WO2018096647A1 - 視力矯正用レンズの設計方法及び視力矯正用レンズ - Google Patents

視力矯正用レンズの設計方法及び視力矯正用レンズ Download PDF

Info

Publication number
WO2018096647A1
WO2018096647A1 PCT/JP2016/084962 JP2016084962W WO2018096647A1 WO 2018096647 A1 WO2018096647 A1 WO 2018096647A1 JP 2016084962 W JP2016084962 W JP 2016084962W WO 2018096647 A1 WO2018096647 A1 WO 2018096647A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
constant
depth
focus
axis
Prior art date
Application number
PCT/JP2016/084962
Other languages
English (en)
French (fr)
Inventor
泰史 宮島
Original Assignee
伊藤光学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊藤光学工業株式会社 filed Critical 伊藤光学工業株式会社
Priority to US16/305,200 priority Critical patent/US11131868B2/en
Priority to EP16922435.9A priority patent/EP3467573A4/en
Priority to CN201680086335.7A priority patent/CN109196407A/zh
Priority to PCT/JP2016/084962 priority patent/WO2018096647A1/ja
Priority to JP2017078475A priority patent/JP7055318B2/ja
Publication of WO2018096647A1 publication Critical patent/WO2018096647A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive

Definitions

  • the present invention relates to a vision correction lens such as a spectacle lens or a contact lens and a design method thereof, and more particularly to a vision correction lens having a depth of focus extension effect and a design method thereof.
  • Patent Document 1 describes an optical plate of a second optical system that is disposed in front of a first optical system that is an imaging optical system for incident light waves and that can extend the depth of focus. .
  • the optical plate is assumed to increase in thickness approximately in proportion to a third-order power function of the distance from the base point in the optical plate.
  • the present invention solves the above-described problems, and an object thereof is to provide a vision correction lens design method and a vision correction lens capable of improving contrast sensitivity in a dark place.
  • the method for designing a lens for correcting vision according to the present invention is determined based on the prescription power when the longitudinal axis passing through the geometric center of the lens is the z-axis and the backward direction of the lens is the positive direction of the z-axis.
  • a focal depth extension component represented by Ar 3 (where r is a distance from the z axis and A is a constant) is added to the z coordinate value of the refracting surface.
  • Ar 3 where r is a distance from the z axis and A is a constant
  • the vision correction lens created by this creation method the depth of focus that is short (shallow) is extended in the dark, and it is easy to focus on the object in front of or behind the original focus.
  • the contrast sensitivity in the dark can be improved.
  • the refractive surface is the rear surface of the lens and the constant A is a positive number, or when the refractive surface is the front surface of the lens and the constant A is a negative number, It is preferable to add an edge thickness reducing component for reducing the lens edge thickness. This is because the edge thickness that becomes thicker due to the addition of the depth of focus extension component becomes thinner.
  • the edge thickness reducing component is preferably represented by Dr 10 (where D is a negative constant when the constant A is positive, and a positive constant when the constant A is negative). This is because it is possible to increase the influence at the edge of the lens and reduce the edge thickness.
  • the constant A is preferably set so that the absolute value of the constant A is in the range of 1.73 ⁇ 10 ⁇ 6 to 1.96 ⁇ 10 ⁇ 5 . This is because if the absolute value of the constant A is within such a range in a spectacle lens of a normal size, the effect of extending the depth of focus can be obtained moderately and the occurrence of astigmatism can be suppressed.
  • the absolute value of the constant A is in the range of 1.73 ⁇ 10 ⁇ 6 to 1.96 ⁇ 10 ⁇ 5
  • the absolute value of the constant D is 1.65 ⁇ 10 ⁇ 17 to 1.88 ⁇ 10 ⁇ It becomes 16 range, and, wherein the absolute value of the constant D larger the absolute value of the constant a is large, it is preferable to set the constant a and the constant D. If the constants A and D are set in this way for a normal-sized spectacle lens, the focal depth extension effect can be obtained moderately, and the generation of astigmatism can be suppressed, and the edge thickness can be set as the focal depth extension component. This is because it can be made equivalent to the lens before addition.
  • the lens for correcting vision has a refractive surface determined based on the prescription power when the axis in the front-rear direction passing through the geometric center of the lens is the z-axis and the direction toward the rear of the lens is the positive direction of the z-axis.
  • a focal depth extension component represented by Ar 3 (where r is a distance from the z-axis and A is a constant) is added to the z coordinate value of. According to this, the depth of focus, which becomes shorter (shallow) in the dark place, is extended, and it becomes easier to focus on the object in front of or behind the original focus. Therefore, the contrast sensitivity in the dark place can be improved. is there.
  • the z coordinate value is It is preferable that an edge thickness reduction component for reducing the lens edge thickness is added. This is because the edge thickness that becomes thicker due to the addition of the depth of focus extension component becomes thinner.
  • the edge thickness reducing component is preferably represented by Dr 10 (where D is a negative constant when the constant A is positive, and a positive constant when the constant A is negative). This is because it is possible to increase the influence at the edge of the lens and reduce the edge thickness.
  • the absolute value of the constant A is preferably in the range of 1.73 ⁇ 10 ⁇ 6 to 1.96 ⁇ 10 ⁇ 5 . This is because if the absolute value of the constant A is within such a range in a spectacle lens of a normal size, the effect of extending the depth of focus can be obtained moderately and the occurrence of astigmatism can be suppressed.
  • (A) is the schematic of the whole lens which concerns on 1st Embodiment
  • (b) is the schematic which expanded the upper half of the lens. It is a figure for demonstrating the lens which concerns on 1st Embodiment.
  • (A) is a schematic diagram of the focusing state of the light beam by the normal single focus lens
  • (b) is a schematic diagram of the focusing state of the light beam by the lens according to the first embodiment.
  • (B) is a state in which the constant A is negative and a depth-of-focus extension component is added to the front surface of the lens.
  • (B) Is a state in which constant A is negative and a depth of focus extension component is added to the rear surface of the lens
  • (d) is a schematic diagram showing a state in which constant A is positive and a depth of focus extension component is added to the front of the lens. is there.
  • front and rear, left and right, and top and bottom for a wearer wearing spectacles using a lens are front and rear, left and right, and top and bottom, respectively, of the lens.
  • a lens 1 is a vision correction lens for correcting the visual acuity of a wearer, and specifically, a spectacle lens used for spectacles. It is.
  • the rear surface 2 is a concave surface defined by the equation (i)
  • the front surface 3 is a convex surface defined by the equation (ii).
  • the longitudinal axis passing through the geometric center of the lens 1 (base point O 1 on the rear surface 2 and base point O 2 on the front surface 3) is defined as the z axis, and the direction toward the rear of the lens 1 is defined as the positive direction of the z axis.
  • the z axis coincides with the optical axis of the lens 1.
  • R 1 and R 2 are radii of curvature at the vertices of the surface, K is 1, and A is a positive constant. Therefore, the front surface 3 of the lens 1 is spherical and the rear surface 2 is aspheric. Note that R 1 and R 2 are determined by the prescription power (specifically, the S power, the C power, and the astigmatic axis AX). Since the lens 1 is a distance lens for a nearsighted person, R 1 ⁇ R 2 .
  • the rear surface 2 has a third-order term Ar 3 of r added to the z coordinate value of the refractive surface defined by the following equation (iii) based on the prescription power.
  • Ar 3 is a depth-of-focus extension component added to increase the depth of focus. It is described in Patent Document 1 that the depth of focus can be extended by passing light through an optical plate whose thickness is changed in proportion to a cubic power function of the distance r from the base point.
  • the lens 1 is an application of this, and is a refracting surface determined in accordance with the prescription power (in the embodiment, a spherical surface having a radius of curvature R 1.
  • R 1 a spherical surface having a radius of curvature
  • the rear surface 2 (that is, the distance from the base point O 1 that is the intersection of the z axis and the rear surface 2 shown in FIG.
  • the rear surface 2 is formed by adding a portion where the thickness changes (focus depth extension component). From the above formulas (i) and (iii), it can be said that the rear surface 2 is a composite of a spherical surface having a radius of curvature R 1 and an aspherical surface represented by Ar 3. In other words, the rear surface 2 is shown in FIG.
