WO2018095074A9 - 超耐高温性的高导电率的多孔芳香骨架化合物其制备方法及其于质子交换膜燃料电池的应用 - Google Patents

超耐高温性的高导电率的多孔芳香骨架化合物其制备方法及其于质子交换膜燃料电池的应用 Download PDF

Info

Publication number
WO2018095074A9
WO2018095074A9 PCT/CN2017/096575 CN2017096575W WO2018095074A9 WO 2018095074 A9 WO2018095074 A9 WO 2018095074A9 CN 2017096575 W CN2017096575 W CN 2017096575W WO 2018095074 A9 WO2018095074 A9 WO 2018095074A9
Authority
WO
WIPO (PCT)
Prior art keywords
paf
conductivity
exchange membrane
porous
aromatic skeleton
Prior art date
Application number
PCT/CN2017/096575
Other languages
English (en)
French (fr)
Other versions
WO2018095074A1 (zh
Inventor
贲腾
裘式纶
裘赫
Original Assignee
珠海市吉林大学无机合成与制备化学重点实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市吉林大学无机合成与制备化学重点实验室 filed Critical 珠海市吉林大学无机合成与制备化学重点实验室
Publication of WO2018095074A1 publication Critical patent/WO2018095074A1/zh
Publication of WO2018095074A9 publication Critical patent/WO2018095074A9/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/792Post-treatment doping with low-molecular weight dopants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of functional materials, in particular to a preparation method of a high conductivity porous aromatic skeleton compound having super high temperature resistance and a use thereof in a proton exchange membrane fuel cell, which uses a high specific surface area porous organic skeleton material as a skeleton and adsorbs After the high boiling point acid, a porous aromatic skeleton compound having super high temperature resistance and high electrical conductivity is prepared. It can be applied to proton exchange membrane fuel cells, providing new ideas for fuel cell related fields.
  • Proton exchange membrane fuel cells have the advantages of small volume, light weight, high power density, fast start-up, no noise, zero pollution, etc., and have broad application prospects.
  • the proton exchange membrane fuel cell is composed of an anode, a cathode, a catalyst and a proton exchange membrane.
  • the proton exchange membrane is the heart of a proton exchange membrane fuel cell. Its role in the fuel cell is twofold: one is to provide a hydrogen ion channel as an electrolyte, and the other is to isolate the two-pole reaction gas as a membrane to prevent them from directly acting.
  • the working principle is that H 2 fuel enters the anode, and H 2 is catalytically oxidized to H + and e ⁇ due to the catalyst on the electrode.
  • H + enters the anode through the proton exchange membrane and reacts with O 2 of the cathode to form H 2 O, and electrons flow from the anode to the cathode to generate an electric current. Therefore, the chemical reaction occurring at the anode is as follows:
  • Proton exchange membrane is the key technology of fuel cell, and its performance directly affects the performance, cost and application prospect of fuel cell. Therefore, research on proton exchange membrane fuel cells has become one of the hot spots in battery research work.
  • the proton exchange membranes used in both H 2 /O 2 PEMFCs and direct methanol fuel cells (DMFCs) are almost all Nafion series membranes produced by Dupont, USA, although Nafion perfluorosulfonic acid membranes have high mechanical strength.
  • good chemical stability, high proton conductivity (large water content) and other advantages, but high cost, low operating temperature and other shortcomings greatly limit the application of PEMFC, its optimal operating temperature is 80 ° C, beyond this temperature will Its water content is drastically reduced, the conductivity is rapidly declining, and its proton conduction is largely dependent on moisture. Once the temperature rises to 100 ° C and above, the water will evaporate in the form of water vapor, and the proton conductivity will also be greatly reduced.
  • the present invention introduces anhydrous high temperature conductivity research using H 2 SO 4 @PAF-1, H 3 PO 4 @PAF-1 as materials.
  • the technical solution adopted by the present invention is as follows: preparing a porous aromatic skeleton compound which is excellent in heat stability and extremely high in electrical conductivity, and includes the following steps:
  • the high specific surface area porous organic framework material (PAF-1) is a porous material which has super high temperature resistance. Under dry N 2 , the thermal stability reached 450 ° C, and under dry air, the thermal stability reached 400 ° C, "Angew. Chem. Int. Ed, 2009, 48, 9457-9460".
  • the new compound made of this skeleton can ensure its good thermal stability and can be used for materials working under high temperature conditions to meet the needs of its work.
  • the high boiling point acid is one of a concentration of 98% H 2 SO 4 , a concentration of 89% H 3 PO 4 , and a concentration of 85% of H 3 PO 4 .
  • the most characteristic of these high boiling inorganic acids is their low volatility and high boiling point.
  • Another object of the present invention is to provide a porous aromatic skeleton compound having good thermal stability and extremely high conductivity in the field of proton exchange membrane fuel cells.
  • the electrical conductivity of the test material includes the following steps:
  • the tablet is sandwiched between two pieces of gold with the same size, in close contact, and the two poles are respectively led out to form a simple conductive device, and placed in a closed 50 mL two-necked flask filled with N 2 and connected to the N 2 balloon.
  • the wires are connected to the electrochemical workstation;
  • the finished powder tablet has a finished product size of 5 mm in diameter and 1 mm in thickness.
  • the gold electrode was 5 mm in diameter and 1 mm in thickness, and the gold used was 99.99% pure gold. The purpose is to resist strong acid corrosion and high temperature resistance.
  • the device is placed in a 50 mL sealed two-necked flask.
  • the flask is equipped with a thermometer.
  • the flask is placed in an electric heating sleeve to achieve temperature control operation.
  • the bottle is filled with nitrogen gas to ensure gas stability, and an N 2 balloon is externally connected to ensure stable gas pressure.
  • the porous aromatic skeleton compound of the invention has good heat resistance and electrical conductivity, and has superior performance under medium and high temperature working conditions, and has good development prospects in the related fields of fuel cells.
  • the preparation method of the invention has simple process and high yield, and no auxiliary agent is needed.
  • the novel material prepared by the method has super high temperature resistance and high electrical conductivity, and can be applied to a proton exchange membrane fuel cell, and provides a new idea for the field related to fuel cells.
  • Example 1 is an infrared spectrum of a high conductivity porous aromatic skeleton compound 98% H 2 SO 4 @PAF-1 and a porous organic skeleton compound PAF-1 having high temperature resistance of Example 1;
  • FIG. 3 is an AC impedance diagram of a high-conductivity porous aromatic skeleton compound 98% H 2 SO 4 @PAF-1 of Example 1 having a high temperature resistance at 25 ° C and 250 ° C for the first time;
  • Example 4 is an AC impedance diagram of a high-conductivity porous aromatic skeleton compound 98% H 2 SO 4 @PAF-1 of Example 1 having a high temperature resistance at 25 ° C and 250 ° C;
  • Example 5 is an AC impedance diagram of the high-temperature porous aromatic skeleton compound 98% H 2 SO 4 @PAF-1 of Example 1 having a high temperature resistance at 25 ° C and 75 ° C for the third time;
  • FIG 7 is a skeleton of a porous aromatic compound having a high conductivity of the high temperature resistance of Example 2 89% H 3 PO 4 @ PAF -1 compound and the porous organic framework PAF-1 thermogravimetric spectra under a N 2 atmosphere embodiment;
  • Example 8 is an AC impedance diagram of a high conductivity porous aromatic skeleton compound 89% H 3 PO 4 @PAF-1 of Example 2 having a high temperature resistance at 25 ° C and 250 ° C for the first time;
  • FIG 10 is a porous skeleton of an aromatic compound having a high temperature conductivity of Example 3 of 85% H 3 PO 4 @ PAF -1 compound and the porous organic framework PAF-1 thermogravimetric spectra under N 2 atmosphere;
  • Figure 11 is an AC impedance diagram of the high-potency porous aromatic skeleton compound 85% H 3 PO 4 @PAF-1 of Example 3 having a high temperature resistance at 25 ° C and 250 ° C for the first time;
  • FIG. 13 is an alternating current impedance diagram of a high-conductivity porous aromatic skeleton compound 85% H 3 PO 4 @PAF-1 of Example 3 having a high temperature resistance at 25 ° C and 250 ° C;
  • Figure 14 is a structural diagram of the PAF-1.
  • the preparation of the porous aromatic skeleton compound 98% H 2 SO 4 @PAF-1 with 98% H 2 SO 4 as a high boiling acid impregnating material and as a high conductivity material comprises the following steps:
  • Step 1 Take 27 mg of polytetramethane, add 15 mL of 98% H 2 SO 4 , and stir at room temperature under normal pressure overnight.
  • Step 2 The mixture of Step 1 was filtered through a glass membrane filter in an anhydrous oxygen-free glove box to give a blue-black solid.
  • the blue-black filter cake was dried under vacuum at 100 ° C for 10 hours to give a final product of 98% H 2 SO 4 @PAF-1 solid 74 mg.
  • the final product H 2 SO 4 @PAF-1 obtained in the step 2 was subjected to infrared spectrum scanning and compared with the original porous material PAF-1, and the spectrum is shown in Fig. 1.
  • the high boiling point acid H 2 SO 4 has entered the porous material PAF-1 and is stably present.
  • the wave number of 774 cm -1 is the SO stretching vibration in sulfuric acid.
  • thermogravimetric analysis The final product H 2 SO 4 @PAF-1 obtained in the step 2 was subjected to thermogravimetric analysis and compared with the original porous material PAF-1, and the thermogravimetric analysis chart is shown in Fig. 2.
  • the thermal stability of the material can be seen from the figure. At 450 ° C, the substance is present in the skeleton until 450 ° C, which is the collapse temperature of the skeleton.
  • Step 3 The dried product was ground into a uniform powder in a mortar, and about 20 mg of the powder was placed in a tableting machine to form a sheet having a diameter of 5 mm and a thickness of 1 mm.
  • Step 4 A piece of gold having a diameter of 5 mm and a thickness of 0.2 mm was used as an electrode, which was in intimate contact and sandwiched therebetween, and the gold piece was gold having a purity of 99.99%. High purity gold is used to effectively resist concentrated acid corrosion and high temperature. The two poles respectively lead the wires to form a conductive device and are connected to the electrochemical workstation.
  • Step 5 The conductive device prepared in step 4 is placed in a 50 mL sealed two-necked flask, and the thermometer is built in the flask, and heated in an electric heating sleeve to realize temperature control operation.
  • the bottle is filled with nitrogen to ensure the gas in the working environment of the material is stable.
  • the two flasks are connected with N 2 balloon to ensure the pressure is stable.
  • the above materials were tested for electrical conductivity as a function of temperature at a constant pressure between 25 ° C and 250 ° C at a temperature of 25 ° C.
  • the AC impedance diagram is shown in Figure 3. And recorded as the first temperature rise AC impedance test. (Table 1)
  • Step 6 In order to test its cycle performance, after the first round of temperature rise test, the temperature returned to room temperature, the other conditions were unchanged, and the temperature was re-heated to test the conductivity as a function of temperature.
  • the AC impedance diagram is shown in Figure 4. And recorded as the second temperature rise AC impedance test. (Table 2)
  • Step 7 After the second round of temperature rise, the temperature returns to room temperature again, the other conditions are unchanged, and the temperature is raised again to test the conductivity which changes with the rise of temperature.
  • the AC impedance diagram is shown in Figure 5. And recorded as the third temperature rise AC impedance test. (table 3)
  • the porous aromatic skeleton compound 89% H 3 PO 4 @PAF-1 was prepared by using 89% of H 3 PO 4 as a high boiling acid impregnating material and used as an electrically conductive material.
  • the method of this example was substantially the same as that of Example 1, except that H 3 PO 4 having a concentration of 98% was used as a high boiling acid impregnating material instead of H 2 SO 4 having a concentration of 98%. Preparation includes the following steps:
  • Step 1 26 mg of polytetraphenylmethane was taken, and 15 mL of 98% H 2 SO 4 was added thereto, and the mixture was stirred at normal temperature and normal pressure overnight.
  • Step 2 The mixture of Step 1 was filtered through a glass membrane filter in an anhydrous oxygen-free glove box to give a purple solid.
  • the purple filter cake was dried under vacuum at 100 ° C for 10 hours to give the final product 89% H 3 PO 4 @PAF-1, 227 mg.
  • step 2 The final product 89% H 3 PO 4 @PAF-1 obtained in step 2 was subjected to infrared spectrum scanning and compared with the original porous material PAF-1, and the spectrum is shown in Fig. 6.
  • the high boiling acid H 3 PO 4 has entered the porous material PAF-1 and is stably present.
  • the wave number is 980 cm -1 which is a PO stretching vibration.
  • the wave number is 2555-1960 cm -1 which is a PH stretching vibration.
  • the wave number is 2555-1960 cm -1 is a hydrogen bond OH stretching vibration (an OH bond in which a phosphate group forms a hydrogen bond with the outside).
  • thermogravimetric analysis The final product 89% H 3 PO 4 @PAF-1 obtained in the step 2 was subjected to thermogravimetric analysis and compared with the original porous material PAF-1, and the thermogravimetric analysis chart is shown in Fig. 7.
  • the thermal stability of the material begins to decrease rapidly at 135 ° C.
  • the acid materials are present in the skeleton below 450 ° C until 450 ° C, which is the collapse temperature of the skeleton.
  • Step 3 The dried product was ground into a uniform powder in a mortar, and about 20 mg of the powder was placed in a tableting machine to form a sheet having a diameter of 5 mm and a thickness of 1 mm.
  • Step 4 A piece of gold having a diameter of 5 mm and a thickness of 0.2 mm was used as an electrode, which was in intimate contact and sandwiched therebetween, and the gold piece was gold having a purity of 99.99%. High purity gold is used to effectively resist concentrated acid corrosion and high temperature. Two poles respectively lead The wires form a conductive device and are connected to an electrochemical workstation.
  • Step 5 The conductive device prepared in step 4 is placed in a 50 mL sealed two-necked flask, and the thermometer is built in the flask, and heated in an electric heating sleeve to realize temperature control operation.
  • the bottle is filled with nitrogen to ensure the gas in the working environment of the material is stable.
  • the two flasks are connected with N 2 balloon to ensure the pressure is stable.
  • the above materials were tested for electrical conductivity as a function of temperature at a constant pressure between 25 ° C and 250 ° C at a temperature of 25 ° C.
  • the AC impedance diagram is shown in Figure 8. And recorded as the first temperature rise AC impedance test. (Table 4)
  • the material of the present invention reaches a high temperature of 250 ° C, the conductivity is still high, and the proton conductivity gradually increases with the increase of temperature, which indicates that the temperature rise is favorable for the proton conductance of the material.
  • This material is also particularly suitable for working at high temperatures.
  • the thermal stability is not particularly ideal, and the temperature can reach up to 250 ° C. Above this temperature, the material cannot be recycled for the second time.
  • the porous aromatic skeleton compound 85% H 3 PO 4 @PAF-1 was prepared as a high-boiling acid impregnating material with a concentration of 85% of H 3 PO 4 and used as an electrically conductive material.
  • the method of this example was substantially the same as that of Example 1, except that H 3 PO 4 having a concentration of 85% was used as a high boiling acid impregnating material instead of H 2 SO 4 having a concentration of 98%. Preparation includes the following steps:
  • Step 1 28 mg of polytetraphenylmethane was taken, 15 mL of 85% strength of H 3 PO 4 was added , and the mixture was stirred at normal temperature and normal pressure overnight.
  • Step 2 The mixture of Step 1 was filtered through a glass membrane filter in an anhydrous oxygen-free glove box to give a dark purple solid.
  • the dark purple filter cake was dried under vacuum at 100 ° C for 10 hours to give a final product of 258 mg of 85% H 3 PO 4 @PAF-1 solid.
  • the final product 85% H 3 PO 4 @PAF-1 obtained in step 2 was subjected to infrared spectrum scanning and compared with the original porous material PAF-1, and the spectrum is shown in Fig. 9.
  • the high boiling point acid H 3 PO 4 has entered the porous material PAF-1 and is stably present.
  • the wave number is 989 cm -1 which is a PO stretching vibration.
  • the wave number is 2331 cm -1 which is a PH stretching vibration.
  • the wave number is 2859 cm -1 is the OH stretching vibration (the phosphate forms a hydrogen bond with the outside to form an OH bond).
  • thermogravimetric analysis The final product 85% H 3 PO 4 @PAF-1 obtained in the step 2 was subjected to thermogravimetric analysis and compared with the original porous material PAF-1, and the thermogravimetric analysis chart is shown in FIG.
  • thermal stability of the material begins to decrease at about 225 ° C until it loses weight again at about 450 ° C, which is the collapse temperature of the skeleton.
  • the thermal stability was significantly better than that of the material of Example 2.
  • Step 3 The dried product was ground into a uniform powder in a mortar, and about 20 mg of the powder was placed in a tableting machine to form a sheet having a diameter of 5 mm and a thickness of 1 mm.
  • Step 4 A piece of gold having a diameter of 5 mm and a thickness of 0.2 mm was used as an electrode, which was in intimate contact and sandwiched therebetween, and the gold piece was gold having a purity of 99.99%. High purity gold is used to effectively resist concentrated acid corrosion and high temperature. The two poles respectively lead the wires to form a conductive device and are connected to the electrochemical workstation.
  • Step 5 The conductive device prepared in step 4 is placed in a 50 mL sealed two-necked flask, and the thermometer is built in the flask, and heated in an electric heating sleeve to realize temperature control operation.
  • the bottle is filled with nitrogen to ensure the gas in the working environment of the material is stable.
  • the two flasks are connected with N 2 balloon to ensure the pressure is stable.
  • the above materials were tested for electrical conductivity as a function of temperature at a constant pressure between 25 ° C and 250 ° C at a temperature of 25 ° C.
  • the AC impedance diagram is shown in Figure 11. And recorded as the first temperature rise AC impedance test. (table 5)
  • Step 6 In order to test its cycle performance, after the first round of temperature rise test, the temperature returned to room temperature, the other conditions were unchanged, and the temperature was re-heated to test the conductivity as a function of temperature.
  • the AC impedance diagram is shown in Figure 12. And recorded as the second temperature rise AC impedance test. (Table 6)
  • the material of the present invention has a high electrical conductivity at a high temperature of 250 ° C, and the electrical conductivity is gradually increased as the temperature increases, indicating that the temperature rise is favorable for the conductivity of the material.
  • Step 7 After the second round of temperature rise, the temperature returns to room temperature again, the other conditions are unchanged, and the temperature is raised again to test the conductivity which changes with the rise of temperature.
  • the AC impedance diagram is shown in Figure 13. And recorded as the third temperature rise AC impedance test. (Table 7)
  • the material of the present invention has a high electrical conductivity at a high temperature of 250 ° C, and the electrical conductivity is gradually increased as the temperature increases, which indicates that the temperature rises, which is favorable for the conductivity of the material.
  • This material is also particularly suitable for working at high temperatures. Moreover, it maintains good performance after the third temperature rise, and its cycle performance is excellent.
  • the present invention adopts an acid impregnation method to obtain a porous aromatic skeleton compound having high temperature resistance and high electrical conductivity, and the raw materials used are stable in chemical property, low in preparation cost, easy to control, reproducible, and excellent in the process. Stability, its superior conductivity can be widely used in energy, electrical appliances and other fields such as automobiles and portable equipment, especially as an exchange membrane material in proton exchange membrane fuel cells, which has high temperature resistance and high efficiency. Used in secondary cycles. Compared with existing materials, materials can make use of the research field of proton exchange membrane fuel cells. Immersing the acid used in the present invention comprises a concentration of 98% H 2 SO 4, at a concentration of 89% H 3 PO 4, at a concentration of 85% H 3 PO 4, wherein the concentration of 85% of the effect of H 3 PO 4 is The best.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

一种超耐高温性的高导电率的多孔芳香骨架化合物其制备方法及其于质子交换膜燃料电池的应用,属于功能材料技术领域;使用高比表面积多孔有机材料作为骨架吸附高沸点酸后制成的高稳定性,高导电率的新型导电材料;上述高比表面积多孔有机材料为聚四苯甲烷(PAF-1),高沸点酸包括:98%H 2SO 4,89%H 3PO 4,85%H 3PO 4;具体制备方法包括:在高比表面积的多孔有机材料聚四苯甲烷(PAF-1)中加入适量的高沸点酸搅拌过夜,在无水无氧的条件下过滤,得到的固体于真空条件下100℃干燥制得最终产物。制备方法工艺简单,产率高,无需使用助剂。该方法制得的新型材料具有超耐高温性,高导电率,可应用于质子交换膜燃料电池中,为燃料电池相关的领域提供了新思路。

Description

超耐高温性的高导电率的多孔芳香骨架化合物其制备方法及其于质子交换膜燃料电池的应用 技术领域
本发明涉及功能材料领域,具体涉及具有超耐高温性的高导电率的多孔芳香骨架化合物其制备方法及其于质子交换膜燃料电池的应用,其使用高比表面积多孔有机骨架材料作为骨架,吸附高沸点酸后制成具有超耐高温性,高导电率的多孔芳香骨架化合物。可应用于质子交换膜燃料电池中,为燃料电池相关领域提供了新思路。
背景技术
质子交换膜燃料电池具有体积小,质量轻,功率密度高,启动快,无噪音,零污染等优点,具有广阔的应用前景。质子交换膜燃料电池由阳极,阴极,催化剂和质子交换膜等部分组成。质子交换膜是质子交换膜燃料电池的心脏,它在燃料电池中的作用是双重的:一是作为电解质提供氢离子通道,二是作为隔膜隔离两极反应气体防止它们直接发生作用。其工作原理是:H2燃料进入阳极,由于电极上带有催化剂,H2被催化氧化成H+和e-。H+通过质子交换膜进入到阳极,与阴极的O2发生反应,生成H2O,而电子从阳极到阴极流过,产生电流。因此,在阳极发生的化学反应式如下:
Figure PCTCN2017096575-appb-000001
在阴极发生的化学反应如下:
Figure PCTCN2017096575-appb-000002
质子交换膜是燃料电池的技术关键,其性能的优劣直接影响着燃料电池的工作性能,成本和应用前景。因此,对于质子交换膜燃料电池的研究已经成为电池研究工作中的热点之一。
目前,无论是燃料为H2/O2的PEMFC,还是直接甲醇燃料电池(DMFC)使用的质子交换膜几乎全都是美国Dupont公司生产的Nafion系列膜,尽管Nafion全氟磺酸膜具有机械强度高,化学稳定性好,质子导电率高(较大含水量时)等优点,但成本高,工作温度低等缺点极大地限制了PEMFC的应用,其最佳工作温度为80℃,超过此温度会使其含水量急剧降低,导电率迅速下降,其质子传导很大程度上依赖水份。一旦温度升高至100℃及以上,水份会以水蒸气的形式挥发出来,质子电导率因而也大大下降。局限于这样的现状不适于中温燃料电池(工作温度在120℃-200℃),因此开发导电性能优良,能在高温无水的条件下工作的新型质子交换膜是现在研究的热门。本发明比较详细地针对全氟磺酸质子交换膜的缺陷,介绍了以H2SO4@PAF-1,H3PO4@PAF-1为材料的无水高温导电研究。
发明内容
本发明的目的是提供一种制备其热稳定性和导电率极高的多孔芳香骨架化合物的方法。
为实现上述发明的目的,本发明采取的技术方案如下:制备热稳定良好和导电率极高的多孔芳香骨架化合物,包括以下步骤:
(1)在高比表面积多孔有机材料聚四苯甲烷PAF-1中加入高沸点酸,常温搅拌过夜,所述的高沸点酸为98%H2SO4、89%H3PO4、85%H3PO4中的一种;
(2)过滤搅拌均匀的混合物于无水无氧的手套箱中用玻璃膜过滤器抽滤,于100℃真空状态下干燥10小时,得到最终产物:具有超耐高温性的高导电率的多孔芳香骨架化合物。
所述高比表面积多孔有机骨架材料(PAF-1)是多孔材料,其具有超耐高温性。在干燥N2下,热稳定性达到450℃,在干燥空气下,热稳定性达到400℃,《Angew.Chem.Int.Ed,2009,48,9457-9460》。以此作为骨架制成的新型化合物能保证其良好的热稳定性,可用于高温条件下工作的材料,以适应其工作需求。
高沸点酸是浓度为98%的H2SO4,浓度为89%的H3PO4,浓度为85%的H3PO4等酸中其中的一种。这些高沸点无机酸最大的特点是挥发性低,沸点高。浓度为98%的H2SO4沸点达到338℃,浓度为89%的H3PO4的沸点是261℃,浓度为85%的H3PO4的沸点是158℃。这些特性为制造耐高温材料奠定了基础。
本发明的另一个目的在于提供一种热稳定性良好和导电率极高的多孔芳香骨架化合物在质子交换膜燃料电池领域中的应用。
为实现上述目的本发明提供的技术方案,测试材料的导电率包括如下步骤:
(1)在高比表面积多孔有机材料聚四苯甲烷PAF-1中加入高沸点酸,常温搅拌过夜,所述的高沸点酸为98%H2SO4、89%H3PO4、85%H3PO4中的一种;
(2)过滤搅拌均匀的混合物于无水无氧的手套箱中用玻璃膜过滤器抽滤,于100℃真空状态下干燥10小时,得到最终产物:具有超耐高温性的高导电率的多孔芳香骨架化合物;
(3)将干燥的最终产物于研钵中研磨成均匀的粉末,压片;
(4)压片分别用两片大小一致的金片夹在中间,紧密接触,两极分别引出导线组成简易导电装置,并置于密闭的50mL两口烧瓶中,瓶内充满N2并连接N2气球以确保气压稳定,导线与电化学工作站相连;
(5)在25℃-250℃,常压下对上述材料进行导电率测试。
所述均匀粉末压片的成品大小尺寸为直径5mm,厚度1mm。
所述金电极大小为直径5mm,厚度1mm,所用的金为99.99%纯度的金。目的是能耐浓酸的腐蚀以及耐高温。
所述装置于50mL密闭两口烧瓶中,烧瓶内置温度计,烧瓶置于电加热套中,实现温控操作,瓶内充满氮气,以保证气体的稳定,外接N2气球以确保气压稳定。
本发明多孔芳香骨架化合物具有很好的耐热性及导电性,在中高温工作条件下的性能优越,应用在燃料电池相关领域中有很好的发展前景。
本发明的有益效果是:
本发明制备方法工艺简单,产率高,无需使用助剂。该方法制得的新型材料具有超耐高温性,高导电率,可应用于质子交换膜燃料电池中,为燃料电池相关的领域提供了新思路。
附图说明
为了使本发明的内容更容易被理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中:
图1为实施例1的具有耐高温性的高导电率的多孔芳香骨架化合物98%H2SO4@PAF-1与多孔有机骨架化合物PAF-1的红外谱图;
图2为实施例1的具有耐高温性的高导电率的多孔芳香骨架化合物98%H2SO4@PAF-1与多孔有机骨架化合物PAF-1在N2氛围下的热重谱图;
图3为实施例1的具有耐高温性的高导电率的多孔芳香骨架化合物98%H2SO4@PAF-1第一次升温25℃和250℃的交流阻抗图;
图4为实施例1的具有耐高温性的高导电率的多孔芳香骨架化合物98%H2SO4@PAF-1第二次升温25℃和250℃的交流阻抗图;
图5为实施例1的具有耐高温性的高导电率的多孔芳香骨架化合物98%H2SO4@PAF-1第三次升温25℃和75℃的交流阻抗图;
图6为实施例2的具有耐高温性的高导电率的多孔芳香骨架化合物89%H3PO4@PAF-1与多孔有机骨架化合物PAF-1的红外谱图;
图7为实施例2的具有耐高温性的高导电率的多孔芳香骨架化合物89%H3PO4@PAF-1与多孔有机骨架化合物PAF-1在N2氛围下的热重谱图;
图8为实施例2的具有耐高温性的高导电率的多孔芳香骨架化合物89%H3PO4@PAF-1第一次升温25℃和250℃的交流阻抗图;
图9为实施例3的具有耐高温性的高导电率的多孔芳香骨架化合物85%H3PO4@PAF-1与多孔有机骨架化合物PAF-1的红外谱图;
图10为实施例3的具有耐高温性的高导电率的多孔芳香骨架化合物85%H3PO4@PAF-1与多孔有机骨架化合物PAF-1在N2氛围下的热重谱图;
图11为实施例3的具有耐高温性的高导电率的多孔芳香骨架化合物85%H3PO4@PAF-1第一次升温25℃和250℃的交流阻抗图;
图12为实施例3的具有耐高温性的高导电率的多孔芳香骨架化合物85%H3PO4@PAF-1第二次升温25℃和250℃的交流阻抗图;
图13为实施例3的具有耐高温性的高导电率的多孔芳香骨架化合物85%H3PO4@PAF-1第三次升温25℃和250℃的交流阻抗图;
图14为PAF-1结构图。
具体实施方式
下面通过实例对本发明做进一步详细说明,这些实例仅用来说明本发明,并不限制本发明的范围。
实施例1
以浓度为98%的H2SO4作为高沸点酸浸渍材料制备多孔芳香骨架化合物98%H2SO4@PAF-1并作为高电导材料的应用包括以下步骤:
步骤1:取27mg聚四苯甲烷,加入15mL浓度为98%的H2SO4,在常温常压下搅拌过夜。
步骤2:将步骤1的混合物在无水无氧的手套箱中,用玻璃膜过滤器过滤得到蓝黑色固体。蓝黑色滤饼于100℃真空条件下干燥10小时,得到最终产物98%H2SO4@PAF-1固体74mg。
对步骤2得到的最终产物H2SO4@PAF-1进行红外光谱扫描,并与原多孔材料PAF-1进行比较,光谱图见图1。
从图中可以看出,高沸点酸H2SO4已进入到多孔材料PAF-1中,并稳定存在。
波数为774cm-1是硫酸中的S-O伸缩振动。
波数为1039,1099,1124.5cm-1是硫酸中S=O对称伸缩振动。
对步骤2得到的最终产物H2SO4@PAF-1进行热重分析,并与原多孔材料PAF-1进行比较,热重分析图见图2。
从图中可以看到材料的热稳定性情况,在450℃下物质都是存在于骨架中的,直到450℃,此为骨架的坍塌温度。
步骤3:取干燥后的产物于研钵中研磨成均匀的粉末,取约20mg粉末于压片机中压片,成片的直径5mm,厚1mm。
步骤4:成片分别用直径为5mm,厚0.2mm的金片作为电极,紧密接触,夹在其中间,金片是纯度为99.99%的金。用高纯度金目的是能有效耐浓酸腐蚀和耐高温。两极分别引出导线组成导电装置并与电化学工作站相连。
步骤5:步骤4制的导电装置置于50mL密闭两口烧瓶中,烧瓶内置温度计,于电加热套中加热实现温控操作。瓶内充满氮气以保证材料工作环境气体稳定,两口烧瓶外接N2气球以保证气压稳定。在25℃-250℃之间常压下,每25℃升温一次对上述材料进行随着温度变化的导电率测试。交流阻抗图见图3。并记录为第一次升温的交流阻抗测试。(表1)
表1:98%H2SO4@PAF-1第一次升温交流阻抗测试结果
Material Conductivity(S cm-1) conditions
H2SO4@PAF-1 1.5×10-2 25℃,0%RH
H2SO4@PAF-1 3.1×10-2 50℃,0%RH
H2SO4@PAF-1 5.2×10-2 75℃,0%RH
H2SO4@PAF-1 6.7×10-2 100℃,0%RH
H2SO4@PAF-1 6.4×10-2 125℃,0%RH
H2SO4@PAF-1 6.5×10-2 150℃,0%RH
H2SO4@PAF-1 6.8×10-2 175℃,0%RH
H2SO4@PAF-1 7.7×10-2 200℃,0%RH
H2SO4@PAF-1 8.6×10-2 225℃,0%RH
H2SO4@PAF-1 9.1×10-2 250℃,0%RH
从表1我们可以看出本发明的材料在高温达250℃,导电率依然相对很高,而且随着温度的升高,导电率逐渐上升这说明温度升高,有利于此材料的电导。
步骤6:为了测试其循环性能,在第一轮升温测试后,温度恢复到室温,其他条件不变,重新升温,测试其随着温度变化而变化的导电率。交流阻抗图见图4。并记录为第二次升温的交流阻抗测试。(表2)
表2:98%H2SO4@PAF-1第二次升温交流阻抗测试结果
Material Conductivity(S cm-1) conditions
H2SO4@PAF-1 2.4×10-2 25℃,0%RH
H2SO4@PAF-1 4.5×10-2 50℃,0%RH
H2SO4@PAF-1 6.5×10-2 75℃,0%RH
H2SO4@PAF-1 6.6×10-2 100℃,0%RH
H2SO4@PAF-1 6.7×10-2 125℃,0%RH
H2SO4@PAF-1 7.3×10-2 150℃,0%RH
H2SO4@PAF-1 7.7×10-2 175℃,0%RH
H2SO4@PAF-1 8.2×10-2 200℃,0%RH
H2SO4@PAF-1 8.4×10-2 225℃,0%RH
H2SO4@PAF-1 8.8×10-2 250℃,0%RH
从表2我们可以看出本发明的材料在高温达250℃下,导电率依然很高,而且随着温度的升高,导电率逐渐上升这说明温度升高,有利于此材料的电导。
步骤7:第二轮升温结束后,温度再次恢复到室温,其他条件不变,重新升温,测试其随着温度的上升而变化的导电率。交流阻抗图见图5。并记录为第三次升温的交流阻抗测试。(表3)
表3:98%H2SO4@PAF-1第三次升温交流阻抗测试结果
material Conductivity(S cm-1) conditions
H2SO4@PAF-1 1.2×10-2 25℃,0%RH
H2SO4@PAF-1 1.9×10-2 50℃,0%RH
H2SO4@PAF-1 3.6×10-2 75℃,0%RH
从表3我们可以看出本发明的材料在第三次升温后依然存在导电率可见其使用寿命性能良好。
实施例2
以浓度为89%的H3PO4作为高沸点酸浸渍材料制备多孔芳香骨架化合物89%H3PO4@PAF-1并作为电导材料的应用。本实施例的方法与实施例1基本相同,不同之处在于以浓度为98%的H3PO4作为高沸点酸浸渍材料代替了浓度为98%的H2SO4。制备包括以下步骤:
步骤1:取26mg聚四苯甲烷,加入15mL浓度为98%的H2SO4,在常温常压下搅拌过夜。
步骤2:将步骤1的混合物在无水无氧的手套箱中,用玻璃膜过滤器过滤得到紫色固体。紫色滤饼于100℃真空条件下干燥10小时,得到最终产物89%H3PO4@PAF-1,227mg。
对步骤2得到的最终产物89%H3PO4@PAF-1进行红外光谱扫描,并与原多孔材料PAF-1进行比较,光谱图见图6。
从图6中可以看出,高沸点酸H3PO4已进入到多孔材料PAF-1中,并稳定存在。波数为980cm-1是P-O伸缩振动。波数为1161cm-1是P=O伸缩振动。波数为2555-1960cm-1是P-H伸缩振动。波数为2555-1960cm-1为氢键的O-H伸缩振动(磷酸基团中磷酸根与外界形成氢键的O-H键)。
对步骤2得到的最终产物89%H3PO4@PAF-1进行热重分析,并与原多孔材料PAF-1进行比较,热重分析图见图7。
从图中可以看到材料的热稳定性情况,在135℃开始急速下降,在450℃以下酸材料都是存在于骨架中的,直到450℃,此为骨架的坍塌温度。
步骤3:取干燥后的产物于研钵中研磨成均匀的粉末,取约20mg粉末于压片机中压片,成片的直径5mm,厚1mm。
步骤4:成片分别用直径为5mm,厚0.2mm的金片作为电极,紧密接触,夹在其中间,金片是纯度为99.99%的金。用高纯度金目的是能有效耐浓酸腐蚀和耐高温。两极分别引出 导线组成导电装置并与电化学工作站相连。
步骤5:步骤4制的导电装置置于50mL密闭两口烧瓶中,烧瓶内置温度计,于电加热套中加热实现温控操作。瓶内充满氮气以保证材料工作环境气体稳定,两口烧瓶外接N2气球以保证气压稳定。在25℃-250℃之间常压下,每25℃升温一次对上述材料进行随着温度变化的导电率测试。交流阻抗图见图8。并记录为第一次升温的交流阻抗测试。(表4)
表4:89%H3PO4@PAF-1第一次升温交流阻抗测试结果
材料 质子电导率(S cm-1) 测试条件
H3PO4@PAF-1 7.1×10-3 25℃,0%RH
H3PO4@PAF-1 2.4×10-2 50℃,0%RH
H3PO4@PAF-1 9.6×10-2 75℃,0%RH
H3PO4@PAF-1 1.6×10-1 100℃,0%RH
H3PO4@PAF-1 2.1×10-1 125℃,0%RH
H3PO4@PAF-1 2.235×10-1 150℃,0%RH
H3PO4@PAF-1 2.232×10-1 175℃,0%RH
H3PO4@PAF-1 2.212×10-1 200℃,0%RH
H3PO4@PAF-1 2.5×10-1 225℃,0%RH
H3PO4@PAF-1 2.7×10-1 250℃,0%RH
从表4我们可以看出本发明的材料在高温达到250℃,电导率依然很高,而且随着温度的升高质子电导率逐渐上升,这说明温度升高有利于此材料的质子电导。此材料也特别适合在高温下工作。但是热稳定性还不够特别理想,温度最高达到250℃,超出此温度材料不能循环第二次工作。
实施例3
以浓度为85%的H3PO4作为高沸点酸浸渍材料制备多孔芳香骨架化合物85%H3PO4@PAF-1并作为电导材料的应用。本实施例的方法与实施例1基本相同,不同之处在于以浓度为85%的H3PO4作为高沸点酸浸渍材料代替了浓度为98%的H2SO4。制备包括以下步骤:
步骤1:取28mg聚四苯甲烷,加入15mL浓度为85%的H3PO4,在常温常压下搅拌过夜。
步骤2:将步骤1的混合物在无水无氧的手套箱中,用玻璃膜过滤器过滤得到深紫色固体。深紫色滤饼于100℃真空条件下干燥10小时,得到最终产物85%H3PO4@PAF-1固体258mg。
对步骤2得到的最终产物85%H3PO4@PAF-1进行红外光谱扫描,并与原多孔材料PAF-1进行比较,光谱图见图9。
从图中可以看出,高沸点酸H3PO4已进入到多孔材料PAF-1中,并稳定存在。
波数为989cm-1是P-O伸缩振动。
波数为1115,1284cm-1是P=O伸缩振动。
波数为2331cm-1是P-H伸缩振动。
波数为2859cm-1为O-H伸缩振动(磷酸根与外界形成氢键存在O-H键)。
对步骤2得到的最终产物85%H3PO4@PAF-1进行热重分析,并与原多孔材料PAF-1进行比较,热重分析图见图10。
从图中可以看到材料的热稳定性情况,在约为225℃开始下降,直到约为450℃再度失重,此为骨架的坍塌温度。热稳定性明显比实施例2制的材料好。
步骤3:取干燥后的产物于研钵中研磨成均匀的粉末,取约20mg粉末于压片机中压片,成片的直径5mm,厚1mm。
步骤4:成片分别用直径为5mm,厚0.2mm的金片作为电极,紧密接触,夹在其中间,金片是纯度为99.99%的金。用高纯度金目的是能有效耐浓酸腐蚀和耐高温。两极分别引出导线组成导电装置并与电化学工作站相连。
步骤5:步骤4制的导电装置置于50mL密闭两口烧瓶中,烧瓶内置温度计,于电加热套中加热实现温控操作。瓶内充满氮气以保证材料工作环境气体稳定,两口烧瓶外接N2气球以保证气压稳定。在25℃-250℃之间常压下,每25℃升温一次对上述材料进行随着温度 变化的导电率测试。交流阻抗图见图11。并记录为第一次升温的交流阻抗测试。(表5)
表5:85%H3PO4@PAF-1第一次升温交流阻抗测试结果
材料 质子电导率(S cm-1) 测试条件
H3PO4@PAF-1 5.2×10-2 25℃,0%RH
H3PO4@PAF-1 9.7×10-2 50℃,0%RH
H3PO4@PAF-1 1.4×10-1 75℃,0%RH
H3PO4@PAF-1 1.7×10-1 100℃,0%RH
H3PO4@PAF-1 2.0×10-1 125℃,0%RH
H3PO4@PAF-1 2.2×10-1 150℃,0%RH
H3PO4@PAF-1 2.4×10-1 175℃,0%RH
H3PO4@PAF-1 2.5×10-1 200℃,0%RH
H3PO4@PAF-1 2.8×10-1 225℃,0%RH
H3PO4@PAF-1 3.1×10-1 250℃,0%RH
从表5我们可以看到本发明的材料在高温达250℃导电率依然很高,而且随着温度的升高导电率逐渐上升这说明温度升高有利于此材料的导电。
步骤6:为了测试其循环性能,在第一轮升温测试后,温度恢复到室温,其他条件不变,重新升温,测试其随着温度变化而变化的导电率。交流阻抗图见图12。并记录为第二次升温的交流阻抗测试。(表6)
表6:85%H3PO4@PAF-1第二次升温交流阻抗测试结果
材料 质子电导率(S cm-1) 测试条件
H3PO4@PAF-1 5.0×10-2 25℃,0%RH
H3PO4@PAF-1 1.1×10-1 50℃,0%RH
H3PO4@PAF-1 1.4×10-1 75℃,0%RH
H3PO4@PAF-1 1.7×10-1 100℃,0%RH
H3PO4@PAF-1 1.9×10-1 125℃,0%RH
H3PO4@PAF-1 1.9×10-1 150℃,0%RH
H3PO4@PAF-1 2.0×10-1 175℃,0%RH
H3PO4@PAF-1 2.1×10-1 200℃,0%RH
H3PO4@PAF-1 2.2×10-1 225℃,0%RH
H3PO4@PAF-1 2.3×10-1 250℃,0%RH
从表6我们可以看到本发明的材料在高温达250℃,导电率依然很高,而且随着温度的升高,导电率逐渐上升这说明温度升高有利于此材料的导电。
步骤7:第二轮升温结束后,温度再次恢复到室温,其他条件不变,重新升温,测试其随着温度的上升而变化的导电率。交流阻抗图见图13。并记录为第三次升温的交流阻抗测试。(表7)
表7:85%H3PO4@PAF-1第三次升温交流阻抗测试结果
材料 质子电导率(S cm-1) 测试条件
H3PO4@PAF-1 4.52×10-2 25℃,0%RH
H3PO4@PAF-1 9.01×10-2 50℃,0%RH
H3PO4@PAF-1 1.33×10-1 75℃,0%RH
H3PO4@PAF-1 1.69×10-1 100℃,0%RH
H3PO4@PAF-1 1.78×10-1 125℃,0%RH
H3PO4@PAF-1 1.81×10-1 150℃,0%RH
H3PO4@PAF-1 1.80×10-1 175℃,0%RH
H3PO4@PAF-1 1.83×10-1 200℃,0%RH
H3PO4@PAF-1 1.80×10-1 225℃,0%RH
H3PO4@PAF-1 1.80×10-1 250℃,0%RH
从表7我们可以看到本发明的材料在高温达250℃,导电率依然很高,而且随着温度的升高,导电率逐渐上升这说明温度升高,有利于此材料的导电。此材料也特别适合在高温下工作。而且在第三次升温后依然能保持良好的性能,则其循环使用性能极佳。
以上所述,本发明采用酸浸渍法制得具有耐高温且具高导电率的多孔芳香骨架化合物,所使用的原料化学性质稳定,制备成本低,条件易控制,重复性好,且具有极佳的稳定性,其优越的导电性可在能源,电器等领域如汽车,便携式设备中具有广泛的应用,尤其是作为质子交换膜燃料电池中的交换膜材料,其具超耐高温性可高效率多次循环使用。相对已有材料,材料可以使质子交换膜燃料电池的研究领域具有使用意义。本发明使用的浸渍酸包括浓度为98%的H2SO4,浓度为89%的H3PO4,浓度为85%的H3PO4,其中浓度为85%的H3PO4的效果是最佳的。
以上所述,基于本发明主要特征的具体形式并不仅限于上述实施例,在参考一些优选的 实施例描述本发明时,本领域的技术人员会意识到:在不偏离本发明精神原则下,可能会作出各种不同的修改变化,省略和取代。还可有多种组合或变化如改变多孔骨架或浸渍酸,诸如此类等等,这些改变所取得的效果与上述实施例是相同的。因此无论从哪一点来看,本发明的上述实施方式都只能认为是对本发明的说明而不能限制本发明,在与本发明权利要求书相当的含义和范围内的任何变化都应认为是包括在本权利要求书范围内。

Claims (5)

  1. 超耐高温性的高导电率的多孔芳香骨架化合物的制备方法,其特征在于:包括如下步骤:
    (1)在高比表面积多孔有机材料聚四苯甲烷PAF-1中加入高沸点酸,常温搅拌过夜,所述的高沸点酸为98%H2SO4、89%H3PO4、85%H3PO4中的一种;
    (2)过滤搅拌均匀的混合物于无水无氧的手套箱中用玻璃膜过滤器抽滤,于100℃真空状态下干燥10小时,得到最终产物:具有超耐高温性的高导电率的多孔芳香骨架化合物。
  2. 多孔芳香骨架化合物在质子交换膜燃料电池方面的应用,其特征在于:所述多孔芳香骨架化合物是以聚四苯甲烷为骨架,吸附高沸点酸后形成的新型化合物,具有很高的导电率;特别在150-250℃高温条件下,表现出优越的工作性能,其工作温度范围符合中高温燃料电池的工作温度,可以应用于质子交换膜燃料电池中,多孔芳香骨架化合物应用于质子交换膜燃料电池方面的导电率的测试步骤如下:
    (1)在高比表面积多孔有机材料聚四苯甲烷PAF-1中加入高沸点酸,常温搅拌过夜,所述的高沸点酸为98%H2SO4、89%H3PO4、85%H3PO4中的一种;
    (2)过滤搅拌均匀的混合物于无水无氧的手套箱中用玻璃膜过滤器抽滤,于100℃真空状态下干燥10小时,得到最终产物:具有超耐高温性的高导电率的多孔芳香骨架化合物;
    (3)将干燥的最终产物于研钵中研磨成均匀的粉末,压片;
    (4)压片分别用两片大小一致的金片夹在中间,紧密接触,两极分别引出导线组成简易导电装置,并置于密闭的50mL两口烧瓶中,瓶内充满N2并连接N2气球以确保气压稳定,引出的导线与电化学工作站相连;
    (5)在25℃-250℃,常压下对上述材料进行导电率测试。
  3. 根据权利要求2所述的多孔芳香骨架化合物在质子交换膜燃料电池方面的应用,其特征在于:所述压片的成品大小尺寸为直径5mm,厚度1mm。
  4. 根据权利要求2所述的多孔芳香骨架化合物在质子交换膜燃料电池方面的应用,其特征在于:所述金电极大小为直径5mm,厚度1mm,所用的金为99.99%纯度的金。
  5. 根据权利要求2所述的多孔芳香骨架化合物在质子交换膜燃料电池方面的应用,其特征在于:所述装置于50mL密闭两口烧瓶中,烧瓶内置温度计,烧瓶置于电加热套中,实现温控操作,瓶内充满氮气,以保证气体的稳定,外接N2气球以确保气压稳定。
PCT/CN2017/096575 2016-11-24 2017-08-09 超耐高温性的高导电率的多孔芳香骨架化合物其制备方法及其于质子交换膜燃料电池的应用 WO2018095074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611045846.2A CN106750190B (zh) 2016-11-24 2016-11-24 超耐高温性的高导电率的多孔芳香骨架化合物其制备方法及其于质子交换膜燃料电池的应用
CN201611045846.2 2016-11-24

Publications (2)

Publication Number Publication Date
WO2018095074A1 WO2018095074A1 (zh) 2018-05-31
WO2018095074A9 true WO2018095074A9 (zh) 2019-06-06

Family

ID=58975402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096575 WO2018095074A1 (zh) 2016-11-24 2017-08-09 超耐高温性的高导电率的多孔芳香骨架化合物其制备方法及其于质子交换膜燃料电池的应用

Country Status (2)

Country Link
CN (1) CN106750190B (zh)
WO (1) WO2018095074A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106750190B (zh) * 2016-11-24 2019-07-19 珠海市吉林大学无机合成与制备化学重点实验室 超耐高温性的高导电率的多孔芳香骨架化合物其制备方法及其于质子交换膜燃料电池的应用
CN109728345B (zh) * 2018-12-29 2020-09-22 吉林大学 存锂能力强,质子传输效率高的多孔芳香聚合物及其制备方法与应用
CN111154074B (zh) * 2020-01-13 2022-08-02 东北师范大学 一种磺酸盐多孔芳香骨架材料及其应用
WO2023108215A1 (en) * 2021-12-14 2023-06-22 Monash University Porous interlayer
CN114614060B (zh) * 2022-03-08 2023-03-28 东北师范大学 一种质子交换膜、制备方法、用途和包含其的燃料电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934222B (zh) * 2009-06-29 2013-06-19 深圳市普迈达科技有限公司 具有超高比表面积的多孔聚合物材料、其制备方法及其于气体储存或液体吸附的应用
CN102897746B (zh) * 2012-09-25 2015-04-29 珠海市吉林大学无机合成与制备化学重点实验室 制备多孔碳材料的方法及用该方法制备的多孔碳材料
CN103396531B (zh) * 2013-07-19 2016-03-16 苏州纳埃净化科技有限公司 一种多孔芳香骨架化合物的制备方法
CN106750190B (zh) * 2016-11-24 2019-07-19 珠海市吉林大学无机合成与制备化学重点实验室 超耐高温性的高导电率的多孔芳香骨架化合物其制备方法及其于质子交换膜燃料电池的应用

Also Published As

Publication number Publication date
WO2018095074A1 (zh) 2018-05-31
CN106750190A (zh) 2017-05-31
CN106750190B (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
WO2018095074A9 (zh) 超耐高温性的高导电率的多孔芳香骨架化合物其制备方法及其于质子交换膜燃料电池的应用
Lim et al. Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: A review
AU2020101412A4 (en) Direct methanol fuel cell membrane electrode for improving catalyst utilization and preparation method thereof
Saha et al. Fabrication of catalyst-coated membrane by modified decal transfer technique
Zhang et al. An inorganic/organic self-humidifying composite membranes for proton exchange membrane fuel cell application
US20160233520A1 (en) Carbon powder for catalyst, catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using the carbon powder
Li et al. High‐temperature proton‐exchange‐membrane fuel cells using an ether‐containing polybenzimidazole membrane as electrolyte
Chien et al. Characteristics of high-water-uptake activated carbon/Nafion hybrid membranes for proton exchange membrane fuel cells
CN103746122A (zh) 一种新型燃料电池复合材料双极板的制备方法
Lufrano et al. Solid polymer electrolyte based on sulfonated polysulfone membranes and acidic silica for direct methanol fuel cells
Cho et al. Effect of catalyst layer ionomer content on performance of intermediate temperature proton exchange membrane fuel cells (IT-PEMFCs) under reduced humidity conditions
Su et al. Membrane electrode assembly with Pt/SiO2/C anode catalyst for proton exchange membrane fuel cell operation under low humidity conditions
Tawalbeh et al. Graphene oxide—Nafion composite membrane for effective methanol crossover reduction in passive direct methanol fuel cells
CN102321265A (zh) 一种改性细菌纤维素膜制备质子交换膜的方法及其应用
JP2018116935A (ja) 向上した性能を有する活性層の形成
CN106159304A (zh) 一种质子交换膜燃料电池电堆及其制备方法
US8399149B2 (en) Composition with enhanced proton conductivity
Zeng et al. Highly stable nanostructured membrane electrode assembly based on Pt/Nb 2 O 5 nanobelts with reduced platinum loading for proton exchange membrane fuel cells
Kim et al. High proton conductivity and low fuel crossover of polyvinylidene fluoride–hexafluoro propylene–silica sulfuric acid composite membranes for direct methanol fuel cells
Wang et al. MWCNTs reinforced Nafion® membrane prepared by a novel solution-cast method for PEMFC
CN110416581A (zh) 一种阳极液流均相催化燃料电池及其制备方法
Li et al. Highly ordered 3D macroporous scaffold supported Pt/C oxygen electrodes with superior gas-proton transportation properties and activities for fuel cells
WO2021128770A1 (zh) 一种精氨酸改性的质子交换膜及其制备方法
CN105140545A (zh) 一种复合质子交换膜的制备工艺
CN110176617B (zh) 一种提高nafion膜阻醇选择性的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874421

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17874421

Country of ref document: EP

Kind code of ref document: A1