JP2018095755A - Ultraviolet light emitting phosphor, light emitting element, and light emitting device - Google Patents

Ultraviolet light emitting phosphor, light emitting element, and light emitting device Download PDF

Info

Publication number
JP2018095755A
JP2018095755A JP2016242721A JP2016242721A JP2018095755A JP 2018095755 A JP2018095755 A JP 2018095755A JP 2016242721 A JP2016242721 A JP 2016242721A JP 2016242721 A JP2016242721 A JP 2016242721A JP 2018095755 A JP2018095755 A JP 2018095755A
Authority
JP
Japan
Prior art keywords
ultraviolet
phosphor
ultraviolet light
light emitting
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016242721A
Other languages
Japanese (ja)
Inventor
佑樹 田中
Yuki Tanaka
佑樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Original Assignee
Daiden Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc filed Critical Daiden Co Inc
Priority to JP2016242721A priority Critical patent/JP2018095755A/en
Publication of JP2018095755A publication Critical patent/JP2018095755A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultraviolet light emitting phosphor that exhibits a strong emission peak particularly in an ultraviolet region around 360 nm by ultraviolet irradiation.SOLUTION: An ultraviolet light emitting phosphor contains cerium elements, calcium elements, phosphorus elements, and oxygen elements, with the molar ratio x of cerium elements contained being 0<x≤0.7, where the phosphor is excited by ultraviolet irradiation to emit ultraviolet light.SELECTED DRAWING: Figure 8

Description

本発明は、紫外線で励起されることにより紫外線を発光する紫外線発光蛍光体に関し、特に、発光ピーク波長360nm前後の紫外線領域の発光が得られる紫外線発光蛍光体に関する。   The present invention relates to an ultraviolet light emitting phosphor that emits ultraviolet light when excited by ultraviolet light, and more particularly to an ultraviolet light emitting phosphor that can emit light in the ultraviolet region with an emission peak wavelength of around 360 nm.

近年、紫外線発光分野は、紫外線の用途が医療分野、光触媒分野、食品分野などにも拡大していることに伴って、産業的な価値が高まっている。このような紫外線発光の応用分野の1つとして、合成樹脂分野における紫外線硬化樹脂(UV硬化樹脂)がある。   In recent years, the field of ultraviolet light emission has increased industrial value as the use of ultraviolet light has expanded to the medical field, the photocatalyst field, the food field, and the like. One application field of such ultraviolet light emission is ultraviolet curable resin (UV curable resin) in the synthetic resin field.

このような合成樹脂分野では、紫外線硬化樹脂の技術改良が進み、これまでよりも長波長の(穏やかな)紫外線の照射によっても硬化できる樹脂が開発されている。このように、UV硬化樹脂の硬化に際して、より長波長の紫外線を照射することの利点としては、より低エネルギーの紫外線が樹脂に照射されることから、当該樹脂が受けるダメージがより抑制されるものとなり、合成時の損傷が抑制された優れた品質の樹脂の合成が可能となる。   In such a synthetic resin field, technological improvements of ultraviolet curable resins have progressed, and resins that can be cured by irradiation with ultraviolet rays having a longer wavelength (mild) than before have been developed. As described above, when curing a UV curable resin, the advantage of irradiating with longer wavelength ultraviolet rays is that the resin is irradiated with lower energy ultraviolet rays, so that damage to the resin is further suppressed. Thus, it becomes possible to synthesize an excellent quality resin in which damage during synthesis is suppressed.

また、より低エネルギーの紫外線を照射に用いることから、樹脂の製造に必要となるエネルギーも抑制することができ、製造コストの削減も実現することができる。このような改良されたUV硬化樹脂に照射される紫外線としては、発光ピーク波長360nm前後の紫外線が望ましいとされている。   Further, since lower energy ultraviolet rays are used for irradiation, the energy required for the production of the resin can be suppressed, and the production cost can be reduced. As ultraviolet rays irradiated to such an improved UV curable resin, ultraviolet rays having an emission peak wavelength of around 360 nm are considered desirable.

また、同じく合成樹脂分野において、紫外線を樹脂に照射する同様な光重合技術として、液晶の光配向性膜の形成(PSA技術:Polymer Stabilized Alignment)も知られている。このPSA技術は、光重合性モノマーを微量添加した液晶に、紫外線を照射し、当該照射によって重合されるポリマーによって、液晶の配向性を固定させるものである。このPSA技術においても、損傷を抑制するという観点から、より低エネルギーの紫外線(例えば、上記と同様な発光ピーク波長360nm前後の紫外線)の照射が望まれている。   Similarly, in the field of synthetic resins, as a similar photopolymerization technique for irradiating a resin with ultraviolet rays, formation of a liquid crystal photo-alignment film (PSA technique: Polymer Stabilized Alignment) is also known. In this PSA technique, a liquid crystal to which a small amount of a photopolymerizable monomer is added is irradiated with ultraviolet rays, and the orientation of the liquid crystal is fixed by a polymer polymerized by the irradiation. Also in this PSA technique, from the viewpoint of suppressing damage, irradiation with lower energy ultraviolet rays (for example, ultraviolet rays having an emission peak wavelength of around 360 nm similar to the above) is desired.

従来の紫外線を発光する紫外線発光蛍光体としては、例えば、電子線励起の蛍光体であって、蛍光体の一般式が、Zn(1-x)S:Ag,D(式中のAは、Be、Mg、Ca、Sr及びBaの群から選ばれる少なくとも1種の2A族元素、Dは、3B族または7B族元素の少なくとも1種、混晶比率xが0<x<0.5)である蛍光体、または、Ga1-xAlN:M、X(但し、0≦x≦1、式中のMは、Be、Mg、Ca、Sr、Ba、Zn、Cd、Hgの群から選ばれる少なくとも1種の元素、XはC、Si、Ge、Sn、Pbから選択される少なくとも1種、混比率晶xが0≦x≦1)である蛍光体であって、発光スペクトルの少なくとも一つのピーク波長が360〜375nmの範囲にある蛍光体がある(特許文献1参照)。 Conventional ultraviolet light emitting phosphors that emit ultraviolet rays are, for example, phosphors excited by an electron beam, and the general formula of the phosphor is Zn (1-x) A x S: Ag, D (A in the formula ) Is at least one 2A group element selected from the group of Be, Mg, Ca, Sr and Ba, D is at least one group 3B or 7B group element, and the mixed crystal ratio x is 0 <x <0.5 ) Or Ga 1-x Al x N: M, X (where 0 ≦ x ≦ 1, where M is Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg) At least one element selected from the group, X is at least one element selected from C, Si, Ge, Sn, and Pb, and the phosphor is a mixture ratio crystal x (0 ≦ x ≦ 1), There is a phosphor having at least one peak wavelength of 360 to 375 nm (see Patent Document 1). .

また、従来の紫外線を発光する紫外線発光蛍光体としては、例えば、紫外線励起の蛍光体であって、一般式M4 328(式中のM4はCa、Sr、Ba、ZnおよびMgからなる群より選ばれる2種以上またはCa、Zn、Mgである。)で表される化合物に、付活剤としてCe、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb、およびMnからなる群より選ばれる1種以上を含有させてなる蛍光体であって、実質的には、Euを好適な付活剤として含む蛍光体であり、当該Euを含有するCa0.98Eu0.02Mg228の合成のみが確認された蛍光体がある(特許文献2参照)。 Further, as a conventional ultraviolet light emitting phosphor that emits ultraviolet light, for example, an ultraviolet-excited phosphor having a general formula M 4 3 P 2 O 8 (wherein M 4 is Ca, Sr, Ba, Zn and 2 or more selected from the group consisting of Mg, or a compound represented by Ca, Zn, Mg.), Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er as activators. A phosphor containing at least one selected from the group consisting of Tm, Yb, and Mn, and is substantially a phosphor containing Eu as a suitable activator, containing the Eu There is a phosphor in which only the synthesis of Ca 0.98 Eu 0.02 Mg 2 P 2 O 8 is confirmed (see Patent Document 2).

特開2007−294698号公報JP 2007-294698 A 特開2003−313551号公報JP 2003-313551 A

しかし、例えば、特許文献1に示すような電子線励起の蛍光体では、電子線は高エネルギーであることから、電子線が照射されることによる蛍光体自体のダメージが大きく、長期使用における耐久性(劣化性)に課題があった。   However, for example, in the phosphor excited by electron beam as shown in Patent Document 1, since the electron beam is high energy, the phosphor itself is greatly damaged by irradiation with the electron beam, and durability in long-term use is high. There was a problem in (degradability).

また、紫外線励起の蛍光体では、高エネルギーの電子線が照射されないことから、このような電子線励起の蛍光体と比べて、耐久性については優位性があるものの、例えば、特許文献2に示される付活剤Euを用いたCa0.98Eu0.02Mg228を含めて、波長300nm〜400nm、特に、波長360nm前後の紫外線領域に、強い発光ピークを発揮できるものは、これまでのところ知られていない。また、例えば、特許文献2に示される付活剤Euを用いたCa0.98Eu0.02Mg228のような紫外線励起の蛍光体では、合成時の温度条件が厳しく、1300℃程度の焼成では蛍光体が生成される前に溶解しやすい等、一般的な焼成温度である1000℃〜1500℃程度の焼成では安定した合成が難しく実用化が難しいという課題もあった。 Further, since the ultraviolet-excited phosphor is not irradiated with a high-energy electron beam, it has superior durability as compared with such an electron-beam-excited phosphor. What can exhibit a strong emission peak in the ultraviolet region with a wavelength of 300 nm to 400 nm, especially around 360 nm, including Ca 0.98 Eu 0.02 Mg 2 P 2 O 8 using the activator Eu unknown. Further, for example, an ultraviolet-excited phosphor such as Ca 0.98 Eu 0.02 Mg 2 P 2 O 8 using the activator Eu shown in Patent Document 2 has a severe temperature condition during synthesis and is fired at about 1300 ° C. However, there is a problem that stable synthesis is difficult and practical application is difficult by firing at a general firing temperature of about 1000 ° C. to 1500 ° C., such as being easily dissolved before the phosphor is produced.

本発明は前記課題を解決するためになされたものであり、紫外線の照射によって、波長300nm〜400nm、特に、波長360nm前後の紫外線領域に、強い発光ピークを発揮する紫外線発光蛍光体の提供を目的とする。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an ultraviolet light-emitting phosphor that exhibits a strong emission peak in the ultraviolet region having a wavelength of 300 nm to 400 nm, particularly around 360 nm when irradiated with ultraviolet rays. And

本発明者らは、鋭意研究を重ねた結果、セリウム元素(Ce)を、ある配合比で含有させた特定の酸化物系蛍光体を用いることによって、上記課題を解決できることを見出し、本発明を導き出した。   As a result of extensive research, the present inventors have found that the above problems can be solved by using a specific oxide phosphor containing cerium element (Ce) in a certain mixing ratio. Derived.

すなわち、本願に開示する紫外線発光蛍光体としては、セリウム元素と、カルシウム元素と、リン元素と、酸素元素とから構成され、セリウム元素の配合モル比率xが、0<x≦0.7である蛍光体であって、紫外線の照射により励起されて紫外線を発光するものが提供される。また、本願に開示する紫外線発光蛍光体を含む発光素子も提供される。また、当該発光素子を備える発光装置も提供される。   That is, the ultraviolet light-emitting phosphor disclosed in the present application is composed of a cerium element, a calcium element, a phosphorus element, and an oxygen element, and the blending molar ratio x of the cerium element is 0 <x ≦ 0.7. A phosphor that emits ultraviolet light when excited by irradiation with ultraviolet light is provided. In addition, a light-emitting element including the ultraviolet light-emitting phosphor disclosed in the present application is also provided. A light-emitting device including the light-emitting element is also provided.

本発明に係る紫外線発光蛍光体のX線回折結果を示す(Ce:0.001mol、0.005mol)。The X-ray-diffraction result of the ultraviolet light-emitting phosphor according to the present invention is shown (Ce: 0.001 mol, 0.005 mol). 本発明に係る紫外線発光蛍光体のX線回折結果を示す(Ce:0.01mol、0.02mol)。The X-ray-diffraction result of the ultraviolet light-emitting phosphor according to the present invention is shown (Ce: 0.01 mol, 0.02 mol). 本発明に係る紫外線発光蛍光体のX線回折結果を示す(Ce:0.05mol、0.1mol)。The X-ray-diffraction result of the ultraviolet light-emitting phosphor according to the present invention is shown (Ce: 0.05 mol, 0.1 mol). 本発明に係る紫外線発光蛍光体のX線回折結果を示す(Ce:0.2mol、0.3mol)。The X-ray-diffraction result of the ultraviolet light-emitting phosphor according to the present invention is shown (Ce: 0.2 mol, 0.3 mol). 本発明に係る紫外線発光蛍光体のX線回折結果を示す(Ce:0.4mol、0.6mol)。The X-ray-diffraction result of the ultraviolet light-emitting phosphor according to the present invention is shown (Ce: 0.4 mol, 0.6 mol). 本発明に係る紫外線発光蛍光体のX線回折結果を示す(Ce:0.7mol、0.75mol)。The X-ray-diffraction result of the ultraviolet light-emitting phosphor according to the present invention is shown (Ce: 0.7 mol, 0.75 mol). 本発明に係る紫外線発光蛍光体のX線回折結果を示す(Ce:0.8mol)。The X-ray diffraction result of the ultraviolet light-emitting phosphor according to the present invention is shown (Ce: 0.8 mol). 本発明に係る紫外線発光蛍光体の紫外線励起による発光スペクトルの結果(a)、および積分強度(発光強度)とCe置換量(配合モル比率)の相関関係を表すグラフ(b)を示す。The result (a) of the emission spectrum by ultraviolet excitation of the ultraviolet light-emitting phosphor according to the present invention, and the graph (b) showing the correlation between the integrated intensity (light emission intensity) and the Ce substitution amount (mixing molar ratio) are shown. 本発明に係る紫外線発光蛍光体の発光ピーク波長とCe置換量(配合モル比率)の相関関係を表すグラフを示す。The graph showing the correlation of the light emission peak wavelength of the ultraviolet light emission fluorescent substance which concerns on this invention, and Ce substitution amount (compounding molar ratio) is shown.

本願に開示する紫外線発光蛍光体は、上記のように、セリウム元素と、カルシウム元素と、リン元素と、酸素元素とから構成され、セリウム元素の配合モル比率xが、0<x≦0.7である蛍光体であれば特に限定されない。   As described above, the ultraviolet light-emitting phosphor disclosed in the present application is composed of a cerium element, a calcium element, a phosphorus element, and an oxygen element, and the mixing molar ratio x of the cerium element is 0 <x ≦ 0.7. If it is fluorescent substance which is, it will not specifically limit.

このような好適な紫外線発光蛍光体の1つとしては、例えば、一般式Ca3-xCex(PO(但し、0<x≦0.7)で表されるものが挙げられる。ここで、構成元素の1つとしてセリウム元素が含まれていればよいことから、構成元素として含まれるセリウム元素の一部を、セリウム元素と同族の他の希土類元素で置換してもよい。このような他の希土類元素としては、スカンジウム、ランタン、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。 Such One preferred UV-emitting phosphor, for example, the general formula Ca 3-x Ce x (PO 4) 2 ( where, 0 <x ≦ 0.7) include those represented by. Here, since it is sufficient that the cerium element is included as one of the constituent elements, a part of the cerium element included as the constituent element may be replaced with another rare earth element of the same family as the cerium element. Examples of such other rare earth elements include scandium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.

また、構成元素の1つとしてカルシウム元素が含まれていればよいことから、構成元素として含まれるカルシウム元素の一部を、他のアルカリ金属元素やアルカリ土類金属元素で置換してもよい。このような他の元素としては、リチウム、ナトリウム、カリウム、ルビジウム、ストロンチウム、バリウム、ラジウムを挙げることができる。   Further, since it is sufficient that the calcium element is included as one of the constituent elements, a part of the calcium element included as the constituent element may be replaced with another alkali metal element or alkaline earth metal element. Examples of such other elements include lithium, sodium, potassium, rubidium, strontium, barium, and radium.

本願に係る紫外線発光蛍光体の励起源としては、紫外線を発光する光源であれば特に限定されない。ここでいう紫外線とは、真空紫外線を含む紫外線領域全般を指す。このような紫外線を発光する光源としては、例えば、波長200nm〜300nmの光源を用いることができ、例えば、励起源として従来から広範に利用されている波長254nmの光源を用いることができる。また、例えば、波長200nm以下の真空紫外線を用いることもでき、例えば、励起源として従来から広範に利用されている波長146nmや波長185nmの光源を用いることができる。   The excitation source of the ultraviolet light emitting phosphor according to the present application is not particularly limited as long as it is a light source that emits ultraviolet light. The term “ultraviolet rays” as used herein refers to the entire ultraviolet region including vacuum ultraviolet rays. As such a light source that emits ultraviolet light, for example, a light source having a wavelength of 200 nm to 300 nm can be used. For example, a light source having a wavelength of 254 nm that has been widely used as an excitation source can be used. For example, vacuum ultraviolet rays having a wavelength of 200 nm or less can be used. For example, a light source having a wavelength of 146 nm or a wavelength of 185 nm that has been widely used as an excitation source can be used.

本願に開示する紫外線発光蛍光体は、このような励起源からの紫外線の照射によって、各種の紫外線領域の紫外線を発光することができ、例えば、各種用途に有用とされる300nm〜400nm、例えば、近年の改良された紫外線硬化樹脂(UV硬化樹脂)や、PSA技術における配向性固定のための液晶の照射に好適な360nm前後の紫外線領域を発光することができる。   The ultraviolet light-emitting phosphor disclosed in the present application can emit ultraviolet rays in various ultraviolet regions by irradiation with ultraviolet rays from such an excitation source, for example, 300 nm to 400 nm, which is useful for various applications, for example, It is possible to emit light in the ultraviolet region of around 360 nm, which is suitable for irradiation of liquid crystal for fixing the orientation in the PSA technology, which has been improved in recent years.

事実、本願に開示する紫外線発光蛍光体の一例である一般式Ca3-xCex(PO(但し、0<x≦0.7)で表される蛍光体では、セリウム元素の配合モル比率xが、0<x≦0.7の範囲内において、360nm前後の発光波長で、発光ピーク強度が100より高いという優れた強度の発光を呈することが確認されている(後述の実施例参考)。 In fact, an example of an ultraviolet-emitting phosphors disclosed in the present application the formula Ca 3-x Ce x (PO 4) 2 ( where, 0 <x ≦ 0.7) with a phosphor represented by blending cerium element In the range of 0 <x ≦ 0.7, the molar ratio x has been confirmed to exhibit light emission with an excellent intensity that the emission peak intensity is higher than 100 at an emission wavelength of about 360 nm (Examples described later). reference).

本願に係る紫外線発光蛍光体が、このように優れた効果を奏するメカニズムは未だ詳細には解明されていないが、紫外線が照射された場合に、当該紫外線の紫外線領域の波長に対して蛍光体の結晶構造内で、配合モル比率xが、0<x≦0.7の範囲でセリウム元素が存在していることによって、セリウム元素が本来的に有する発光中心としての作用が高められるような構造的要因が内在していることが考えられる。すなわち、紫外線が照射された際に、当該配合比率で含有されたセリウム元素の存在によって、蛍光体を構成する各原子間の距離と紫外線の波長の長さが好適に作用し、原子レベルで紫外線領域の光を特異的に発光するエネルギーレベルに遷移しやすくなっているものと推察される。   Although the mechanism by which the ultraviolet light-emitting phosphor according to the present application exhibits such an excellent effect has not yet been elucidated in detail, when ultraviolet light is irradiated, the phosphor does not emit light with respect to the wavelength in the ultraviolet region. In the crystal structure, the cerium element is present in the range where the blending molar ratio x is in the range of 0 <x ≦ 0.7, so that the action as the emission center inherent to the cerium element is enhanced. It is possible that the factors are inherent. That is, when irradiated with ultraviolet rays, the presence of the cerium element contained in the blending ratio favorably affects the distance between the atoms constituting the phosphor and the length of the wavelength of the ultraviolet rays. It is presumed that it is easy to transition to an energy level that specifically emits light in the region.

このような本願に開示する紫外線発光蛍光体の製造方法の一例としては、各構成元素の酸化物を原料に用いて、所望とする蛍光体の組成となるような化学量論的な割合で混合する。例えば、本願に係る紫外線発光蛍光体の一例である一般式Ca3-xCex(PO(但し、0<x≦0.7)で表される蛍光体を得る場合には、原材料として、各構成元素の酸化物である炭酸カルシウム(CaCO3)、リン酸水素二アンモニウム((NHHPO)、および酸化セリウム(CeO)の各粉末を用いることができる。 As an example of the method for producing the ultraviolet light-emitting phosphor disclosed in the present application, an oxide of each constituent element is used as a raw material and mixed at a stoichiometric ratio so as to obtain a desired phosphor composition. To do. For example, an example of the ultraviolet-emitting phosphor according to the present general formula Ca 3-x Ce x (PO 4) 2 ( where, 0 <x ≦ 0.7) in order to obtain a phosphor represented by the raw materials Each powder of calcium carbonate (CaCO 3 ), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), and cerium oxide (CeO 2 ), which are oxides of the constituent elements, can be used.

この各粉末を混合し、還元雰囲気下(例えば、窒素・水素還元雰囲気下)で高温焼成することによって、所望とする蛍光体が得られる。この高温焼成は、例えば、温度1000℃〜1500℃で、2〜6時間焼成を実施することによって、所望とする蛍光体を焼結体として得ることができる。   By mixing these powders and firing at a high temperature in a reducing atmosphere (for example, in a nitrogen / hydrogen reducing atmosphere), a desired phosphor can be obtained. In this high-temperature firing, for example, a desired phosphor can be obtained as a sintered body by firing at a temperature of 1000 ° C. to 1500 ° C. for 2 to 6 hours.

このようにして得られる紫外線発光蛍光体の用途は多岐にわたる。例えば、本願に係る紫外線発光蛍光体を用いて、近年改良されているUV硬化樹脂やPSA技術における液晶の配向性固定のための光源として利用することができる。この場合には、本願に係る紫外線発光蛍光体は、波長360nm前後の紫外線領域に、強い発光ピークを発揮できることから、近年改良されているUV硬化樹脂の硬化やPSA技術における液晶の配向性固定に際して、好適な光源として利用することが可能となる。すなわち、従来には無い穏やかなエネルギーの紫外線を照射することができることから、樹脂に与えるダメージが穏やかなものとなり、従来よりもより品質に優れたUV硬化樹脂の合成や、PSA技術における液晶の配向性固定を実現することができる。   The use of the ultraviolet light-emitting phosphor thus obtained is diverse. For example, the ultraviolet light-emitting phosphor according to the present application can be used as a light source for fixing the orientation of liquid crystals in the recently improved UV curable resin or PSA technology. In this case, since the ultraviolet light-emitting phosphor according to the present application can exhibit a strong light emission peak in the ultraviolet region having a wavelength of around 360 nm, the curing of the UV curable resin and the fixing of the liquid crystal orientation in the PSA technology have been improved in recent years. It can be used as a suitable light source. In other words, since it is possible to irradiate ultraviolet rays with a gentle energy that has not existed before, the damage to the resin is gentle, synthesis of UV curable resin with higher quality than before, and alignment of liquid crystals in PSA technology Sex fixation can be realized.

本発明の特徴を更に明らかにするため、以下に実施例を示すが、本発明はこの実施例によって制限されるものではない。   In order to further clarify the features of the present invention, examples are shown below, but the present invention is not limited to these examples.

(実施例)
(1)蛍光体の製造
原材料に、炭酸カルシウム(CaCO3)、リン酸水素二アンモニウム((NHHPO)、酸化セリウム(CeO)を用いて、化学量論的にCa3-xCex(POで表される組成式になるような割合に混合した。混合後、アルミナ坩堝に入れて窒素・水素還元雰囲気下で1300℃、3時間焼成を実施して焼結体を得た。この焼結体については、セリウム元素の配合モル比率xについて、x=0.001、0.005、0.01、0.02、0.05、0.1、0.2、0.3、0.4、0.6、0.7、0.75、0.8の13種類のサンプルを得た。
(Example)
(1) Production of phosphors Using calcium carbonate (CaCO 3 ), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), and cerium oxide (CeO 2 ) as raw materials, stoichiometrically Ca 3− x Ce x mixed (PO 4) in proportions such that the composition formula represented by 2. After mixing, the mixture was placed in an alumina crucible and fired at 1300 ° C. for 3 hours in a nitrogen / hydrogen reducing atmosphere to obtain a sintered body. For this sintered body, 13 types of samples of x = 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.75, 0.8 were obtained for the molar ratio x of cerium element. It was.

(2)蛍光体の同定
上記で得られた焼結体に対して、線源がCuKαのX線回折装置でX線回折結果を取得した。この得られた焼結体の上記13種類のサンプル(x=0.001〜0.8)についてのX線回折結果を図1〜図7に示す。いずれのサンプルにおいても、得られたピーク値から、確かにCa3-xCex(POの組成で結晶化していることが確認された。
(2) Identification of phosphor The X-ray diffraction result of the sintered body obtained above was obtained with an X-ray diffractometer whose source is CuKα. The X-ray diffraction results for the 13 types of samples (x = 0.001 to 0.8) of the obtained sintered body are shown in FIGS. In any samples, from the resulting peak value, that crystallized was confirmed certainly Ca 3-x Ce x (PO 4) 2 composition.

(3)発光強度の測定
上記の13種類のCa3-xCex(PO結晶のサンプル(サンプル番号1〜13)について、励起波長λ=254nmによる紫外線励起による発光強度(積分強度)を確認した。得られた発光スペクトルの結果を図8(a)に示す。また、この発光強度(積分強度)とセリウム元素(Ce)置換量(配合モル比率)の相関関係を表すグラフを、横軸をセリウム元素の配合モル比率xとして、図8(b)に示す。得られた結果から、本実施例に係る紫外線発光蛍光体Ca3-xCex(POは、セリウム元素の配合モル比率xが、0以上で、高い発光強度を発揮しており、とりわけ0.02≦x≦0.4で高い発光強度を示しており、特に0.02≦x≦0.3で極めて高い発光強度を示したことが確認された。また、セリウム元素の配合モル比率xが、0.7より大きい場合には、発光強度が急激に低下したことも確認された。
(3) Measurement of the 13 types of light-emitting intensity of Ca 3-x Ce x (PO 4) sample of 2 crystals (Sample No. 1-13), luminous intensity (integrated intensity) by ultraviolet excitation with excitation wavelength lambda = 254 nm It was confirmed. The result of the obtained emission spectrum is shown in FIG. Further, FIG. 8B shows a graph showing the correlation between the emission intensity (integrated intensity) and the cerium element (Ce) substitution amount (mixing molar ratio), where the horizontal axis is the mixing molar ratio x of cerium element. From the results obtained, the ultraviolet-emitting phosphor Ca 3-x Ce x (PO 4) 2 according to the present embodiment, the mixing molar ratio x of cerium element is greater than 0, and exhibit high luminous intensity, In particular, it was confirmed that the emission intensity was high at 0.02 ≦ x ≦ 0.4, and that the emission intensity was particularly high at 0.02 ≦ x ≦ 0.3. It was also confirmed that the emission intensity decreased sharply when the mixing molar ratio x of the cerium element was larger than 0.7.

発光ピーク波長とセリウム元素(Ce)置換量(配合モル比率)の相関関係を表すグラフを、横軸をセリウム元素の配合モル比率xとして、図9に示す。得られた結果から、セリウム元素(Ce)置換量(配合モル比率)が0.01〜0.2までは長波長にシフトし、0.2より大きくなると低波長にシフトするという傾向が確認された。また、いずれの蛍光体も、発光ピーク波長が340nm〜370nm内に収まっており、すなわち、発光ピーク波長が360nm前後という紫外領域の発光が得られたことが確認された。このように得られた発光の結果から、いずれの蛍光体も、近年改良されているUV硬化樹脂に照射するための紫外線発光源や、PSA技術における液晶の配向性固定のための紫外線発光源として、従来には無い最適なものであることが確認された。   A graph showing the correlation between the emission peak wavelength and the cerium element (Ce) substitution amount (mixing molar ratio) is shown in FIG. 9 with the horizontal axis being the mixing molar ratio x of cerium element. From the obtained results, it was confirmed that the cerium element (Ce) substitution amount (mixing molar ratio) was shifted to a long wavelength from 0.01 to 0.2, and shifted to a low wavelength when it was larger than 0.2. It was. Further, it was confirmed that the emission peak wavelength of each phosphor was within the range of 340 nm to 370 nm, that is, emission in the ultraviolet region having an emission peak wavelength of around 360 nm was obtained. As a result of the light emission obtained in this way, any phosphor can be used as an ultraviolet light source for irradiating UV curing resin, which has been improved in recent years, or an ultraviolet light source for fixing the orientation of liquid crystals in the PSA technology. It has been confirmed that this is an optimum one that has not existed before.

Claims (4)

セリウム元素と、カルシウム元素と、リン元素と、酸素元素とから構成され、セリウム元素の配合モル比率xが、0<x≦0.7である蛍光体であって、紫外線の照射により励起されて紫外線を発光することを特徴とする
紫外線発光蛍光体。
A phosphor composed of a cerium element, a calcium element, a phosphorus element, and an oxygen element, and a mixing molar ratio x of the cerium element is 0 <x ≦ 0.7, and is excited by irradiation with ultraviolet rays. An ultraviolet light-emitting phosphor characterized by emitting ultraviolet light.
請求項1に記載の紫外線発光蛍光体において、
一般式Ca3-xCex(PO(但し、0<x≦0.7)で表される蛍光体であって、紫外線の照射により励起されて紫外線を発光することを特徴とする
紫外線発光蛍光体。
The ultraviolet light-emitting phosphor according to claim 1,
A phosphor represented by the general formula Ca 3-x Ce x (PO 4 ) 2 (where 0 <x ≦ 0.7), and is characterized by emitting ultraviolet rays when excited by irradiation with ultraviolet rays. Ultraviolet light emitting phosphor.
請求項1または請求項2に記載の紫外線発光蛍光体を用いることを特徴とする
発光素子。
A light-emitting element using the ultraviolet light-emitting phosphor according to claim 1.
請求項3に記載の発光素子を備えることを特徴とする
発光装置。
A light-emitting device comprising the light-emitting element according to claim 3.
JP2016242721A 2016-12-14 2016-12-14 Ultraviolet light emitting phosphor, light emitting element, and light emitting device Pending JP2018095755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016242721A JP2018095755A (en) 2016-12-14 2016-12-14 Ultraviolet light emitting phosphor, light emitting element, and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016242721A JP2018095755A (en) 2016-12-14 2016-12-14 Ultraviolet light emitting phosphor, light emitting element, and light emitting device

Publications (1)

Publication Number Publication Date
JP2018095755A true JP2018095755A (en) 2018-06-21

Family

ID=62631812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242721A Pending JP2018095755A (en) 2016-12-14 2016-12-14 Ultraviolet light emitting phosphor, light emitting element, and light emitting device

Country Status (1)

Country Link
JP (1) JP2018095755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020035891A (en) * 2018-08-30 2020-03-05 日亜化学工業株式会社 Light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020035891A (en) * 2018-08-30 2020-03-05 日亜化学工業株式会社 Light-emitting device

Similar Documents

Publication Publication Date Title
US7476336B2 (en) Phosphor and manufacturing method for the same, and light emitting device using the phosphor
US6802990B2 (en) Fluorescent substances for vacuum ultraviolet radiation excited light-emitting devices
JP6630445B2 (en) Ultraviolet light emitting phosphor, light emitting element, and light emitting device
JP2004529252A5 (en)
EP1630219A2 (en) Phosphor and manufacturing mehod for the same, and light source using the same
US9062253B2 (en) Phosphor composition, light emitting device, and the method of preparing the phosphor composition
JP6465417B2 (en) Luminescent phosphor and method for producing the same
KR101121717B1 (en) LUMINESCENT SUBSTANCES HAVING Eu (2+) -DOPED SILICATE LUMINOPHORES
JP2018095755A (en) Ultraviolet light emitting phosphor, light emitting element, and light emitting device
KR101339102B1 (en) Sr-Al-O BASED LONG-AFTERGLOW PHOSPHORS AND METHOD FOR MANUFACTURING THE SAME
JP4713169B2 (en) Phosphor
JP6618512B2 (en) Ultraviolet light emitting phosphor, light emitting element, and light emitting device
KR102005613B1 (en) Fluorescent substance
KR101214234B1 (en) Phosphor and method for preparing the same
US8986574B2 (en) Oxynitride-based phosphor and light emitting device including the same
JP2006002043A (en) Fluorescent substance to be excited by vacuum ultraviolet rays, method for producing the same, and vacuum ultraviolet ray-excited light-emitting element
US8686626B2 (en) Oxynitride-based phosphor and light emitting device including the same
WO2018079661A1 (en) Ultraviolet light-emitting phosphor, light-emitting element, and light-emitting device
JP6741614B2 (en) Rare earth activated alkaline earth silicate compound Afterglow phosphor
JP2009001677A (en) Oxide phosphor and light emitting apparatus
KR102001718B1 (en) Oxyide phosphor
JP6858006B2 (en) Vacuum UV excitation phosphor, light emitting element, and light emitting device
KR20130131432A (en) Method for producing fluorescent substance
KR20150088668A (en) Oxynitride-base yellow phosphor and light emitting device comprising the same
JP2015117334A (en) Phosphor