  • the power component for realizing the prescription power and the focal depth extension component (aspherical component) for extending the focal depth are synthesized and formed.
  • the constant A is selected from the range of 1.73 ⁇ 10 ⁇ 6 to 1.96 ⁇ 10 ⁇ 5 . This is because, if the constant A is within this range in a normal size spectacle lens (diameter 50 to 80 mm), the effect of extending the depth of focus can be appropriately obtained, and the occurrence of astigmatism can be suppressed. That is, the greater the constant A, the greater the depth of focus effect, but the greater the occurrence of astigmatism.
  • the range in consideration of the balance is the above range.
  • A 7.68 ⁇ 10 ⁇ 6 .
  • is the height in the z-axis direction at the radius a with respect to the original spherical surface S (that is, the increase in thickness from the original spherical surface S).
  • is a value of 120 ⁇ m.
  • A ⁇ / 1000 / a 3 holds (where a is a unit: mm and ⁇ is a unit: ⁇ m).
  • A 1.73 ⁇ 10 ⁇ 6
  • A 1.96 ⁇ 10 ⁇ 5 .
  • the refractive surface of the front surface 3 and the refractive surface of the rear surface 2 of the lens 1 are determined based on the prescription power. This determination method is well known and will not be described in detail here. Then, the determined depth coordinate component represented by Ar 3 (where r is the distance from the z-axis and A is a constant) is added to the determined z-coordinate value of the refractive surface of the front surface 3 and the refractive surface of the rear surface 2. Append.
  • the refractive surface of the front surface 3 and the refractive surface of the rear surface 2 of the lens 1 are determined as spherical surfaces represented by the above formulas (ii) and (iii) based on the prescription power, respectively, and the refractive surface of the rear surface 2 is determined.
  • FIG. 3A is a schematic diagram of a focused state of the light beam 22 by the normal lens 10 in which the front and rear refracting surfaces are determined based on the prescription power, and the light beam parallel to the optical axis incident on the lens 10. 22, since the gather intensively at the focal point P 3, the focal position P 3, the signal strength seen high clearly objects, for example, in slightly offset positions focus as the position P 4, rapidly blurring Disappear. That is, the depth of focus (in other words, the depth of field) is shallow.
  • the set of points shown in the lower part of the figure schematically represents how the light beam 22 is focused at the positions P 1 , P 2 , P 3 , P 4 and P 5 .
  • FIG. 3 is a schematic diagram of a focused state of the light beam 22 by the lens 1, the light beam 22 parallel to the optical axis which enters the lens 1 is gathered and dispersed in a certain range including the focal position P 3 , The depth of focus becomes deeper. Therefore, although some blur remains at the focal position P 3 , the object can be identified even at a position slightly defocused, such as the position P 4 , because the signal intensity at the center is high to some extent.
  • the constant A is a positive number
  • the focal depth is extended to the rear side (back side) of the original focal position P 3 .
  • FIG. 4 shows the state of the eyeball 20 including the iris 21. Note that symbols F 1 , F 2 , and F 3 in FIG. 4 represent the depth (length) of the focal depth.
  • FIG. 4 (a) shows a state in a bright place with high illuminance such as daytime. Since the iris 21 is closed and the incident light beam 22 becomes thin, the range in which the light is concentrated becomes long, and the focus is increased. The depth F 1 becomes deep (long). Therefore, it is focused at a relatively long distance.
  • FIG. 4B shows a state in a dark place. Since the iris 21 is opened and the incident light beam 22 is thickened, the light concentration range is shortened, and the focal depth F 2 is shallow. (Short). Therefore, the in-focus distance is shortened.
  • FIG. 4C shows a state in which the lens 1 is used in a dark place.
  • the iris 21 is opened and the incident light beam 22 becomes thick, but the focal depth F 3 is deep, so that it is relatively long. Focus on distance. Therefore, according to the lens 1, it becomes easy to identify an object particularly in a dark place.
  • FIGS. 5 to 8 show a case where a normal single-focus lens (not including a degree) to which the depth-of-focus extension component is added is attached to the front side of the camera lens, and the single-focus lens.
  • Detailed data of the lenses used in this experiment are shown in Tables 1 and 2.
  • a plurality of visual targets were arranged obliquely with respect to the camera at equal intervals (the interval in the front-rear direction was 15 cm in FIGS. 5 and 6 and 10 cm in FIGS.
  • FIG. 5 is a single focus lens
  • FIG. 6 is a photograph using a depth-of-focus extension lens, all of which are taken in a bright place.
  • the focal length is 135 mm
  • F value is 4.5
  • shutter speed is 1/25
  • ISO 400 the distance to the front target is about 200 cm
  • the illuminance is 80 lx near the camera
  • FIG. 7 shows a single focus lens
  • FIG. 8 shows a depth of focus extension lens, both of which were taken in a dark place.
  • the distance to the front target is about 100 cm
  • the illuminance is 48 lx near the camera, and 55 lx near the front target.
  • FIG. 6 and FIG. 7 and FIG. 8 show that the view in FIG. 6 and FIG. 8 using the depth-of-focus extension lens is deeper than that in FIG. 5 and FIG. 7 using the normal single focus lens. It can be seen that the depth of field is deeper, and that the difference in depth of field between the two lenses is greater in the dark place than in the bright place.
  • Table 3 shows the age of each subject, the prescription power, and the power of the created lens. Since the created lens is a prototype, there is a slight difference between the prescription power and the lens power. In Table 3, R is the right eye, L is the left eye, and the refractive index of the lens is 1.60.
  • the contrast sensitivity was measured using a Vitech vision contrast tester 6500.
  • Table 4 shows the measurement results.
  • Vitech's Vision Contrast Tester 6500 has a plurality of targets arranged for each of targets A to E, and measures contrast sensitivity according to which target can be identified.
  • the test subject indicates to which target the target A to E can be identified.
  • lens A represents a normal single focus lens
  • lens B represents lens 1.
  • Table 4 describes the illuminance at the measurement location. The distance from the subject to the target is 3.00 m in all cases.
  • Table 5 is based on the contrast sensitivity obtained from the measurement results in Table 4, when using a normal single focus lens in each of the light place and dark place for each subject's right eye, left eye, and both eyes.
  • the ratio of the contrast sensitivity when using the lens 1 to the contrast sensitivity that is, (contrast sensitivity when using the lens 1) / (contrast sensitivity when using a normal single focus lens) E is obtained and the average through the target is calculated.
  • the contrast sensitivity when the lens 1 is used is 100% when the normal single focus lens is used.
  • the contrast sensitivity does not change even when a single focal lens is used.
  • the contrast sensitivity when the lens 1 is used is 220% when the normal single focal lens is used.
  • the contrast sensitivity is more than twice as high as when a normal single focus lens is used.
  • improvement in contrast sensitivity was observed for 12 of 16 eyes.
  • the contrast sensitivity is improved in the dark where the contrast is low, such as in the evening or at night, and the effect of improving the contrast sensitivity in the dark is particularly high in middle-aged and elderly people whose contrast sensitivity is drastically decreased. I understand.
  • the constant A is selected from the range of 1.73 ⁇ 10 ⁇ 6 to 1.96 ⁇ 10 ⁇ 5 , the effect of extending the depth of focus can be appropriately obtained, and the generation of astigmatism can be suppressed. That is, since the depth of focus is extended while the peripheral distortion is suppressed, the eye adjustment is assisted, and the eye feels comfortable and is not easily fatigued.
  • the lens according to the second embodiment is also a spectacle lens, and the front surface 3 is a convex surface defined by the above formula (ii) like the lens 1, but the lens edge thickness is reduced to the z coordinate value of the rear surface 2.
  • an edge thickness reduction component Dr 10 (where D is a negative constant) is added. That is, the rear surface 2 of the lens of the second embodiment is a concave surface defined by the following equation (iv).
  • the edge thickness reduction component Dr 10 is added because the addition of the depth of focus extension component Ar 3 (where A is a positive constant) increases the lens edge thickness. This is because there is a possibility that a problem may occur in terms of weight, and this possibility is reduced.
  • the reason why the index of r in the edge thickness reduction component is increased to 10 is to reduce the edge thickness by increasing the influence at the edge of the lens. In the central part of the surface 2 after being used for viewing an object and r is small, it is assumed edge thickness reduction component Dr 10 is small, it does not negatively impact on the focal depth extension effect.
  • the constant A is preferably selected from the range of 1.73 ⁇ 10 ⁇ 6 to 1.96 ⁇ 10 ⁇ 5 , but when the constant A is selected from such a range, the constant A is selected.
  • D is preferably selected from the range of ⁇ 1.88 ⁇ 10 ⁇ 16 to ⁇ 1.65 ⁇ 10 ⁇ 17 , and is selected so that the absolute value of the constant D increases as the constant A increases. This is because the lens edge thickness is equivalent to that of a normal single focus lens.
  • the lens of the second embodiment edge thickness becomes equal to the normal single-focus lens.
  • the contrast sensitivity in a dark place is improved, and in particular, the contrast sensitivity is improved in a dark place for middle-aged and elderly people, and the edge thickness of the lens is reduced to a normal lens. Can be equivalent.
  • the first embodiment and the second embodiment are single focus lenses (distance lenses) for nearsighted persons, but the third embodiment is a single focus lens (near distance lenses) for farsighted persons. ).
  • the third embodiment will be described, but the same reference numerals are given to the components common to the components of the first embodiment, and the description thereof will be omitted as appropriate.
  • the rear surface 2 is defined by the above equation (i)
  • the front surface 3 is defined by the above equation (ii)
  • the depth of focus extension component Ar 3 is added to the concave surface (rear surface 2) of the lens.
  • the constant A is a negative number, and is selected from the range of ⁇ 1.96 ⁇ 10 ⁇ 5 to ⁇ 1.73 ⁇ 10 ⁇ 6 . This is because, in a normal size eyeglass lens, within this range, a depth-of-focus extension effect can be appropriately obtained, and the occurrence of astigmatism can be suppressed. Further, R 1 > R 2 is satisfied.
  • FIG. 9 shows an overall schematic diagram (a) of the lens of the third embodiment and an enlarged schematic diagram (b) of the upper half.
  • the thickness is reduced from the original spherical surface S indicated by the two-dot chain line, and the amount of decrease in the thickness becomes larger as the lens is closer to the edge of the lens. .
  • Table 8 shows an example of the lens of the third embodiment when the S frequency is + 1.00D, + 2.00D, and + 3.00D.
  • the constant A was set to ⁇ 7.68 ⁇ 10 ⁇ 6 .
  • the focal depth is extended to the front side of the focal point before the focal depth extension. Since the edge thickness of the lens is thinner than before the depth of focus extension, it is not necessary to add an edge thickness reduction component.
  • the focal point becomes closer to the lens edge. Sneak away. Accordingly, the extended depth is extended, and the contrast sensitivity in the dark is improved. In addition, it is not necessary to add an edge thickness reduction component.
  • the fourth embodiment is a single focus lens (near lens) for a farsighted person. Unlike the third embodiment, the constant A is a positive number.
  • the fourth embodiment will be described, the same reference numerals are given to the components common to the components of the first embodiment, and the description thereof will be omitted as appropriate.
  • the rear surface 2 is defined by the above equation (i)
  • the front surface 3 is defined by the above equation (ii)
  • the depth of focus extension component Ar 3 is added to the concave surface (rear surface 2) of the lens.
  • the constant A is a positive number, and is selected from a range of 1.73 ⁇ 10 ⁇ 6 to 1.96 ⁇ 10 ⁇ 5 . This is because a normal depth spectacle lens is within this range, the effect of extending the depth of focus can be appropriately obtained, and the occurrence of astigmatism can be suppressed. Further, R 1 > R 2 is satisfied. When the constant A is a positive number, the focal depth is extended to the rear side of the focal point before the focal depth extension.
  • Table 9 shows an example of the lens of the fourth embodiment when the S frequency is + 1.00D, + 2.00D, and + 3.00D.
  • the constant A was 7.68 ⁇ 10 ⁇ 6 .
  • the focal depth is extended to the rear side of the focal point before the focal depth extension. Further, since the edge thickness is increased, the edge thickness reducing component Dr 10 may be added.
  • the constant A is selected from the range of 1.73 ⁇ 10 ⁇ 6 to 1.96 ⁇ 10 ⁇ 5
  • the constant D is in the range of ⁇ 1.88 ⁇ 10 ⁇ 16 to ⁇ 1.65 ⁇ 10 ⁇ 17 . It is preferable that the absolute value of the constant D increases as the constant A increases.
  • the height from the original spherical surface S increases in proportion to the cubic power function of the distance r from the base point O 1. Sneak away. Accordingly, the extended depth is extended, and the contrast sensitivity in the dark is improved.
  • the constant A may be a negative number in a distance lens such as the lens of the first embodiment.
  • the constant A is a negative number, the depth of focus is extended to the front side of the focus when the depth of focus extension component is not added. Also, the edge thickness is smaller than when no depth-of-focus extension component is added.
  • the expression of the refracting surface before adding the depth-of-focus extension component Ar 3 is not limited to the above expression (ii), and for example, a polynomial represented by ⁇ A i r i is added to the above expression (ii). (That is, the refracting surface before adding the depth of focus extension component Ar 3 is not necessarily a spherical surface). In that case, a depth-of-focus extension component Ar 3 is added to the equation.
  • the formula of the surface to which the depth-of-focus extension component is not added is not limited to the above formula (iii).
  • the depth of focus extension component is added to the rear surface 2 (concave surface), but the depth of focus extension component may be added to the front surface 3 (convex surface) of the lens.
  • the focal depth extension component may be added to the rear surface 2 and may be added to the front surface 3.
  • the constant A may be positive or negative.
  • FIG. 10 shows these four cases, and FIG. 10A shows a depth-of-focus extension component on the rear surface 2 with a constant A as a positive number, as in the first and fourth embodiments.
  • the added state, (b) is a state in which the constant A is a negative number, and a depth-of-focus extension component is added to the front surface 3, and (c) is the rear surface in which the constant A is a negative number as in the third embodiment.
  • the constant A preferably has an absolute value in the range of 1.73 ⁇ 10 ⁇ 6 to 1.96 ⁇ 10 ⁇ 5 . This is because, within such a range, it can be understood from the calculation that the effect of extending the depth of focus can be obtained moderately and the generation of astigmatism can be suppressed.
  • the edge thickness increases, and therefore an edge thickness reduction component may be added.
  • the edge thickness is reduced, so that it is not necessary to add an edge thickness reduction component.
  • constant A is a positive number as in (a)
  • constant D is a negative number
  • constant A is a negative number as in (b)
  • the constant D is a positive number.
  • the absolute value of the constant A is in the range of 1.73 ⁇ 10 ⁇ 6 to 1.96 ⁇ 10 ⁇ 5
  • the absolute value of the constant D is 1.65 ⁇ 10 ⁇ 17 to 1.88 ⁇ 10 ⁇ 16. It is preferable that the absolute value of the constant D increases as the absolute value of the constant A increases.
  • the constant A and the constant D are determined in this way for a spectacle lens of a normal size, the effect of extending the depth of focus can be obtained moderately, astigmatism can be suppressed, and the edge thickness can be reduced as the depth of focus component. This is because it can be understood from the calculation that the lens can be equivalent to the lens before the addition.
  • the index of r in the edge thickness reduction component does not have to be 10.
  • 8 may be used, and Dr 8 may be added as the edge thickness reduction component.
  • a depth of focus extension component may be added to a multifocal lens such as a progressive lens or a bifocal lens. This is because the depth of focus extension effect can be obtained as in the case of the single focus lens.
  • the concave surface is a progressive power surface or a multifocal surface
  • a depth of focus extension component is added to the convex surface
  • the convex surface is a progressive power surface or a multifocal surface
  • a depth of focus extension component is added to the concave surface, etc.
  • the depth of focus extension component may be added to the progressive power surface or the multifocal surface, or may be added to the opposite surface.
  • a depth of focus extension component to a progressive lens or bifocal lens
  • the whole including a distance portion (distance refracting surface) and a near portion (near refracting surface) in the case of a progressive lens, May be added to each of the distance portion, the near portion, and the progressive portion, or may be added separately to each of the distance portion and the near portion, or only the distance portion or only the near portion May be added.
  • the constant A may be different between the distance portion and the near portion. The same applies when there are more than two focal points.
  • the S frequency of the prescription power of the distance portion is designed to be + 0.25D (that is, the distance portion is made 0.25D weaker), and the focal point is focused on the distance portion.
  • the present invention may be applied to contact lenses.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

夜間等、暗所でのコントラスト感度を向上可能な視力矯正レンズを提供する。レンズの幾何学中心を通る前後方向の軸をz軸、レンズの後方に向かう方向をz軸の正方向としたとき、処方度数に基づいて決定される屈折面のz座標値に、焦点深度延長のために、Ar3(但し、rはz軸からの距離、Aは定数)で表される焦点深度延長成分を付加した視力矯正用レンズとする。暗所では短く(浅く)なる焦点深度が延長されて、元の焦点の前方又は後方にある対象物にも焦点が合い易くなるため、暗所でのコントラスト感度を向上可能である。

Description

視力矯正用レンズの設計方法及び視力矯正用レンズ
 本発明は、眼鏡レンズ、コンタクトレンズ等の視力矯正用レンズ及びその設計方法に関し、特に焦点深度延長効果のある視力矯正用レンズ及びその設計方法に関する。
 下記特許文献1には、入射する光波について撮像光学系である第1光学系の前に配置される第2光学系の光学板であって、焦点深度を延長可能な光学板が記載されている。この光学板は、厚さが、当該光学板内の基点からの距離の3次の冪関数に概略比例して増加するとされている。
特開2009-282391号公報(請求項1、請求項2参照)
 ところで、老化や疲労により眼の調節力が低下した者は、夕方や夜間等、照度が低い暗所では、コントラストを感じ難くなり、眼鏡やコンタクトレンズを使用しても見え難さを感じてしまうという問題があった。
 本発明は、上述した問題を解決するものであり、暗所におけるコントラスト感度を向上可能な視力矯正用レンズの設計方法及び視力矯正用レンズを提供することを目的とする。
 本発明の視力矯正用レンズの設計方法は、レンズの幾何学中心を通る前後方向の軸をz軸、レンズの後方に向かう方向をz軸の正方向としたとき、処方度数に基づいて決定される屈折面のz座標値に、焦点深度延長のために、Ar3(但し、rはz軸からの距離、Aは定数)で表される焦点深度延長成分を付加することを特徴とする。この作成方法により作成された視力矯正用レンズによれば、暗所では短く(浅く)なる焦点深度が延長されて、元の焦点の前方又は後方にある対象物にも焦点が合い易くなるため、暗所でのコントラスト感度を向上可能である。
 ここで、前記屈折面がレンズの後面であって前記定数Aが正の数、又は、前記屈折面がレンズの前面であって前記定数Aが負の数である場合、前記z座標値に、レンズの縁厚縮小のための縁厚縮小成分を付加することが好ましい。焦点深度延長成分の付加により厚くなる縁厚が、薄くなるからである。
 また、前記縁厚縮小成分が、Dr10(但し、Dは、定数Aが正のとき負の定数、定数Aが負のとき正の定数)で表されることが好ましい。レンズの縁部での影響を大きくして、縁厚を薄くすることが可能だからである。
 また、前記定数Aの絶対値が1.73×10-6~1.96×10-5の範囲内となるように、前記定数Aを設定することが好ましい。通常のサイズの眼鏡レンズにおいて定数Aの絶対値がかかる範囲内にあれば、焦点深度延長効果が適度に得られ、かつ、非点収差の発生が抑制できるからである。
 また、前記定数Aの絶対値が1.73×10-6~1.96×10-5の範囲内となり、前記定数Dの絶対値が1.65×10-17~1.88×10-16の範囲内となり、かつ、前記定数Aの絶対値が大きい程前記定数Dの絶対値が大きくなるように、前記定数A及び前記定数Dを設定することが好ましい。通常のサイズの眼鏡レンズにおいて定数A及び定数Dをこのように設定すれば、焦点深度延長効果が適度に得られ、かつ、非点収差の発生が抑制できるとともに、縁厚を焦点深度延長成分の付加前のレンズと同等にできるからである。
 本発明の視力矯正用レンズは、レンズの幾何学中心を通る前後方向の軸をz軸、レンズの後方に向かう方向をz軸の正方向としたとき、処方度数に基づいて決定される屈折面のz座標値に、焦点深度延長のために、Ar3(但し、rはz軸からの距離、Aは定数)で表される焦点深度延長成分が付加されていることを特徴とする。これによれば、暗所では短く(浅く)なる焦点深度が延長されて、元の焦点の前方又は後方にある対象物にも焦点が合い易くなるため、暗所でのコントラスト感度を向上可能である。
 ここで、前記屈折面がレンズの後面であって前記定数Aが正の数、又は、前記屈折面がレンズの前面であって前記定数Aが負の数であるときは、前記z座標値に、レンズの縁厚縮小のための縁厚縮小成分が付加されていることが好ましい。焦点深度延長成分の付加により厚くなる縁厚が、薄くなるからである。
 また、前記縁厚縮小成分が、Dr10(但し、Dは、定数Aが正のとき負の定数、定数Aが負のとき正の定数)で表されることが好ましい。レンズの縁部での影響を大きくして、縁厚を薄くすることが可能だからである。
 また、前記定数Aの絶対値が1.73×10-6~1.96×10-5の範囲内にあることが好ましい。通常のサイズの眼鏡レンズにおいて定数Aの絶対値がかかる範囲内にあれば、焦点深度延長効果が適度に得られ、かつ、非点収差の発生が抑制できるからである。
(a)は第1実施形態に係るレンズの全体の概略図、(b)は同レンズの上半分を拡大した概略図である。 第1実施形態に係るレンズを説明するための図である。 (a)は通常の単焦点レンズによる光束の集束状態の模式図、(b)は第1実施形態に係るレンズによる光束の集束状態の模式図である。 (a)は明所における通常の単焦点レンズの焦点深度、(b)は暗所における通常の単焦点レンズの焦点深度、(c)は暗所における第1実施形態に係るレンズの焦点深度について説明するための図である。 通常の単焦点レンズを用いて明所で視標を撮影した写真を示す図である。 第1実施形態に係るレンズを用いて明所で視標を撮影した写真を示す図である。 通常の単焦点レンズを用いて暗所で視標を撮影した写真を示す図である。 第1実施形態に係るレンズを用いて暗所で視標を撮影した写真を示す図である。 (a)は、第3実施形態に係るレンズの全体の概略図、(b)は同レンズの上半分を拡大した概略図である。 (a)は、定数Aを正として、レンズの後面に焦点深度延長成分を付加した状態、(b)は、定数Aを負として、レンズの前面に焦点深度延長成分を付加した状態、(c)は、定数Aを負として、レンズの後面に焦点深度延長成分を付加した状態、(d)は、定数Aを正として、レンズの前面に焦点深度延長成分を付加した状態を示す概略図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明においては、レンズを用いた眼鏡を装用した装用者にとっての前後、左右、上下を、それぞれ、当該レンズにおける前後、左右、上下とする。
 〈第1実施形態〉図1に示すように、第1実施形態に係るレンズ1は、装用者の視力を矯正するための視力矯正用レンズであり、具体的には、眼鏡に用いられる眼鏡レンズである。レンズ1は、後面2が式(i)で定義される凹面とされ、前面3が式(ii)で定義される凸面とされている。なお、レンズ1の幾何学中心(後面2では基点O1、前面3では基点O2)を通る前後方向の軸をz軸とし、レンズ1の後方に向かう方向をz軸の正方向とする。z軸はレンズ1の光軸に一致する。
 z=r2/(R1+(R1 2-Kr21/2)+Ar3 …(i)
 z=r2/(R2+(R2 2-Kr21/2) …(ii)
 式(i)、(ii)のrはz軸からの距離である。すなわち、後面2では基点O1、前面3では基点O2を中心として、z軸に直交する上下方向、左右方向の軸をそれぞれx軸、y軸とする直交座標系を考えた場合、r=(x2+y21/2である。R1、R2は面の頂点における曲率半径、Kは1、Aは正の定数である。したがって、レンズ1の前面3は球面、後面2は非球面となる。なお、R1、R2は、処方度数(詳しくは、S度数、C度数、及び、乱視軸AX)によって決まる。レンズ1は、近視者のための遠用レンズであるため、R1<R2である。
 式(i)に示すように、後面2は、処方度数に基づいて次の式(iii)で定義される屈折面のz座標値に、rの3次の項Ar3が付加されている。
  z=r2/(R1+(R1 2-Kr21/2) …(iii)
 項Ar3は、焦点深度延長のために付加された焦点深度延長成分である。基点からの距離rの3次の冪関数に比例させて厚さを変化させた光学板に光を通すことにより、焦点深度を延長可能であることは、上記特許文献1に記載されている。レンズ1はこれを応用したものであり、処方度数に基づいて決定される屈折面(実施形態では、曲率半径R1の球面。以下、元の球面ともいい、図1の(b)に符号Sで示す。)に、z軸からの距離(すなわち、後面2では、図1に示すz軸と後面2との交点である基点O1からの距離)rの3次の冪関数に比例して厚さが変化する部分(焦点深度延長成分)を付加して後面2を形成したものである。上記式(i)及び(iii)から、後面2は、曲率半径R1の球面と、Ar3で表される非球面とを合成したものといえ、換言すれば、後面2は、図2に模式的に示すように、処方度数を実現するための度数成分と、焦点深度を延長するための焦点深度延長成分(非球面成分)とが合成されて形成されている。
 定数Aは、1.73×10-6~1.96×10-5の範囲内から選択される。通常のサイズの眼鏡レンズ(直径50~80mm)において定数Aがこの範囲であれば、焦点深度延長効果が適度に得られ、かつ、非点収差の発生が抑制できるからである。すなわち、定数Aが大きい程、焦点深度延長効果は大きくなるが、非点収差の発生が大きくなる。それらのバランスを考慮した範囲が、上記範囲である。
 本実施形態では、A=7.68×10-6とされている。これは、図1の(b)に示すように、Δを元の球面Sを基準とする半径aでのz軸方向の高さ(すなわち、元の球面Sからの厚みの増加分)とすると、aが25mmのとき、Δは120μmとなる値である。なお、A=Δ/1000/a3が成り立つ(但し、aの単位:mm、Δの単位:μm)。ちなみに、aが25mm、Δが27μmのとき、A=1.73×10-6となり、aが15mm、Δが66μmのとき、A=1.96×10-5となる。
 次に、レンズ1の設計方法について説明する。
 まず、処方度数に基づいてレンズ1の前面3の屈折面及び後面2の屈折面を決定する。この決定方法については、周知であるため、ここでは詳述しない。そして、決定した前面3の屈折面及び後面2の屈折面のいずれかのz座標値に、Ar3(但し、rはz軸からの距離、Aは定数)で表される焦点深度延長成分を付加する。
 実施形態では、処方度数に基づいてレンズ1の前面3の屈折面及び後面2の屈折面を、それぞれ、上記式(ii)及び(iii)で表される球面として決定し、後面2の屈折面のz座標値に焦点深度延長成分Ar3(但し、A=7.68×10-6)を付加した。
 次に、焦点深度延長の効果について説明する。
 図3の(a)は、処方度数に基づいて前面及び後面の屈折面が決定された通常のレンズ10による光束22の集束状態の模式図であり、レンズ10に入射した光軸に平行な光束22は、焦点位置P3に集中的に集まるため、焦点位置P3では、信号強度が高く鮮明に対象物が見えるが、例えば位置P4のように焦点を少しずれた位置では、急激にぼやけて見えなくなる。すなわち、焦点深度(換言すれば、被写界深度)は浅い。なお、図の下部に示す点の集合は、それぞれ位置P1、P2、P3、P4、P5における光束22の集束の具合を模式的に表したものである。
 図3の(b)は、レンズ1による光束22の集束状態の模式図であり、レンズ1に入射した光軸に平行な光束22は、焦点位置P3を含むある程度の範囲に分散して集まり、焦点深度は深くなる。したがって、焦点位置P3でも若干のぼけは残るが、例えば位置P4のように焦点を少しずれた位置でも、中心部の信号強度がある程度高いため、対象物の識別が可能となる。なお、定数Aを正の数とした場合、焦点深度は、元の焦点位置P3の後側(奥側)に延長される。
 焦点深度延長の効果は、特に夜間など照度が低い暗所で大きい。以下、図4を用いて説明する。図4は、虹彩21を含む眼球20の状態を示したものである。なお、図4における符号F1、F2、F3は、焦点深度の深さ(長さ)を表している。
 図4の(a)は、昼間など照度が高い明所での状態を示したものであり、虹彩21が閉じて、入射する光束22が細くなるため、光が集中する範囲が長くなり、焦点深度F1が深く(長く)なる。したがって、比較的長い距離で焦点が合う。
 図4の(b)は、暗所での状態を示したものであり、虹彩21が開いて、入射する光束22が太くなるため、光が集中する範囲が短くなり、焦点深度F2が浅く(短く)なる。したがって、焦点の合う距離が短くなる。
 図4の(c)は、暗所でレンズ1を用いた状態を示したものであり、虹彩21が開いて、入射する光束22が太くなるが、焦点深度F3は深いため、比較的長い距離で焦点が合う。したがって、レンズ1によれば、特に暗所での対象物の識別が容易となる。
 また、図5~8に、カメラのレンズの前側に、焦点深度延長成分を付加していない通常の単焦点レンズ(但し、度は入っていない。)を取り付けた場合と、その単焦点レンズと同じ設計の単焦点レンズに上記のように焦点深度延長成分を付加した焦点深度延長レンズを取り付けた場合とで、それぞれ視標を撮影し、被写界深度の比較を行った実験の結果を示す。この実験に用いたレンズの詳細なデータを、表1、2に示す。なお、表1に示すサグ値(z座標値)は、中心からの距離r=35mm(すなわち、レンズの縁)での値である。視標は複数個を等間隔(前後方向の間隔は、図5、6では15cm、図7、8では10cm)でカメラに対して斜めに並べた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 図5は単焦点レンズ、図6は焦点深度延長レンズを用いて、いずれも明所で撮影したものであり、焦点距離135mm、F値4.5、シャッタースピード1/25、ISO400、カメラから最も手前の視標までの距離は約200cm、照度はカメラ付近で80lx、最も手前の視標付近で90lxである。
 図7は単焦点レンズ、図8は焦点深度延長レンズを用いて、いずれも暗所で撮影したものであり、焦点距離135mm、F値8.0、シャッタースピード1/10、ISO400、カメラから最も手前の視標までの距離は約100cm、照度はカメラ付近で48lx、最も手前の視標付近で55lxである。
 図5と図6、図7と図8を比較すると、焦点深度延長レンズを用いた図6、図8の方が、通常の単焦点レンズを用いた図5、図7よりも、奥の視標まで見え、被写界深度が深くなっていることが分かり、また、明所よりも暗所の方が、両レンズの被写界深度の差が大きいことが分かる。
 次に、被験者7名につき、処方度数に応じて前面を上記式(ii)により後面を上記式(iii)により決定した通常の単焦点レンズ、及び、その後面に焦点深度延長成分Ar3(但し、A=7.68×10-6)を付加した焦点深度延長レンズすなわちレンズ1を作成し、被験者に装用させてコントラスト感度の測定を行った結果について説明する。各被験者の年齢、処方度数及び作成されたレンズの度数を、表3に示す。なお、作成されたレンズは試作品であることから処方度数とレンズの度数とには若干の差がある。表3中のRは右眼、Lは左眼、レンズの屈折率はいずれも1.60である。コントラスト感度の測定は、Vitech社のビジョンコントラストテスター6500を用いて行った。
Figure JPOXMLDOC01-appb-T000003
 測定結果を表4に示す。Vitech社のビジョンコントラストテスター6500は、視標A~Eの各々につき複数枚の視標が並べられており、どの視標まで識別できたかによってコントラスト感度を測定するものであり、表4は、各被験者が、視標A~Eの各々について、どの視標まで識別できたかを示している。なお、表4で、レンズAは通常の単焦点レンズを、レンズBはレンズ1を示す。また、各被験者につき、右眼、左眼、両眼を測定するとともに、明所と暗所とで測定を行った。表4には、測定場所の照度を記載している。被験者から視標までの距離はいずれも3.00mである。
Figure JPOXMLDOC01-appb-T000004
 コントラスト感度は、例えば視標Bで測定結果が「6」であればコントラスト感度「85」、測定結果が「7」であればコントラスト感度「170」というように、所定の換算表により換算される。表5は、表4の測定結果から得られたコントラスト感度に基づいて、各被験者の右眼、左眼、両眼について明所と暗所のそれぞれにおける、通常の単焦点レンズを用いたときのコントラスト感度に対する、レンズ1を用いたときのコントラスト感度の比、すなわち、(レンズ1を用いたときのコントラスト感度)/(通常の単焦点レンズを用いたときのコントラスト感度)を、視標A~Eについて求め、視標を通じた平均を算出したものである。
Figure JPOXMLDOC01-appb-T000005
 表5から、例えば被験者Aは、明所で両眼視する場合、レンズ1を用いたときのコントラスト感度は通常の単焦点レンズを用いたときの100%であり、レンズ1を用いても通常の単焦点レンズを用いてもコントラスト感度は変わらないが、暗所で両眼視する場合、レンズ1を用いたときのコントラスト感度は通常の単焦点レンズを用いたときの220%であり、レンズ1を用いたときは、通常の単焦点レンズを用いたときの2倍以上、コントラスト感度が良くなっている。このように、暗所(照度50lx以下)では、16眼中12眼でコントラスト感度の向上が見られた。すなわち、レンズ1によれば、夕方や夜間等コントラストが落ちる暗所でのコントラスト感度が向上し、特に、コントラスト感度が急激に低下する中高年者において、暗所でのコントラスト感度の向上効果が高いことが分かる。
 また、定数Aを1.73×10-6~1.96×10-5の範囲内から選択すれば、焦点深度延長効果が適度に得られるとともに、非点収差の発生が抑制できる。すなわち、周辺の歪みが抑制されつつ焦点深度が延長されるため、眼の調節が補助されて、眼が楽に感じ疲れ難くなる。
 〈第2実施形態〉次に、第2実施形態について説明するが、第1実施形態の構成要素と共通する構成要素については、同じ符号を付して、その説明を適宜省略する。
 第2実施形態に係るレンズも眼鏡レンズであり、前面3はレンズ1と同じく上記式(ii)で定義される凸面とされるが、後面2のz座標値に、レンズの縁厚を薄くするための縁厚縮小成分Dr10(但し、Dは負の定数)が付加される。すなわち、第2実施形態のレンズの後面2は、次の式(iv)で定義される凹面とされている。
  z=r2/(R1+(R1 2-Kr21/2)+Ar3+Dr10 …(iv)
 第2実施形態のレンズにおいて、縁厚縮小成分Dr10を付加したのは、焦点深度延長成分Ar3(但し、Aは正の定数)の付加により、レンズの縁厚が厚くなって、見た目や重さの点で問題が生じる虞があるところ、かかる虞を低減するためである。また、縁厚縮小成分におけるrの指数を10と大きくしたのは、レンズの縁部での影響を大きくして、縁厚の減少を図るためである。なお、物を見るときに使用される後面2の中央部では、rが小さいことから、縁厚縮小成分Dr10は小さいものとなり、焦点深度延長効果に対して負の影響を及ぼすことはない。
 第1実施形態で述べたように、定数Aは、1.73×10-6~1.96×10-5の範囲から選択することが好ましいが、定数Aをかかる範囲から選択するとき、定数Dは、-1.88×10-16~-1.65×10-17の範囲から選択し、かつ、定数Aが大きい程定数Dの絶対値が大きくなるように選択することが好ましい。このように選択すれば、レンズの縁厚が通常の単焦点レンズと同等になるからである。
 なお、定数Dの範囲は、定数Aが上記範囲内にあるときの第1実施形態のレンズ1の、通常の単焦点レンズに比しての縁厚の増加分(眼鏡レンズによく用いられる75mm径のレンズとしたときの縁厚の増加分)を算出し、その増加分をΔとして、D=Δ/a10で算出した(但し、a=37.5mm、Δの単位:mm)。
 表6に、A=1.73×10-6、D=-1.65×10-17としたときの、表7に、A=1.96×10-5、D=-1.88×10-16としたときの第1実施形態のレンズ1、第2実施形態のレンズ、及び、通常の単焦点レンズ(レンズ径はいずれも75mm)の縁厚を、S度数を変えて計算したものを示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表6及び表7から分かるように、縁厚縮小成分Dr10を付加することにより、第2実施形態のレンズは縁厚が通常の単焦点レンズと同等となっている。
 第2実施形態のレンズによれば、レンズ1と同様に、暗所でのコントラスト感度が向上し、特に、中高年者の暗所でのコントラスト感度が向上するとともに、レンズの縁厚を通常のレンズと同等とすることができる。
 〈第3実施形態〉第1実施形態及び第2実施形態は近視者用の単焦点レンズ(遠用レンズ)であったが、第3実施形態は、遠視者用の単焦点レンズ(近用レンズ)である。以下、第3実施形態について説明するが、第1実施形態の構成要素と共通する構成要素については、同じ符号を付して、その説明を適宜省略する。
 第3実施形態のレンズでも、後面2が上記式(i)、前面3が上記式(ii)で定義され、レンズの凹面(後面2)に焦点深度延長成分Ar3が付加されているが、定数Aは負の数とされており、-1.96×10-5~-1.73×10-6の範囲から選択される。通常のサイズの眼鏡レンズにおいてこの範囲であれば、焦点深度延長効果が適度に得られ、かつ、非点収差の発生が抑制できるからである。また、R1>R2である。
 図9に、第3実施形態のレンズの全体の概略図(a)、上半分を拡大した概略図(b)を示す。図9の(b)に示すように、第3実施形態のレンズの場合、二点鎖線で示される元の球面Sから厚みが減少され、その厚みの減少量がレンズの縁に近い程大きくなる。
 表8にS度数が+1.00D、+2.00D、+3.00Dの場合の第3実施形態のレンズの例を示す。定数Aは-7.68×10-6とした。
Figure JPOXMLDOC01-appb-T000008
 第3実施形態のように、定数Aを負の数にすることにより、焦点深度は、焦点深度延長前の焦点の前側に延長される。レンズの縁厚は、焦点深度延長前よりも薄くなるため、縁厚縮小成分を付加する必要がない。
 第3実施形態のレンズによれば、元の球面Sからの高さが基点O1からの距離rの3次の冪関数に比例して減少するため、レンズの縁に行く程、焦点は前方にずれる。したがって、延長深度が延長され、暗所でのコントラスト感度が向上する。しかも、縁厚縮小成分を付加する必要がない。
 〈第4実施形態〉第4実施形態は、遠視者用の単焦点レンズ(近用レンズ)であるが、第3実施形態と異なり、定数Aを正の数としている。以下、第4実施形態について説明するが、第1実施形態の構成要素と共通する構成要素については、同じ符号を付して、その説明を適宜省略する。
 第4実施形態のレンズは、後面2が上記式(i)、前面3が上記式(ii)で定義され、レンズの凹面(後面2)に焦点深度延長成分Ar3が付加されている。定数Aは正の数とされており、1.73×10-6~1.96×10-5の範囲内から選択される。通常のサイズの眼鏡レンズにおいてこの範囲内であれば、焦点深度延長効果が適度に得られ、かつ、非点収差の発生が抑制できるからである。また、R1>R2である。定数Aを正の数とした場合には、焦点深度は、焦点深度延長前の焦点の後側に延長される。
 表9にS度数が+1.00D、+2.00D、+3.00Dの場合の第4実施形態のレンズの例を示す。定数Aは7.68×10-6とした。
Figure JPOXMLDOC01-appb-T000009
 なお、定数Aを正の数とした場合には、焦点深度は、焦点深度延長前の焦点の後側に延長される。また、縁厚が厚くなるため、縁厚縮小成分Dr10を付加してもよい。定数Aを1.73×10-6~1.96×10-5の範囲内から選択するとき、定数Dは、-1.88×10-16~-1.65×10-17の範囲内から選択し、かつ、定数Aが大きい程定数Dの絶対値が大きくなるように選択することが好ましい。
 第4実施形態のレンズによれば、元の球面Sからの高さが基点O1からの距離rの3次の冪関数に比例して増加するため、レンズの縁に行く程、焦点は後方にずれる。したがって、延長深度が延長され、暗所でのコントラスト感度が向上する。
 〈変形例〉以下、変形例について説明する。
 (1)第1実施形態のレンズのような遠用レンズで定数Aを負の数としてもよい。定数Aを負の数とした場合には、焦点深度は、焦点深度延長成分を付加しないときの焦点の前側に延長される。また、焦点深度延長成分を付加しないときに比して縁厚が薄くなる。
 (2)焦点深度延長成分Ar3を付加する前の屈折面の式は、上記式(ii)に限らず、例えば、上記式(ii)に、ΣAiriで表される多項式が付加された式とすることもできる(すなわち、焦点深度延長成分Ar3を付加する前の屈折面は、球面とは限らない)。その場合には、その式にさらに焦点深度延長成分Ar3を付加することとなる。焦点深度延長成分を付加しない方の面(上記各実施形態では前面3)の式も、上記式(iii)に限られないことは勿論である。
 (3)上記各実施形態では後面2(凹面)に焦点深度延長成分を付加したが、レンズの前面3(凸面)に焦点深度延長成分を付加してもよい。
 すなわち、焦点深度延長成分は後面2に付加される場合と前面3に付加される場合とがあり、それぞれの場合について、定数Aは正の場合と負の場合とがある。これら4通りのケースを図示したものが図10であり、図10の(a)は第1実施形態及び第4実施形態と同じく、定数Aを正の数として、後面2に焦点深度延長成分を付加した状態、(b)は、定数Aを負の数として、前面3に焦点深度延長成分を付加した状態、(c)は、第3実施形態と同じく、定数Aを負の数として、後面2に焦点深度延長成分を付加した状態、(d)は、定数Aを正の数として、前面3に焦点深度延長成分を付加した状態を示す。図中、二点鎖線は焦点深度延長成分付加前の面を示す。定数Aは絶対値が1.73×10-6~1.96×10-5の範囲であることが好ましい。かかる範囲であれば、焦点深度延長効果が適度に得られ、かつ、非点収差の発生が抑制できることが、計算上分かるからである。
 また、(a)及び(b)のケースでは、縁厚が増加するため、縁厚縮小成分を付加してもよい。(c)及び(d)のケースでは、縁厚は減少するため、縁厚縮小成分を付加する必要はない。縁厚縮小成分を付加する場合には、(a)のように定数Aが正の数の場合には、定数Dは負の数とし、(b)のように定数Aが負の数の場合には、定数Dは正の数とする。また、定数Aの絶対値が1.73×10-6~1.96×10-5の範囲内の場合、定数Dの絶対値は1.65×10-17~1.88×10-16の範囲内とし、かつ、定数Aの絶対値が大きい程定数Dの絶対値が大きくなるように設定することが好ましい。通常のサイズの眼鏡レンズにおいて定数A及び定数Dをこのように定めれば、焦点深度延長効果が適度に得られ、かつ、非点収差の発生を抑制できるとともに、縁厚を焦点深度延長成分の付加前のレンズと同等にできることが、計算上分かるからである。
 (4)縁厚縮小成分におけるrの指数は10でなくてもよく、例えば8として、縁厚縮小成分としてDr8を付加してもよい。
 (5)上記各実施形態は単焦点レンズであったが、累進レンズ、又は、二重焦点レンズ等の多焦点レンズに焦点深度延長成分を付加してもよい。単焦点レンズの場合と同様に、焦点深度延長効果が得られるからである。その場合、凹面を累進屈折力面又は多焦点面とし、凸面に焦点深度延長成分を付加したり、凸面を累進屈折力面又は多焦点面とし、凹面に焦点深度延長成分を付加したりする等、焦点深度延長成分は、累進屈折力面又は多焦点面に付加してもよいし、その反対面に付加してもよい。
 (6)累進レンズや二焦点レンズに焦点深度延長成分を付加する場合、遠用部(遠用屈折面)と近用部(近用屈折面)とを含む全体(累進レンズの場合には、遠用部と近用部と累進部を含む全体)に付加してもよいし、遠用部と近用部のそれぞれに別個に付加してもよいし、遠用部のみ又は近用部のみに付加してもよい。遠用部と近用部のそれぞれに別個に付加する場合、定数Aは遠用部と近用部とで異なり得る。焦点が2つより多い場合も同様である。
 (7)累進レンズや多焦点レンズの場合、遠用部の処方度数のS度数を+0.25Dして設計し(すなわち、遠用部の度を0.25D弱くし)、遠用部に焦点深度延長成分を付加することにより、度を弱くした分の見え難さを補うようにすれば、加入度が0.25D分低減されるため、その分、歪み等の発生が抑制される。
 (8)本発明を、コンタクトレンズに適用してもよい。
 1…レンズ
 2…後面
 3…前面

Claims (9)

  1.  レンズの幾何学中心を通る前後方向の軸をz軸、レンズの後方に向かう方向をz軸の正方向としたとき、処方度数に基づいて決定される屈折面のz座標値に、焦点深度延長のために、Ar3(但し、rはz軸からの距離、Aは定数)で表される焦点深度延長成分を付加することを特徴とする視力矯正用レンズの設計方法。
  2.  前記屈折面がレンズの後面であって前記定数Aが正の数、又は、前記屈折面がレンズの前面であって前記定数Aが負の数である場合、前記z座標値に、レンズの縁厚縮小のための縁厚縮小成分を付加することを特徴とする請求項1記載の視力矯正用レンズの設計方法。
  3.  前記縁厚縮小成分が、Dr10(但し、Dは、定数Aが正のとき負の定数、定数Aが負のとき正の定数)で表されることを特徴とする請求項2記載の視力矯正用レンズの設計方法。
  4.  前記定数Aの絶対値が1.73×10-6~1.96×10-5の範囲内となるように、前記定数Aを設定することを特徴とする請求項1記載の視力矯正用レンズの設計方法。
  5.  前記定数Aの絶対値が1.73×10-6~1.96×10-5の範囲内となり、前記定数Dの絶対値が1.65×10-17~1.88×10-16の範囲内となり、かつ、前記定数Aの絶対値が大きい程前記定数Dの絶対値が大きくなるように、前記定数A及び前記定数Dを設定することを特徴とする請求項3に記載の視力矯正用レンズの設計方法。
  6.  レンズの幾何学中心を通る前後方向の軸をz軸、レンズの後方に向かう方向をz軸の正方向としたとき、処方度数に基づいて決定される屈折面のz座標値に、焦点深度延長のために、Ar3(但し、rはz軸からの距離、Aは定数)で表される焦点深度延長成分が付加されていることを特徴とする視力矯正用レンズ。
  7.  前記屈折面がレンズの後面であって前記定数Aが正の数、又は、前記屈折面がレンズの前面であって前記定数Aが負の数であり、前記z座標値に、レンズの縁厚縮小のための縁厚縮小成分が付加されていることを特徴とする請求項6記載の視力矯正用レンズ。
  8.  前記縁厚縮小成分が、Dr10(但し、Dは、定数Aが正のとき負の定数、定数Aが負のとき正の定数)で表されることを特徴とする請求項7記載の視力矯正用レンズ。
  9.  前記定数Aの絶対値が1.73×10-6~1.96×10-5の範囲内にあることを特徴とする請求項6記載の視力矯正用レンズ。
PCT/JP2016/084962 2016-11-25 2016-11-25 視力矯正用レンズの設計方法及び視力矯正用レンズ WO2018096647A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/305,200 US11131868B2 (en) 2016-11-25 2016-11-25 Method for corrective lens and corrective lens
EP16922435.9A EP3467573A4 (en) 2016-11-25 2016-11-25 VISION CORRECTION LENS DESIGN METHOD, AND VISION CORRECTION LENS
CN201680086335.7A CN109196407A (zh) 2016-11-25 2016-11-25 视力矫正用镜片的设计方法和视力矫正用镜片
PCT/JP2016/084962 WO2018096647A1 (ja) 2016-11-25 2016-11-25 視力矯正用レンズの設計方法及び視力矯正用レンズ
JP2017078475A JP7055318B2 (ja) 2016-11-25 2017-04-11 累進屈折力レンズの設計方法及び累進屈折力レンズ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084962 WO2018096647A1 (ja) 2016-11-25 2016-11-25 視力矯正用レンズの設計方法及び視力矯正用レンズ

Publications (1)

Publication Number Publication Date
WO2018096647A1 true WO2018096647A1 (ja) 2018-05-31

Family

ID=62194968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084962 WO2018096647A1 (ja) 2016-11-25 2016-11-25 視力矯正用レンズの設計方法及び視力矯正用レンズ

Country Status (5)

Country Link
US (1) US11131868B2 (ja)
EP (1) EP3467573A4 (ja)
JP (1) JP7055318B2 (ja)
CN (1) CN109196407A (ja)
WO (1) WO2018096647A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663835A4 (en) * 2018-10-15 2021-06-23 National University Corporation Tokyo University of Agriculture and Technology HEAD MOUNTED DISPLAY AND METHOD OF DESIGNING A WIDE FOCUS LENS FOR HEAD MOUNTED DISPLAY
EP3739375A4 (en) * 2018-07-03 2021-10-20 National University Corporation Tokyo University of Agriculture and Technology STEREOSCOPIC GLASSES, PROCESS FOR DESIGNING GLASS FOR GLASSES USED IN THE SAME AND PROCESS FOR STEREOSCOPIC IMAGE OBSERVATION

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149628A1 (ja) * 2020-01-23 2021-07-29 国立大学法人東京農工大学 ヘッドマウントディスプレイ及びこれに用いられる虚像結像レンズ
JP7405371B2 (ja) * 2020-08-24 2023-12-26 伊藤光学工業株式会社 ゲーミングレンズの設計方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450012A (en) * 1987-08-21 1989-02-27 Asahi Glass Co Ltd Spectacle lens with small aberration
JP2009282391A (ja) * 2008-05-23 2009-12-03 Tadashi Ariga 大型光学板
JP2016206338A (ja) * 2015-04-20 2016-12-08 伊藤光学工業株式会社 視力矯正用レンズの設計方法及び視力矯正用レンズ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181409A (en) * 1978-10-16 1980-01-01 American Optical Corporation Aspheric lens series
US5767939A (en) * 1991-10-09 1998-06-16 Seiko Epson Corporation Eyeglass lens
JP3334131B2 (ja) 1991-10-09 2002-10-15 セイコーエプソン株式会社 眼鏡レンズの製造方法
CN1412604A (zh) * 2002-11-07 2003-04-23 苏州大学 非球面眼镜片
JP2005242346A (ja) * 2004-01-28 2005-09-08 Pentax Corp 眼鏡レンズの設計方法および眼鏡レンズ
CN100445806C (zh) * 2004-06-17 2008-12-24 鸿富锦精密工业(深圳)有限公司 眼镜片
CN100445805C (zh) * 2004-11-27 2008-12-24 鸿富锦精密工业(深圳)有限公司 远视眼镜片
WO2008078804A1 (ja) * 2006-12-27 2008-07-03 Hoya Corporation 多焦点眼用レンズ
US8740978B2 (en) * 2007-08-27 2014-06-03 Amo Regional Holdings Intraocular lens having extended depth of focus
DE102007062929A1 (de) * 2007-12-28 2009-07-02 Rodenstock Gmbh Verfahren zur Berechnung und Optimierung eines Brillenglaspaares unter Berücksichtigung binokularer Eigenschaften
US8100529B2 (en) * 2008-07-31 2012-01-24 Hoya Corporation Progressive-addition lens
EP2407815B1 (en) * 2009-03-12 2018-08-15 Hoya Corporation Method of compiling shape data of a spectacle lens, spectacle lens shape data compiling device and spectacle lens
JP6346088B2 (ja) * 2011-06-15 2018-06-20 ビジョネーリング テクノロジーズ、インコーポレイテッド 近視の進行を治療するための眼科用レンズ
DE102011114752A1 (de) 2011-09-29 2013-04-04 Carl Zeiss Ag Linse mit einem erweiterten Fokusbereich
CA2877234A1 (en) * 2013-03-07 2014-09-12 Amo Groningen B.V. Lens providing extended depth of focus and method relating to same
JP5882437B1 (ja) * 2014-11-07 2016-03-09 伊藤光学工業株式会社 眼鏡レンズ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450012A (en) * 1987-08-21 1989-02-27 Asahi Glass Co Ltd Spectacle lens with small aberration
JP2009282391A (ja) * 2008-05-23 2009-12-03 Tadashi Ariga 大型光学板
JP2016206338A (ja) * 2015-04-20 2016-12-08 伊藤光学工業株式会社 視力矯正用レンズの設計方法及び視力矯正用レンズ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Kogaku Sekkei· Seizobu Kaihatsu G, Hishakai Shindo Encho Sekkei ni yoru Megane Lens ES Series Extended Depth of Field (EDF) Sekkei", KABUSHIKI KAISHA TSL, 29 July 2016 (2016-07-29), pages 1 - 20, XP055570782, Retrieved from the Internet <URL:https://www.tsl-opt.co.jp/wl/main/images_es-series/es-concept.pdf> [retrieved on 20170206] *
See also references of EP3467573A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3739375A4 (en) * 2018-07-03 2021-10-20 National University Corporation Tokyo University of Agriculture and Technology STEREOSCOPIC GLASSES, PROCESS FOR DESIGNING GLASS FOR GLASSES USED IN THE SAME AND PROCESS FOR STEREOSCOPIC IMAGE OBSERVATION
US11300805B2 (en) 2018-07-03 2022-04-12 National University Corporation Tokyo University Of Agriculture And Technology Stereoscopic eyeglasses, method for designing eyeglass lens to be used for the stereoscopic eyeglasses, and method for observing stereoscopic image
EP3663835A4 (en) * 2018-10-15 2021-06-23 National University Corporation Tokyo University of Agriculture and Technology HEAD MOUNTED DISPLAY AND METHOD OF DESIGNING A WIDE FOCUS LENS FOR HEAD MOUNTED DISPLAY
US11740459B2 (en) 2018-10-15 2023-08-29 National University Corporation Tokyo University Of Agriculture And Technology Head-mounted display and method for designing wide-focus lens to be used for the head-mounted display

Also Published As

Publication number Publication date
EP3467573A4 (en) 2020-01-22
US11131868B2 (en) 2021-09-28
CN109196407A (zh) 2019-01-11
US20200319478A1 (en) 2020-10-08
EP3467573A9 (en) 2019-07-10
JP7055318B2 (ja) 2022-04-18
JP2018084788A (ja) 2018-05-31
EP3467573A1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP5997351B2 (ja) 眼鏡レンズの製造方法
KR102299750B1 (ko) 보충 이미지를 출력하도록 구성되는 다중 초점 안과용 안경 렌즈
KR102042554B1 (ko) 안경 렌즈 결정 방법
US9791718B2 (en) Progressive multifocal ophthalmic lens designed to inhibit progressive myopia of the wearer
EP1882973A1 (en) Design method for spectacle lens, spectacle lens, and spectacles
JP6682456B2 (ja) 焦点調節補助レンズ
WO2018096647A1 (ja) 視力矯正用レンズの設計方法及び視力矯正用レンズ
JPWO2010087450A1 (ja) 眼鏡レンズの評価方法、眼鏡レンズの設計方法、及び眼鏡レンズの製造方法
EP2440963A1 (fr) Réalisation d&#39;un verre de lunettes progressif personnalise en fonction d&#39;une perception de flou
JP6374345B2 (ja) 視力矯正用レンズの設計方法及び視力矯正用レンズ
JP7142956B2 (ja) 眼鏡用レンズ
JP4239519B2 (ja) 累進屈折力レンズ、老視用眼鏡及びレンズの設計方法
JP2016026324A (ja) 眼鏡用レンズ、眼鏡、眼鏡レンズの設計方法、及び設計装置
US8757799B2 (en) Progressive multifocal ophthalmic lens
US11892711B2 (en) Method for determining a single vision ophthalmic lens
JP6059483B2 (ja) 眼鏡レンズの設計方法および眼鏡レンズの製造方法
JP7455373B2 (ja) 遠用拡大眼鏡
CN104977728B (zh) 眼镜装置、处方镜片及优化处方镜片佩戴者视敏度的方法
JP6413062B2 (ja) 近視矯正を必要としない人のためのサングラス用のレンズの設計方法
JP2021156978A (ja) 眼鏡
JP2018510380A (ja) 装用者に適合した眼鏡レンズの光学機能を決定する方法
JP2023094495A (ja) 老視対策用の眼鏡と老視対策用の眼鏡を作製するための視線確認用の検査用カバー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016922435

Country of ref document: EP

Effective date: 20181205

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP