WO2018093231A1 - 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자 - Google Patents

유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자 Download PDF

Info

Publication number
WO2018093231A1
WO2018093231A1 PCT/KR2017/013248 KR2017013248W WO2018093231A1 WO 2018093231 A1 WO2018093231 A1 WO 2018093231A1 KR 2017013248 W KR2017013248 W KR 2017013248W WO 2018093231 A1 WO2018093231 A1 WO 2018093231A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mmol
compound
mol
formula
Prior art date
Application number
PCT/KR2017/013248
Other languages
English (en)
French (fr)
Inventor
김홍석
김영배
김회문
손호준
배형찬
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Priority to US16/462,359 priority Critical patent/US11667622B2/en
Priority to CN201780071908.3A priority patent/CN110023305B/zh
Publication of WO2018093231A1 publication Critical patent/WO2018093231A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • the present invention relates to a novel organic light emitting compound and an organic electroluminescent device using the same, and more particularly, by including an anthracene-based compound having excellent electron injection and transport ability, light emitting ability and the like in at least one organic material layer,
  • the present invention relates to an organic EL device having improved characteristics such as driving voltage and lifetime.
  • an organic EL device In an organic EL device (hereinafter referred to as an 'organic EL device'), when a current or voltage is applied to two electrodes, holes are injected into the organic material layer at the anode, and electrons are injected into the organic material layer at the cathode. When the injected holes and electrons meet, an exciton is formed, and the exciton falls to the ground and shines.
  • organic EL devices are classified into fluorescent EL devices in which singlet excitons contribute to light emission and phosphorescent EL devices in which triplet excitons contribute to light emission, depending on the type of electron spin of the exciton formed.
  • the electron spin of excitons formed by the recombination of electrons and holes, produces 25% and 75% of singlet excitons and triplet excitons.
  • the fluorescent EL device emits light by singlet excitons, and theoretically, internal quantum efficiency cannot exceed 25% according to the generation rate, and external quantum efficiency is accepted as a limit of 5%.
  • the phosphorescent EL device emits light by triplet excitons, and when the metal complex compound containing transition metal heavy atoms such as Ir and Pt is used as the phosphorescent dopant, the luminous efficiency is up to four times higher than that of fluorescence. Can improve.
  • the phosphorescent EL element has a higher luminous efficiency than the fluorescent EL element in theory.
  • blue phosphorescent EL devices are not commercialized due to their low level of development for phosphorescent dopants having deep blue color purity and high efficiency and hosts having a wide energy gap. Accordingly, blue fluorescent EL devices are used in products instead of blue phosphorescent EL devices.
  • Background Art In the conventional blue fluorescent EL device, a substance in which substituents are introduced at various positions of the benzene ring is used as a single host and a single dopant, and thus, the blue fluorescent EL device has been studied to improve the emission color of the device, carrier transport properties, and stability of the thin film.
  • An object of the present invention is to provide a novel organic compound that can be used as a light emitting layer material or an electron transport auxiliary layer material having excellent electron injection ability, electron transport ability, light emission ability, and the like.
  • Another object of the present invention is to provide an organic electroluminescent device including the novel organic compound having a low driving voltage, high luminous efficiency, and an improved lifetime.
  • the present invention provides a compound represented by the following formula (1):
  • X 1 to X 4 are the same as or different from each other, and are each independently C (Ar 3 ) or N, provided that at least one of X 1 to X 4 is N, wherein when a plurality of Ar 3 are plural, a plurality of Ar 3 Are the same as or different from each other;
  • n is an integer from 0 to 3;
  • X 5 is selected from the group consisting of S, O, N (Ar 4 ) and C (Ar 5 ) (Ar 6 );
  • X 6 is a single bond or is selected from the group consisting of S, O, N (Ar 7 ) and C (Ar 8 ) (Ar 9 );
  • Ar 1 is selected from the group consisting of a C 6 -C 60 aryl group and a heteroaryl group having 5 to 60 nuclear atoms, or combine with an adjacent group to form a condensed aromatic ring or a condensed heteroaromatic ring;
  • Ar 2 is hydrogen, C 6 ⁇ C 60 aryl group and a nuclear atoms selected from the group consisting of heteroaryl or 5 to 60, or the adjacent groups combine to form a condensed aromatic ring or a fused heteroaromatic ring;
  • Ar 3 to Ar 9 are the same or different, each independently represent hydrogen, deuterium (D), a halogen, a cyano group, a nitro group, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of, C 2 ⁇ C 40 alkynyl group, C 3 to C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl group, C 6 to C 60 aryl group, nuclear atom 5 to 60 heteroaryl group, C 1 to C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 selected from the group consisting of an aryl boron group, a C 6 -C 60 mono or diarylphosphinyl group and a C 6 -C 60 arylamine group, or combine with an adjacent group
  • R 1 to R 9 are the same or different and each independently represent hydrogen, deuterium (D), a halogen, a cyano group, a nitro group, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of each other, C 2 ⁇ C 40 alkynyl group, C 3 to C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl group, C 6 to C 60 aryl group, nuclear atom 5 to 60 heteroaryl group, C 1 to C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C group of 60 arylboronic, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ mono or diaryl phosphine of C 60 blood group and a C 6 ⁇ selected from the group
  • n is an integer from 1 to 3;
  • the aryl group and heteroaryl group of Ar 1 and Ar 2 is substituted with one or more substituents selected from the group consisting of C 1 ⁇ C 40 Alkyl group, C 6 ⁇ C 60 Aryl group and a heteroaryl group of 5 to 60 nuclear atoms or Unsubstituted, wherein when there are a plurality of said substituents, they are the same or different).
  • the present invention is an organic electroluminescent device comprising a cathode and at least one organic layer interposed between the anode and the cathode, at least one of the at least one organic layer comprises a compound represented by the formula (1)
  • an organic electroluminescent device characterized by.
  • the one or more organic material layers may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, and the organic material layer including the compound represented by Formula 1 may be a light emitting layer.
  • the at least one organic material layer may include a hole transport layer, a hole injection layer, a light emitting layer, an electron transport auxiliary layer, an electron transport layer, and an electron injection layer, and the at least one organic material layer including the compound may be an electron transport auxiliary layer.
  • the compound represented by Chemical Formula 1 of the present invention may be used as an organic material layer material of the organic electroluminescent device because of its excellent electron injection and transport properties and luminescent properties.
  • the organic electroluminescent device according to the present invention comprises a compound represented by the formula (1) as a fluorescent host material or an electron transport auxiliary layer material, it is excellent in light emission performance compared to the organic electroluminescent device containing a conventional host material In addition, the driving voltage is low, the efficiency is high, and the service life is long. Therefore, the performance and the life of the full color display panel can be improved.
  • the present invention is a heteroaromatic ring consisting of three or more rings, such as a dibenzofuran moiety, a benzocarbazole moiety, a fluorene moiety, a dioxin moiety, and the like.
  • the moiety or aromatic ring moiety is introduced at the carbon position 10 of the anthracene moiety via a bivalent linker group comprising a nitrogen (N) -containing six-membered heteroarylene group, and the aromatic or heteroaromatic ring is directly introduced into the anthracene moiety.
  • N nitrogen
  • It is a structure having a basic skeleton introduced into the carbon position 9 of the tee, characterized in that represented by the formula (1).
  • the compound represented by the formula (1) is excellent in electron transport, injection ability, light emitting ability. Therefore, when the compound of Formula 1 is included in the organic electroluminescent device, it is possible to improve the driving voltage, luminous efficiency, lifespan, etc. of the device.
  • the carbon position number of anthracene can be represented as follows.
  • the compound represented by Formula 1 may be usefully applied as a host material because the anthracene moiety has a wide band gap.
  • the heteroaromatic ring moiety or aromatic ring moiety consisting of the three or more rings;
  • a bivalent linker group including an N-containing six-membered heteroarylene group, which is an electron withdrawing group (EWG) having high electron absorption, is bonded to provide excellent electron injection and transport ability.
  • the compound of Formula 1 has an N-containing 6-membered heteroarylene group directly introduced into position 10 of the anthracene moiety, thereby extending the electron distribution to the heteroarylene group, and the LUMO energy of the compound is 10 It is relatively lower than a compound having an arylene group bonded to a position or a heteroarylene group not directly bonded to another compound bonded through another linker group.
  • compound R95 As shown in FIG. 1, the electron distribution is extended to the heteroarylene group, the LUMO energy is 1.66 eV, and the HOMO energy level is 1.73 eV.
  • compound C1 ( ) Has a LUMO energy of 1.63 eV, a HOMO energy level of 1.73 eV, and a compound C2 ( ) Has a LUMO energy of 1.61 eV and a HOMO energy level of 1.71 eV (see FIGS. 2 and 3). Therefore, when the compound of Formula 1 is applied to the organic electroluminescent device as an electron transport and injection layer, the driving voltage, luminous efficiency, lifespan, etc. of the device can be improved.
  • the binding force of holes and electrons in the light emitting layer is determined by the compound of Chemical Formula 1 Since the driving voltage, luminous efficiency, lifespan, etc. of the device can be improved, the performance of the full color organic EL panel can be maximized.
  • X 1 to X 4 are the same as or different from each other, and each independently C (Ar 3 ) or N, provided that at least one of X 1 to X 4 is N; Preferably one of X 1 to X 4 is N, the rest may be C (Ar 3 ). At this time, when the Ar 3 is a plurality, a plurality of Ar 3 is the same or different from each other.
  • n is an integer of 0-3, Preferably it is 0 or 1.
  • X 5 is selected from the group consisting of S, O, N (Ar 4 ) and C (Ar 5 ) (Ar 6 ).
  • X 6 is a single bond or is selected from the group consisting of S, O, N (Ar 7 ) and C (Ar 8 ) (Ar 9 ), preferably may be a single bond.
  • Ar 1 is selected from the group consisting of a C 6 ⁇ C 60 aryl group and a heteroaryl group having 5 to 60 nuclear atoms, or combine with an adjacent group to form a condensed aromatic ring or a condensed heteroaromatic ring, preferably C It is selected from the group consisting of 6 to C 60 aryl group and a heteroaryl group of 5 to 60 nuclear atoms, more preferably selected from the group consisting of C 6 ⁇ C 30 aryl group and a heteroaryl group of 5 to 30 nuclear atoms. Can be.
  • Ar 2 is selected from the group consisting of hydrogen, an aryl group of C 6 ⁇ C 60 and a heteroaryl group of 5 to 60 nuclear atoms, or combine with adjacent groups to form a condensed aromatic ring or a condensed heteroaromatic ring, preferably Hydrogen, C 6 ⁇ C 60 aryl group and heteroaryl group having 5 to 60 nuclear atoms, more preferably hydrogen, C 6 ⁇ C 30 aryl group and hetero atoms having 5 to 30 nuclear atoms It may be selected from the group consisting of aryl groups.
  • the aryl group and heteroaryl group of Ar 1 and Ar 2 C 1 ⁇ C 40 Alkyl group preferably, C 1 ⁇ C 20 Alkyl group
  • An aryl group (preferably, C 6 ⁇ C 30 aryl group) and a heteroaryl group having 5 to 60 nuclear atoms preferably a heteroaryl group having 5 to 30 nuclear atoms) is substituted or unsubstituted with one or more substituents selected from the group consisting of When are a plurality, they are the same or different.
  • Ar 3 to Ar 9 are the same as or different from each other, and each independently hydrogen, deuterium (D), halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C Alkynyl group of 2 to C 40 , cycloalkyl group of C 3 to C 40 , heterocycloalkyl group of 3 to 40 nuclear atoms, aryl group of C 6 to C 60 , heteroaryl group of 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group of, C 6 ⁇ aryloxy C 60, C 1 ⁇ C 40 alkyl silyl group, C 6 ⁇ aryl silyl group of C 60, C 1 ⁇ C 40 group of an alkyl boron, C 6 ⁇ C group 60 arylboronic of, C 6 ⁇ C 60 mono or diaryl phosphine blood group and a C 6 ⁇ C selected from the 60 group consisting of an aryl amine
  • Ar 3 to Ar 9 are the same as or different from each other, and each independently hydrogen, deuterium (D), an alkyl group of C 1 ⁇ C 40 , an aryl group of C 6 ⁇ C 60 , and a nuclear atom of 5 to 60 It may be selected from the group consisting of heteroaryl groups, or may be combined with adjacent groups to form a C 5 to C 30 condensed aromatic ring or an O, S or N-containing 5 to 30 membered condensed heteroaromatic ring.
  • D deuterium
  • an alkyl group of C 1 ⁇ C 40 an alkyl group of C 1 ⁇ C 40
  • an aryl group of C 6 ⁇ C 60 an aryl group of C 6 ⁇ C 60
  • a nuclear atom of 5 to 60 It may be selected from the group consisting of heteroaryl groups, or may be combined with adjacent groups to form a C 5 to C 30 condensed aromatic ring or an O, S or N-containing 5 to 30 membered condensed heteroaromatic
  • Ar 3 to Ar 9 are the same as or different from each other, and each independently hydrogen, deuterium (D), an alkyl group of C 1 to C 20 , an aryl group of C 6 to C 30 , and 5 to 30 nuclear atoms It may be selected from the group consisting of heteroaryl groups, or may be combined with adjacent groups to form a C 5 ⁇ C 30 condensed aromatic ring or O, S or N-containing 5 to 30 membered condensed heteroaromatic ring.
  • D deuterium
  • an alkyl group of C 1 to C 20 an aryl group of C 6 to C 30
  • 5 to 30 nuclear atoms It may be selected from the group consisting of heteroaryl groups, or may be combined with adjacent groups to form a C 5 ⁇ C 30 condensed aromatic ring or O, S or N-containing 5 to 30 membered condensed heteroaromatic ring.
  • X 5 is C (Ar 5 ) (Ar 6 )
  • Ar 5 and Ar 6 are bonded to each other to form a spiro-acridin group, a spiro-fluorene group, a spiro-xanthene group, or the like.
  • Condensed aromatic rings or condensed heteroaromatic rings can be formed.
  • R 1 to R 5 are the same as or different from each other, and each independently hydrogen, deuterium (D), halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 3 -C 40 cycloalkyl group, C 3 -C 40 heterocycloalkyl group, C 6 -C 60 aryl group, C 5-60 heteroaryl group, C 1 ⁇ C 40 alkyloxy group of, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, a C 6 ⁇ C 60 aryl silyl group, a C 1 ⁇ C 40 group of an alkyl boron, C 6 to C 60 aryl boron group, C 6 to C 60 arylphosphine group, C 6 to C 60 mono or diaryl phosphinyl group and C 6 to C 60 arylamine group, or adjacent
  • R 1 to R 5 are the same as or different from each other, and each independently may be selected from the group consisting of hydrogen, deuterium (D), C 6 ⁇ C 60 aryl group and heteroaryl group of 5 to 60 nuclear atoms. It may be selected from the group consisting of hydrogen, deuterium (D), C 6 ⁇ C 30 aryl group and heteroaryl group of 5 to 30 nuclear atoms. At this time, when there are a plurality of R 5 , they are the same or different from each other.
  • R 6 To R 9 They are the same as or different from each other, and each independently hydrogen, deuterium (D), halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 -C 40 alkynyl group, C 3 -C 40 cycloalkyl group, C 3 -C 40 heterocycloalkyl group, C 6 -C 60 aryl group, C 5-60 heteroaryl group, C 1 ⁇ C 40 alkyloxy group of, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, a C 6 ⁇ C 60 aryl silyl group, a C 1 ⁇ C 40 group of an alkyl boron, C 6 to C 60 arylboron group, C 6 to C 60 mono or diarylphosphinyl group and C 6 to C 60 arylamine group, or R 6 and R 7 , R 7 and R 8 And at least
  • R 6 to R 9 are the same as or different from each other, each independently hydrogen or at least one of R 6 and R 7 , R 7 and R 8 and R 8 and R 9 are bonded to each other of C 6 ⁇ C 60 Condensed aromatic rings or 5- to 60-membered condensed heteroaromatic rings can be formed.
  • R 6 to R 9 are the same as or different from each other, each independently hydrogen or at least one of R 6 and R 7 , R 7 and R 8 and R 8 and R 9 are bonded to each other C 6 ⁇ C 30 Condensed aromatic ring or a 5 to 30 membered condensed heteroaromatic ring can be formed.
  • said m is an integer of 1-3.
  • the compound represented by Formula 1 of the present invention may be embodied as a compound represented by any one of Formulas 2 to 5, but is not limited thereto.
  • R 1 to R 6 , X 1 to X 5 , Ar 1 , Ar 2 , m and n are the same as defined in Formula 1,
  • Examples of the compound represented by Formula 2 include, but are not limited to, a compound represented by Formula 6 below.
  • R 1 to R 5 , X 1 to X 5 , Ar 1 , Ar 2 , m and n are the same as defined in Formula 1,
  • examples of the compound represented by Chemical Formula 6 include a compound represented by the following Chemical Formula 7, but are not limited thereto.
  • R 1 to R 5 , X 1 to X 4 , Ar 1 , Ar 2 , m and n are as defined in Formula 1, respectively,
  • X 7 is a single bond or is selected from the group consisting of S, O, N (Ar 10 ) and C (Ar 11 ) (Ar 12 ),
  • Ar 10 to Ar 12 are the same or different, each independently represent hydrogen, deuterium (D), a halogen, a cyano group, a nitro group, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of, C 2 ⁇ C 40 alkynyl group, C 3 to C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl group, C 6 to C 60 aryl group, nuclear atom 5 to 60 heteroaryl group, C 1 to C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 arylboronic group are selected from the group consisting of C 6 ⁇ C 60 mono or diaryl phosphine blood group and an aryl amine of the C 6 ⁇ C 60 of the group.
  • the compound represented by the general formula (1) of the present invention described above may be more specifically compound R1 to R401 exemplified below.
  • the compound represented by the formula (1) of the present invention is not limited by those illustrated below.
  • Alkyl in the present invention means a monovalent substituent derived from a straight or branched chain saturated hydrocarbon having 1 to 40 carbon atoms. Examples thereof include, but are not limited to, methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl, hexyl and the like.
  • alkenyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon double bond. Examples thereof include, but are not limited to, vinyl, allyl, isopropenyl, 2-butenyl, and the like.
  • alkynyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon triple bond. Examples thereof include, but are not limited to, ethynyl, 2-propynyl, and the like.
  • Aryl in the present invention means a monovalent substituent derived from an aromatic hydrocarbon having 6 to 60 carbon atoms combined with a single ring or two or more rings.
  • a form in which two or more rings are attached to each other (pendant) or condensed may also be included.
  • Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, anthryl, and the like.
  • Heteroaryl as used herein means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms. At least one carbon in the ring, preferably 1 to 3 carbons, is substituted with a heteroatom such as N, O, S or Se.
  • a form in which two or more rings are pendant or condensed with each other may be included, and may also include a form in which the two or more rings are condensed with an aryl group.
  • heteroaryl examples include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carbazolyl and 2-furanyl, N-imidazolyl, 2-isoxazolyl , 2-pyridinyl, 2-pyrimidinyl, and the like, but are not limited thereto.
  • 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carb
  • aryloxy is a monovalent substituent represented by RO-, wherein R means aryl having 5 to 60 carbon atoms.
  • R means aryl having 5 to 60 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, diphenyloxy, and the like.
  • alkyloxy is a monovalent substituent represented by R'O-, wherein R 'means an alkyl having 1 to 40 carbon atoms, linear, branched or cyclic structure It may include.
  • alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy and the like.
  • Cycloalkyl as used herein means monovalent substituents derived from monocyclic or polycyclic non-aromatic hydrocarbons having 3 to 40 carbon atoms. Examples of such cycloalkyl include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
  • heterocycloalkyl monovalent substituents derived from non-aromatic hydrocarbons having 3 to 40 nuclear atoms, wherein at least one carbon in the ring, preferably 1 to 3 carbons, is N, O, S Or a hetero atom such as Se.
  • heterocycloalkyl include, but are not limited to, morpholine, piperazine, and the like.
  • alkylsilyl means silyl substituted with alkyl having 1 to 40 carbon atoms
  • arylsilyl means silyl substituted with aryl having 5 to 60 carbon atoms.
  • alkyl boron group means a boron group substituted with alkyl having 1 to 40 carbon atoms
  • aryl boron group means a boron group substituted with aryl having 6 to 60 carbon atoms
  • alkylphosphinyl group is an alkyl having 1 to 40 carbon atoms
  • Means a phosphine group substituted with a mono or diaryl phosphinyl group means a phosphine group substituted with monoaryl or diaryl having 6 to 60 carbon atoms.
  • Arylamine in the present invention means an amine substituted with aryl having 6 to 60 carbon atoms.
  • condensed ring means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring, a spiro ring, or a combination thereof.
  • organic electroluminescent device (hereinafter referred to as "organic EL device") comprising the compound represented by the formula (1).
  • the organic electroluminescent device comprises an anode, a cathode and at least one organic layer interposed between the anode and the cathode, at least one of the at least one organic layer It includes a compound represented by the formula (1).
  • the compound may be used alone, or two or more may be used in combination.
  • the one or more organic material layers include any one or more of a hole injection layer, a hole transport layer, a light emitting auxiliary layer, a light emitting layer, an electron transport layer and an electron injection layer, wherein the light emitting layer is a compound represented by the formula (1) It may include.
  • the compound represented by Formula 1 may be included in the organic electroluminescent device as a light emitting layer material, preferably a fluorescent host.
  • the organic electroluminescent device of the present invention is because the electron transport capacity is increased due to the compound of Formula 1 to increase the binding force between the hole and the electron in the light emitting layer, luminous efficiency, power efficiency, lifetime, luminance, driving voltage, thermal stability And the like can be improved.
  • the compound represented by Chemical Formula 1 is preferably included in the organic EL device as a blue and / or green fluorescent host.
  • the one or more organic material layers include a hole injection layer, a hole hydrogen layer, a light emitting layer, an electron transport auxiliary layer, an electron transport layer and an electron injection layer, wherein the electron transport auxiliary layer is represented by the formula (1) It may include a compound.
  • the compound represented by Formula 1 may be included in the organic electroluminescent device as an electron transport auxiliary layer material.
  • the organic electroluminescent device of the present invention since the electron transport from the electron transport layer to the light emitting layer is increased by the compound of Formula 1, the binding force between holes and electrons in the light emitting layer can be improved, and thus the luminous efficiency of the device. Power efficiency, brightness, and the like can be improved.
  • the structure of the organic EL device of the present invention is not particularly limited.
  • the anode, one or more organic material layers and the cathode are sequentially stacked on the substrate, and an insulating layer or an adhesive layer is inserted at the interface between the electrode and the organic material layer.
  • an insulating layer or an adhesive layer is inserted at the interface between the electrode and the organic material layer.
  • the organic EL device may have a structure in which an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are sequentially stacked on a substrate.
  • an electron transport auxiliary layer may be inserted between the light emitting layer and the electron transport layer, or an electron injection layer may be positioned between the electron transport layer and the cathode.
  • the organic electroluminescent device of the present invention is an organic material layer by a material and a method known in the art, except that at least one of the organic material layers (for example, a light emitting layer or an electron transport auxiliary layer) includes the compound represented by Chemical Formula 1 above. And it can be manufactured by forming an electrode.
  • the organic material layer may be formed by a vacuum deposition method or a solution coating method.
  • the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
  • the substrate usable in the present invention is not particularly limited, and non-limiting examples include silicon wafers, quartz, glass plates, metal plates, plastic films and sheets, and the like.
  • examples of the anode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole or polyaniline; And carbon black, but are not limited thereto.
  • metals such as vanadium, chromium, copper, zinc and gold or alloys thereof.
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
  • Conductive polymers such as polythiophene, poly (3-methylthiophene
  • examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, or lead or alloys thereof; And multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like.
  • the hole injection layer, the hole transport layer, the light emitting layer, the electron injection layer and the electron transport layer is not particularly limited, and conventional materials known in the art may be used.
  • the mixture was extracted with ethyl acetate, water was removed with MgSO 4 , and purified by column chromatography to obtain the target compound A4 (9.7 g, 18.3 mmol, yield 75%).
  • the mixture was extracted with ethyl acetate, water was removed with MgSO 4 , and purified by column chromatography to obtain the target compound A8 (10.5g, 18.0 mmol, 74% yield).
  • the mixture was extracted with ethyl acetate, water was removed with MgSO 4 , and purified by column chromatography to obtain the target compound A9 (10.5g, 18.0 mmol, yield 74%).
  • the resultant was extracted with ethyl acetate, water was removed with MgSO 4 and purified by column chromatography to obtain the target compound A10 (10.5g, 18.0 mmol, yield 74%).
  • the resultant was extracted with ethyl acetate, water was removed with MgSO 4 and purified by column chromatography to obtain the target compound A14 (8.3 g, 18.0 mmol, yield 74%).
  • the mixture was extracted with ethyl acetate, water was removed with MgSO 4 , and purified by column chromatography to obtain the target compound A15 (10.1 g, 18.5 mmol, yield 76%).
  • the resultant was extracted with ethyl acetate, water was removed with MgSO 4 and purified by column chromatography to obtain the target compound A16 (10.8 g, 18.5 mmol, yield 76%).
  • 2-bromo-5- (3,10-diphenylanthracen-9-yl) pyridine 11.9 g (24.4 mmol), 4,4,4 ', 4', 5,5,5 ', 5'-octamethyl- 2,2'-bi (1,3,2-dioxaborolane) 7.4 g (29.2 mmol), 0.6 g (0.7 mmol) of Pd (dppf) Cl 2 , 7.2 g (73.1 mmol) of KOAc and 200 ml of 1,4-Dioxane Were mixed and stirred at 130 ° C. for 6 hours.
  • the mixture was extracted with ethyl acetate, water was removed with MgSO 4 , and purified by column chromatography to obtain the target compound A25 (9.4g, 17.5 mmol, 72% yield).
  • 5-bromo-2- (3,10-diphenylanthracen-9-yl) pyridine 11.9 g (24.4 mmol), 4,4,4 ', 4', 5,5,5 ', 5'-octamethyl- 2,2'-bi (1,3,2-dioxaborolane) 7.4 g (29.2 mmol), 0.6 g (0.7 mmol) of Pd (dppf) Cl 2 , 7.2 g (73.1 mmol) of KOAc and 200 ml of 1,4-Dioxane Were mixed and stirred at 130 ° C. for 6 hours.
  • the mixture was extracted with ethyl acetate, water was removed with MgSO 4 , and purified by column chromatography to obtain the target compound A28 (9.4g, 17.5 mmol, 72% yield).
  • a glass substrate coated with ITO (Indium tin oxide) to a thickness of 1500 ⁇ was washed with distilled water ultrasonically. After washing the distilled water, ultrasonic cleaning with a solvent such as isopropyl alcohol, acetone, methanol, dried, transferred to a UV OZONE cleaner (Power sonic 405, Hwasin Tech), and then the substrate using UV for 5 minutes The substrate was cleaned and transferred to a vacuum evaporator.
  • ITO Indium tin oxide
  • NPB and Alq 3 used at this time are as follows.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compounds shown in Table 1 were used instead of the compound R13 used as the host material in the formation of the emission layer in Example 1.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 1, except that ADN, which is a blue host material, was used instead of Compound R13 used to form an emission layer in Example 1.
  • the structure of the ADN used at this time is as follows.
  • the blue organic electroluminescent devices of Examples 1 to 30, which use the compounds (R13 to R375) according to the present invention as the host material of the light emitting layer, are the blue organic electroluminescent light of Comparative Example 1 using conventional AND
  • the driving voltage is lower and the current efficiency is higher than that of the device.
  • the light emitting peaks of the devices of Examples 1 to 30 were the same as those of Comparative Example 1.
  • a glass substrate coated with ITO (Indium tin oxide) to a thickness of 1500 ⁇ was washed with distilled water ultrasonically. After washing the distilled water, ultrasonic cleaning with a solvent such as isopropyl alcohol, acetone, methanol, dried, transferred to a UV OZONE cleaner (Power sonic 405, Hwasin Tech), and then the substrate using UV for 5 minutes The substrate was cleaned and transferred to a vacuum evaporator.
  • ITO Indium tin oxide
  • DS-205 Doosan (80 nm) / NPB (15 nm) / ADN + 5% DS-405 (Doosan) (30 nm) / Compound R13 / Alq 3 (25 nm ) / LiF (1 nm) / Al (200 nm) was laminated in order to prepare an organic EL device.
  • the structure of NPB, ADN and Alq 3 used at this time is as follows.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 31, except that the compounds shown in Table 2 were used instead of the compound R13 used as the electron transporting auxiliary material in the formation of the electron transporting auxiliary layer in Example 31. Prepared.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 31, except for using the following Compound C3 instead of Compound R13 used as the electron transporting auxiliary material when forming the electron transporting auxiliary layer in Example 31.
  • the compound C3 used is as follows.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 31, except that Compound R13 used in Example 31 was not used.
  • Example 31 R13 3.0 7.8
  • Example 32 R58 3.3 8.6
  • Example 33 R67 3.9 11.2
  • Example 34 R75 3.6 10.8
  • Example 35 R78 3.7 12.1
  • Example 36 R151 3.2 8.6
  • Example 37 R357 3.3 8.5
  • Example 38 R360 4.0 10.8
  • Example 39 R363 4.1 10.9
  • Example 40 R366 3.9 11.0
  • Example 41 R369 3.5 9.9
  • Example 42 R372 3.8 9.8
  • Example 43 R375 3.7 11.1
  • Example 44 R378 3.8 11.8
  • Example 45 R401 3.1 7.8 Comparative Example 2 C3 3,5 6.0 Comparative Example 3 - 4.7 5.6
  • a glass substrate coated with ITO (Indium tin oxide) to a thickness of 1500 ⁇ was washed with distilled water ultrasonically. After washing the distilled water, ultrasonic cleaning with a solvent such as isopropyl alcohol, acetone, methanol, dried, transferred to a UV OZONE cleaner (Power sonic 405, Hwasin Tech), and then the substrate using UV for 5 minutes The substrate was cleaned and transferred to a vacuum evaporator.
  • ITO Indium tin oxide
  • a green organic electroluminescent device was manufactured in the same manner as in Example 45, except that the compounds shown in Table 3 were used instead of the compound R311 used as the electron transporting auxiliary material in the formation of the electron transporting auxiliary layer in Example 46. Prepared.
  • a green organic electroluminescent device was manufactured in the same manner as in Example 46, except that Compound R311 used in Example 46 was not used.
  • the driving voltage was lower and the luminous efficiency was higher than that of the green organic EL device.
  • the light emission peaks of the devices of Examples 46 to 54 were the same as those of Comparative Example 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 전자 주입능 및 수송능, 발광능 등이 우수한 신규 화합물 및 이를 포함하는 유기 전계 발광 소자에 대한 것으로서, 상기 신규 화합물이 유기 전계 발광 소자의 유기물층에 사용됨에 따라, 소자의 발광효율, 구동 전압, 수명 등을 향상시킬 수 있다.

Description

유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
본 발명은 신규한 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자에 관한 것으로, 보다 상세하게는 전자 주입 및 수송능, 발광능 등이 우수한 안트라센계 화합물 및 상기 화합물을 하나 이상의 유기물층에 포함함으로써 발광효율, 구동 전압, 수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.
유기 전계 발광 소자(이하, '유기 EL소자'라 함)는 두 전극에 전류, 또는 전압을 인가해 주면 양극에서는 정공이 유기물층으로 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어져 빛을 내게 된다. 이러한 유기 EL 소자는 형성된 엑시톤의 전자 스핀 종류에 따라 일중항 엑시톤이 발광에 기여하는 형광 EL소자와 삼중항 엑시톤이 발광에 기여하는 인광 EL소자로 구분된다.
전자와 정공의 재결합에 의해 형성되는 엑시톤의 전자 스핀은 일중항 엑시톤과 삼중항 엑시톤이 25%와 75%의 비율로 생성된다. 형광 EL 소자는 일중항 엑시톤에 의해 발광이 이루어지며, 생성 비율에 따라 이론적으로 내부 양자 효율이 25%를 넘을 수 없으며, 외부 양자 효율은 5%가 한계로 받아들여 지고 있다. 인광 EL 소자는 삼중항 엑시톤에 의해 발광이 이루어지며, Ir, Pt 등과 같은 전이금속 중원자(heavy atoms)가 포함된 금속 착체 화합물을 인광 도판트로 사용했을때, 형광에 비해 최고 4배까지 발광 효율을 향상시킬 수 있다.
이와 같이, 인광 EL 소자는 이론적으로 발광 효율이 형광 EL 소자보다 높다. 그러나, 녹색, 적색 인광 EL 소자와 달리, 청색 인광 EL 소자는 진청색의 색순도 및 고효율을 갖는 인광 도판트 및 넓은 에너지 갭을 갖는 호스트에 대한 개발 수준이 낮아 상용화되지 못하고 있다. 이에, 청색 인광 EL 소자 대신 청색 형광 EL 소자가 제품에 사용되고 있다. 종래 청색 형광 EL 소자의 경우, 벤젠 고리의 여러 위치에 치환기가 도입된 물질을 단독 호스트 및 단독 도펀트로 이용하여, 소자의 발광색, 캐리어 수송 특성, 박막의 안정성을 향상시키는 방향으로 연구되고 있다. 예를 들어, 청색 형광 발광층 재료로 이데미쓰-고산의 DPVBi나 또는 코닥의 디나프틸안트라센(dinaphthylanthracen) 등이 알려져 있다. 그러나, 종래 청색 형광 발광층 재료는 열안정성 및 발광 효율 측면에서 만족할 만한 수준이 되지 못하고 있어, 우수한 성능을 갖는 발광 물질의 개발이 요구되고 있다.
본 발명은 전자 주입능, 전자 수송능 및 발광능 등이 우수하여 발광층 재료 또는 전자수송 보조층 재료로 사용될 수 있는 신규 유기 화합물을 제공하는 것을 목적으로 한다.
또, 본 발명은 상기 신규 유기 화합물을 포함하여 구동 전압이 낮고, 발광 효율이 높으며, 수명이 향상된 유기 전계 발광 소자를 제공하는 것을 또 다른 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
Figure PCTKR2017013248-appb-C000001
(상기 화학식 1에서,
X1 내지 X4는 서로 동일하거나 상이하고, 각각 독립적으로 C(Ar3) 또는 N이고, 다만 X1 내지 X4 중 적어도 1개는 N이며, 이때 Ar3가 복수인 경우, 복수의 Ar3는 서로 동일하거나 상이하고;
n은 0 내지 3의 정수이고;
X5는 S, O, N(Ar4) 및 C(Ar5)(Ar6)로 이루어진 군에서 선택되며;
X6는 단일 결합이거나, 또는 S, O, N(Ar7) 및 C(Ar8)(Ar9)로 이루어진 군에서 선택되고;
Ar1은 C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성하며;
Ar2는 수소, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성하며;
Ar3 내지 Ar9는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성하고;
R1 내지 R9는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성하며;
m은 1 내지 3의 정수이고;
상기 Ar1 및 Ar2의 아릴기 및 헤테로아릴기는 C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환되거나 비치환되고, 이때 상기 치환기가 복수인 경우, 이들은 동일하거나 상이함).
또, 본 발명은 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 1층 이상의 유기물층 중에서 적어도 하나는 전술한 화학식 1로 표시되는 화합물을 포함하는 것이 특징인 유기 전계 발광 소자를 제공한다.
일례에 따르면, 상기 1층 이상의 유기물층은 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층을 포함하고, 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층은 발광층일 수 있다.
다른 일례에 따르면, 상기 1층 이상의 유기물층은 정공수송층, 정공 주입층, 발광층, 전자수송 보조층, 전자 수송층 및 전자 주입층을 포함하고, 상기 화합물을 포함하는 1층 이상의 유기물층은 전자수송 보조층일 수 있다.
본 발명의 화학식 1로 표시되는 화합물은 전자 주입 및 수송 특성, 발광 특성이 우수하기 때문에, 유기 전계 발광 소자의 유기물층 재료로 사용될 수 있다.
또한, 본 발명에 따른 유기 전계 발광 소자는 상기 화학식 1로 표시되는 화합물을 형광 호스트 재료 또는 전자수송보조층 재료로 포함함으로써, 종래의 호스트 재료를 포함하는 유기 전계 발광 소자에 비해 발광 성능이 우수하고, 구동전압이 낮으며, 효율이 높고, 장수명을 가지며, 따라서 풀 칼라 디스플레이 패널의 성능 및 수명을 향상시킬 수 있다.
도 1 내지 도 3은 각각 화합물 R95, 화합물 C1 및 화합물 C2의 전자분포(electron distribution)를 나타낸 것이다.
이하, 본 발명을 상세히 설명한다.
<신규 유기 화합물>
본 발명은 디벤조퓨란 모이어티(dibenzofuran moiety), 벤조카바졸 모이어티(benzocarbazole moiety), 플로오렌 모이어티(fluorene moiety), 다이옥신 모이어티(dioxin moiety) 등과 같이 3개 이상의 고리로 이루어진 헤테로방향족고리 모이어티 또는 방향족고리 모이어티가 질소(N)-함유 6원의 헤테로아릴렌기를 포함하는 2가의 링커기를 통해 안트라센 모이어티의 10번 탄소위치에 도입되고, 방향족고리 또는 헤테로방향족고리가 직접 안트라센 모이어티의 9번 탄소위치에 도입되어 이루어진 기본 골격을 가진 구조로서, 상기 화학식 1로 표시되는 것을 특징으로 한다. 이러한 화학식 1로 표시되는 화합물은 전자 수송 및 주입능, 발광능이 우수하다. 따라서, 상기 화학식 1의 화합물이 유기 전계 발광 소자에 포함될 경우, 소자의 구동전압, 발광효율, 수명 등을 향상시킬 수 있다. 여기서, 안트라센의 탄소 위치 번호는 하기와 같이 나타낼 수 있다.
Figure PCTKR2017013248-appb-I000001
상기 화학식 1로 표시되는 화합물은 상기 안트라센 모이어티가 밴드갭이 넓기 때문에, 호스트 재료로 유용하게 적용될 수 있다.
또한, 상기 화학식 1로 표시되는 화합물의 경우, 상기 3개 이상의 고리로 이루어진 헤테로방향족고리 모이어티나 방향족고리 모이어티와; 전자 흡수성이 큰 전자 끌개기(electron withdrawing group, EWG)인 N-함유 6원의 헤테로아릴렌기를 포함하는 2가의 링커기가 결합하여 전자의 주입 및 수송 능력이 우수하다.
또한, 상기 화학식 1의 화합물은 안트라센 모이어티의 10번 위치에 N-함유 6원의 헤테로아릴렌기가 직접 도입됨으로써, 전자분포가 헤테로아릴렌기까지 확장되고, 화합물의 LUMO 에너지가 안트라센 모이어티의 10번 위치에 아릴렌기가 결합된 화합물이나 헤테로아릴렌기가 직접 결합되지 않고 다른 링커기를 통해 결합된 화합물에 비해 상대적으로 더 낮다. 예를 들어, 화합물 R95(
Figure PCTKR2017013248-appb-I000002
)는 도 1에 도시된 바와 같이 전자분포가 헤테로아릴렌기까지 확장되어 있고, LUMO 에너지가 1.66 eV이고, HOMO 에너지 준위가 1.73 eV이다. 반면, 화합물 C1(
Figure PCTKR2017013248-appb-I000003
)은 LUMO 에너지가 1.63 eV이고, HOMO 에너지 준위가 1.73 eV이며, 화합물 C2(
Figure PCTKR2017013248-appb-I000004
)은 LUMO 에너지가 1.61 eV이고, HOMO 에너지 준위가 1.71 eV이다(도 2 및 3 참조). 따라서, 상기 화학식 1의 화합물을 전자 수송 및 주입층으로 유기 전계 발광 소자에 적용할 경우, 소자의 구동전압, 발광효율, 수명 등이 향상될 수 있다.
따라서, 상기 화학식 1로 표시되는 화합물이 발광층 물질(바람직하게, 형광 호스트) 또는 전자수송보조층 물질로 유기 전계 발광 소자에 사용될 경우, 발광층에서의 정공과 전자의 결합력이 상기 화학식 1의 화합물에 의해서 향상되기 때문에, 소자의 구동전압, 발광효율, 수명 등을 향상시킬 수 있고, 나아가 풀 칼라 유기 EL 패널의 성능도 극대화될 수 있다.
상기 화학식 1에서, X1 내지 X4는 서로 동일하거나 상이하고, 각각 독립적으로 C(Ar3) 또는 N이고, 다만 X1 내지 X4 중 적어도 1개는 N이고; 바람직하게 X1 내지 X4 중 1개가 N이고, 나머지는 C(Ar3)일 수 있다. 이때, 상기 Ar3가 복수인 경우, 복수의 Ar3는 서로 동일하거나 상이하다.
또, n은 0 내지 3의 정수이고, 바람직하게 0 또는 1이다.
또, X5는 S, O, N(Ar4) 및 C(Ar5)(Ar6)로 이루어진 군에서 선택된다.
또, X6는 단일결합이거나, 또는 S, O, N(Ar7) 및 C(Ar8)(Ar9)로 이루어진 군에서 선택되고, 바람직하게 단일결합일 수 있다.
또, Ar1은 C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성하며, 바람직하게 C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되고, 더 바람직하게 C6~C30의 아릴기 및 핵원자수 5 내지 30의 헤테로아릴기로 이루어진 군에서 선택될 수 있다.
또, Ar2는 수소, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성하며, 바람직하게 수소, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되고, 더 바람직하게 수소, C6~C30의 아릴기 및 핵원자수 5 내지 30의 헤테로아릴기로 이루어진 군에서 선택될 수 있다.
이때, 상기 Ar1 및 Ar2의 아릴기 및 헤테로아릴기는 C1~C40의 알킬기(바람직하게, C1~C20의 알킬기), C6~C60의 아릴기(바람직하게, C6~C30의 아릴기) 및 핵원자수 5 내지 60의 헤테로아릴기(바람직하게, 핵원자수 5 내지 30의 헤테로아릴기)로 이루어진 군에서 선택된 하나 이상의 치환기로 치환되거나 비치환되고, 이때 상기 치환기가 복수인 경우, 이들은 동일하거나 상이하다.
또, Ar3 내지 Ar9는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성할 수 있다.
바람직하게 상기 Ar3 내지 Ar9는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소(D), C1~C40의 알킬기, C6~C60의 아릴기, 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 C5~C30의 축합 방향족 고리 또는 O, S 또는 N-함유 5원~30원의 축합 헤테로방향족 고리를 형성할 수 있다.
더 바람직하게 상기 Ar3 내지 Ar9는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소(D), C1~C20의 알킬기, C6~C30의 아릴기, 및 핵원자수 5 내지 30의 헤테로아릴기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 C5~C30의 축합 방향족 고리 또는 O, S 또는 N-함유 5원~30원의 축합 헤테로방향족 고리를 형성할 수 있다. 예컨대, X5가 C(Ar5)(Ar6)인 경우, Ar5와 Ar6가 서로 결합하여 스피로-아크리딘기, 스피로-플루오렌기, 스피로-크산텐기(spiro-xanthene group) 등과 같은 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성할 수 있다.
또, 상기 R1 내지 R5는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성할 수 있다. 이때, 상기 R5가 복수인 경우, 이들은 서로 동일하거나 상이하다.
바람직하게 상기 R1 내지 R5는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소(D), C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택될 수 있고, 더 바람직하게 수소, 중수소(D), C6~C30의 아릴기 및 핵원자수 5 내지 30의 헤테로아릴기로 이루어진 군에서 선택될 수 있다. 이때, 상기 R5가 복수인 경우, 이들은 서로 동일하거나 상이하다.
또, 상기 R6 내지 R9는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 R6과 R7, R7과 R8 및 R8과 R9 중 적어도 하나가 서로 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성할 수 있다.
바람직하게 상기 R6 내지 R9는 서로 동일하거나 상이하며, 각각 독립적으로 수소 또는 R6과 R7, R7과 R8 및 R8과 R9 중 적어도 하나가 서로 결합하여 C6~C60의 축합 방향족 고리 또는 5원~60원의 축합 헤테로방향족 고리를 형성할 수 있다.
더 바람직하게 상기 R6 내지 R9는 서로 동일하거나 상이하며, 각각 독립적으로 수소 또는 R6과 R7, R7과 R8 및 R8과 R9 중 적어도 하나가 서로 결합하여 C6~C30의 축합 방향족 고리 또는 5원~30원의 축합 헤테로방향족 고리를 형성할 수 있다.
또, 상기 m은 1 내지 3의 정수이다.
본 발명의 화학식 1로 표시되는 화합물은, 화학식 2 내지 화학식 5 중 어느 하나로 표시되는 화합물로 구체화될 수 있는데, 이에 한정되지 않는다.
Figure PCTKR2017013248-appb-C000002
Figure PCTKR2017013248-appb-C000003
Figure PCTKR2017013248-appb-C000004
상기 화학식 2 내지 5에서,
R1 내지 R6, X1 내지 X5, Ar1, Ar2, m 및 n은 각각 화학식 1에서 정의된 바와 같다,
상기 화학식 2로 표시되는 화합물의 예로는 하기 화학식 6으로 표시되는 화합물 등이 있는데, 이에 한정되지 않는다.
Figure PCTKR2017013248-appb-C000006
상기 화학식 6에서,
R1 내지 R5, X1 내지 X5, Ar1, Ar2, m 및 n은 각각 화학식 1에서 정의된 바와 같다,
또, 상기 화학식 6으로 표시되는 화합물의 예로는 하기 화학식 7로 표시되는 화합물 등이 있는데, 이에 한정되지 않는다.
Figure PCTKR2017013248-appb-C000007
상기 화학식 7에서,
R1 내지 R5, X1 내지 X4, Ar1, Ar2, m 및 n은 각각 상기 화학식 1에서 정의한 바와 같고,
X7은 단일결합이거나, 또는 S, O, N(Ar10) 및 C(Ar11)(Ar12)로 이루어진 군에서 선택되고,
Ar10 내지 Ar12는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된다.
전술한 본 발명의 화학식 1로 표시되는 화합물은 하기 예시되는 화합물 R1 내지 화합물 R401로 보다 구체화될 수 있다. 그러나, 본 발명의 화학식 1로 표시되는 화합물이 하기 예시된 것들에 의해 한정되는 것은 아니다.
Figure PCTKR2017013248-appb-I000005
Figure PCTKR2017013248-appb-I000006
Figure PCTKR2017013248-appb-I000007
Figure PCTKR2017013248-appb-I000008
Figure PCTKR2017013248-appb-I000009
Figure PCTKR2017013248-appb-I000010
Figure PCTKR2017013248-appb-I000011
Figure PCTKR2017013248-appb-I000012
Figure PCTKR2017013248-appb-I000013
Figure PCTKR2017013248-appb-I000014
Figure PCTKR2017013248-appb-I000015
Figure PCTKR2017013248-appb-I000016
Figure PCTKR2017013248-appb-I000017
Figure PCTKR2017013248-appb-I000018
Figure PCTKR2017013248-appb-I000019
Figure PCTKR2017013248-appb-I000020
Figure PCTKR2017013248-appb-I000021
Figure PCTKR2017013248-appb-I000022
Figure PCTKR2017013248-appb-I000023
Figure PCTKR2017013248-appb-I000024
Figure PCTKR2017013248-appb-I000025
본 발명에서 "알킬"은 탄소수 1 내지 40의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴"은 단독 고리 또는 2이상의 고리가 조합된탄소수 6 내지 60의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "헤테로아릴"은 핵원자수 5 내지 60의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의 축합된 형태도 포함될 수 있다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리, 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴옥시"는 RO-로 표시되는 1가의 치환기로, 상기 R은 탄소수 5 내지 60의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알킬옥시"는 R'O-로 표시되는 1가의 치환기로, 상기 R'는 탄소수 1 내지 40의 알킬을 의미하며, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있다. 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "시클로알킬"은 탄소수 3 내지 40의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "헤테로시클로알킬"은 핵원자수 3 내지 40의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알킬실릴"은 탄소수 1 내지 40의 알킬로 치환된 실릴이고, "아릴실릴"은 탄소수 5 내지 60의 아릴로 치환된 실릴을 의미한다.
본 발명에서 "알킬보론기"는 탄소수 1 내지 40의 알킬로 치환된 보론기를 의미하며, 아릴보론기는 탄소수 6 내지 60의 아릴로 치환된 보론기를 의미하고, 알킬포스피닐기는 탄소수 1 내지 40의 알킬로 치환된 포스핀기를 의미하고, 모노 또는 디아릴포스피닐기는 탄소수 6 내지 60의 모노아릴 또는 디아릴로 치환된 포스핀기를 의미한다.
본 발명에서 "아릴아민"은 탄소수 6 내지 60의 아릴로 치환된 아민을 의미한다.
본 발명에서 "축합고리"는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리, 스파이로(spiro) 고리 또는 이들의 조합된 형태를 의미한다.
<유기 전계 발광 소자>
한편, 본 발명의 다른 측면은 전술한 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자(이하, '유기 EL 소자')에 관한 것이다.
구체적으로, 본 발명에 따른 유기 전계 발광 소자는 양극(anode), 음극(cathode) 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화합물은 단독으로 사용되거나, 또는 2 이상이 혼합되어 사용될 수 있다.
일례에 따르면, 상기 1층 이상의 유기물층은 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송층 및 전자주입층 중 어느 하나 이상을 포함하며, 이 중에서 상기 발광층이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 이때, 상기 화학식 1로 표시되는 화합물은 발광층 물질, 바람직하게 형광 호스트로서 유기 전계 발광 소자에 포함될 수 있다. 이 경우, 본 발명의 유기 전계 발광 소자는 상기 화학식 1의 화합물로 인해 전자 수송 능력이 증가되어 발광층에서 정공과 전자의 결합력이 높아지기 때문에, 발광효율, 전력효율, 수명, 휘도, 구동 전압, 열적 안정성 등이 향상될 수 있다. 구체적으로, 상기 화학식 1로 표시되는 화합물은 청색 및/또는 녹색의 형광호스트로서 유기 전계 발광 소자에 포함되는 것이 바람직하다.
다른 일례에 따르면, 상기 1층 이상의 유기물층은 정공주입층, 정공수소층, 발광층, 전자수송보조층, 전자수송층 및 전자주입층을 포함하며, 이 중에서 상기 전자수송보조층이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 이때, 상기 화학식 1로 표시되는 화합물은 전자수송보조층 물질로 유기 전계 발광 소자에 포함될 수 있다. 이 경우, 본 발명의 유기 전계 발광 소자는 상기 화학식 1의 화합물에 의해 전자수송층에서 발광층으로의 전자 수송이 증가되기 때문에, 발광층에서의 정공과 전자의 결합력이 향상될 수 있고, 따라서 소자의 발광효율, 전력효율, 휘도 등이 향상될 수 있다.
이러한 본 발명의 유기 전계 발광 소자의 구조는 특별히 한정되지 않으나, 예컨대 기판 위에, 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층될 뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층이 삽입된 구조일 수 있다.
일례에 따르면, 상기 유기 전계 발광 소자는 기판 위에, 양극, 정공주입층, 정공수송층, 발광층, 전자수송층 및 음극이 순차적으로 적층된 구조를 가질 수 있다. 선택적으로, 상기 발광층과 전자수송층 사이에 전자수송보조층이 삽입될 수 있고, 또는 상기 전자수송층과 음극 사이에 전자주입층이 위치할 수 있다. 본 발명의 유기 전계 발광 소자는 상기 유기물층 중 적어도 하나(예컨대, 발광층 또는 전자수송보조층)가 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는, 당 기술 분야에 알려져 있는 재료 및 방법으로 유기물층 및 전극을 형성하여 제조할 수 있다.
상기 유기물층은 진공 증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이에 한정되지는 않는다.
본 발명에서 사용 가능한 기판은 특별히 한정되지 않으며, 비제한적인 예로는 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등이 있다.
또, 양극 물질의 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 또는 폴리아닐린과 같은 전도성 고분자; 및 카본블랙 등이 있는데, 이에 한정되지는 않는다.
또, 음극 물질의 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있는데, 이에 한정되지는 않는다.
또한, 정공주입층, 정공수송층, 발광층, 전자 주입층 및 전자 수송층은 특별히 한정되는 것은 아니며, 당 업계에 알려진 통상의 물질을 사용할 수 있다.
이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[ 준비예 1] 화합물 A1의 합성
Figure PCTKR2017013248-appb-I000026
질소 기류 하에서 2-bromo-5-(10-phenylanthracen-9-yl)pyridine 10.0g(24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고 컬럼크로마토그래피로 정제하여 목적 화합물인 A1(7.8g, 17.1 mmol, 수율: 70%)을 얻었다.
GC-Mass (이론치: 457.37g/mol, 측정치: 457g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.39(m, 5H), 7.43~7.50(m, 5H), 7.88~7.91(m, 5H), 8.55(s, 1H)
[ 준비예 2] 화합물 A2의 합성
Figure PCTKR2017013248-appb-I000027
질소 기류 하에서 5-bromo-2-(10-phenylanthracen-9-yl)pyridine 10.0g(24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A2 (7.8g, 17. 1mmol, 수율: 70%)을 얻었다.
GC-Mass (이론치: 457.37g/mol, 측정치: 457g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.39(m, 5H), 7.43~7.50(m, 5H), 7.88~7.91(m, 5H), 8.39(s, 1H)
[ 준비예 3] 화합물 A3의 합성
Figure PCTKR2017013248-appb-I000028
질소 기류 하에서 5-(10-(biphenyl-4-yl)anthracen-9-yl)-2-bromopyridine 11.9g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A3 (9.7g, 18.3 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 533.5g/mol, 측정치: 533g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.24~7.26(m, 4H), 7.36~7.40(m, 5H), 7.43~7.50(m, 5H), 7.88~7.91(m, 5H), 8.55(s, 1H)
[ 준비예 4] 화합물 A4의 합성
Figure PCTKR2017013248-appb-I000029
질소 기류 하에서 2-(10-(biphenyl-4-yl)anthracen-9-yl)-5-bromopyridine 11.9g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A4 (9.7g, 18.3 mmol, 수율 75%)을 얻었다.
GC-Mass (이론치: 533.5g/mol, 측정치: 533g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.24~7.26(m, 4H), 7.36~7.40(m, 5H), 7.43~7.50(m, 5H), 7.88~7.91(m, 5H), 8.36(s, 1H)
[ 준비예 5] 화합물 A5의 합성
Figure PCTKR2017013248-appb-I000030
질소 기류 하에서 2-bromo-5-(10-(4-phenylnaphthalen-1-yl)anthracen-9-yl)pyridine 13.1g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A5 (11.1g, 19.0 mmol, 수율 78%)을 얻었다.
GC-Mass (이론치: 583.53g/mol, 측정치: 583g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.39(m, 5H), 7.43~7.50(m, 5H), 7.88~7.93(m, 7H), 8.02~8.03(m, 2H), 8.54~8.55(m, 2H), 8.59(s, 1H)
[ 준비예 6] 화합물 A6의 합성
Figure PCTKR2017013248-appb-I000031
질소 기류 하에서 5-bromo-2-(10-(4-phenylnaphthalen-1-yl)anthracen-9-yl)pyridine 13.1g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A6 (11.1g, 19.0 mmol, 수율 78%)을 얻었다.
GC-Mass (이론치: 583 .53g/mol, 측정치: 583g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.39(m, 5H), 7.43~7.50(m, 5H), 7.88~7.93(m, 7H), 8.02~8.03(m, 2H), 8.32(s, 1H), 8.54~8.55(m, 2H)
[ 준비예 7] 화합물 A7의 합성
Figure PCTKR2017013248-appb-I000032
질소 기류 하에서 5-bromo-2-(10-(4-(naphthalen-2-yl)phenyl)anthracen-9-yl)pyridine 13.1g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A7 (10.5g, 18.0 mmol, 수율 74%)을 얻었다.
GC-Mass (이론치: 583.53g/mol, 측정치: 583g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.39(m, 9H), 7.52~7.55(m, 3H), 7.79~7.93(m, 7H), 8.02~8.03(m, 2H), 8.34(s, 1H)
[ 준비예 8] 화합물 A8의 합성
Figure PCTKR2017013248-appb-I000033
질소 기류 하에서 5-bromo-2-(10-(4-(naphthalen-2-yl)phenyl)anthracen-9-yl)pyridine 13.1g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A8 (10.5g, 18.0 mmol, 수율 74%)을 얻었다.
GC-Mass (이론치: 583.53g/mol, 측정치: 583g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.39(m, 9H), 7.52~7.55(m, 3H), 7.79~7.93(m, 7H), 8.02~8.03(m, 2H), 8.34(s, 1H)
[ 준비예 9] 화합물 A9의 합성
Figure PCTKR2017013248-appb-I000034
질소 기류 하에서 2-bromo-5-(10-(4-(naphthalen-1-yl)phenyl)anthracen-9-yl)pyridine 13.1g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A9 (10.5g, 18.0 mmol, 수율 74%)을 얻었다.
GC-Mass (이론치: 583.53g/mol, 측정치: 583g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.23~7.25(m, 4H), 7.35~7.39(m, 5H), 7.55~7.59(m, 3H), 7.88~7.91(m, 5H), 8.04~8.06(m, 2H), 8.42~8.50(m, 2H), 8.58(s, 1H)
[ 준비예 10] 화합물 A10의 합성
Figure PCTKR2017013248-appb-I000035
질소 기류 하에서 5-bromo-2-(10-(4-(naphthalen-1-yl)phenyl)anthracen-9-yl)pyridine 13.1g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음 MgSO4로 수분을 제거하고 컬럼크로마토그래피로 정제하여 목적 화합물인 A10(10.5g, 18.0 mmol, 수율 74%)을 얻었다.
GC-Mass (이론치: 583.53g/mol, 측정치: 583g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.23~7.25(m, 4H), 7.35~7.39(m, 5H), 7.55~7.59(m, 3H), 7.88~7.91(m, 5H), 8.04~8.06(m, 2H), 8.34(s, 1H), 8.42~8.50(m, 2H)
[ 준비예 11] 화합물 A11의 합성
Figure PCTKR2017013248-appb-I000036
질소 기류 하에서 2-bromo-5-(10-(phenanthren-9-yl)anthracen-9-yl)pyridine 12.4g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g( 29.2 mmol), Pd(dppf)Cl2 0.6 g( 0.7 mmol), KOAc 7.2 g( 73.1 mmol) 및 1,4-Dioxane (200 ml)를 혼합하고 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A11(10.6g, 19.0 mmol, 수율 78%)을 얻었다.
GC-Mass (이론치: 510.42g/mol, 측정치: 510g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.39(m, 5H), 7.85~7.92(m, 10H), 8.10~8.11(m, 2H), 8.58(s, 1H), 8.88~8.90(m, 2H)
[ 준비예 12] 화합물 A12의 합성
Figure PCTKR2017013248-appb-I000037
질소 기류 하에서 2-bromo-5-(10-(triphenylen-2-yl)anthracen-9-yl)pyridine 13.7g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g( 29.2 mmol), Pd(dppf)Cl2 0.6 g( 0.7 mmol), KOAc 7.2 g( 73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A12(11.5g, 19.0 mmol, 수율 78%)을 얻었다.
GC-Mass (이론치: 607.55g/mol, 측정치: 607g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.39(m, 5H), 7.88~7.92(m, 9H), 8.07~8.14(m, 4H), 8.58(s, 1H), 8.87~8.90(m, 2H), 9.11(s, 1H)
[ 준비예 13] 화합물 A13의 합성
Figure PCTKR2017013248-appb-I000038
질소 기류 하에서 2-bromo-5-(10-(pyren-2-yl)anthracen-9-yl)pyridine 13.0g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A13(10.5g, 18.0 mmol, 수율 74%)을 얻었다.
GC-Mass (이론치: 581.51g/mol, 측정치: 581g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.39(m, 5H), 7.70~7.71(m. 4H), 7.88~7.92(m, 6H), 8.07~8.14(m, 4H), 8.58(s, 1H)
[ 준비예 14] 화합물 A14의 합성
Figure PCTKR2017013248-appb-I000039
질소 기류 하에서 2-bromo-5-(10-(pyridin-4-yl)anthracen-9-yl)pyridine 10.0g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g( 29.2 mmol), Pd(dppf)Cl2 0.6 g( 0.7 mmol), KOAc 7.2 g( 73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음 MgSO4로 수분을 제거하고 컬럼크로마토그래피로 정제하여 목적 화합물인 A14(8.3 g, 18.0 mmol, 수율 74%)을 얻었다.
GC-Mass (이론치: 458.36g/mol, 측정치: 458g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.39(m, 5H), 7.88~7.94(m, 7H), 8.58(s, 1H), 8.71~8.72(m, 2H)
[ 준비예 15] 화합물 A15의 합성
Figure PCTKR2017013248-appb-I000040
질소 기류 하에서 2-bromo-5-(10-(dibenzo[b,d]furan-2-yl)anthracen-9-yl)pyridine 12.2g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A15(10.1 g, 18.5 mmol, 수율 76%)을 얻었다.
GC-Mass (이론치: 547.45g/mol, 측정치: 547g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.38(m, 7H), 7.63~7.70(m, 3H), 7.88~7.93(m, 7H), 8.58(s, 1H)
[ 준비예 16] 화합물 A16의 합성
Figure PCTKR2017013248-appb-I000041
질소 기류 하에서 2-bromo-5-(10-(dibenzo[b,d]thiophen-4-yl)anthracen-9-yl)pyridine 12.6g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g( 0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음 MgSO4로 수분을 제거하고 컬럼크로마토그래피로 정제하여 목적 화합물인 A16(10.8 g, 18.5 mmol, 수율 76%)을 얻었다.
GC-Mass (이론치: 583.52g/mol, 측정치: 583g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.38(m, 5H), 7.55~7.59(m, 3H), 7.89~7.93(m, 6H), 8.25~8.38(m, 3H), 8.58(s, 1H)
[ 준비예 17] 화합물 A17의 합성
Figure PCTKR2017013248-appb-I000042
질소 기류 하에서 3-(10-(6-bromopyridin-3-yl)anthracen-9-yl)-9-phenyl-9H-carbazole 14.0g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음 MgSO4로 수분을 제거하고 컬럼크로마토그래피로 정제하여 목적 화합물인 A17(11.5 g, 18.5 mmol, 수율 76%)을 얻었다.
GC-Mass (이론치: 622.56g/mol, 측정치: 622g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.38(m, 7H), 7.45~7.59(m, 5H), 7.74~7.93(m, 9H), 8.48(d, 1H), 8.58(s, 1H)
[ 준비예 18] 화합물 A18의 합성
Figure PCTKR2017013248-appb-I000043
질소 기류 하에서 2-bromo-5-(10-(9,9-dimethyl-9H-fluoren-2-yl)anthracen-9-yl)pyridine 12.8 g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고 130℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A18(10.6 g, 18.5 mmol, 수율 76%)을 얻었다.
GC-Mass (이론치: 573.53g/mol, 측정치: 573g/mol)
1H-NMR: δ 1.25(1S, 12H), 1.70(s, 6H), 7.34~7.38(m, 7H), 7.45~7.59(m, 2H), 7.74~7.93(m, 8H), 8.58(s, 1H)
[ 준비예 19] 화합물 A19의 합성
Figure PCTKR2017013248-appb-I000044
질소 기류 하에서 2-bromo-5-(10-(9,9-diphenyl-9H-fluoren-2-yl)anthracen-9-yl)pyridine 15.9 g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A19(12.7 g, 18.3 mmol, 수율 75%)을 얻었다.
GC-Mass (이론치: 697.67/mol, 측정치: 697g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.12~7.22(m, 5H), 7.34~7.38(m, 12H), 7.51~7.65(m, 2H), 7.74~7.93(m, 8H), 8.58(s, 1H)
[ 준비예 20] 화합물 A20의 합성
Figure PCTKR2017013248-appb-I000045
질소 기류 하에서 5-(10-(9,9'-spirobi[fluorene]-2-yl)anthracen-9-yl)-2-bromopyridine 15.8 g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g( 0.7 mmol), KOAc 7.2 g( 73.1 mmol) 및 1,4-Dioxane (200 ml)를 혼합하고 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A20(12.7 g, 18.3 mmol, 수율 75%)을 얻었다.
GC-Mass (이론치: 695.65/mol, 측정치: 695g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.09~7.18(m, 3H), 7.34~7.38(m, 12H), 7.53~7.66(m, 2H), 7.72~7.90(m, 8H), 8.57(s, 1H)
[ 준비예 21] 화합물 A21의 합성
Figure PCTKR2017013248-appb-I000046
질소 기류 하에서 2-bromo-5-(10-(dibenzo[b,e][1,4]dioxin-2-yl)anthracen-9-yl)pyridine 12.6 g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A21(10.3 g, 18.3 mmol, 수율 75%)을 얻었다.
GC-Mass (이론치: 563.45/mol, 측정치: 563g/mol)
1H-NMR: δ 1.25(1S, 12H), 6.82~6.83(m, 2H), 7.13~7.18(m, 3H), 7.34~7.41(m, 7H), 7.72~7.90(m, 5H), 8.57(s, 1H)
[ 준비예 22] 화합물 A22의 합성
Figure PCTKR2017013248-appb-I000047
질소 기류 하에서 2'-(10-(6-bromopyridin-3-yl)anthracen-9-yl)-10-phenyl-10H-spiro[acridine-9,9'-fluorene] 18.0 g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g( 0.7 mmol), KOAc 7.2 g( 73.1 mmol) 및 1,4-Dioxane (200 ml)를 혼합하고 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A22(14.4 g, 18.3 mmol, 수율 75%)을 얻었다.
GC-Mass (이론치: 786.76/mol, 측정치: 786g/mol)
1H-NMR: δ 1.25(1S, 12H), 6.52~6.83(m, 9H), 7.11~7.18(m, 5H), 7.34~7.48(m, 7H), 7.72~7.90(m, 8H), 8.57(s, 1H)
[ 준비예 23] 화합물 A23의 합성
Figure PCTKR2017013248-appb-I000048
질소 기류 하에서 2-bromo-5-(10-(spiro[fluorene-9,9'-xanthene]-2-yl)anthracen-9-yl)pyridine 18.0 g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g( 0.7 mmol), KOAc 7.2 g( 73.1 mmol) 및 1,4-Dioxane (200 ml)를 혼합하고 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A23(13.0 g, 18.3 mmol, 수율 75%)을 얻었다.
GC-Mass (이론치: 711.65/mol, 측정치: 711g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.08~7.18(m, 9H), 7.34~7.48(m, 7H), 7.72~7.90(m, 9H), 8.57(s, 1H)
[ 준비예 24] 화합물 A24의 합성
Figure PCTKR2017013248-appb-I000049
질소 기류 하에서 2'-(10-(6-bromopyridin-3-yl)-2-phenylanthracen-9-yl)-10-phenyl-10H-spiro[acridine-9,9'-fluorene] 19.9 g (24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g( 0.7 mmol), KOAc 7.2 g( 73.1 mmol) 및 1,4-Dioxane (200 ml)를 혼합하고 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A24(16.1 g, 18.3 mmol, 수율 75%)을 얻었다.
GC-Mass (이론치: 882.86/mol, 측정치: 882g/mol)
1H-NMR: δ 1.25(1S, 12H), 6.53~6.83(m, 9H), 7.11~7.19(m, 5H), 7.34~7.52(m, 12H), 7.72~7.91(m, 7H), 8.10(s, 1H), 8.57(s, 1H)
[ 준비예 25] 화합물 A25의 합성
Figure PCTKR2017013248-appb-I000050
질소 기류 하에서 2-bromo-5-(3,10-diphenylanthracen-9-yl)pyridine 11.9g(24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A25(9.4g, 17.5 mmol, 수율 72%)을 얻었다.
GC-Mass (이론치: 533.47g/mol, 측정치: 533g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.39(m, 3H), 7.43~7.54(m, 11H), 7.88~7.91(m, 4H), 8.10(s, 1H), 8.55(s, 1H)
[ 준비예 26] 화합물 A26의 합성
Figure PCTKR2017013248-appb-I000051
질소 기류 하에서 5-bromo-2-(3,10-diphenylanthracen-9-yl)pyridine 11.9g(24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A26(9.4g, 17.5 mmol, 수율 72%)을 얻었다.
GC-Mass (이론치: 533.47g/mol, 측정치: 533g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.39(m, 3H), 7.43~7.54(m, 11H), 7.88~7.91(m, 4H), 8.10(s, 1H), 8.34(s, 1H)
[ 준비예 27] 화합물 A27의 합성
Figure PCTKR2017013248-appb-I000052
질소 기류 하에서 5-(10-(biphenyl-4-yl)-3-phenylanthracen-9-yl)-2-bromopyridine 13.7g(24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A27(10.7g, 17.5 mmol, 수율 72%)을 얻었다.
GC-Mass (이론치: 609.56g/mol, 측정치: 609g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.39(m, 3H), 7.43~7.54(m, 15H), 7.88~7.91(m, 4H), 8.10(s, 1H), 8.34(s, 1H)
[ 준비예 28] 화합물 A28의 합성
Figure PCTKR2017013248-appb-I000053
질소 기류 하에서 2-bromo-5-(3-phenyl-10-(pyridin-4-yl)anthracen-9-yl)pyridine 11.9g(24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A28(9.4g, 17.5 mmol, 수율 72%)을 얻었다.
GC-Mass (이론치: 534.45g/mol, 측정치: 534g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.36(m, 3H), 7.43~7.54(m, 6H), 7.88~7.91(m, 6H), 8.10(s, 1H), 8.55(s, 1H), 8.86~8.87(m, 2H)
[ 준비예 29] 화합물 A29의 합성
Figure PCTKR2017013248-appb-I000054
질소 기류 하에서 2-bromo-5-(10-phenyl-3-(pyridin-4-yl)anthracen-9-yl)pyridine 11.9g(24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A29(9.4g, 17.5 mmol, 수율 72%)을 얻었다.
GC-Mass (이론치: 534.45g/mol, 측정치: 534g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.36(m, 3H), 7.45~7.54(m, 6H), 7.88~7.92(m, 6H), 8.10(s, 1H), 8.55(s, 1H), 8.86~8.87(m, 2H)
[ 준비예 30] 화합물 A30의 합성
Figure PCTKR2017013248-appb-I000055
질소 기류 하에서 2-bromo-5-(3-(dibenzo[b,d]furan-2-yl)-10-phenylanthracen-9-yl)pyridine 14.0g(24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A30(10.9g, 17.5 mmol, 수율 72%)을 얻었다.
GC-Mass (이론치: 623.55g/mol, 측정치: 623g/mol)
1H-NMR: δ 1.25(1S, 12H), 7.35~7.38(m, 5H), 7.45~7.54(m, 7H), 7.88~7.90(m, 8H), 8.10(s, 1H), 8.55(s, 1H)
[ 준비예 31] 화합물 A31의 합성
Figure PCTKR2017013248-appb-I000056
질소 기류 하에서 2-(4-(10-(6-bromopyridin-3-yl)-9-phenylanthracen-2-yl)phenyl)-1-phenyl-1H-benzo[d]imidazole 16.5g(24.4 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 7.4 g(29.2 mmol), Pd(dppf)Cl2 0.6 g(0.7 mmol), KOAc 7.2 g(73.1 mmol) 및 1,4-Dioxane 200 ml를 혼합하고, 130 ℃에서 6시간 동안 교반하였다.
반응 종료 후, 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피로 정제하여 목적 화합물인 A31(12.7g, 17.5 mmol, 수율 72%)을 얻었다.
GC-Mass (이론치: 725.68g/mol, 측정치: 725g/mol)
1H-NMR: δ 7.22~7.25(m 4H), 7.42~7.63(m, 15H), 7.85~7.92(m, 5H), 8.12~8.14(m, 2H), 8.52(d, 1H), 8.80(s, 1H)
[ 합성예 1] 화합물 R13의 합성
Figure PCTKR2017013248-appb-I000057
질소 기류 하에서 화합물 A1 7.8g(17.1 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 7.0g (18.8 mmol), Pd(PPh3)4 0.9g (5 mol%), 및 potassium carbonate 7.0g (51.2 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml 를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 R13 (8.0g, 12.8 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 623.74g/mol, 측정치: 623g/mol)
[ 합성예 2] 화합물 R15의 합성
Figure PCTKR2017013248-appb-I000058
질소 기류 하에서 화합물 A1 7.8g(17.1 mmol), 2-(4-bromophenyl)benzo[b]naphtho[2,3-d]furan 5.6g (18.8 mmol), Pd(PPh3)4 0.9g (5 mol%), potassium carbonate 7.0g (51.2 mmol) 및 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R15(7.0g, 12.8 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 547.64g/mol, 측정치: 547g/mol)
[ 합성예 3] 화합물 R17의 합성
Figure PCTKR2017013248-appb-I000059
질소 기류 하에서 화합물 A1 7.8g(17.1 mmol), 9-bromobenzo[b]naphtho[1,2-d]furan 5.6g (18.8 mmol), Pd(PPh3)4 0.9g (5 mol%), 및 potassium carbonate 7.0g (51.2 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 R17(7.0g, 12.8 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 547.64g/mol, 측정치: 547g/mol)
[ 합성예 4] 화합물 R33의 합성
Figure PCTKR2017013248-appb-I000060
질소 기류 하에서 화합물 A1 7.8g(17.1 mmol), 2-bromobenzo[b]naphtho[2,3-d]thiophene 5.9g (18.8 mmol), Pd(PPh3)4 0.9g (5 mol%), 및 potassium carbonate 7.0g (51.2 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 R33(6.9g, 12.8 mmol, 수율: 72%)을 얻었다.
GC-Mass (이론치: 563.71g/mol, 측정치: 563g/mol)
[ 합성예 5] 화합물 R58의 합성
Figure PCTKR2017013248-appb-I000061
질소 기류 하에서 화합물 A1 7.8g(17.1 mmol), 10-bromo-7-phenyl-7H-benzo[c]carbazole 7.0g (18.8 mmol), Pd(PPh3)4 0.9g (5 mol%), 및 potassium carbonate 7.0g (51.2 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R58(7.6g, 12.8 mmol, 수율: 72%)을 얻었다.
GC-Mass (이론치: 622.75g/mol, 측정치: 622g/mol)
[ 합성예 6] 화합물 R67의 합성
Figure PCTKR2017013248-appb-I000062
질소 기류 하에서 화합물 A1 7.8g(17.1 mmol), 2-bromo-9,9'-spirobi[fluorene] 7.4g (18.8 mmol), Pd(PPh3)4 0.9g (5 mol%), 및 potassium carbonate 7.0g (51.2 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R67(7.9g, 12.8 mmol, 수율: 72%)을 얻었다.
GC-Mass (이론치: 645.79g/mol, 측정치: 645g/mol)
[ 합성예 7] 화합물 R75의 합성
Figure PCTKR2017013248-appb-I000063
질소 기류 하에서 화합물 A1 7.8g(17.1 mmol), 3-(4-bromophenyl)spiro[fluorene-9,9'-xanthene] 9.1g (18.8 mmol), Pd(PPh3)4 0.9g (5 mol%), 및 potassium carbonate 7.0g (51.2 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R75(9.8g, 13.3 mmol, 수율: 78%)을 얻었다.
GC-Mass (이론치: 737.88g/mol, 측정치: 737g/mol)
[ 합성예 8] 화합물 R78의 합성
Figure PCTKR2017013248-appb-I000064
질소 기류 하에서 화합물 A1 7.8g(17.1 mmol), 3'-bromo-10-phenyl-10H-spiro[acridine-9,9'-fluorene] 9.1g (18.8 mmol), Pd(PPh3)4 0.9g (5 mol%), 및 potassium carbonate 7.0g (51.2 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 R78(9.8g, 13.3 mmol, 수율: 78%)을 얻었다.
GC-Mass (이론치: 736.90g/mol, 측정치: 736g/mol)
[ 합성예 9] 화합물 R93의 합성
Figure PCTKR2017013248-appb-I000065
질소 기류 하에서 화합물 A2 7.8g(17.1 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 5.6g (18.8 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.1g (51.2 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R93(7.2g, 13.1 mmol, 수율: 77%)을 얻었다.
GC-Mass (이론치: 547.64g/mol, 측정치: 547g/mol)
[ 합성예 10] 화합물 R173의 합성
Figure PCTKR2017013248-appb-I000066
질소 기류 하에서 화합물 A3 9.7g(18.3 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.0g (20.1 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.6g (54.8 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R173(8.7g, 13.9 mmol, 수율: 76%)을 얻었다.
GC-Mass (이론치: 623.74g/mol, 측정치: 623g/mol)
[ 합성예 11] 화합물 R253의 합성
Figure PCTKR2017013248-appb-I000067
질소 기류 하에서 화합물 A4 9.7g(18.3 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.0g (20.1 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.6g (54.8 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R253(8.7g, 13.9 mmol, 수율: 76%)을 얻었다.
GC-Mass (이론치: 623.74g/mol, 측정치: 623g/mol)
[ 합성예 12] 화합물 R321의 합성
Figure PCTKR2017013248-appb-I000068
질소 기류 하에서 화합물 A5 11.1g(19.0 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.2g (20.9 mmol), Pd(PPh3)4 1.1g (5 mol%), 및 potassium carbonate 7.9g (57.0 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R321(9.3g, 13.9 mmol, 수율: 73%)을 얻었다.
GC-Mass (이론치: 673.80g/mol, 측정치: 673g/mol)
[ 합성예 13] 화합물 R324의 합성
Figure PCTKR2017013248-appb-I000069
질소 기류 하에서 화합물 A6 11.1g(19.0 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.2g (20.9 mmol), Pd(PPh3)4 1.1g (5 mol%), 및 potassium carbonate 7.9g (57.0 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R324(9.3g, 13.9 mmol, 수율: 73%)을 얻었다.
GC-Mass (이론치: 673.80g/mol, 측정치: 673g/mol)
[ 합성예 14] 화합물 R327의 합성
Figure PCTKR2017013248-appb-I000070
질소 기류 하에서 화합물 A7 10.5g(18.0 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.0g (19.8 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.5g (54.1mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R327(8.9g, 13.2 mmol, 수율: 73%)을 얻었다.
GC-Mass (이론치: 673.80g/mol, 측정치: 673g/mol)
[ 합성예 15] 화합물 R330의 합성
Figure PCTKR2017013248-appb-I000071
질소 기류 하에서 화합물 A8 10.5g(18.0 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 5.9g (19.8 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.5g (54.1mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R330(9.1g, 13.5 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 673.80g/mol, 측정치: 673g/mol)
[ 합성예 16] 화합물 R333의 합성
Figure PCTKR2017013248-appb-I000072
질소 기류 하에서 화합물 A9 10.5g(18.0 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 5.9g (19.8 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.5g (54.1mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 R333(9.1g, 13.5 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 673.80g/mol, 측정치: 673g/mol)
[ 합성예 17] 화합물 R336의 합성
Figure PCTKR2017013248-appb-I000073
질소 기류 하에서 화합물 A10 10.6g(19.0 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.2g (20.9 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.9g (57.0 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R336(9.2g, 14.3 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 647.76g/mol, 측정치: 647g/mol)
[ 합성예 18] 화합물 R339의 합성
Figure PCTKR2017013248-appb-I000074
질소 기류 하에서 화합물 A11 10.6g(19.0 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.2g (20.9 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.9g (57.0 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R339(9.2g, 14.3 mmol, 수율 75%)을 얻었다.
GC-Mass (이론치: 647.76.g/mol, 측정치: 647g/mol)
[ 합성예 19] 화합물 R344의 합성
Figure PCTKR2017013248-appb-I000075
질소 기류 하에서 화합물 A12 11.5g(19.0 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.2g (20.9 mmol), Pd(PPh3)4 1.1g (5 mol%), 및 potassium carbonate 7.9g (57.0 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R344(9.9g, 14.3 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 697.82g/mol, 측정치: 697g/mol)
[ 합성예 20] 화합물 R345의 합성
Figure PCTKR2017013248-appb-I000076
질소 기류 하에서 화합물 A13 10.5g(18.0 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 5.9g (19.8 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.5g (54.1 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R345(9.1g, 13.5 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 671.78g/mol, 측정치: 671g/mol)
[ 합성예 21] 화합물 R348의 합성
Figure PCTKR2017013248-appb-I000077
질소 기류 하에서 화합물 A14 8.3g(18.0 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 5.9g (19.8 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.5g (54.1 mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R348(9.9g, 13.5 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 548.63g/mol, 측정치: 548g/mol)
[ 합성예 22] 화합물 R351의 합성
Figure PCTKR2017013248-appb-I000078
질소 기류 하에서 화합물 A15 10.1g(18.5 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 5.9g (20.4 mmol), Pd(PPh3)4 1.1g (5 mol%), 및 potassium carbonate 7.5g (55.5mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R351(8.9g, 13.9 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 637.72g/mol, 측정치: 637g/mol)
[ 합성예 23] 화합물 R354의 합성
Figure PCTKR2017013248-appb-I000079
질소 기류 하에서 화합물 A16 10.8g(18.5 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.1g (20.4 mmol), Pd(PPh3)4 1.1g (5 mol%), 및 potassium carbonate 7.5g (55.5mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R354(9.1g, 13.9 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 653.79g/mol, 측정치: 653g/mol)
[ 합성예 24] 화합물 R357의 합성
Figure PCTKR2017013248-appb-I000080
질소 기류 하에서 화합물 A17 11.5g(18.5 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.1g (20.4 mmol), Pd(PPh3)4 1.1g (5 mol%), 및 potassium carbonate 7.5g (55.5mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R357(9.9g, 13.2 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 712.83g/mol, 측정치: 712g/mol)
[ 합성예 25] 화합물 R360의 합성
Figure PCTKR2017013248-appb-I000081
질소 기류 하에서 화합물 A18 10.6g(18.5 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.1g (20.4 mmol), Pd(PPh3)4 1.1g (5 mol%), 및 potassium carbonate 7.5g (55.5mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R360(9.2g, 12.3 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 663.80g/mol, 측정치: 663g/mol)
[ 합성예 26] 화합물 R363의 합성
Figure PCTKR2017013248-appb-I000082
질소 기류 하에서 화합물 A19 12.8g(18.3 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.0g (20.1 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.6g (54.8mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R363(10.8g, 13.7 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 787.94g/mol, 측정치: 787g/mol)
[ 합성예 27] 화합물 R366의 합성
Figure PCTKR2017013248-appb-I000083
질소 기류 하에서 화합물 A20 12.7g(18.3 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.0g (20.1 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.6g (54.8mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R366(10.8g, 13.7 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 785.93g/mol, 측정치: 785g/mol)
[ 합성예 28] 화합물 R369의 합성
Figure PCTKR2017013248-appb-I000084
질소 기류 하에서 화합물 A21 10.3g(18.3 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.0g (20.1 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.6g (54.8mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R369(9.0g, 13.7 mmol, 수율 75%)을 얻었다.
GC-Mass (이론치: 653.72g/mol, 측정치: 653g/mol)
[ 합성예 29] 화합물 R372의 합성
Figure PCTKR2017013248-appb-I000085
질소 기류 하에서 화합물 A22 14.4g(18.3 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.0g (20.1 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.6g (54.8mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R372(12.0g, 13.7 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 877.04g/mol, 측정치: 877g/mol)
[ 합성예 30] 화합물 R375의 합성
Figure PCTKR2017013248-appb-I000086
질소 기류 하에서 화합물 A23 13.0g(18.3 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.0g (20.1 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.6g (54.8mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R375(11.0g, 14.7 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 801.93g/mol, 측정치: 801g/mol)
[ 합성예 31] 화합물 R378의 합성
Figure PCTKR2017013248-appb-I000087
질소 기류 하에서 화합물 A24 16.1g(18.3 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 6.0g (20.1 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.6g (54.8mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R378(13.1g, 13.7 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 953.13g/mol, 측정치: 953g/mol)
[ 합성예 32] 화합물 R381의 합성
Figure PCTKR2017013248-appb-I000088
질소 기류 하에서 화합물 A25 9.4g(17.5 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 5.7g (19.3 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.3g (52.6mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R381(8,2g, 13.2 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 623.74g/mol, 측정치: 624g/mol)
[ 합성예 33] 화합물 R384의 합성
Figure PCTKR2017013248-appb-I000089
질소 기류 하에서 화합물 A26 9.4g(17.5 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 5.7g (19.3 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.3g (52.6mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R384(8,2g, 13.2 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 623.74g/mol, 측정치: 624g/mol)
[ 합성예 34] 화합물 R387의 합성
Figure PCTKR2017013248-appb-I000090
질소 기류 하에서 화합물 A27 9.4g(10.7 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 5.7g (19.3 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.3g (52.6mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R387(9,2g, 13.2 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 699.84g/mol, 측정치: 699g/mol)
[ 합성예 35] 화합물 R390의 합성
Figure PCTKR2017013248-appb-I000091
질소 기류 하에서 화합물 A28 9.4g(17.5 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 5.7g (19.3 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.3g (52.6mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R390(8,2g, 13.2 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 624.73g/mol, 측정치: 624g/mol)
[ 합성예 36] 화합물 R393의 합성
Figure PCTKR2017013248-appb-I000092
질소 기류 하에서 화합물 A29 9.4g(17.5 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 5.7g (19.3 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.3g (52.6mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R393(8,2g, 13.2 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 624.73g/mol, 측정치: 624g/mol)
[ 합성예 37] 화합물 R396의 합성
Figure PCTKR2017013248-appb-I000093
질소 기류 하에서 화합물 A30 10.9g(17.5 mmol), 2-bromobenzo[b]naphtho[2,3-d]furan 5.7g (19.3 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.3g (52.6mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R396(9.4g, 13.2 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 713.82g/mol, 측정치: 713g/mol)
[ 합성예 38] 화합물 R401의 합성
Figure PCTKR2017013248-appb-I000094
질소 기류 하에서 화합물 A31 12.7g(17.5 mmol), 2-bromo-9,9-dimethyl-9H-fluorene 5.3g (19.3 mmol), Pd(PPh3)4 1.0g (5 mol%), 및 potassium carbonate 7.3g (52.6mmol)와 Toluene/H2O/Ethanol 80ml/40ml/40ml를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고, MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 목적 화합물인 R401(9.4g, 13.2 mmol, 수율: 75%)을 얻었다.
GC-Mass (이론치: 791.98g/mol, 측정치: 791g/mol)
[ 합성예 39] 화합물 R311의 합성
Figure PCTKR2017013248-appb-I000095
질소 기류 하에서 화합물 A4 9.7g(18.3 mmol), 2-bromodibenzo[b,e][1,4]dioxine 5.3g (20.1 mmol), Pd(PPh3)4 1.0g (5 mol%), potassium carbonate 7.6g (54.8 mmol) 및 Toluene/H2O/Ethanol (80ml/40ml/40ml)를 넣고, 110 ℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 R311 (8.2g, 13.9 mmol, 수율: 76%)을 얻었다.
GC-Mass (이론치: 598.68g/mol, 측정치: 598g/mol)
[ 실시예 1] 청색 유기 전계 발광 소자의 제조
합성예 1에서 합성된 화합물 R13을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 하기와 같이 청색 유기 전계 발광 소자를 제조하였다.
ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고, 건조시킨 후, UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, DS-205 (두산社)(80 nm)/NPB (15 nm)/합성예 1의 화합물 R13 + 5 % DS-405 (두산社)(30nm)/ Alq3 (25 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제조하였다.
이때 사용된 NPB 및 Alq3의 구조는 각각 다음과 같다.
Figure PCTKR2017013248-appb-I000096
Figure PCTKR2017013248-appb-I000097
[ 실시예 2~30] 청색 유기 전계 발광 소자의 제조
실시예 1에서 발광층의 형성시 호스트 물질로 사용된 화합물 R13 대신 표 1에 기재된 화합물을 각각 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 청색 유기 전계 발광 소자를 제조하였다.
[ 비교예 1] 청색 유기 전계 발광 소자의 제조
실시예 1에서 발광층의 형성시 사용된 화합물 R13 대신 청색 호스트 물질인 ADN을 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 청색 유기 전계 발광 소자를 제작하였다. 이때 사용된 ADN의 구조는 하기와 같다.
Figure PCTKR2017013248-appb-I000098
[ 평가예 1]
실시예 1 내지 30 및 비교예 1에서 각각 제조된 유기 전계 발광 소자에 대하여, 전류밀도 10 mA/㎠에서의 구동전압, 전류효율, 및 발광파장을 측정하였고, 그 결과를 하기 표 1에 나타내었다.
샘플 발광층 구동전압(V) 전류효율(cd/A) 발광피크(nm)
실시예 1 R13 3.3 12.5 458
실시예 2 R15 3.4 11.0 458
실시예 3 R17 3.3 10.8 458
실시예 4 R33 4.0 8.8 458
실시예 5 R58 4.0 8.9 458
실시예 6 R67 3.0 7.5 458
실시예 7 R75 3.1 7.1 458
실시예 8 R78 3.2 7.8 458
실시예 9 R93 3.5 11.2 458
실시예 10 R173 3.8 11.6 458
실시예 11 R252 4.1 12.5 458
실시예 12 R321 4.2 11.8 458
실시예 13 R324 3.5 11.5 458
실시예 14 R327 3.9 10.5 458
실시예 15 R330 4.2 10.1 458
실시예 16 R333 3.9 11.9 458
실시예 17 R336 4.2 10.8 458
실시예 18 R339 3.2 10.5 458
실시예 19 R344 4.3 12.9 458
실시예 20 R345 3.8 9.8 458
실시예 21 R348 3.2 8.8 458
실시예 22 R351 4.4 12.0 458
실시예 23 R354 4.1 12.5 458
실시예 24 R357 3.9 10.5 458
실시예 25 R360 4.2 9.9 458
실시예 26 R363 3.2 11.2 458
실시예 27 R366 3.3 10.5 458
실시예 28 R369 3.5 11.1 458
실시예 29 R372 3.2 9.8 458
실시예 30 R375 3.0 10.4 458
비교예1 ADN 4.7 5.6 458
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 화합물(R13~R375)을 발광층의 호스트 물질로 사용한 실시예 1~30의 청색 유기 전계 발광 소자는, 종래 AND을 사용한 비교예 1의 청색 유기 전계 발광 소자에 비해 구동전압은 낮고, 전류효율은 높았다. 아울러, 실시예 1~30의 소자는 발광피크가 비교예 1의 소자와 동일하였다.
[실시예 31] 청색 유기 전계 발광 소자의 제조
합성예 1에서 합성된 화합물 R13을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 하기와 같이 청색 유기 전계 발광 소자를 제조하였다.
ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고, 건조시킨 후, UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, DS-205 (두산社)(80 nm)/NPB (15 nm)/ADN + 5 % DS-405 (두산社)(30nm)/화합물 R13/ Alq3 (25 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제조하였다. 이때 사용된 NPB, ADN 및 Alq3의 구조는 다음과 같다.
Figure PCTKR2017013248-appb-I000099
Figure PCTKR2017013248-appb-I000100
Figure PCTKR2017013248-appb-I000101
[실시예 32~45] 청색 유기 전계 발광 소자의 제조
실시예 31에서 전자수송보조층의 형성시 전자수송보조층 물질로 사용된 화합물 R13 대신 표 2에 기재된 화합물을 각각 사용하는 것을 제외하고는, 실시예 31과 동일하게 수행하여 청색 유기 전계 발광 소자를 제조하였다.
[비교예 2] 청색 유기 전계 발광 소자의 제조
실시예 31에서 전자수송보조층의 형성시 전자수송보조층 물질로 사용된 화합물 R13 대신 하기 화합물 C3를 사용하는 것을 제외하고는, 실시예 31과 동일하게 수행하여 청색 유기 전계 발광 소자를 제조하였다. 이때, 사용된 화합물 C3는 하기와 같다.
Figure PCTKR2017013248-appb-I000102
[비교예 3] 청색 유기 전계 발광 소자의 제조
실시예 31에서 사용된 화합물 R13을 사용하지 않는 것을 제외하고는, 실시예 31과 동일하게 수행하여 청색 유기 전계 발광 소자를 제작하였다.
[평가예 2]
실시예 31 내지 45, 및 비교예 2와 3에서 각각 제조된 유기 전계 발광 소자에 대하여, 전류밀도 10 mA/㎠에서의 구동전압 및 전류효율을 측정하였고, 그 결과를 하기 표 2에 나타내었다.
샘플 전자수송 보조층 구동전압(V) 전류효율(cd/A)
실시예 31 R13 3.0 7.8
실시예 32 R58 3.3 8.6
실시예 33 R67 3.9 11.2
실시예 34 R75 3.6 10.8
실시예 35 R78 3.7 12.1
실시예 36 R151 3.2 8.6
실시예 37 R357 3.3 8.5
실시예 38 R360 4.0 10.8
실시예 39 R363 4.1 10.9
실시예 40 R366 3.9 11.0
실시예 41 R369 3.5 9.9
실시예 42 R372 3.8 9.8
실시예 43 R375 3.7 11.1
실시예 44 R378 3.8 11.8
실시예 45 R401 3.1 7.8
비교예 2 C3 3,5 6.0
비교예 3 - 4.7 5.6
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 화합물(R13~R401)을 전자수송보조층 물질로 사용한 실시예 31~45의 청색 유기 전계 발광 소자는, 전자수송보조층을 포함하지 않는 비교예 3의 청색 유기 전계 발광 소자에 비해 구동전압 및 발광 효율이 우수하였고, 전자수송보조층 물질로 사용한 실시예 31~45의 청색 유기 전계 발광 소자는, 화합물 C3를 사용한 비교예 2의 청색 유기 전계 발광 소자에 비해 전류효율이 높았다.
[실시예 46] 녹색 유기 전계 발광 소자의 제조
합성예 31에서 합성된 화합물 R311을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 하기와 같이 청색 유기 전계 발광 소자를 제조하였다.
ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고, 건조시킨 후, UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, DS-205 (두산社)(80 nm)/NPB (15 nm)/ Alq3 (25 nm) + 5 % C-545T (30nm)/화합물 R311/ Alq3 (25 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제조하였다. 이때 사용된 NPB, C-545T 및 Alq3의 구조는 다음과 같다.
Figure PCTKR2017013248-appb-I000103
Figure PCTKR2017013248-appb-I000104
Figure PCTKR2017013248-appb-I000105
[실시예 47~53] 녹색 유기 전계 발광 소자의 제조
실시예 46에서 전자수송보조층의 형성시 전자수송보조층 물질로 사용된 화합물 R311 대신 표 3에 기재된 화합물을 각각 사용하는 것을 제외하고는, 실시예 45와 동일하게 수행하여 녹색 유기 전계 발광 소자를 제조하였다.
[비교예 4] 녹색 유기 전계 발광 소자의 제조
실시예 46에서 사용된 화합물 R311을 사용하지 않는 것을 제외하고는, 실시예 46과 동일하게 수행하여 녹색 유기 전계 발광 소자를 제작하였다.
[평가예 3]
실시예 46 내지 54 및 비교예 4에서 각각 제조된 유기 전계 발광 소자에 대하여, 전류밀도 10 mA/㎠에서의 구동전압, 전류효율, 및 발광파장을 측정하였고, 그 결과를 하기 표 3에 나타내었다.
샘플 전자수송보조층 구동전압(V) 전류효율(cd/A) 발광피크(nm)
실시예 46 R311 3.2 12.1 520
실시예 47 R378 3.0 12.5 520
실시예 48 R381 3.9 15.2 520
실시예 49 R384 3.8 13.8 520
실시예 50 R387 3.9 14.1 520
실시예 51 R390 3.8 13.5 520
실시예 52 R393 3.5 12.9 520
실시예 53 R396 3.4 12.8 520
실시예 54 R401 3.9 14.8 520
비교예 4 - 4.7 11.7 520
상기 표 3에 나타낸 바와 같이, 본 발명에 따른 화합물(R311~R401)을 전자수송보조층 물질로 사용한 실시예 46~54의 녹색 유기 전계 발광 소자는, 전자수송보조층을 포함하지 않는 비교예 3의 녹색 유기 전계 발광 소자에 비해 구동전압은 낮았고, 발광 효율은 높았다. 또한, 실시예 46~54의 소자는 발광피크가 비교예 4의 소자와 동일하였다.

Claims (7)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2017013248-appb-I000106
    (상기 화학식 1에서,
    X1 내지 X4는 서로 동일하거나 상이하고, 각각 독립적으로 C(Ar3) 또는 N이고, 다만 X1 내지 X4 중 적어도 1개는 N이며, 이때 상기 Ar3가 복수인 경우, 복수의 Ar3는 서로 동일하거나 상이하고;
    n은 0 내지 3의 정수이고;
    X5는 S, O, N(Ar4) 및 C(Ar5)(Ar6)로 이루어진 군에서 선택되며;
    X6는 단일결합이거나, 또는 S, O, N(Ar7), 및 C(Ar8)(Ar9)로 이루어진 군에서 선택되고;
    Ar1은 C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성하며;
    Ar2는 수소, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성하며;
    Ar3 내지 Ar9는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성하고;
    R1 내지 R9는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성하며;
    m은 1 내지 3의 정수이고;
    상기 Ar1 및 Ar2의 아릴기 및 헤테로아릴기는 C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환되거나 비치환되고, 이때 상기 치환기가 복수인 경우, 이들은 동일하거나 상이함).
  2. 제1항에 있어서,
    하기 화학식 2 내지 화학식 5 중 어느 하나로 표시되는 것이 특징인 화합물:
    [화학식 2]
    Figure PCTKR2017013248-appb-I000107
    [화학식 3]
    Figure PCTKR2017013248-appb-I000108
    [화학식 4]
    Figure PCTKR2017013248-appb-I000109
    [화학식 5]
    Figure PCTKR2017013248-appb-I000110
    (상기 화학식 2 내지 5에서,
    R1 내지 R5, X1 내지 X6, Ar1, Ar2, m 및 n은 각각 제1항에서 정의한 바와 같음).
  3. 제2항에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기 화학식 6으로 표시되는 화합물인 것이 특징인 화합물:
    [화학식 6]
    Figure PCTKR2017013248-appb-I000111
    (상기 화학식 6에서,
    R1 내지 R5, X1 내지 X5, Ar1, Ar2, m 및 n은 각각 제1항에서 정의한 바와 같음).
  4. 제3항에 있어서,
    상기 화학식 6으로 표시되는 화합물은 하기 화학식 7로 표시되는 화합물인 특징인 화합물:
    Figure PCTKR2017013248-appb-I000112
    (상기 화학식 7에서,
    R1 내지 R5, X1 내지 X4, Ar1, Ar2, m 및 n은 각각 제1항에서 정의한 바와 같고,
    X7은 단일 결합이거나, 또는 S, O, N(Ar10) 및 C(Ar11)(Ar12)로 이루어진 군에서 선택되고,
    Ar10 내지 Ar12는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택됨).
  5. 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서,
    상기 1층 이상의 유기물층 중에서 적어도 하나는 제1항 내지 제4항 중 어느 한 항에 기재된 화학식 1로 표시되는 화합물을 포함하는 것이 특징인 유기 전계 발광 소자.
  6. 제5항에 있어서,
    상기 1층 이상의 유기물층은 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층을 포함하고,
    상기 화학식 1로 표시되는 화합물을 포함하는 유기물층은 발광층인 것이 특징인 유기 전계 발광 소자.
  7. 제5항에 있어서,
    상기 1층 이상의 유기물층은 정공수송층, 정공 주입층, 발광층, 전자수송 보조층, 전자 수송층 및 전자 주입층을 포함하고,
    상기 화합물을 포함하는 1층 이상의 유기물층은 전자수송 보조층인 것이 특징인 유기 전계 발광 소자.
PCT/KR2017/013248 2016-11-21 2017-11-21 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자 WO2018093231A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/462,359 US11667622B2 (en) 2016-11-21 2017-11-21 Organic light emitting compound and organic electroluminescence device using same
CN201780071908.3A CN110023305B (zh) 2016-11-21 2017-11-21 有机发光化合物及利用其的有机电致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160155319A KR20180057109A (ko) 2016-11-21 2016-11-21 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR10-2016-0155319 2016-11-21

Publications (1)

Publication Number Publication Date
WO2018093231A1 true WO2018093231A1 (ko) 2018-05-24

Family

ID=62146583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013248 WO2018093231A1 (ko) 2016-11-21 2017-11-21 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자

Country Status (4)

Country Link
US (1) US11667622B2 (ko)
KR (1) KR20180057109A (ko)
CN (1) CN110023305B (ko)
WO (1) WO2018093231A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4015515A4 (en) * 2019-08-16 2023-08-02 LT Materials Co., Ltd. HETEROCYCLIC COMPOUND AND ORGANIC LIGHT EMITTING DEVICE THEREOF

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102092266B1 (ko) * 2018-07-20 2020-03-23 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR20200050224A (ko) * 2018-11-01 2020-05-11 주식회사 엘지화학 유기 발광 소자
KR102334762B1 (ko) * 2019-12-27 2021-12-06 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
CN111718335B (zh) * 2020-07-03 2022-11-18 京东方科技集团股份有限公司 化合物、有机发光二极管、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010843A1 (en) * 2009-07-21 2011-01-27 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR20140012598A (ko) * 2012-07-19 2014-02-03 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 전자 소자
JP2015216245A (ja) * 2014-05-12 2015-12-03 Tdk株式会社 有機電界発光素子用化合物およびこれを用いた有機電界発光素子
EP2983227A1 (en) * 2014-08-01 2016-02-10 LG Display Co., Ltd. Organic light emitting display device
KR20160055557A (ko) * 2014-11-10 2016-05-18 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872692B1 (ko) * 2006-03-06 2008-12-10 주식회사 엘지화학 신규한 안트라센 유도체 및 이를 이용한 유기 전자 소자
KR20140049186A (ko) * 2012-10-16 2014-04-25 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
US10312449B2 (en) 2015-05-27 2019-06-04 Samsung Display Co., Ltd. Organic light-emitting device
US20160351817A1 (en) * 2015-05-27 2016-12-01 Samsung Display Co., Ltd. Organic light-emitting device
TWI734694B (zh) * 2015-07-29 2021-08-01 德商麥克專利有限公司 含茀結構的化合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010843A1 (en) * 2009-07-21 2011-01-27 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR20140012598A (ko) * 2012-07-19 2014-02-03 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 전자 소자
JP2015216245A (ja) * 2014-05-12 2015-12-03 Tdk株式会社 有機電界発光素子用化合物およびこれを用いた有機電界発光素子
EP2983227A1 (en) * 2014-08-01 2016-02-10 LG Display Co., Ltd. Organic light emitting display device
KR20160055557A (ko) * 2014-11-10 2016-05-18 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4015515A4 (en) * 2019-08-16 2023-08-02 LT Materials Co., Ltd. HETEROCYCLIC COMPOUND AND ORGANIC LIGHT EMITTING DEVICE THEREOF

Also Published As

Publication number Publication date
CN110023305B (zh) 2022-08-09
US20190367477A1 (en) 2019-12-05
CN110023305A (zh) 2019-07-16
US11667622B2 (en) 2023-06-06
KR20180057109A (ko) 2018-05-30

Similar Documents

Publication Publication Date Title
WO2016089080A1 (ko) 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018038401A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015190718A1 (ko) 유기 전계 발광 소자
WO2020159019A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2018093231A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020209679A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018080068A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018216921A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018038400A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018230782A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014010810A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015111864A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018038464A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2011081451A2 (ko) 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017209488A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019004584A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015111943A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016122178A9 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020027463A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2016105123A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019103397A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015125986A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017095086A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2017111389A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015111942A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.09.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17870817

Country of ref document: EP

Kind code of ref document: A1