, 0.001, 0.01, 0.1). The excitation wavelength when measuring these emission spectra is 250 nm. Each emission spectrum is shown with the maximum intensity normalized to 1.
 図6のX=0.001、0.01、0.1の各発光スペクトルとX=0の発光スペクトルとを比較すると、光吸収イオンとしてNd3+を導入することにより、580nm付近での発光強度が低下していることが分かる。さらに、Xの値が大きくなるに従い、すなわち、Nd3+のモル分率が増加するに従い、580nm付近での発光強度が減少していることが分かる。つまり図6から、光吸収イオンであるNd3+が、発光中心であるCe3+の放つ蛍光成分を部分的に吸収して、発光スペクトルの窪みを誘発していることが分かる。さらに、X=0.01の発光スペクトルにおいて、波長580nmにおける強度が最大強度の70%程度になっている。すなわち、黄色光成分の強度を大幅に抑制できていることが分かる。 Comparing the emission spectra of X = 0.001, 0.01, and 0.1 in FIG. 6 with the emission spectrum of X = 0, the emission intensity in the vicinity of 580 nm is obtained by introducing Nd 3+ as a light absorbing ion. It can be seen that is decreasing. Further, it can be seen that as the value of X increases, that is, as the molar fraction of Nd 3+ increases, the emission intensity near 580 nm decreases. That is, it can be seen from FIG. 6 that Nd 3+ that is a light-absorbing ion partially absorbs the fluorescent component emitted by Ce 3+ that is the emission center and induces a depression in the emission spectrum. Furthermore, in the emission spectrum of X = 0.01, the intensity at a wavelength of 580 nm is about 70% of the maximum intensity. That is, it can be seen that the intensity of the yellow light component can be greatly suppressed.
 [シミュレーションによる分光分布評価]
 次に、図6に示す各発光スペクトルを用いて行ったシミュレーションについて説明する。ここでは、半導体発光装置12において、固体発光素子6と2種類の蛍光体との各発光スペクトルを組合せて得ることができる発光スペクトルを検討する。固体発光素子6としてピーク波長が450nmのInGaN青色LEDを用い、蛍光体2としてX=0、0.001、0.01、0.1の各化合物と、更に赤色蛍光体(光吸収イオンは含まない)を用いている。赤色蛍光体は、窒化物蛍光体CaAlSiN:Eu(CASN)を用いている。各発光スペクトルの混合割合を、相関色温度5000Kの白色光になるよう、適宜、調整をしている。図7にシミュレーションで得られた発光スペクトルとそのスペクトルにおける平均演色評価数Raを示す。図7の発光スペクトルは、それぞれ550nm付近の極大値を1に規格化して示している。なお、演色評価数とは、JIS(日本工業規格)において定められた色の見え方を評価する指数である。自然光である黒体輻射光を基準光として測定され、15種類の評価用色票を用いて測定される。各色票にそれぞれ対応する15の指数(R1からR15)で示される。平均演色評価数Raは、R1からR8の8つの指数の平均値を示す。最大値は100であり、100に近いほどよいとされている。一般に80以上のRaを高い演色性の目安としている。参考までに、既存の光源である三波長形の蛍光ランプのRaは80以上ある。
[Spectral distribution evaluation by simulation]
Next, a simulation performed using each emission spectrum shown in FIG. 6 will be described. Here, in the semiconductor light emitting device 12, an emission spectrum that can be obtained by combining the emission spectra of the solid state light emitting element 6 and two types of phosphors will be considered. An InGaN blue LED having a peak wavelength of 450 nm is used as the solid state light emitting device 6, and each compound of X = 0, 0.001, 0.01, 0.1 is used as the phosphor 2, and further a red phosphor (including light absorption ions) Not used). The red phosphor uses a nitride phosphor CaAlSiN 3 : Eu (CASN). The mixing ratio of each emission spectrum is appropriately adjusted so as to obtain white light having a correlated color temperature of 5000K. FIG. 7 shows an emission spectrum obtained by simulation and an average color rendering index Ra in the spectrum. In the emission spectrum of FIG. 7, the maximum value near 550 nm is normalized to 1. The color rendering index is an index for evaluating the color appearance defined in JIS (Japanese Industrial Standards). It is measured using black body radiation, which is natural light, as reference light, and is measured using 15 types of evaluation color charts. It is indicated by 15 indices (R1 to R15) corresponding to each color chart. The average color rendering index Ra indicates an average value of eight indexes R1 to R8. The maximum value is 100, and the closer to 100, the better. Generally, Ra of 80 or more is used as a measure of high color rendering properties. For reference, the Ra of a three-wavelength fluorescent lamp that is an existing light source is 80 or more.
 図7において、X=0.001のRaは78であり、X=0のRaである77と比べて大きな差異は見られない。X=0.01の発光スペクトルをX=0のそれと比較すると、580nm付近において、X=0.01の方に強度の低下を確認することができる。つまり、黄色光成分の強度が抑制されていることが分かる。また、Raも84と十分に高い。このことは、X=0.01の発光スペクトルは、自然光に近い照明光として利用できることを示している。 In FIG. 7, Ra of X = 0.001 is 78, and no significant difference is seen compared to 77 which is Ra of X = 0. When the emission spectrum of X = 0.01 is compared with that of X = 0, a decrease in intensity can be confirmed near X = 0.01 in the vicinity of 580 nm. That is, it can be seen that the intensity of the yellow light component is suppressed. Ra is also sufficiently high as 84. This indicates that the emission spectrum of X = 0.01 can be used as illumination light close to natural light.
 580nm付近の発光スペクトルの強度において、X=0.1の強度はX=0.01の強度に比べて、更に低下している。かつ、X=0.1のRaは90と極めて高い値である。X=0.1の発光スペクトルは、高演色性といえる。高演色性の既存の光源として、三波長形の蛍光ランプがある。本実施形態によれば、三波長形の蛍光ランプと遜色のない照明光を得ることができる。 In the intensity of the emission spectrum near 580 nm, the intensity at X = 0.1 is further reduced compared to the intensity at X = 0.01. And Ra of X = 0.1 is an extremely high value of 90. An emission spectrum of X = 0.1 can be said to have high color rendering properties. As an existing light source with high color rendering properties, there is a three-wavelength fluorescent lamp. According to this embodiment, it is possible to obtain illumination light that is comparable to a three-wavelength fluorescent lamp.
 なお、X=0.5以上の発光スペクトルにおいても同様に、580nm付近の強度の更なる低下とRaの向上が期待できる。X=0.5以上において、イットリウムに比べて高価なネオジムの使用量が増えることや発光効率の低下を考慮すると、好ましくはX=0.1以下である。 In addition, in the emission spectrum of X = 0.5 or more, a further decrease in intensity near 580 nm and an improvement in Ra can be expected. When X is 0.5 or more, X is preferably 0.1 or less in consideration of an increase in the amount of expensive neodymium used compared to yttrium and a decrease in light emission efficiency.
 以上、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。 As mentioned above, the present invention is not limited to these, and various modifications are possible within the scope of the gist of the present invention.
 発光中心の蛍光成分の一部において、光吸収イオンの吸収により、発光スペクトルに部分的な窪みを持つ蛍光体は、光学フィルター部材を使用しなくても、物体を鮮やかに見せる光を発することができる。 In some of the fluorescent components at the emission center, phosphors with partial depressions in the emission spectrum due to absorption of light-absorbing ions may emit light that makes an object look vivid even without using an optical filter member. it can.
 1 励起源
 2 蛍光体
 3 励起光
 4 出力光
 5 基板
 6 固体発光素子
 7 配線導体
 8 給電電極
 9 波長変換層
 10 透光性樹脂
 11 側壁
 12 半導体発光装置
DESCRIPTION OF SYMBOLS 1 Excitation source 2 Phosphor 3 Excitation light 4 Output light 5 Substrate 6 Solid light emitting element 7 Wiring conductor 8 Feed electrode 9 Wavelength conversion layer 10 Translucent resin 11 Side wall 12 Semiconductor light emitting device

Claims (16)

  1.  母体に、発光中心と、光吸収イオンとを含有し、
     前記光吸収イオンは、前記発光中心が放つ蛍光成分を部分的に吸収可能である蛍光体。
    The matrix contains a luminescent center and light absorbing ions,
    The light absorbing ion is a phosphor capable of partially absorbing a fluorescent component emitted by the emission center.
  2.  無機化合物である請求項1に記載の蛍光体。 The phosphor according to claim 1, which is an inorganic compound.
  3.  波長380nm以上、780nm以下の可視光領域に前記蛍光成分の最大強度を持つ請求項1又は2に記載の蛍光体。 3. The phosphor according to claim 1, wherein the phosphor has a maximum intensity of the fluorescent component in a visible light region having a wavelength of 380 nm or more and 780 nm or less.
  4.  前記母体はガーネット型の結晶構造を持つ請求項1から3のいずれか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 3, wherein the matrix has a garnet-type crystal structure.
  5.  前記母体に前記発光中心のみを含む場合の蛍光スペクトルの半値幅は、50nm以上、150nm未満である請求項1から4のいずれか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 4, wherein a half width of a fluorescence spectrum when the base includes only the emission center is 50 nm or more and less than 150 nm.
  6.  前記発光中心は、Ce3+である請求項1から5のいずれか一項に記載の蛍光体。 The phosphor according to claim 1, wherein the emission center is Ce 3+ .
  7.  前記光吸収イオンの吸収可能な波長領域は、560nm以上、600nm未満の波長領域にある請求項1から6のいずれか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 6, wherein a wavelength region in which the light-absorbing ions can be absorbed is in a wavelength region of 560 nm or more and less than 600 nm.
  8.  前記光吸収イオンが吸収可能な波長領域において、発光スペクトルに窪みを有する請求項1から7のいずれか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 7, wherein the phosphor has a depression in an emission spectrum in a wavelength region where the light absorption ions can be absorbed.
  9.  前記発光スペクトルの波長580nmにおける強度が、前記発光スペクトルの最大強度に対して70%未満である請求項8に記載の蛍光体。 The phosphor according to claim 8, wherein the intensity of the emission spectrum at a wavelength of 580 nm is less than 70% with respect to the maximum intensity of the emission spectrum.
  10.  前記光吸収イオンは、3価の希土類元素イオンである請求項1から9のいずれか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 9, wherein the light absorption ion is a trivalent rare earth element ion.
  11.  前記光吸収イオンは、Nd3+である請求項10に記載の蛍光体。 The phosphor according to claim 10, wherein the light absorption ion is Nd 3+ .
  12.  前記光吸収イオンの添加量は、蛍光体1モル当たり0.01モル以上、0.1モル以下である請求項1から11のいずれか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 11, wherein an addition amount of the light absorbing ions is 0.01 mol or more and 0.1 mol or less per mol of the phosphor.
  13.  請求項1から12のいずれか一項に記載の蛍光体と、
     前記蛍光体を励起する励起源とを備える発光装置。
    The phosphor according to any one of claims 1 to 12,
    A light emitting device comprising an excitation source for exciting the phosphor.
  14.  前記励起源としての固体発光素子と、
     前記蛍光体を含む波長変換層と、
     前記固体発光素子が固定された基板と、を備え、
     前記固体発光素子は給電端子を有し、
     前記基板は配線導体を有し、
     前記給電電極と前記配線導体とは、電気的に接続されており、
     前記波長変換層は、前記固体発光素子の発する光の光路内に配置されている請求項13に記載の発光装置。
    A solid state light emitting device as the excitation source;
    A wavelength conversion layer containing the phosphor;
    A substrate on which the solid state light emitting element is fixed,
    The solid state light emitting device has a power supply terminal,
    The substrate has a wiring conductor;
    The feeding electrode and the wiring conductor are electrically connected,
    The light emitting device according to claim 13, wherein the wavelength conversion layer is disposed in an optical path of light emitted from the solid state light emitting device.
  15.  前記固体発光素子を点灯させる点灯回路と、
     口金部材とを更に備える請求項14に記載の発光装置。
    A lighting circuit for lighting the solid-state light-emitting element;
    The light-emitting device according to claim 14, further comprising a base member.
  16.  前記固体発光素子への電力供給を制御する制御回路とを更に備える請求項14に記載の発光装置。 The light-emitting device according to claim 14, further comprising a control circuit that controls power supply to the solid-state light-emitting element.
PCT/JP2014/002508 2013-08-28 2014-05-13 Phosphor and light-emitting device using same WO2015029284A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-177043 2013-08-28
JP2013177043A JP2016188263A (en) 2013-08-28 2013-08-28 Phosphor and light-emitting device using the same

Publications (1)

Publication Number Publication Date
WO2015029284A1 true WO2015029284A1 (en) 2015-03-05

Family

ID=52585884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002508 WO2015029284A1 (en) 2013-08-28 2014-05-13 Phosphor and light-emitting device using same

Country Status (2)

Country Link
JP (1) JP2016188263A (en)
WO (1) WO2015029284A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10851296B2 (en) 2016-05-30 2020-12-01 Nichia Corporation Fluorescent material having a composition of rare earth aluminum-gallate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034174B2 (en) * 2017-11-28 2022-03-11 京セラ株式会社 Light emitting device and lighting device
CN115315821A (en) 2020-03-27 2022-11-08 日亚化学工业株式会社 Light emitting device and lamp provided with same
JP7125631B2 (en) * 2020-03-27 2022-08-25 日亜化学工業株式会社 Light-emitting device and lamp equipped with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999662A (en) * 2006-12-29 2007-07-18 中国科学院长春应用化学研究所 Preparation process of fluorescent powder for white light LED excited by blue light
CN102079975A (en) * 2009-12-01 2011-06-01 中国科学院理化技术研究所 Coprecipitation preparation method of rare earth-doped yttrium aluminium garnet fluorescent powder
WO2011142127A1 (en) * 2010-05-14 2011-11-17 パナソニック株式会社 Led module, led lamp, and illuminating apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999662A (en) * 2006-12-29 2007-07-18 中国科学院长春应用化学研究所 Preparation process of fluorescent powder for white light LED excited by blue light
CN102079975A (en) * 2009-12-01 2011-06-01 中国科学院理化技术研究所 Coprecipitation preparation method of rare earth-doped yttrium aluminium garnet fluorescent powder
WO2011142127A1 (en) * 2010-05-14 2011-11-17 パナソニック株式会社 Led module, led lamp, and illuminating apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The study of luminescence lifetime of Ce3+ in YAG:Ce,Ln", TIANJIN CHEMICAL INDUSTRY, vol. 25, no. 6, November 2011 (2011-11-01), pages 22 - 24 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10851296B2 (en) 2016-05-30 2020-12-01 Nichia Corporation Fluorescent material having a composition of rare earth aluminum-gallate

Also Published As

Publication number Publication date
JP2016188263A (en) 2016-11-04

Similar Documents

Publication Publication Date Title
JP6372764B2 (en) Light emitting device
WO2013005356A1 (en) Rare-earth aluminum garnet type fluorescent substance and light-emitting device obtained using same
US9976080B2 (en) Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same
CN102660269A (en) Illumination system comprising a radiation source and a luminescent material
JP2014210684A (en) Aluminum garnet type inorganic oxide, fluorophore, and light-emitting device using the same
JP2013028667A (en) Fluorescent material of yttrium-aluminum garnet type, and light-emitting device using the same
CN104927865A (en) Halophosphate blue phosphor powder for white light LED and preparation method of halophosphate blue phosphor powder
TW202136476A (en) Green-emitting phosphors and devices thereof
EP3640206A1 (en) Garnet silicate, garnet silicate phosphor, wavelength transformer using garnet silicate phosphor and light-emitting device
WO2015029284A1 (en) Phosphor and light-emitting device using same
WO2015045260A1 (en) Phosphor, light-emitting device using same, illumination light source, and illumination device
JP2015221843A (en) Fluophor and light-emitting device using the same
JP2016176017A (en) Fluophor and light emitting device using the same
JP2016176017A5 (en)
JP2015166423A (en) Fluophor and light-emitting device using the same
US11394176B2 (en) Light emitting device
JP2016199696A (en) Fluorescent material and light-emitting device
CN105219378A (en) A kind of silicate blue fluorescent powder for white-light LED and preparation method thereof
JP2017002211A (en) Fluorescent body, method for producing the same and light-emitting device
JP2015098507A (en) Phosphor and light-emitting device using the same
JP2017088428A (en) Acid fluoride garnet compound, fluophor, and light emitting device using the same
JP2015105364A (en) Fluophor and light emitting device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP