WO2018095324A1 - 一种静止变频器脉冲换相阶段转矩控制方法 - Google Patents

一种静止变频器脉冲换相阶段转矩控制方法 Download PDF

Info

Publication number
WO2018095324A1
WO2018095324A1 PCT/CN2017/112322 CN2017112322W WO2018095324A1 WO 2018095324 A1 WO2018095324 A1 WO 2018095324A1 CN 2017112322 W CN2017112322 W CN 2017112322W WO 2018095324 A1 WO2018095324 A1 WO 2018095324A1
Authority
WO
WIPO (PCT)
Prior art keywords
thyristor
thyristors
frequency converter
inverter bridge
static frequency
Prior art date
Application number
PCT/CN2017/112322
Other languages
English (en)
French (fr)
Inventor
刘腾
石祥建
闫伟
漫自强
袁江伟
吴龙
刘为群
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2018095324A1 publication Critical patent/WO2018095324A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements

Definitions

  • the invention belongs to the technical field of electrical machinery and power electronics, and particularly relates to a torque control method for a pulse commutation phase of a static frequency converter.
  • the inverter bridge thyristor In the initial stage of starting the synchronous motor, the inverter bridge thyristor cannot complete the natural commutation due to the low voltage of the terminal.
  • the pulse commutation technique is needed to complete the commutation, that is, the rectifier bridge is inverted.
  • the inverter bridge blocks the pulse, forcing the loop current to drop to zero, thereby completing the turn-off and commutation of the inverter bridge thyristor.
  • the conventional pulse commutation technique mainly performs the triggering of the next pair of thyristors by detecting the line voltage zero crossing point, as shown in Fig.
  • T M C m * ⁇ r *i s sin ⁇
  • the loop current will appear at the zero current moment of time ⁇ t. At this time, the torque output is 0, the motor relies on inertia rotation, and the torque output capability is small. The case is explored and improved.
  • the object of the present invention is to provide a torque control method for a pulse commutation phase of a static frequency converter, which can adjust the trigger time of the thyristor, effectively reduce the average value of the zero output torque, and reduce the output torque fluctuation of the static frequency converter, thereby improving Static inverter output torque.
  • the solution of the present invention is:
  • a static frequency converter pulse commutation phase torque control method comprises a rectifier bridge and an inverter bridge, the inverter bridge is composed of 6 thyristors, the first and fourth thyristors are one way, and the fourth thyristor is The cathode is connected to the anode of the No. 1 thyristor; the No. 3 and No. 6 thyristors are one way, and the cathode of the No. 6 thyristor is connected to the anode of the No. 3 thyristor; the No. 2 and No. 5 thyristors are one way, and the cathode of the No. 2 thyristor is connected to the anode of the No.
  • the content of the control method is: first, detecting the rotor real-time position angle ⁇ , calculating the commutation time ⁇ t of the thyristor pulse commutation phase, and then calculating the inverter bridge pre-conduction angle ⁇ of the thyristor pulse commutation phase, and finally, The inverter bridge thyristor is triggered in the range of 0 to ⁇ before the rotor position reaches the zero crossing point of the stator line voltage.
  • the rotor real-time position angle ⁇ is detected by the position sensor.
  • ⁇ t 1 represents the time at which the loop current decays to zero
  • ⁇ t 2 is the time at which the thyristor resumes blocking capability
  • ⁇ t 3 is the loop current re-establishment time
  • the triggering rules for triggering the inverter bridge thyristor in the range of 0 to ⁇ before the rotor position reaches the zero crossing of the stator line voltage are:
  • the invention detects the commutation time of the thyristor pulse commutation phase by detecting the rotor position of the synchronous motor in real time, and triggers the inverter bridge to be turned on by the thyristor in the range of 0 to ⁇ before the rotor position reaches the zero crossing point of the line voltage. , the average value of the zero output torque is reduced, thereby improving the torque output capability and improving the starting efficiency of the synchronous motor.
  • the torque control algorithm adopted by the invention improves the torque output capability of the static frequency converter, thereby improving the starting torque of the synchronous motor.
  • Figure 1 is a system architecture diagram of a static frequency converter
  • Figure 2 is a spatial distribution diagram of the stator winding of the motor
  • Fig. 3(a) is a torque output waveform diagram when the thyristor is triggered by the zero-crossing point of the stator line voltage in the pulse commutation phase
  • Fig. 3(b) is the torque output when the thyristor is triggered in the range of 0 to ⁇ before the rotor position reaches the zero-crossing point of the line voltage. Waveform diagram.
  • the invention provides a torque control method for a pulse commutation phase of a static frequency converter.
  • the static frequency converter comprises a rectifier bridge and an inverter bridge, and the inverter bridge is composed of 6 thyristors VT1-VT6, VT4.
  • VT1 Connected to VT1 as one way, and the cathode of VT4 is connected to the anode of VT1; VT6 and VT3 are all the way, and the cathode of VT6 is connected to the anode of VT3; VT2 and VT5 are all the way, and the cathode of VT2 is connected to the anode of VT5; through the guidance of each thyristor Control is performed to adjust the output frequency; this is an existing structure and will not be described again.
  • the content of the control method is: firstly, the real-time position angle ⁇ of the rotor is detected by a position sensor or a position sensorless technique, and the commutation time ⁇ t of the thyristor pulse commutation phase is calculated according to the following formula:
  • ⁇ t 1 represents the time when the loop current decays to 0, which can be obtained according to the impedance characteristics of the inverter bridge thyristor conduction loop
  • ⁇ t 2 is the time for the thyristor to recover the blocking capability, and is obtained according to the thyristor characteristic
  • ⁇ t 3 is the loop current re-establishment time , related to loop parameters and regulator parameters, can be obtained by measurement.
  • the inverter bridge thyristor is triggered in the range of 0 to ⁇ before the rotor position reaches the zero crossing point of the stator line voltage.
  • the triggering rules are as follows:
  • the inverter bridges 3 and 4 thyristors (VT3, VT4) are triggered;
  • the inverter bridge 5 and 6 thyristors (VT5, VT6) are triggered;
  • the inverter bridges 1 and 2 thyristors (VT1, VT2) are triggered;
  • the inverter bridges 2 and 3 thyristors (VT2, VT3) are triggered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种静止变频器脉冲换相阶段转矩控制方法,所述静止变频器包含有整流桥(NB)和逆变桥(MB),逆变桥(MB)由6个晶闸管(VT1,VT2,VT3,VT4,VT5,VT6)组成,1、4号晶闸管(VT1、VT4)为一路,4号晶闸管(VT4)的阴极连接1号晶闸管(VT1)的阳极;3、6号晶闸管(VT3、VT6)为一路,且6号晶闸管(VT6)的阴极连接3号晶闸管(VT3)的阳极;2、5号晶闸管(VT2、VT5)为一路,且2号晶闸管(VT2)的阴极连接5号晶闸管(VT5)的阳极;所述控制方法的内容是:首先,检测转子实时位置角θ,计算晶闸管脉冲换相阶段的换相时间Δt,然后,计算晶闸管脉冲换相阶段的提前导通角γ,最后,在转子位置到达定子线电压过零点前0~γ范围内触发晶闸管(VT1,VT2,VT3,VT4,VT5,VT6)。此种控制方法可调整晶闸管触发时间,有效减小零输出转矩的平均值,减小静止变频器输出转矩波动,提高静止变频器输出转矩。

Description

一种静止变频器脉冲换相阶段转矩控制方法 技术领域
本发明属于电机学及电力电子技术领域,特别涉及一种静止变频器脉冲换相阶段转矩控制方法。
背景技术
静止变频器在启动同步电机初期,由于机端电压较低,逆变桥晶闸管无法完成自然换相,如图1所示,此时需要采用脉冲换相技术完成换相,即将整流桥逆变,逆变桥封锁脉冲,迫使回路电流降为零,从而完成逆变桥晶闸管的关断和换相。以往的脉冲换相技术主要是通过检测线电压过零点时完成下一对晶闸管的触发,如图2所示,在θ=30°、θ=90°、θ=150°、θ=210°、θ=270°、θ=330°等位置触发晶闸管,换相时间为Δt,输出转矩TM的计算公式如下:
TM=Cmr*is sinα
式中,
Cm-转矩系数;
is-定子合成电流;
ψr-转子磁链;
α-定子磁链与转子磁链的夹角。
由于在Δt时间内定子合成电流is为零,所以输出转矩也为零,进而影响到平均输出转矩。转矩输出波形如图3(a)所示。
针对目前静止变频器在脉冲换相阶段,回路电流会出现时间为Δt的零电流时刻,此时转矩输出为0,电机依靠惯性转动,转矩输出能力小的问题,本案进行探索改进。
发明内容
本发明的目的,在于提供一种静止变频器脉冲换相阶段转矩控制方法,其可调整晶闸管触发时间,有效减小零输出转矩的平均值,减小静止变频器输出转矩波动,提高静止变频器输出转矩。
为了达成上述目的,本发明的解决方案是:
一种静止变频器脉冲换相阶段转矩控制方法,所述静止变频器包含有整流桥和逆变桥,逆变桥由6个晶闸管组成,1、4号晶闸管为一路,且4号晶闸管的阴极连接1号晶闸管的阳极;3、6号晶闸管为一路,且6号晶闸管的阴极连接3号晶闸管的阳极;2、5号晶闸管为一路,且2号晶闸管的阴极连接5号晶闸管的阳极;所述控制方法的内容是:首先,检测转子实时位置角θ,计算晶闸管脉冲换相阶段的换相时间Δt,然后,计算晶闸管脉冲换相阶段的逆变桥提前导通角γ,最后,在转子位置到达定子线电压过零点前0~γ范围内触发逆变桥晶闸管。
通过位置传感器检测转子实时位置角θ。
上述计算晶闸管脉冲换相阶段的换相时间Δt的公式是:
Δt=Δt1+Δt2+Δt3
其中,Δt1表示回路电流衰减到0的时间,Δt2为晶闸管恢复阻断能力的时间,Δt3为回路电流重新建立时间。
上述计算晶闸管脉冲换相阶段的逆变桥提前导通角γ,的公式是:γ=ω·Δt,式中,ω为转子电角速度,Δt为晶闸管脉冲换相阶段的换相时间。
上述在转子位置到达定子线电压过零点前0~γ范围内触发逆变桥晶闸管的触发规则是:
θ∈(330°-γ,330°)时,触发逆变桥3、4号晶闸管;
θ∈(270°-γ,270°)时,触发逆变桥4、5号晶闸管;
θ∈(210°-γ,210°)时,触发逆变桥5、6号晶闸管;
θ∈(150°-γ,150°)时,触发逆变桥6、1号晶闸管;
θ∈(90°-γ,90°)时,触发逆变桥1、2号晶闸管;
θ∈(30°-γ,30°)时,触发逆变桥2、3号晶闸管。
采用上述方案后,本发明通过实时检测同步电机转子位置,计算晶闸管脉冲换相阶段的换相时间,在转子位置到达线电压过零点前0~γ角度范围内,触发逆变桥待导通晶闸管,减小了零输出转矩的平均值,从而可以提高转矩输出能力,提高了同步电机启动效率。同时,本发明采用的转矩控制算法提高静止变频器转矩输出能力,从而提高同步电机启动转矩。
附图说明
图1是静止变频器的系统架构图;
图2是电机定子绕组空间分布图;
图3(a)是脉冲换相阶段定子线电压过零点触发晶闸管时转矩输出波形图,图3(b)是转子位置到达线电压过零点前0~γ角度范围内触发晶闸管时转矩输出波形图。
具体实施方式
以下将结合附图,对本发明的技术方案及有益效果进行详细说明。
本发明提供一种静止变频器脉冲换相阶段转矩控制方法,如图1所示,所述静止变频器包含有整流桥和逆变桥,逆变桥由6个晶闸管VT1-VT6组成,VT4与VT1为一路,且VT4的阴极连接VT1的阳极;VT6与VT3为一路,且VT6的阴极连接VT3的阳极;VT2与VT5为一路,且VT2的阴极连接VT5的阳极;通过对各晶闸管的导通进行控制,从而调节输出频率;此为现有结构,不再赘述。
所述控制方法的内容是:首先,通过位置传感器或无位置传感器技术检测转子实时位置角θ,根据下式计算晶闸管脉冲换相阶段的换相时间Δt:
Δt=Δt1+Δt2+Δt3
其中,Δt1表示回路电流衰减到0的时间,可根据逆变桥晶闸管导通回路阻抗特性获得;Δt2为晶闸管恢复阻断能力的时间,根据晶闸管特性获得;Δt3为回路电流重新建立时间,和回路参数及调节器参数相关,可实测获得。
然后,利用公式γ=ω·Δt计算晶闸管脉冲换相阶段的逆变桥提前导通角γ,式 中,ω为转子电角速度。
最后,根据转子实时位置角θ,在转子位置到达定子线电压过零点前0~γ范围内触发逆变桥晶闸管,配合图2所示,触发规则如下:
θ∈(330°-γ,330°)时,触发逆变桥3、4号晶闸管(VT3、VT4);
θ∈(270°-γ,270°)时,触发逆变桥4、5号晶闸管(VT4、VT5);
θ∈(210°-γ,210°)时,触发逆变桥5、6号晶闸管(VT5、VT6);
θ∈(150°-γ,150°)时,触发逆变桥6、1号晶闸管(VT6、VT1);
θ∈(90°-γ,90°)时,触发逆变桥1、2号晶闸管(VT1、VT2);
θ∈(30°-γ,30°)时,触发逆变桥2、3号晶闸管(VT2、VT3)。
从而提高静止变频器输出转矩,如图3(b)所示。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (5)

  1. 一种静止变频器脉冲换相阶段转矩控制方法,所述静止变频器包含有整流桥和逆变桥,逆变桥由6个晶闸管组成,1、4号晶闸管为一路,且4号晶闸管的阴极连接1号晶闸管的阳极;3、6号晶闸管为一路,且6号晶闸管的阴极连接3号晶闸管的阳极;2、5号晶闸管为一路,且2号晶闸管的阴极连接5号晶闸管的阳极;其特征在于所述控制方法的内容是:首先,检测转子实时位置角θ,计算晶闸管脉冲换相阶段的换相时间Δt,然后,计算晶闸管脉冲换相阶段的逆变桥提前导通角γ,最后,在转子位置到达定子线电压过零点前0~γ范围内触发逆变桥晶闸管。
  2. 如权利要求1所述的一种静止变频器脉冲换相阶段转矩控制方法,其特征在于:通过位置传感器检测转子实时位置角θ。
  3. 如权利要求1所述的一种静止变频器脉冲换相阶段转矩控制方法,其特征在于:所述计算晶闸管脉冲换相阶段的换相时间Δt的公式是:
    Δt=Δt1+Δt2+Δt3
    其中,Δt1表示回路电流衰减到0的时间,Δt2为晶闸管恢复阻断能力的时间,Δt3为回路电流重新建立时间。
  4. 如权利要求1所述的一种静止变频器脉冲换相阶段转矩控制方法,其特征在于:所述计算晶闸管脉冲换相阶段的逆变桥提前导通角γ,的公式是:γ=ω·Δt,式中,ω为转子电角速度,Δt为晶闸管脉冲换相阶段的换相时间。
  5. 如权利要求1所述的一种静止变频器脉冲换相阶段转矩控制方法,其特征在于:所述在转子位置到达定子线电压过零点前0~γ范围内触发逆变桥晶闸管的触发规则是:
    θ∈(330°-γ,330°)时,触发逆变桥3、4号晶闸管;
    θ∈(270°-γ,270°)时,触发逆变桥4、5号晶闸管;
    θ∈(210°-γ,210°)时,触发逆变桥5、6号晶闸管;
    θ∈(150°-γ,150°)时,触发逆变桥6、1号晶闸管;
    θ∈(90°-γ,90°)时,触发逆变桥1、2号晶闸管;
    θ∈(30°-γ,30°)时,触发逆变桥2、3号晶闸管。
PCT/CN2017/112322 2016-11-24 2017-11-22 一种静止变频器脉冲换相阶段转矩控制方法 WO2018095324A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611041729.9A CN106452217A (zh) 2016-11-24 2016-11-24 一种静止变频器脉冲换相阶段转矩控制方法
CN201611041729.9 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018095324A1 true WO2018095324A1 (zh) 2018-05-31

Family

ID=58218054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112322 WO2018095324A1 (zh) 2016-11-24 2017-11-22 一种静止变频器脉冲换相阶段转矩控制方法

Country Status (2)

Country Link
CN (1) CN106452217A (zh)
WO (1) WO2018095324A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991982A (zh) * 2021-10-29 2022-01-28 许继电气股份有限公司 一种可控关断电流源型换流器及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452217A (zh) * 2016-11-24 2017-02-22 南京南瑞继保电气有限公司 一种静止变频器脉冲换相阶段转矩控制方法
CN112398379B (zh) * 2019-08-12 2022-06-28 南京南瑞继保电气有限公司 一种同步电机的启动系统及启动方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136078A (ja) * 1983-01-21 1984-08-04 Hitachi Ltd サイリスタ変換器の制御装置
JPS62244292A (ja) * 1986-04-15 1987-10-24 Toshiba Corp 無整流子電動機
CN101359875A (zh) * 2008-09-18 2009-02-04 国网电力科学研究院 静止变频启动器逆变桥换相超前角多自由度动态控制方法
CN106452217A (zh) * 2016-11-24 2017-02-22 南京南瑞继保电气有限公司 一种静止变频器脉冲换相阶段转矩控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193378B1 (en) * 2006-03-14 2007-03-20 Gm Global Technology Operations, Inc. Wye switch inverter for electric and hybrid vehicles
CN103095195B (zh) * 2013-01-15 2015-06-17 南京南瑞继保电气有限公司 一种脉冲换相阶段电流控制方法及表达式的计算方法
CN104184374A (zh) * 2014-09-16 2014-12-03 上海理工大学 永磁同步电机控制系统中超前角调整方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136078A (ja) * 1983-01-21 1984-08-04 Hitachi Ltd サイリスタ変換器の制御装置
JPS62244292A (ja) * 1986-04-15 1987-10-24 Toshiba Corp 無整流子電動機
CN101359875A (zh) * 2008-09-18 2009-02-04 国网电力科学研究院 静止变频启动器逆变桥换相超前角多自由度动态控制方法
CN106452217A (zh) * 2016-11-24 2017-02-22 南京南瑞继保电气有限公司 一种静止变频器脉冲换相阶段转矩控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUO, HONGHAO ET AL: "Commutation control of permanent brushless DC motors", PROCEEDINGS OF THE CHINESE SOCIETY OF ELECTRICAL ENGINEERING, vol. 28, no. 24, 25 August 2008 (2008-08-25), pages 108 - 112 *
YAN, WEI ET AL.: "The research of field tests of the first domestic static frequency converter for pumped storage power unit of hundreds of megawatts", HYDROPOWER, AUTOMATION AND DAM MONITORING, vol. 38, no. 6, 20 December 2014 (2014-12-20), pages 66 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991982A (zh) * 2021-10-29 2022-01-28 许继电气股份有限公司 一种可控关断电流源型换流器及其控制方法
CN113991982B (zh) * 2021-10-29 2023-10-20 许继电气股份有限公司 一种可控关断电流源型换流器及其控制方法

Also Published As

Publication number Publication date
CN106452217A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP5321614B2 (ja) 回転機の制御装置
WO2018095324A1 (zh) 一种静止变频器脉冲换相阶段转矩控制方法
JP5761243B2 (ja) モータ制御装置および磁極位置推定方法
Zhou et al. Sensorless BLDC motor commutation point detection and phase deviation correction method
JP5445892B2 (ja) 永久磁石形同期電動機の制御装置
US9525377B2 (en) System and method of rotor time constant online identification in an AC induction machine
Liu et al. Sensorless commutation deviation correction of brushless DC motor with three-phase asymmetric back-EMF
JP2012165608A (ja) 回転機の制御装置
JP6954150B2 (ja) 交流電動機の制御装置
WO2024164366A1 (zh) 异步电机无速度传感器矢量控制方法及系统
JP2000156993A (ja) 永久磁石型同期機の制御装置及びその制御方法
CN105490608A (zh) 一种永磁电梯门机控制器及其控制方法
CN109951120B (zh) 基于零序电流分段注入的半控型开绕组永磁电机控制方法
Zhu et al. Direct torque control of three-phase PM brushless AC motor with one phase open-circuit fault
JP2010268599A (ja) 永久磁石モータの制御装置
JP5332305B2 (ja) 永久磁石形同期電動機の制御装置
CN104009694B (zh) 微网构建中基于功率因素校正整流算法的发电机控制方法
JP2018067995A (ja) 交流モータの制御方法及び制御装置
JP2022021223A (ja) 電力変換装置の制御装置
Anuchin et al. Adaptive observer for field oriented control systems of induction motors
Zheng et al. A deadbeat direct thrust control for permanent magnet linear synchronous machine considering parameter asymmetry
JP2009201284A (ja) Pmモータの可変速駆動装置
WO2019008838A1 (ja) 誘導電動機の駆動装置及び駆動方法
Senjyu et al. Position sensorless control for interior permanent magnet synchronous motors using H∞ flux observer
TWI549417B (zh) 永磁交流馬達的轉子位置估測方法、永磁伺服馬達系統,以及電腦程式產品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873805

Country of ref document: EP

Kind code of ref document: A1