JP6741614B2 - Rare earth activated alkaline earth silicate compound Afterglow phosphor - Google Patents
Rare earth activated alkaline earth silicate compound Afterglow phosphor Download PDFInfo
- Publication number
- JP6741614B2 JP6741614B2 JP2017051119A JP2017051119A JP6741614B2 JP 6741614 B2 JP6741614 B2 JP 6741614B2 JP 2017051119 A JP2017051119 A JP 2017051119A JP 2017051119 A JP2017051119 A JP 2017051119A JP 6741614 B2 JP6741614 B2 JP 6741614B2
- Authority
- JP
- Japan
- Prior art keywords
- afterglow
- phosphor
- mol
- rare earth
- alkaline earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Luminescent Compositions (AREA)
Description
本発明は、昼間の太陽光および室内照明などによる紫外線励起により青緑〜橙色発光を示し、励起光遮断後も発光し続ける希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体に関する。 TECHNICAL FIELD The present invention relates to a rare earth activated alkaline earth silicate compound afterglow phosphor that exhibits blue-green to orange light emission by ultraviolet light excitation by daylight such as sunlight and indoor lighting, and continues to emit light even after blocking excitation light.
光源による励起を遮断した後も発光が可能な残光性蛍光体(蓄光材料)は、暗所における表示物として用いたり、電源消失時に効果を発揮する誘導標識や照明としての利用が期待されている。
従来の残光性蛍光体材料として、硫化亜鉛系蓄光材料や、青〜緑色発光を示すアルミン酸塩を母結晶とする蓄光材料が知られている。
The afterglow phosphor (phosphorescent material) that can emit light even after the excitation by the light source is cut off is expected to be used as a display object in a dark place, or as an inductive sign or lighting that is effective when the power is lost. There is.
As a conventional afterglow phosphor material, a zinc sulfide-based phosphorescent material and a phosphorescent material having a mother crystal of an aluminate that emits blue to green light are known.
暖色系残光を示す残光性蛍光体としては、比較的残光時間が長いものとして、次の1、2が知られている。
1.Y2O2S:Tix,Mgy,Gda (特許文献1)
2.CaS:Eu,Tmで表される化合物を主体とし、Caに対して、Euを10Xmol%含有し、Tmを10Ymol%含有すると共に、−3≦X≦−1、−3≦Y≦0の範囲であり、かつ0≦Y−X≦2であるもの(特許文献2)。
しかしながら、これら1、2の暖色系残光性蛍光体は、いずれも発光強度が弱く、硫化物系物質のため紫外線、熱に対する安定性や、耐候性などの長期安定性に大きな問題がある。
The following 1 and 2 are known as afterglow phosphors exhibiting a warm color afterglow, which have a relatively long afterglow time.
1. Y 2 O 2 S:Tix, Mgy, Gda (Patent Document 1)
2. CaS: mainly composed of a compound represented by Eu and Tm, containing 10 X mol% of Eu and 10 Y mol% of Tm with respect to Ca, and −3≦X≦−1 and −3≦Y. A range of ≦0 and 0≦Y−X≦2 (Patent Document 2).
However, these 1 and 2 warm-colored afterglow phosphors all have weak emission intensity, and are sulfide-based substances, so that they have major problems in stability against ultraviolet rays and heat, and long-term stability such as weather resistance.
また、上記1、2とは別に、紫外線や熱に対して安定な金属酸化物の残光性蛍光体も知られている。
3.(Zn1−xMgx)O・n(Ga1−yCry)2O3(組成式中のx、y及びnはそれぞれ下記の条件を満たす数値である。0≦x≦1.0、1×10−5≦y≦1×10−1、0.95≦n≦1.05)(特許文献3)
4.遷移元素及び希土類元素によって付活されたGe−O結合を含み、且つ、赤色に対する残光特性を有するゲルマン酸塩を主体とした化合物の焼成体からなる赤色蓄光蛍光体(特許文献4)
5.Ca1−XSrXTiO3:Pr赤色蓄光材料(非特許文献1参照)。
しかしながら、実用的な応用は困難であった。
In addition to the above 1 and 2, metal oxide afterglow phosphors that are stable against ultraviolet rays and heat are also known.
3. (Zn 1-x Mg x) O · n (Ga 1-y Cr y) 2 O 3 (x in the composition formula, y and n are each satisfy the following numbers .0 ≦ x ≦ 1.0 1×10 −5 ≦y≦1×10 −1 , 0.95≦n≦1.05) (Patent Document 3)
4. A red phosphorescent phosphor comprising a fired body of a compound mainly containing germanate, which contains a Ge—O bond activated by a transition element and a rare earth element and has afterglow characteristics for red (Patent Document 4).
5. Ca 1-X Sr X TiO 3 :Pr red phosphorescent material (see Non-Patent Document 1).
However, practical application was difficult.
特許文献5には Ca2−x−y−zMxSiO4:yCe3+,zN(MはMg、Sr、Ba、Zn、Na、Al、Ga、Ge、P、As及びFeからなるグループから選択された少なくとも1つを含み、NはEu2+、Mn2+、Tb3+、Yb2+及びTm3+からなるグループから選択された少なくとも1つを含む)シリケート蛍光体(請求項1)が記載されている。また、シリケート蛍光体の原料混合物にMgF2、MgCl2、BaF2、BaCl2、SrF2、SrCl2、CaF2、CaCl2、NH4F、NH4Cl及びLiFからなるグループから選択された少なくとも1つを融剤としてさらに含む(請求項7)ことが記載されている。
しかし、残光、蓄光性蛍光体、燐光等の記載やその測定結果を示すデータはないので蓄光性蛍光体ではない、または蓄光性について検討されていないことが理解できる。
Patent Document The 5 Ca 2-x-y- z M x SiO 4: y Ce 3+, z N (M consists Mg, Sr, Ba, Zn, Na, Al, Ga, Ge, P, As and Fe A silicate phosphor (claim 1) comprising at least one selected from the group, wherein N comprises at least one selected from the group consisting of Eu 2+ , Mn 2+ , Tb 3+ , Yb 2+ and Tm 3+. Has been done. Further, at least the material mixture of the silicate phosphor is selected from the group consisting of MgF 2 , MgCl 2 , BaF 2 , BaCl 2 , SrF 2 , SrCl 2 , CaF 2 , CaCl 2 , NH 4 F, NH 4 Cl and LiF. It is described that one further is contained as a flux (Claim 7).
However, since there is no description of afterglow, phosphorescent phosphor, phosphorescence, etc. and data showing the measurement results thereof, it can be understood that the phosphor is not a phosphorescent phosphor or the phosphorescent property has not been examined.
本発明の課題は、上記蓄光体(残光性蛍光体)の欠点を解消し、黄色〜赤色の残光を有し、初期の輝度および残光輝度に優れる希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体(以下、本発明の蛍光体または残光性蛍光体ということがある)を提供しようとする。 An object of the present invention is to solve the drawbacks of the above-mentioned phosphorescent material (afterglow phosphor), to have afterglow of yellow to red, and to have excellent initial brightness and afterglow brightness Rare earth activated alkaline earth silicate. It is intended to provide a compound afterglow phosphor (hereinafter, may be referred to as a phosphor of the present invention or an afterglow phosphor).
本発明では、既存の硫化物系による暖色系残光蛍光体の改良ではなく、希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体において残光時間、残光輝度を改善すべく、鋭意検討した結果、焼結の際の粒成長の促進が必要であることを見出し、その手段として焼結において液相を形成する融剤(以下、フラックスということがある)の利用が有効であることを見出した。 In the present invention, in order to improve the afterglow time and the afterglow brightness in the rare earth activated alkaline earth silicate compound afterglow phosphor, not improvement of the existing warm color afterglow phosphor by the sulfide system. As a result of examination, it was found that it is necessary to promote grain growth during sintering, and the use of a flux (hereinafter sometimes referred to as flux) that forms a liquid phase during sintering is effective as a means for that. Found.
以下に、本明細書の用語を説明する。
発光: 無機物質によって吸収されたエネルギーが光として放出されることの総称。本明細書では、蛍光、残光のどちらをも指す。
励起光: 特定の発光を得る為に与えるエネルギー(光)のこと。
蛍光: 特定のエネルギー(光)を与えたときに生じる発光のこと。残光性蛍光体の場合、このようなエネルギー(光)を与えたときに生じる発光の状態では、発光と残光とを区別できない。
残光: 励起停止後も持続的に続く発光のこと。
The terms used in this specification are explained below.
Luminescence: A general term for the energy absorbed by an inorganic substance to be emitted as light. In the present specification, it indicates both fluorescence and afterglow.
Excitation light: Energy (light) given to obtain specific light emission.
Fluorescence: Light emission that occurs when given specific energy (light). In the case of an afterglow phosphor, it is not possible to distinguish between light emission and afterglow in the state of light emission that occurs when such energy (light) is applied.
Afterglow: Permanent light emission that continues after excitation is stopped.
すなわち本発明は、以下を提供する。
(1)Clを含有し、酸化分解−電量滴定法で測定されるClの含有量が50ppm以上、10000ppm以下である希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体(以下、本発明の蛍光体ということがある)。
(2)前記Clは、還元焼成時に添加されるアルカリ金属、アルカリ土類金属の塩化物または水酸化物の残留物である(1)に記載の希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体。
(3)還元焼成時に添加されるMgCl2、CaCl2、SrCl2、BaCl2、KCl、NaCl、LiCl、NH4Cl、Mg(OH)2、Ca(OH)2、Sr(OH)2、Ba(OH)2、KOH、NaOH、およびLiOHから成る群から選択される、少なくとも1つの融剤である(2)に記載の希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体。
(4)前記希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体が、Clを含有し、
式(1) (Sr2-x, Mx)2-ySiO4 : Ny
ここで、xは、Si=1mol に対して、Mの含有量で、0.1mol≦x≦1.0mol、yは、Nの含有量で、0.001mol≦y≦0.100mol であり、Mは、Mg,CaおよびBaのうち少なくとも1つ、Nは、Ce、Pr、Nd、Sm、Eu,Tb、ErおよびYbのうち少なくとも1つを含む、つまり金属Si:1モルに対して、Mの含有量は0.1mol以上1.0mol以下、Nの含有量は0.001mol以上0.100mol以下、で示される残光性蛍光体である(1)ないし(3)のいずれか1に記載の希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体。
(5)さらに、酸素気流中燃焼‐赤外線吸収法で測定される0.3 質量%以下の炭素を含有する(1)ないし(4)のいずれか1項に記載の希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体。
That is, the present invention provides the following.
(1) A rare earth activated alkaline earth silicate compound afterglow phosphor containing Cl and having a Cl content measured by an oxidative decomposition-coulometric titration method of 50 ppm or more and 10000 ppm or less (hereinafter, referred to as the present invention. Sometimes called a phosphor).
(2) The rare earth activated alkaline earth silicate compound afterglow according to (1), wherein the Cl is a residue of a chloride or hydroxide of an alkali metal, an alkaline earth metal added during reduction firing. Fluorescent substance.
(3) MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , KCl, NaCl, LiCl, NH 4 Cl, Mg(OH) 2 , Ca(OH) 2 , Sr(OH) 2 , Ba added during reduction firing. The rare earth activated alkaline earth silicate compound afterglow phosphor according to (2), which is at least one flux selected from the group consisting of (OH) 2 , KOH, NaOH, and LiOH.
(4) The rare earth activated alkaline earth silicate compound afterglow phosphor contains Cl,
Equation (1) (Sr 2- x, M x) 2-y SiO 4: N y
Here, x is the content of M with respect to Si=1 mol, 0.1 mol≦x≦1.0 mol, y is the content of N, 0.001 mol≦y≦0.100 mol, and M is Mg , Ca and Ba, and N contains at least one of Ce, Pr, Nd, Sm, Eu, Tb, Er and Yb, that is, the content of M with respect to 1 mol of metal Si. Is the afterglow phosphor having a content of 0.1 mol or more and 1.0 mol or less and a N content of 0.001 mol or more and 0.100 mol or less, with the rare earth element according to any one of (1) to (3). Active alkaline earth silicate compound Afterglow phosphor.
(5) The rare earth-activated alkaline earth silica according to any one of (1) to (4), which further contains 0.3% by mass or less of carbon measured by combustion in an oxygen stream-infrared absorption method. Phosphate compound afterglow phosphor.
所定量の塩素を有する本発明の蛍光体は、残光特性が改善される。本発明の蛍光体は、フラックスを用いて還元焼成した場合、フラックスを用いないで還元焼成した時に得られるものと比べて、適切量含有させることが容易である。 The phosphor of the present invention having a predetermined amount of chlorine has improved afterglow characteristics. When the phosphor of the present invention is reduction-baked using flux, it is easier to contain an appropriate amount of the phosphor as compared with the phosphor obtained when reduction-baking is performed without using flux.
本発明の希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体は、暗所における表示物として用いられる残光性蛍光体表示物において、昼間の太陽光および室内照明などによる紫外線励起により青緑〜橙色発光を示し、励起光遮断後も発光し続ける残光(黄色〜赤色)性蛍光体で、フラックス添加による焼結効果により、残光特性を改善した残光性蛍光体である。S(硫黄)成分を含まないので耐候性に優れると予想される。発光色に関しては、照射する波長、母結晶相、希土類種によって発光の波長は若干移動するので特定範囲であると記載することはできないが、例えば本発明の蛍光体の発光波長と色との関係の一例を図5に示す(カラー図は上申書で提出)。 The rare earth activated alkaline earth silicate compound afterglow phosphor of the present invention is a afterglow phosphor display that is used as a display in a dark place, and is blue due to ultraviolet excitation by daytime sunlight and indoor lighting. It is an afterglow (yellow to red) phosphor that emits green to orange light and continues to emit light even after the excitation light is blocked. The afterglow phosphor has improved afterglow characteristics due to the sintering effect by the addition of flux. Since it does not contain an S (sulfur) component, it is expected to have excellent weather resistance. Regarding the emission color, it cannot be stated that the emission wavelength is a specific range because the emission wavelength slightly shifts depending on the irradiation wavelength, mother crystal phase, and rare earth species, but for example, the relationship between the emission wavelength and the color of the phosphor of the present invention An example is shown in Fig. 5 (color diagram is submitted by petitions).
特許文献1には、段落[0003]に「一般に、蛍光体は、残光時間が極めて短く、紫外線、電子線または可視光線等の照射による外部刺激を停止すると発光が速やかに減衰するが、例外的にこれら紫外線等の照射による外部刺激を与えてから、この外部刺激を停止した後であっても、例えば数10分から数時間程度の長時間に渡って残光を肉眼で確認できるものがある。そして、蛍光体のうち、長時間に渡って残光を肉眼で確認できるものは、通常の蛍光体と区別して蓄光性蛍光体や燐光体等と呼ばれている。」ことが記載される。したがって蓄光性、燐光体、残光等の記載がない一般的な蛍光体の記載は、残光を示さないか、または残光を示すことが知られていない蛍光体であると理解される。なお一般的にケイ酸塩化合物は蛍光体である場合も残光を示さない。 Patent Document 1 describes in paragraph [0003] that "in general, the afterglow time of a phosphor is extremely short, and when the external stimulus due to irradiation of ultraviolet rays, electron beams, visible rays, or the like is stopped, the light emission is rapidly attenuated. Even after the external stimulus is given by irradiation with ultraviolet rays or the like, the afterglow can be visually confirmed for a long time, for example, several tens of minutes to several hours even after the external stimulus is stopped. Of the phosphors, those that can be visually confirmed afterglow for a long time are called phosphorescent phosphors, phosphors, etc., which are distinguished from ordinary phosphors." .. Therefore, a general description of a phosphor having no description of phosphorescence, phosphor, afterglow, etc. is understood to be a phosphor that does not show afterglow or is not known to show afterglow. Generally, a silicate compound does not exhibit afterglow even when it is a phosphor.
(本発明の希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体)
本発明の希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体は、希土類N,例えばEu(ユウロピウム),Dy(ジスプロシウム),Tb(テルビウム),Sm(サマリウム)、Ce(セリウム),Pr(プラセオジム),Nd(ネオジム),Er(エルビウム),およびYb(イッテルビウム)等を含み、Sr(ストロンチウム)の一部がアルカリ土類で置換されたケイ酸塩化合物で、アルカリ土類は、例えばMg(マグネシウム),Ca(カルシウム),Ba(バリウム)等を含むケイ酸塩化合物で残光を示す蛍光体であり、Cl(塩素)を含みその含有量が10000ppm以下であれば、特に限定されない。
好ましくは、希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体が、Clを50ppm以上、10000ppm以下含有し、好ましくは式(1) (Sr2-x, Mx)2-ySiO4 : Ny の化合物である。
本発明においては、蛍光体の基本組成x、yおよびNにおける希土類の比率は限定されないが好ましくは以下である。
ここで、M=Mg,Ca,Baのうち少なくとも1つ、N=Ce,Pr,Nd,Sm、Eu,Tb,Dy,Er,およびYbなどのうち少なくとも1つを含み、金属Si:1モルに対して、Mの含有量は0.1mol以上1.0mol以下、Nの含有量は0.001mol以上0.100mol以下である。したがってxは、Si=1mol に対して、Mの含有量で、0.1mol≦x≦1.0mol、yは、Nの含有量で、0.001mol≦y≦0.100molである。
(Rare earth activated alkaline earth silicate compound afterglow phosphor of the present invention)
The rare earth activated alkaline earth silicate compound afterglow phosphor of the present invention is a rare earth N, such as Eu (europium), Dy (dysprosium), Tb (terbium), Sm (samarium), Ce (cerium), Pr. (Praseodymium), Nd (neodymium), Er (erbium), Yb (ytterbium), etc., and a silicate compound in which a part of Sr (strontium) is replaced with an alkaline earth, and the alkaline earth is, for example, It is a phosphor that shows afterglow with a silicate compound containing Mg (magnesium), Ca (calcium), Ba (barium), etc., and is not particularly limited as long as it contains Cl (chlorine) and its content is 10,000 ppm or less. ..
Preferably, the rare earth activated alkaline earth silicate compound afterglow phosphor contains Cl in an amount of 50 ppm or more and 10000 ppm or less, and preferably has the formula (1) (Sr 2−x , M x ) 2-y SiO 4 : A compound of N y .
In the present invention, the ratio of the rare earth in the basic composition x, y and N of the phosphor is not limited, but is preferably the following.
Here, at least one of M=Mg, Ca, and Ba, at least one of N=Ce, Pr, Nd, Sm, Eu, Tb, Dy, Er, and Yb, and the like, metal Si: 1 mol On the other hand, the content of M is 0.1 mol or more and 1.0 mol or less, and the content of N is 0.001 mol or more and 0.100 mol or less. Therefore, x is the content of M with respect to Si=1 mol, 0.1 mol≦x≦1.0 mol, and y is the content of N, 0.001 mol≦y≦0.100 mol.
残光を示すとは、紫外線、電子線または可視光線等の照射による外部刺激を与えてから、外部刺激を停止した後も、数分以上、肉眼で確認できる発光を示すものをいう。本発明の蛍光体では、初期(励起光源遮蔽後1分)の残光強度で約3倍、10分後の残光強度は比較例で検出限界以下であるのに対して、十分な残光強度が認められた。
本発明の希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体の組成の測定は、蛍光X線法、フーリエ変換赤外分光法(FTIR)等何れの分析方法を用いてもよく、限定されない。Cl含有量の測定は酸化分解−電量滴定法で測定できる。C、O等の有機成分は、ガスクロマトグラフ質量分析(GC−MS)で分析し、その他の成分は化学滴定分析で分析してもよい。有機元素分析では、C,O,H、N等を燃焼酸化炉で燃焼分解し、定量的にH2O,CO2,N2に変換し,これらの各成分を熱伝導度検出器により定量する方法がある。C含有量は、酸素気流中燃焼−赤外線吸収法で測定できる。元素分析において、いずれの場合も、分析方法は限定されない。
The expression “afterglow” means light emission that can be visually confirmed for several minutes or more even after external stimulus is applied by irradiation with ultraviolet rays, electron beams, visible light, or the like and then the external stimulus is stopped. In the phosphor of the present invention, the afterglow intensity at the initial stage (1 minute after blocking the excitation light source) is about 3 times, and the afterglow intensity after 10 minutes is below the detection limit in the comparative example, whereas sufficient afterglow is obtained. The strength was recognized.
The composition of the rare earth-activated alkaline earth silicate compound afterglow phosphor of the present invention may be measured by any analysis method such as a fluorescent X-ray method and Fourier transform infrared spectroscopy (FTIR). Not done. The Cl content can be measured by an oxidative decomposition-coulometric titration method. Organic components such as C and O may be analyzed by gas chromatograph mass spectrometry (GC-MS), and other components may be analyzed by chemical titration analysis. In organic elemental analysis, C, O, H, N, etc. are combusted and decomposed in a combustion oxidation furnace and quantitatively converted to H 2 O, CO 2 , N 2 , and each of these components is quantified by a thermal conductivity detector. There is a way to do it. The C content can be measured by combustion in an oxygen stream-infrared absorption method. In the elemental analysis, the analysis method is not limited in any case.
本発明の残光性蛍光体は、下記製造方法で説明する融剤である各種アルカリ金属、アルカリ土類の塩化物等を混合することで液相形成、粒成長、緻密化といった焼結の進行に対し、使用原料の炭酸塩の分解、融剤成分の分解、消失が並行して進む。多くのセラミックス材料においては、融剤として用いたCl残渣は、洗浄などによって徹底的に除去されるのが一般的であるが、本発明では、これらの高温での焼結挙動において、最終的な緻密化の過程で意図的にCl量を残留させ、この量をパラメーターとすることで、課題の一つである残光時間、残光輝度を改善することが可能となった。本発明の残光性蛍光体はClの残留量が多すぎると特性は劣化する。最終製品である本発明の残光性蛍光体中に10000ppm以下のClを含有する場合は、残光時間、残光輝度が改善される。Clの残留量は、好ましくは20ppm〜10000ppm、より好ましくは20ppm〜5000ppm、さらに好ましくは30ppm〜2000ppm、特に好ましくはく50ppm〜400ppmである。 The afterglow phosphor of the present invention is a progress of sintering such as liquid phase formation, grain growth, and densification by mixing various alkali metals, which are fluxes described in the production method below, and chlorides of alkaline earths. On the other hand, the decomposition of the carbonate used as the raw material and the decomposition and disappearance of the flux component proceed in parallel. In many ceramic materials, the Cl residue used as the flux is generally thoroughly removed by washing or the like. However, in the present invention, the final result of the sintering behavior at these high temperatures is By intentionally leaving the amount of Cl in the densification process and using this amount as a parameter, it became possible to improve afterglow time and afterglow brightness, which are one of the problems. The characteristics of the afterglow phosphor of the present invention deteriorate if the residual amount of Cl is too large. When the final product, the afterglow phosphor of the present invention, contains 10000 ppm or less of Cl, the afterglow time and the afterglow brightness are improved. The residual amount of Cl is preferably 20 ppm to 10000 ppm, more preferably 20 ppm to 5000 ppm, still more preferably 30 ppm to 2000 ppm, and particularly preferably 50 ppm to 400 ppm.
最終製品である本発明の蛍光体中の残留炭素量は残光時間、残光輝度が改善されるので0.3質量%以下が好ましく、20ppm〜2500ppmがより好ましい。 The amount of residual carbon in the phosphor of the present invention, which is the final product, is preferably 0.3% by mass or less, and more preferably 20 ppm to 2500 ppm, since afterglow time and afterglow brightness are improved.
図2に、実施例1と比較例1で得られた残光性蛍光体の表面のSEM(走査型電子顕微鏡写真)写真(3000倍)を示す。フラックスなしの比較例1では、丸みをおびた微細な一次粒子が集合した状態が観察され、粒子どうしの結合は指先でもほぐせる程度であった。一方、フラックス添加品で所定量のClを含有する本発明の蛍光体(実施例1)は液相が維持されるので粒同士が融解して、巨大な球状粒子となっていることが分かる。 FIG. 2 shows SEM (scanning electron micrograph) photographs (3000 times) of the surfaces of the afterglow phosphors obtained in Example 1 and Comparative Example 1. In Comparative Example 1 without flux, a state in which fine rounded primary particles were aggregated was observed, and the particles were bonded to each other to the extent that they could be loosened even with a fingertip. On the other hand, it can be seen that the phosphor of the present invention (Example 1), which is a flux-added product and contains a predetermined amount of Cl, maintains the liquid phase, so that the particles are fused with each other to form huge spherical particles.
1.本発明の希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体の製造方法
(原料の混合と酸化焼成)
本発明の希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体(以下、本発明の残光性蛍光体ということがある)の製造は、原料の金属元素を含む溶媒に溶解する化合物、例えば金属有機化合物、硝酸塩を用い前駆体の金属有機化合物原料については、金属有機酸塩、βジケトナート、金属アルコキシドなどを用いることができる。具体的には、金属酢酸塩、金属2エチルヘキサン酸塩、金属アセチルアセトナート、金属ナフテン酸塩などがあげられるが、溶媒に溶解する金属有機化合物であれば、特に制限なく用いることができる。溶媒は、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、ヘプタノール、酢酸エチル、酢酸ブチル、トルエン、キシレン、ベンゼン、アセチルアセトナート、エチレングリコール、水などが好ましい。
また、溶媒等に解けない金属を含む化合物、たとえば、金属オレイン酸塩、金属ステアリン酸塩、酸化物、炭酸塩などの固体材料も用いることができる。固体材料の混合は、ボールミルにより均一に混合するとともに粒子化した溶媒を含んでもよい原料を用いる。湿式混合の場合は、混合後、溶媒を除去するために乾燥を行うのが好ましい。有機金属化合物や硝酸塩を原料に用いた場合は、500℃未満の温度において溶媒、有機成分の除去を行う工程、500℃以上1500℃未満の焼成工程、1500℃以上の焼成工程を任意に組み合わせてまたは単独の工程で焼成してもよい。
1. Method for producing rare earth activated alkaline earth silicate compound afterglow phosphor of the present invention (mixing of raw materials and oxidation firing)
The rare earth activated alkaline earth silicate compound afterglow phosphor of the present invention (hereinafter, sometimes referred to as the afterglow phosphor of the present invention) is produced by a compound soluble in a solvent containing a metal element as a raw material, For example, as a precursor of a metal organic compound using a metal organic compound or a nitrate, a metal organic acid salt, β-diketonate, metal alkoxide, or the like can be used. Specific examples thereof include metal acetate, metal diethylhexanoate, metal acetylacetonate, and metal naphthenate, but any metal organic compound that can be dissolved in a solvent can be used without particular limitation. The solvent is preferably methanol, ethanol, propanol, butanol, hexanol, heptanol, ethyl acetate, butyl acetate, toluene, xylene, benzene, acetylacetonate, ethylene glycol, water and the like.
In addition, a compound containing a metal that cannot be dissolved in a solvent or the like, for example, a solid material such as a metal oleate, a metal stearate, an oxide, or a carbonate can also be used. The solid materials are mixed by using a raw material which may be mixed uniformly by a ball mill and may contain a solvent in the form of particles. In the case of wet mixing, it is preferable to carry out drying after mixing to remove the solvent. When an organometallic compound or a nitrate is used as a raw material, a process of removing a solvent and an organic component at a temperature of less than 500° C., a firing process of 500° C. or more and less than 1500° C., and a firing process of 1500° C. or more can be arbitrarily combined. Alternatively, the baking may be performed in a single step.
(脱炭工程)
本発明の残光性蛍光体は、合成時の原料が炭酸塩、水酸化物など、酸化物の形態をとらない場合があり、特に炭酸塩を原料として用いた場合の脱炭が重要となる。本発明では、フラックスを添加する前に、各種炭酸塩原料を混合したものを酸化雰囲気で仮焼する工程を含む。本工程においては、蛍光体原料の焼結の抑制と脱炭の促進を最適化したもので、仮焼温度は1050℃以下であり、好ましくは450℃以上1050℃以下である。1050℃より高い温度では、脱炭は促進するが、原料混合粉の結晶化が進み、還元焼成時に添加する希土類元素の置換固溶を阻害することが分かっている。残留炭素量は0.3質量%以下が望ましい。0.3質量%より多い場合は次工程の還元焼成における焼結阻害、残光特性の劣化が認められる。
(Decarburization process)
In the afterglow phosphor of the present invention, the raw material at the time of synthesis may not take an oxide form such as carbonate and hydroxide, and decarburization is particularly important when carbonate is used as the raw material. .. The present invention includes the step of calcining a mixture of various carbonate raw materials in an oxidizing atmosphere before adding the flux. In this step, suppression of sintering of the phosphor material and promotion of decarburization are optimized, and the calcination temperature is 1050°C or lower, preferably 450°C or higher and 1050°C or lower. It is known that at temperatures higher than 1050° C., decarburization is promoted, but crystallization of the raw material mixed powder is promoted, which hinders substitution solid solution of the rare earth element added during reduction firing. The residual carbon amount is preferably 0.3% by mass or less. When it is more than 0.3% by mass, sintering inhibition and deterioration of afterglow characteristics in the reduction baking in the next step are observed.
希土類の添加は最初から原料中に添加してもよいし、仮焼粉を解砕する際に、希土類を添加してもよい。
(融剤の添加)
塩化物の融剤として使用できるのはMgCl2、CaCl2、SrCl2、BaCl2、KCl、NaCl、LiCl、NH4Cl、などのアルカリ金属、アルカリ土類であるが、好ましくは、CaCl2、NaClである。融剤としては、これらの塩化物の他にMg(OH)2、Ca(OH)2、Sr(OH)2、Ba(OH)2、KOH、NaOHおよびLiOHなどの水酸化物も効果があり、これらから選ばれる少なくとも1種類以上を、還元焼成前の仮称粉の粉砕時に添加するか、還元焼成時に添加する。融剤として水酸化物と塩化物とを併用してもかまわない。
仮焼粉を解砕する際に、フラックスをCl量として、最終製品である本発明の蛍光体中に0.05質量%以上、5.0質量%未満の範囲で添加するのが好ましい。0.05質量%未満では液相生成量が少なく、粒成長がわずかとなる。5.0質量%以上であると、粒成長は大きいものの、残留するCl量が多くなり、残光特性を劣化させる。
The rare earth may be added to the raw material from the beginning, or the rare earth may be added when the calcined powder is crushed.
(Adding flux)
The chloride flux that can be used is an alkali metal or alkaline earth metal such as MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , KCl, NaCl, LiCl, or NH 4 Cl, preferably CaCl 2 , It is NaCl. As the flux, hydroxides such as Mg(OH) 2 , Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 , KOH, NaOH and LiOH are also effective in addition to these chlorides. At least one selected from these is added at the time of pulverizing the tentatively-named powder before reduction firing or at the time of reduction firing. A combination of hydroxide and chloride may be used as a flux.
When crushing the calcined powder, it is preferable to add a flux as a Cl amount in the range of 0.05% by mass or more and less than 5.0% by mass in the phosphor of the present invention as a final product. If it is less than 0.05% by mass, the amount of liquid phase produced is small and the grain growth is small. If it is 5.0% by mass or more, although the grain growth is large, the amount of residual Cl is large and the afterglow characteristics are deteriorated.
(還元焼成)
希土類、フラックスを添加した仮焼粉である酸化焼成原料は、還元焼成の際は粉状のまま、あるいはプレス成形によってペレット状として用いてもよい。
還元焼成は、3体積%H2−97体積%N2からなる水素雰囲気で1300〜1500℃で2〜6時間焼成し、本発明の残光性蛍光体を得る。示唆熱分析(TG)による熱減量特性、および熱機械分析(TMA、ここで還元雰囲気下での焼結挙動の特性は、大気雰囲気下で測定した。)による収縮挙動などを用いて焼結挙動を鋭意調査した結果、フラックスの種類と添加量の最適化、および仮焼時の残留炭素量の最少化により、Tf0=Ts1<Td1=Tf1<Tf2=Td2<Ts2となる粒成長に対して好ましい条件が明らかとなった。
ここで、Tf0:フラックスが液相を形成する温度、
Ts1:酸化焼成原料の凝集開始温度、
Td1:残留炭素の脱炭開始温度、
Tf1:液相の分解開始温度、
Tf2:液相の分解終了温度、
Td2:脱炭終了温度、
Ts2:焼結が進行し収縮が始まる温度、であり、
具体的には、Tf0は300℃〜600℃、Tf1は400℃〜800℃、Tf2は600℃〜900℃であり、Ts2は700℃以上である。
(Reduction firing)
The oxidative firing raw material, which is a calcined powder to which rare earths and fluxes are added, may be used in the form of powder during reduction firing or in the form of pellets by press molding.
The reduction firing is performed at 1300 to 1500° C. for 2 to 6 hours in a hydrogen atmosphere composed of 3 volume% H 2 -97 volume% N 2 to obtain the afterglow phosphor of the present invention. Sintering behavior using the thermal loss characteristics by suggestive thermal analysis (TG) and shrinkage behavior by thermo-mechanical analysis (TMA, where the characteristics of the sintering behavior in a reducing atmosphere were measured in the atmosphere). As a result of an intensive investigation, it is preferable for the grain growth that Tf0=Ts1<Td1=Tf1<Tf2=Td2<Ts2 by optimizing the type and addition amount of the flux and minimizing the residual carbon amount during calcination. The conditions have been clarified.
Where Tf0 is the temperature at which the flux forms a liquid phase,
Ts1: aggregation start temperature of the oxidative firing raw material,
Td1: decarburization start temperature of residual carbon,
Tf1: decomposition start temperature of liquid phase,
Tf2: decomposition end temperature of liquid phase,
Td2: decarburization end temperature,
Ts2: temperature at which sintering progresses and shrinkage starts,
Specifically, Tf0 is 300°C to 600°C, Tf1 is 400°C to 800°C, Tf2 is 600°C to 900°C, and Ts2 is 700°C or higher.
図1に、TMA(熱機械分析)を用いて測定された実施例1と比較例1における3体積%H2−97体積%N2からなる水素雰囲気での焼結温度と被焼結体の収縮挙動の違いを示す。図1から、実施例1と比較例1は両者とも約300℃で凝集・再配列による収縮が見られるが、液相の生成過程にある実施例1では、凝集による収縮に引き続き、液相を保持している間は収縮が停止する。実施例1では液相が低温側で生じて液相が保持されるやや平坦な収縮が停止するやや平坦な期間が見られるが、比較例1では液相が見られず凝集の進行後脱炭による減量時にわずかに膨張を起こし、その後1050℃の測定終了まで収縮率は一定となり、焼結が進行していないことがわかる。実施例1は脱炭と液相成分の分解がほぼ同時に起こり、膨張挙動は比較例1に比べて大きくなる。実施例1は脱炭と液相成分の消失後の約800℃から急激に収縮が起こり、最終的な収縮率は比較例1と同等となった。 FIG. 1 shows the sintering temperature in a hydrogen atmosphere composed of 3% by volume H 2 -97% by volume N 2 in Example 1 and Comparative Example 1 measured using TMA (thermo-mechanical analysis) and the sintering target. The difference in shrinkage behavior is shown. From FIG. 1, both of Example 1 and Comparative Example 1 show shrinkage due to aggregation/rearrangement at about 300° C., but in Example 1 in the process of forming the liquid phase, the liquid phase is continuously changed after the aggregation shrinkage. The contraction stops while holding. In Example 1, the liquid phase is generated on the low temperature side, and the liquid phase is retained, and there is a slightly flat period when the flat contraction is stopped, but in Comparative Example 1, the liquid phase is not seen and decarburization is performed after the progress of aggregation. It can be seen that a slight expansion occurs when the weight is reduced by, and the shrinkage rate becomes constant until the end of the measurement at 1050° C., and sintering does not proceed. In Example 1, decarburization and decomposition of liquid phase components occur almost at the same time, and the expansion behavior becomes larger than that of Comparative Example 1. In Example 1, abrupt shrinkage occurred at about 800° C. after decarburization and disappearance of the liquid phase component, and the final shrinkage ratio was equal to that of Comparative Example 1.
上記の還元焼結工程での挙動の違いは、実施例1と比較例1で得られた残光性蛍光体の表面SEM(走査型電子顕微鏡写真)写真(3000倍)を示す図2でも示されている。すなわち実施例1で得られた本発明の残光性蛍光体のSEM(走査型電子顕微鏡写真)写真は、液相の存在により滑らかな粒成長が起こり得られる残光性蛍光体の均質性が高いことが示されているが、比較例1では還元焼結時に液相が見られないことから、焼結前の粒子がわずかにネッキングしている様子が示される。 The difference in behavior in the above reduction sintering step is also shown in FIG. 2, which is a surface SEM (scanning electron microscope photograph) photograph (3000 times) of the afterglow phosphors obtained in Example 1 and Comparative Example 1. Has been done. That is, the SEM (scanning electron microscope photograph) photograph of the afterglow phosphor of the present invention obtained in Example 1 shows that the presence of the liquid phase causes smooth grain growth and that the homogeneity of the afterglow phosphor is Although it is shown to be high, in Comparative Example 1, since no liquid phase is seen during reduction sintering, it is shown that the particles before sintering are slightly necked.
還元焼成によって得られた焼結粉、あるいは焼結ペレットは、粒子径75μm以下の範囲で粉砕し、必要に応じて分級を行い、評価用サンプルとした。分級は、残光輝度、および残光時間に好適な影響を及ぼすことが明らかとなったが、本発明の残光性蛍光体の利用においては、特に最終粒径については限定されない。 The sintered powder or sintered pellet obtained by reduction firing was pulverized in the range of particle diameter of 75 μm or less, and classified as required to obtain a sample for evaluation. It has been clarified that the classification has a suitable effect on the afterglow brightness and the afterglow time, but in using the afterglow phosphor of the present invention, the final particle size is not particularly limited.
発明者は、本発明のメカニズムは限定されないが、以下であると考えている。本発明の残光性蛍光体は希土類の最適化で残光を示し、融剤の添加と焼成条件に起因したClの意図的な残存による粒径制御により、その残光時間が長くなっていると考えている。本発明の製造条件は本発明の残光性蛍光体を限定するものではないが、実験室的には本発明の残光性蛍光体を製造する好ましい方法である。
1)最終製品である本発明の残光性蛍光体中に10000ppm以下のClを含有する
場合は、残光時間、残光輝度が改善される。
2)上記1)の条件で最終製品中にClを残すための好ましい製造条件は、二段階の雰囲気焼成であり、大気中での酸化焼成と水素含有雰囲気での還元焼成を行う。融剤の添加は酸化焼成の前、または、酸化焼成後、還元焼成の前に行うのが好ましい。
3)脱炭工程は炭素をある程度除去するとともにその後の還元工程で上記1)の条件で最終製品中にClを残すために重要である。すなわち、脱炭工程は母結晶の結晶相が決まらない温度で、つまり結晶化しない条件で、できるだけ低温で炭素を除去するのが好ましい。好ましい酸化焼成(脱炭工程)の条件は1050℃×4時間で、温度を低くする場合は時間を長くする。ただし、温度は1100℃を超えない条件とする。
The inventor believes that the mechanism of the present invention is not limited, but is as follows. The afterglow phosphor of the present invention exhibits afterglow by optimizing rare earths, and the afterglow time is lengthened by controlling the particle size by intentionally remaining Cl due to the addition of a flux and the firing conditions. I believe. Although the production conditions of the present invention do not limit the afterglow phosphor of the present invention, it is a preferable method in the laboratory to produce the afterglow phosphor of the present invention.
1) When the final product, the afterglow phosphor of the present invention, contains 10000 ppm or less of Cl, afterglow time and afterglow brightness are improved.
2) The preferable production conditions for leaving Cl in the final product under the conditions of 1) above are two-stage atmosphere firing, which is oxidation firing in the air and reduction firing in a hydrogen-containing atmosphere. It is preferable to add the fluxing agent before the oxidation firing, or after the oxidation firing and before the reduction firing.
3) The decarburization step is important for removing carbon to some extent and leaving Cl in the final product under the conditions of 1) in the subsequent reduction step. That is, in the decarburization step, it is preferable to remove carbon at a temperature as low as possible under a temperature at which the crystal phase of the mother crystal is not determined, that is, under the condition that crystallization does not occur. The preferable condition of the oxidation firing (decarburization step) is 1050° C.×4 hours, and when the temperature is lowered, the time is extended. However, the temperature should not exceed 1100°C.
<実施例1>
(1)原料の混合および仮焼
主要原料であるSr、Ca、Siを、SrCO3:CaCO3:SiO2= 1.583:0.383:1.0の組成比(mol)、また、希土類としてEu2O3、Dy2O3を金属Si=1molに対してそれぞれ0.0025、0.015の組成比(mol)で添加し、湿式混合、乾燥後、大気中1050℃×4時間で焼成し、仮焼粉を得た。
(2)フラックスの添加
仮焼粉を乳鉢で解砕する際に、フラックスとしてCaCl2を全重量に対してCl換算量で1.0質量%添加し、混合した。実施例1、比較例1〜3のフラックスの添加量を表1に示す。
(3)還元焼成
混合粉をアルミナボートに入れて、水素雰囲気で1400℃×4時間焼成して残光性蛍光体を得た。得られた残光性蛍光体は、粒径75μm以下に粉砕し、光学特性評価用サンプルとした。残留Cl量および残留炭素量を比較例1の結果と共に表1に示す。
得られた残光性蛍光体の表面のSEM(走査型電子顕微鏡)写真を比較例の写真と共に図2に示す。
<Example 1>
(1) Mixing of raw materials and calcination Sr, Ca, and Si, which are main raw materials, are mixed with SrCO 3 :CaCO 3 :SiO 2 =1.583:0.383:1.0 in composition ratio (mol), and rare earth. As a composition, Eu 2 O 3 and Dy 2 O 3 are added at a composition ratio (mol) of 0.0025 and 0.015 with respect to metal Si=1 mol, respectively, and wet-mixed and dried, and then at 1050° C.×4 hours in the atmosphere. Firing was performed to obtain a calcined powder.
(2) Addition of flux When crushing the calcined powder in a mortar, 1.0% by mass of CaCl 2 as a flux was added as a flux to the total weight and mixed. Table 1 shows the amount of the flux added in Example 1 and Comparative Examples 1 to 3.
(3) Reduction firing The mixed powder was put in an alumina boat and fired in a hydrogen atmosphere at 1400° C. for 4 hours to obtain an afterglow phosphor. The obtained afterglow phosphor was pulverized to have a particle size of 75 μm or less and used as an optical property evaluation sample. The amount of residual Cl and the amount of residual carbon are shown in Table 1 together with the result of Comparative Example 1.
A SEM (scanning electron microscope) photograph of the surface of the obtained afterglow phosphor is shown in FIG. 2 together with a photograph of a comparative example.
(4)発光波長575nmのとき、290nm〜400nmにピークを持つ励起スペクトルを示した(図3A)。
(5)励起波長365nmのとき、500nm〜600nmにピークを持つ発光スペクトルを示した(図3B)。
(6)紫外線365nmを5分間照射し、照射停止後から残光の単一波長(575nm)を時間経過と共に追跡した結果を図4に示す。7分以上残光を示した。
(4) When the emission wavelength was 575 nm, an excitation spectrum having a peak at 290 nm to 400 nm was shown (FIG. 3A).
(5) When the excitation wavelength was 365 nm, an emission spectrum having a peak at 500 nm to 600 nm was shown (FIG. 3B).
(6) FIG. 4 shows the results obtained by irradiating the ultraviolet ray with 365 nm for 5 minutes, and tracing the single wavelength (575 nm) of the afterglow with the lapse of time after the irradiation was stopped. It showed afterglow for more than 7 minutes.
(7)還元焼成後のサンプルの組成は蛍光X線法(XRF)によって測定したところ、Sr、Ca、Si、Eu、およびDyは仕込み組成と良い一致をみた。酸化分解−電量滴定法(株)三菱化学アナリテック・TOX−2100H型を用いて測定されるClの値は約400ppmであった。
また、酸素気流中燃焼−赤外線吸収法による炭素量は0.01質量%であった。
(8)得られた残光性蛍光体は、X線回折法(XRD)よりSr2SiO4(斜方晶;Pnma(62))または、Ca0.5Sr1.5SiO4(斜方晶:Pmnb(62))を主相とする2相以上の結晶相から構成される化合物が得られた。
(7) The composition of the sample after reduction firing was measured by the fluorescent X-ray method (XRF), and Sr, Ca, Si, Eu, and Dy showed good agreement with the charged composition. The value of Cl measured using oxidative decomposition-coulometric titration method Mitsubishi Chemical Analytech TOX-2100H type was about 400 ppm.
Further, the carbon content by combustion in an oxygen stream-infrared absorption method was 0.01% by mass.
(8) The obtained afterglow phosphor is Sr 2 SiO 4 (orthorhombic; Pnma(62)) or Ca 0.5 Sr 1.5 SiO 4 (orthorhombic) by X-ray diffraction (XRD). Crystal: Pmnb(62)) was obtained as a main phase and a compound composed of two or more crystal phases was obtained.
<比較例1〜3>
実施例に対し、フラックスCaCl2を添加しなかった以外は実施例1と同様の工程で比較例1の残光性蛍光体を得た。残留Cl量および残留炭素量を表1に示す。得られた残光性蛍光体の表面のSEM写真を図2に示す。比較例1は、実施例1と同様に発光波長575nmで励起すると、290nm〜400nmにピークを持つ励起スペクトルを示し(図3A)。紫外線365nmで励起すると、500nm〜600nmにピークを持つ発光スペクトルを示した(図3B)。紫外線365nmを5分間照射し、照射停止後から残光の単一波長を時間経過と共に追跡した結果を図4に示す。表1に示すように残光は10分後には0%で検出限界以下であった。残光強度は、各経過時間における実施例1の残光強度を100%とした相対値で示す。
CaCl2の添加量が、残光性蛍光体が含有するCl量が50ppmより少ない比較例2と、400ppmを超える比較例3の場合の光学特性を表1に示す。
<Comparative Examples 1 to 3>
The afterglow phosphor of Comparative Example 1 was obtained in the same process as in Example 1 except that the flux CaCl 2 was not added. Table 1 shows the amount of residual Cl and the amount of residual carbon. The SEM photograph of the surface of the obtained afterglow phosphor is shown in FIG. Comparative Example 1 shows an excitation spectrum having a peak at 290 nm to 400 nm when excited at an emission wavelength of 575 nm as in Example 1 (FIG. 3A). When excited with ultraviolet light of 365 nm, it showed an emission spectrum having a peak at 500 nm to 600 nm (FIG. 3B). FIG. 4 shows the results obtained by irradiating the ultraviolet ray with 365 nm for 5 minutes and tracing the single wavelength of the afterglow with the lapse of time after the irradiation was stopped. As shown in Table 1, the afterglow was 0% after 10 minutes, which was below the detection limit. The afterglow intensity is shown as a relative value with the afterglow intensity of Example 1 at each elapsed time taken as 100%.
Table 1 shows the optical characteristics of Comparative Example 2 in which the amount of Cl contained in the afterglow phosphor is less than 50 ppm and Comparative Example 3 in which the amount of CaCl 2 added is more than 400 ppm.
<実施例2〜6>
CaCl2以外の塩化物をフラックスに用い、実施例1と同様の工程で実施例2〜6の残光性蛍光体を得た。光学特性(1分後、10分後)を、表2に示す。
<Examples 2 to 6>
Chlorides other than CaCl 2 were used for the flux, and the afterglow phosphors of Examples 2 to 6 were obtained in the same steps as in Example 1. The optical characteristics (after 1 minute and 10 minutes) are shown in Table 2.
本発明の希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体は、暗所における表示物として用いられる残光性蛍光体表示物、電源消失時に効果を発揮する誘導標識や照明として利用され、昼間の太陽光および室内照明などによる紫外線励起により青緑〜橙色発光を示し、励起後も発光し続ける残光(黄色〜赤色)性蛍光体である。残光特性が高いので暗所における表示物として産業上有効に利用できる。また成分に硫黄(S)成分を含まないので耐候性に優れると予想され、産業上の有用性が高い。 The rare earth-activated alkaline earth silicate compound afterglow phosphor of the present invention is used as an afterglow phosphor display object used as a display object in a dark place, an inductive sign that exhibits an effect at the time of power loss, and illumination. , An afterglow (yellow to red) phosphor that emits blue-green to orange light when excited by ultraviolet rays due to daytime sunlight and indoor lighting and continues to emit light after excitation. Since it has high afterglow characteristics, it can be effectively used industrially as a display object in a dark place. Further, since it does not contain a sulfur (S) component, it is expected to have excellent weather resistance, and is highly useful in industry.
Claims (2)
式(1) (Sr 2-x , M x ) 2-y SiO 4 : N y
ここで、xは、Si=1molに対して、Mの含有量で、0.1mol≦x≦1.0mol、yは、Nの含有量で、0.001mol≦y≦0.100molであり、Mは、MgおよびCaのうち少なくとも1つ、Nは、Euと、Pr,Nd,Sm,Tb,Dy,Er,およびYbからなる群から選択される少なくとも1つを含む、
で示されることを特徴とする希土類付活アルカリ土類ケイ酸塩化合物残光性蛍光体。 Cl is contained, and the Cl content measured by oxidative decomposition-coulometric titration is 50 ppm or more and 10000 ppm or less ,
Equation (1) (Sr 2-x , M x) 2-y SiO 4: N y
Here, x is the content of M with respect to Si=1 mol, 0.1 mol≦x≦1.0 mol, y is the content of N, and 0.001 mol≦y≦0.100 mol, M includes at least one of Mg and Ca, N includes Eu, and at least one selected from the group consisting of Pr, Nd, Sm, Tb, Dy, Er, and Yb.
And a rare earth activated alkaline earth silicate compound afterglow phosphor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017051119A JP6741614B2 (en) | 2017-03-16 | 2017-03-16 | Rare earth activated alkaline earth silicate compound Afterglow phosphor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017051119A JP6741614B2 (en) | 2017-03-16 | 2017-03-16 | Rare earth activated alkaline earth silicate compound Afterglow phosphor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018154686A JP2018154686A (en) | 2018-10-04 |
JP6741614B2 true JP6741614B2 (en) | 2020-08-19 |
Family
ID=63717663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017051119A Active JP6741614B2 (en) | 2017-03-16 | 2017-03-16 | Rare earth activated alkaline earth silicate compound Afterglow phosphor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6741614B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117801820B (en) * | 2023-12-28 | 2024-07-05 | 广州珠江光电新材料有限公司 | Red long afterglow material and preparation method thereof |
-
2017
- 2017-03-16 JP JP2017051119A patent/JP6741614B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018154686A (en) | 2018-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015099145A1 (en) | Phosphor and method for producing phosphor | |
Sivakumar et al. | Low-temperature synthesis of Zn2SiO4: Mn green photoluminescence phosphor | |
Park et al. | Luminescent properties of CaAl4O7 powders doped with Mn4+ ions | |
JP5578739B2 (en) | Alkaline earth metal silicate phosphor and method for producing the same | |
Teng et al. | The development of new phosphors of Tb3+/Eu3+ co-doped Gd3Al5O12 with tunable emission | |
Yang et al. | Ultraviolet long afterglow emission in Bi3+ doped CdSiO3 phosphors | |
CN102634339B (en) | Red long-afterglow fluorescent material of alkaline earth titanate activated by Bi<2+> and preparation method thereof | |
JP6465417B2 (en) | Luminescent phosphor and method for producing the same | |
CN111635757B (en) | Preparation method of yellow-green long afterglow fluorescent material and application of ammonium bicarbonate | |
JP4628957B2 (en) | Luminescent phosphor and method for producing the same | |
JP2010520334A (en) | Method for producing red luminescent borate phosphor | |
JP6741614B2 (en) | Rare earth activated alkaline earth silicate compound Afterglow phosphor | |
JP3826210B2 (en) | Rare earth complex oxide phosphor | |
JP3559210B2 (en) | Heat-resistant, water-resistant, high-brightness, long-lasting yellow-green luminescent color phosphor and a method for producing the same | |
KR20130087266A (en) | Sr-al-o based long-afterglow phosphors and method for manufacturing the same | |
RU2506301C2 (en) | Luminescent material for solid-state white light sources | |
JP2000001672A (en) | Luminous fluorescent particulate powder and its production | |
JP2011052136A (en) | Long-afterglow fluorophor | |
JP6350123B2 (en) | Method for producing sulfide phosphor | |
JP2014523952A (en) | Phosphor precursor composition | |
JP3600048B2 (en) | Method for producing aluminate-based phosphor | |
KR101565910B1 (en) | Method of strontium aluminate phosphor with long after-glow property | |
US8017039B2 (en) | Fluorescent body for use in a near-ultraviolet excitation light-emitting element | |
JP3209724B2 (en) | Method for producing fine luminous phosphor powder and fine luminous phosphor powder | |
KR100387659B1 (en) | Manufacturing method of strontium aluminate phosphor by the sol-gel method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190704 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20190704 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200313 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200508 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200721 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200727 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6741614 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |