KR20200050224A - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
KR20200050224A
KR20200050224A KR1020180132980A KR20180132980A KR20200050224A KR 20200050224 A KR20200050224 A KR 20200050224A KR 1020180132980 A KR1020180132980 A KR 1020180132980A KR 20180132980 A KR20180132980 A KR 20180132980A KR 20200050224 A KR20200050224 A KR 20200050224A
Authority
KR
South Korea
Prior art keywords
group
compound
light emitting
substituted
unsubstituted
Prior art date
Application number
KR1020180132980A
Other languages
English (en)
Inventor
김성소
천민승
하재승
서상덕
홍성길
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020180132980A priority Critical patent/KR20200050224A/ko
Priority to PCT/KR2019/014621 priority patent/WO2020091468A1/ko
Publication of KR20200050224A publication Critical patent/KR20200050224A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H01L51/5024
    • H01L51/0071
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 낮은 구동 전압, 높은 발광 효율, 및 장수명 특성을 가지는 유기 발광 소자를 제공하기 위한 것이다.

Description

유기 발광 소자{Organic light emitting device}
본 발명은 낮은 구동 전압, 높은 발광 효율, 및 장수명 특성을 가지는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
한국특허 공개번호 제10-2000-0051826호
본 발명은 낮은 구동 전압, 높은 발광 효율, 및 장수명 특성을 가지는 유기 발광 소자를 제공하기 위한 것이다.
상기 과제를 해결하기 위하여, 본 발명은 하기의 유기 발광 소자를 제공한다:
양극; 발광층; 전자조절층; 전자수송층; 및 음극을 포함하고,
상기 발광층은 호스트 및 도펀트를 포함하고,
상기 호스트의 쌍극자 모멘트(dipole moment) 값이 0.4 내지 1.3이고,
상기 전자조절층은 쌍극자 모멘트(dipole moment) 값이 0.7 내지 1.3인 화합물을 포함하는,
유기 발광 소자.
본 발명에 따른 유기 발광 소자는, 특정 쌍극자 모멘트 값을 만족하는 호스트 및 전자조절층의 물질을 사용함으로써, 낮은 구동 전압, 높은 발광 효율, 및 장수명 특성을 가질 수 있다.
도 1은, 기판(1), 양극(2), 발광층(3), 전자조절층(4) 및 음극(5)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는, 기판(1), 양극(2), 정공주입층(6), 정공수송층(7), 전자차단층(8), 발광층(3), 전자조절층(4), 전자수송층(9), 전자주입층(10) 및 음극(5)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
용어의 정의
본 명세서에서,
Figure pat00001
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure pat00002
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure pat00003
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure pat00004
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure pat00005
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
발광층 전자조절층
본 발명은, 양극; 발광층; 전자조절층; 전자수송층; 및 음극을 포함하고, 상기 발광층은 호스트 및 도펀트를 포함하고, 상기 호스트와 상기 전자조절층에 포함되는 화합물이 특정 쌍극자 모멘트(dipole moment) 값을 가지는 것을 특징으로 한다.
본 명세서에서 사용하는 용어 "쌍극자 모멘트(dipole moment)"는, 극성의 정도를 나타내는 물리량을 의미하는 것으로, 하기 수학식 1과 같이 계산될 수 있다.
[수학식 1]
Figure pat00006
상기 수학식 1에서, 분자 밀도(Molecular density)를 계산으로 구하여, 쌍극자 모멘트의 값을 얻을 수 있다. 예컨대, 분자 밀도는 Hirshfeld Charge Analysis 방법을 사용하여 각 원자별 전하(Charge) 및 쌍극자(Dipole)를 구하고, 하기 식에 따라 계산하여 얻을 수 있으며, 그 계산 결과를 상기 수학식 1에 넣어 쌍극자 모멘트(Dipole Moment)를 구할 수 있다.
Figure pat00007
Figure pat00008
Figure pat00009
유기 발광 소자의 발광 특성을 최적화하기 위해서는 발광층의 호스트 화합물의 쌍극자 모멘트를 고려하여야 하는데, 본 발명에서는 상기 호스트와 상기 전자조절층에 포함되는 화합물이 특정 쌍극자 모멘트 값을 가지는 경우, 낮은 구동 전압, 높은 발광 효율, 및 장수명 특성을 가질 수 있음을 확인하였다. 구체적으로, 상기 호스트의 쌍극자 모멘트 값이 0.4 내지 1.3이고, 상기 전자조절층은 쌍극자 모멘트 값이 0.7 내지 1.3인 화합물을 포함한다. 또한, 바람직하게는, 상기 호스트의 쌍극자 모멘트 값과 상기 전자조절층에 포함된 화합물의 쌍극자 모멘트 값의 차이는 0.01 내지 0.8이다.
바람직하게는, 상기 발광층의 최대 발광 피크 파장이 400 nm 내지 470 nm이다.
바람직하게는, 상기 전자조절층에 포함되는 화합물의 삼중항 에너지가, 상기 호스트의 삼중항 에너지보다 크다.
바람직하게는, 상기 사용되는 호스트로 하기 화학식 1로 표시되는 화합물이 사용될 수 있다:
[화학식 1]
Figure pat00010
상기 화학식 1에서,
X1은 O, 또는 S이고,
L1은 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
Ar1은 치환 또는 비치환된 C6-60 아릴이고,
R1 및 R2는 각각 독립적으로 수소, 중수소, 할로겐, 시아노, 니트로, 아미노, 치환 또는 비치환된 C1-60 알킬, 치환 또는 비치환된 C3-60 사이클로알킬, 치환 또는 비치환된 C2-60 알케닐, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이거나, 또는 인접한 두개가 서로 결합하여 벤젠 고리를 형성하고,
n1은 0 내지 3의 정수이고,
n2는 0 내지 4의 정수이다.
바람직하게는, L1은 단일 결합, 또는 페닐렌이다.
바람직하게는, Ar1은 페닐, 비페닐릴, 터페닐릴, 나프틸, 또는 나프틸페닐이다.
바람직하게는, R1은 수소, 중수소, 또는 페닐이다.
바람직하게는, R2는 수소, 중수소, 페닐, 비페닐, 또는 나프틸이다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure pat00011
Figure pat00012
Figure pat00013
Figure pat00014
Figure pat00015
Figure pat00016
Figure pat00017
Figure pat00018
상기 화학식 1로 표시되는 화합물은 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다.
[반응식 1]
Figure pat00019
상기 반응식 1에서, X'를 제외한 나머지 정의는 앞서 정의한 바와 같으며, X'는 할로겐이고, 보다 바람직하게는 브로로, 또는 클로로이다.
상기 반응식 1은, 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
한편, 상기 발광층에 사용되는 도펀트 재료는 유기 발광 소자에 사용되는 것이면 특별히 제한되지 않으며, 예를 들어 도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
바람직하게는, 상기 전자조절층은 하기 화학식 2 또는 3으로 표시되는 화합물을 포함한다:
[화학식 2]
Figure pat00020
[화학식 3]
Figure pat00021
상기 화학식 2 및 3에서,
Y는 O, 또는 S이고,
X2는 각각 독립적으로 N, 또는 CH이고, 단 X2 중 2개 이상이 N이고,
L2는 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
Ar2 및 Ar3는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
R3 및 R4는 각각 독립적으로 수소, 중수소, 할로겐, 시아노, 니트로, 아미노, 치환 또는 비치환된 C1-60 알킬, 치환 또는 비치환된 C3-60 사이클로알킬, 치환 또는 비치환된 C2-60 알케닐, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
n3은 0 내지 4의 정수이고,
n4는 0 내지 4의 정수이다.
바람직하게는, L2는 단일 결합, 페닐렌, 또는 비페닐디일이다.
바람직하게는, Ar2 및 Ar3는 각각 독립적으로 페닐, 비페닐릴, 또는 터페닐릴이다.
바람직하게는, R3 및 R4는 수소이다.
상기 화학식 2 또는 3으로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure pat00022
Figure pat00023
Figure pat00024
Figure pat00025
Figure pat00026
상기 화학식 2로 표시되는 화합물은 하기 반응식 2와 같은 제조 방법으로 제조할 수 있으며, 상기 화학식 3으로 표시되는 화합물에도 적용할 수 있다.
[반응식 2]
Figure pat00027
상기 반응식 2에서, X"를 제외한 나머지 정의는 앞서 정의한 바와 같으며, X"는 할로겐이고, 보다 바람직하게는 브로로, 또는 클로로이다.
상기 반응식 2는, 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
한편, 상술한 발광층 및 전자조절층을 제외한 나머지 유기 발광 소자는, 유기 발광 소자에 사용될 수 있는 것이면 특별히 제한되지 않으며, 이하 각 구성별로 설명한다.
양극 및 음극
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SNO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공주입층
본 발명에 따른 유기 발광 소자는 전극으로부터 정공을 주입하는 정공주입층을 포함할 수 있다.
정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자 주입 재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다.
정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
정공수송층
본 발명에 따른 유기 발광 소자는, 양극 또는 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 정공수송층을 포함할 수 있다.
정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
전자차단층
본 발명에 따른 유기 발광 소자는 음극에서 주입된 전자가 발광층에서 재결합하지 않고 양극 쪽으로 전달되는 것을 억제하는 전자차단층을 포함할 수 있다.
전자수송층
본 발명에 따른 유기 발광 소자는, 음극 또는 전자주입층으로부터 전자를 수취하여 전자조절층까지 전자를 수송하는 전자수송층을 포함할 수 있다.
전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
전자주입층
본 발명에 따른 유기 발광 소자는, 전극으로부터 전자를 주입하는 전자주입층을 포함할 수 있다.
전자 주입 물질로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다.
구체적으로, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
유기 발광 소자
본 발명에 따른 유기 발광 소자의 구조를 도 1 및 2에 예시하였다.
도 1은, 기판(1), 양극(2), 발광층(3), 전자조절층(4) 및 음극(5)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 도 2는, 기판(1), 양극(2), 정공주입층(6), 정공수송층(7), 전자차단층(8), 발광층(3), 전자조절층(4), 전자수송층(9), 전자주입층(10) 및 음극(5)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공수송층, 발광층 및 전자수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
한편, 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
[ 제조예 ]
제조예 1-1: 화합물 1-1의 제조
단계 1) 화합물 1-1-a의 제조
Figure pat00028
3구 플라스크에 9-브로모안트라센(20.0 g, 77.8 mmol), 페닐보론산(10.43 g, 85.6 mmol) 을 THF(300 mL)에 녹이고 K2CO3(43.0 g, 311.1 mmol)을 물(150 mL)에 녹여 넣었다. 여기에 Pd(PPh3)4(3.6 g, 3.1 mmol)를 넣고, 아르곤 분위기 환류 조건하에서 8시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-1-a(15.6 g, 수율 79%, MS: [M+H]+= 254)를 제조하였다.
단계 2) 화합물 1-1-b의 제조
Figure pat00029
2구 플라스크에 화합물 1-1-a (12.52 g, 49.2 mmol), NBS(9.2 g, 51.7 mmol), DMF(300 mL)를 넣고, 아르곤 분위기 하에서 상온에서 8시간 교반하였다. 반응 종료 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 유기층을 추출하였다. 추출액을 MgSO4로 건조하고, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-1-b(14.4 g, 수율 88%, MS: [M+H]+= 333)를 제조하였다.
단계 3) 화합물 1-1의 제조
Figure pat00030
3구 플라스크에 화합물 1-1-b(15.0 g, 45.01 mmol), 2-(디벤조[b,d]퓨란-4-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보롤란(14.56 g, 49.51 mmol)을 THF(225 mL)에 녹이고 K2CO3(24.88 g, 180.05 mmol)을 물(113 mL)에 녹여 넣었다. 여기에 Pd(PPh3)4(2.08 g, 1.8 mmol)를 넣고, 아르곤 분위기 환류 조건하에서 8시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제한 후, 승화정제를 통해 화합물 1-1(6.6 g, 수율 35%, MS: [M+H]+= 420)을 수득하였다.
제조예 1-2: 화합물 1-2의 제조
단계 1) 화합물 1-2-a의 제조
Figure pat00031
3구 플라스크에 3-브로모-[1,1'-비페닐]-2-올(40.0 g, 141.1 mmol), (3-클로로-6-플루오로페닐)보론산(21.71 g, 155.2 mmol)을 THF(705 mL)에 녹이고 K2CO3(77.99 g, 564.3 mmol)을 물(1410 mL)에 녹여 넣었다. 여기에 Pd(PPh3)4(6.52 g, 5.6 mmol)를 넣고, 아르곤 분위기 환류 조건하에서 8시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-2-a(33.29 g, 수율 79%, MS: [M+H]+= 298)를 수득하였다.
단계 2) 화합물 1-2-b의 제조
Figure pat00032
3구 플라스크에 화합물 1-2-a(33.29 g, 111.4 mmol), K2CO3(30.8 g, 222.9 mmol), 및 NMP(445 mL)를 넣고 120℃에서 밤새 교반하였다. 반응이 종료되면 상온으로 냉각한 후 반응액에 물(412 mL)을 조금씩 적가하였다. 그 후 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 유기층을 추출하였다. 추출액을 MgSO4로 건조하고, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-2-b(25.47 g, 수율 82%, MS: [M+H]+= 279)를 수득하였다.
단계 3) 화합물 1-2-c의 제조
Figure pat00033
3구 플라스크에 화합물 1-2-b(25.47 g, 91.4 mmol), 비스(피나콜라토)디보론(27.84 g, 109.7 mmol), Pd(dba)2(1.05 g, 1.8 mmol), 트리사이클로헥실포스핀(1.02 g, 3.7 mmol), KOAc(17.94 g, 182.8 mmol), 및 1,4-디옥산(380 mL)를 넣고, 아르곤 분위기 환류 조건 하에서 12시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물(280 mL)을 가하여 에틸 아세테이트로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-2-c(23 g, 수율 73%, MS: [M+H]+= 385)를 수득하였다.
단계 4) 화합물 1-2의 제조
Figure pat00034
제조예 1-1의 단계 3에서 2-(디벤조[b,d]퓨란-4-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보롤란을 화합물 1-2-c로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-2(20.19 g, 수율 72%, MS: [M+H]+= 497)을 제조하였다.
제조예 1-3: 화합물 1-3의 제조
단계 1) 화합물 1-3-a의 제조
Figure pat00035
3구 플라스크에 3-브로모-[1,1'-비페닐]-2-올(30.0 g, 120.4 mmol), (5-클로로-2-플루오르페닐)보론산(23.1 g, 132.5 mmol)을 THF(450 mL)에 녹이고 K2CO3(66.6 g, 481.7 mmol)을 물(225 mL)에 녹여 넣었다. 여기에 Pd(PPh3)4(5.6 g, 4.8 mmol)를 넣고, 아르곤 분위기 환류 조건하에서 8시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-3-a(27.0 g, 수율 75%, MS: [M+H]+= 298)를 수득하였다.
단계 2) 화합물 1-3-b의 제조
Figure pat00036
3구 플라스크에 화합물 1-3-a(25.0 g, 83.7 mmol), K2CO3(23.1 g, 167.4 mmol), 및 NMP(325 mL)를 넣고 120℃에서 밤새 교반하였다. 반응이 종료되면 상온으로 냉각한 후 반응액에 물(300 mL)을 조금씩 적가하였다. 그 후 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 유기층을 추출하였다. 추출액을 MgSO4로 건조하고, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-3-b(19.8 g, 수율 85%, MS: [M+H]+= 279)를 수득하였다.
단계 3) 화합물 1-3-c의 제조
Figure pat00037
3구 플라스크에 화합물 1-3-b(18.0 g, 64.6 mmol), 비스(피나콜라토)디보론(19.7 g, 77.5 mmol), Pd(dba)2(0.7 g, 1.3 mmol), 트리사이클로헥실포스핀(0.7 g, 2.6 mmol), KOAc(12.7 g, 129.2 mmol), 및 1,4-디옥산(270 mL)를 넣고, 아르곤 분위기 환류 조건 하에서 12시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물(200 mL)을 가하여 에틸 아세테이트로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-3-c(17.45 g, 수율 73%, MS: [M+H]+= 370)를 수득하였다.
단계 4) 화합물 1-3의 제조
Figure pat00038
제조예 1-1의 단계 3에서 2-(디벤조[b,d]퓨란-4-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보롤란을 화합물 1-3-c로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-3(8.97 g, 수율 32%, MS: [M+H]+= 497)을 제조하였다.
제조예 1-4: 화합물 1-4의 제조
단계 1) 화합물 1-4-a의 제조
Figure pat00039
3구 플라스크에 9-브로모안트라센(20.0 g, 77.8 mmol), 나프탈렌-1-일보론산(14.7 g, 85.6 mmol)을 THF(300 mL)에 녹이고 K2CO3(43.0 g, 311.1 mmol)을 물(150 mL)에 녹여 넣었다. 여기에 Pd(PPh3)4(3.6 g, 3.1 mmol)를 넣고, 아르곤 분위기 환류 조건하에서 8시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-4-a(18.5 g, 수율 78%, MS: [M+H]+= 304)를 수득하였다.
단계 2) 화합물 1-4-b의 제조
Figure pat00040
2구 플라스크에 화합물 1-4-a(15.0 g, 49.3 mmol), NBS(9.2 g, 51.7 mmol), DMF(300 mL)를 넣고, 아르곤 분위기 하에서 상온에서 8시간 교반하였다. 반응 종료 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 유기층을 추출하였다. 추출액을 MgSO4로 건조하고, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-4-b(16.6 g, 수율 88%, MS: [M+H]+= 383)를 수득하였다.
단계 3) 화합물 1-4의 제조
Figure pat00041
3구 플라스크에 화합물 1-4-b(15.0 g, 39.1 mmol), 2-(디벤조[b,d]퓨란-2-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보롤란(12.7 g, 43.0 mmol)을 THF(225 mL)에 녹이고 K2CO3(21.6 g, 156.5 mmol)을 물(113 mL)에 녹여 넣었다. 여기에 Pd(PPh3)4(1.8 g, 1.6 mmol)를 넣고, 아르곤 분위기 환류 조건하에서 8시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제한 후, 승화정제를 통해 화합물 1-4(6.4 g, 수율 35%, MS: [M+H]+= 471)을 수득하였다.
제조예 1-5: 화합물 1-5의 제조
단계 1) 화합물 1-5-a의 제조
Figure pat00042
3구 플라스크에 9-브로모안트라센(20.0 g, 77.8 mmol), 나프탈렌-2-일보론산(14.7 g, 85.6 mmol)을 THF(300 mL)에 녹이고 K2CO3(43.0 g, 311.1 mmol)을 물(150 mL)에 녹여 넣었다. 여기에 Pd(PPh3)4(3.6 g, 3.1 mmol)를 넣고, 아르곤 분위기 환류 조건하에서 8시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-1-a(18.5 g, 수율 78%, MS: [M+H]+= 304)를 수득하였다.
단계 2) 화합물 1-5-b의 제조
Figure pat00043
2구 플라스크에 화합물 1-5-a(15.0 g, 49.3 mmol), NBS(9.2 g, 51.7 mmol), DMF(300 mL)를 넣고, 아르곤 분위기 하에서 상온에서 8시간 교반하였다. 반응 종료 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 유기층을 추출하였다. 추출액을 MgSO4로 건조하고, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-5-b(16.6 g, 수율 88%, MS: [M+H]+= 383)를 수득하였다.
단계 3) 화합물 1-5의 제조
Figure pat00044
제조예 1-1의 단계 3에서, 화합물 1-1-b를 화합물 1-5-b으로, 2-(디벤조[b,d]퓨란-2-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보롤란을 디벤조[b,d]퓨란-3-일보론산으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-5(5.8 g, 수율 32%, MS: [M+H]+= 470)를 제조하였다.
제조예 1-6: 화합물 1-6의 제조
Figure pat00045
제조예 1-1의 2-(디벤조[b,d]퓨란-2-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보롤란을 디벤조[b,d]퓨란-2-일보론산으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-6(6.4 g, 수율 35%, MS: [M+H]+= 420)를 제조하였다.
제조예 1-7: 화합물 1-7의 제조
단계 1) 화합물 1-7-a의 제조
Figure pat00046
제조예 1-1의 단계 1에서 나프탈렌-2-일보론산을 [1,1'-비페닐]-2-일보론산으로 변경하여 사용한 것을 제외하고는, 화합물 1-1-a의 제조 방법과 동일한 방법으로 화합물 1-7-a(19.3 g, 수율 75%, MS: [M+H]+= 330)를 제조하였다.
단계 2) 화합물 1-7-b의 제조
Figure pat00047
제조예 1-1의 단계 2에서, 화합물 1-1-a를 화합물 1-7-a로 변경하여 사용한 것을 제외하고는, 화합물 1-1-b의 제조 방법과 동일한 방법으로 화합물 1-7-b(16.9 g, 수율 91%, MS: [M+H]+= 409)를 제조하였다.
단계 3) 화합물 1-7의 제조
Figure pat00048
제조예 1-1의 단계 3에서, 화합물 1-1-b를 화합물 1-7-b으로, 2-(디벤조[b,d]퓨란-2-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보롤란을 1-7-c로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-7(5.8 g, 수율 32%, MS: [M+H]+= 546)를 제조하였다.
제조예 1-8: 화합물 1-8의 제조
Figure pat00049
제조예 1-1의 2-(디벤조[b,d]퓨란-2-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보롤란을 상기 화합물 1-7-c로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 방법으로 화합물 1-8(7.3 g, 수율 64%, MS: [M+H]+= 470)를 제조하였다.
제조예 1-9: 화합물 1-9의 제조
Figure pat00050
제조예 1-1의 2-(디벤조[b,d]퓨란-2-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보롤란을 디벤조[b,d]퓨란-1-일보론산으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-9(8.4 g, 수율 52%, MS: [M+H]+= 420)를 제조하였다.
제조예 1-10: 화합물 1-10의 제조
단계 1) 화합물 1-10-a의 제조
Figure pat00051
3구 플라스크에 9-브로모안트라센(20.0 g, 77.8 mmol), [1,1':4',1"-터페닐]-4-일보론산(23.45 g, 85.6 mmol)을 THF(400 mL)에 녹이고 K2CO3(43.0 g, 311.1 mmol)을 물(200 mL)에 녹여 넣었다. 여기에 Pd(PPh3)4(3.6 g, 3.1 mmol)를 넣고, 아르곤 분위기 환류 조건하에서 8시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-10-a(27.19 g, 수율 86%, MS:[M+H]+= 406)를 수득하였다.
단계 2) 화합물 1-10-b의 제조
Figure pat00052
2구 플라스크에 화합물 1-10-a(27.19 g, 66.9 mmol), NBS(12.5 g, 70.2 mmol), DMF(300 mL)를 넣고, 아르곤 분위기 하에서 상온에서 8시간 교반하였다. 반응 종료 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 유기층을 추출하였다. 추출액을 MgSO4로 건조하고, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-10-b(25.32 g, 수율 78%, MS:[M+H]+= 485)를 수득하였다.
단계 3) 화합물 1-10의 제조
Figure pat00053
제조예 1-1의 2-(디벤조[b,d]퓨란-2-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보롤란을 디벤조[b,d]퓨란-1-일보론산으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-10(16 g, 수율 54%, MS: [M+H]+= 572)를 제조하였다.
제조예 2-1: 화합물 2-1의 제조
Figure pat00054
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(20.00 g, 43.63 mmol), 화합물 B(20.26 g, 43.63 mmol)을 THF(300 mL)에 완전히 녹인 후, 2M 탄산칼륨 수용액(150 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(1.51 g, 1.31 mmol)을 넣은 후, 3시간 동안 가열 교반하였다. 상온(23±5℃)으로 온도를 낮추고 물층을 제거하고, 무수 황산마그네슘으로 건조한 후 감압농축 시키고, 에틸 아세테이트(180 mL)로 재결정하여 화합물 2-1(15.1 g, 수율 48%, MS: [M+H]+= 715.26)을 제조하였다.
제조예 2-2: 화합물 2-2의 제조
Figure pat00055
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 C(20.00 g, 43.63 mmol), 화합물 D(18.32 g, 43.63 mmol)을 THF(300 mL)에 완전히 녹인 후, 2M 탄산칼륨 수용액(150 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(1.51 g, 1.31 mmol)을 넣은 후, 3시간 동안 가열 교반하였다. 상온(23±5℃)으로 온도를 낮추고 물층을 제거하고, 무수 황산마그네슘으로 건조한 후 감압농축 시키고, 에틸 아세테이트(180 mL)로 재결정하여 화합물 2-2(19.2 g, 수율 61%, MS: [M+H]+= 715.26)를 제조하였다.
제조예 2-3: 화합물 2-3의 제조
Figure pat00056
제조예 2-2에서 상기 화합물 D 대신 화합물 E을 사용한 것을 제외하고, 상기 제조예 2-2와 동일한 방법으로 화합물 2-3을 제조하였다.
MS: [M+H]+= 639.23
제조예 2-4: 화합물 2-4의 제조
Figure pat00057
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 F(20.00 g, 43.63 mmol), 화합물 G(18.32 g, 43.63 mmol)을 THF(300 mL)에 완전히 녹인 후, 2M 탄산칼륨 수용액(150 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(1.51 g, 1.31 mmol)을 넣은 후, 3시간 동안 가열 교반하였다. 상온(23±5℃)으로 온도를 낮추고 물층을 제거하고, 무수 황산마그네슘으로 건조한 후 감압농축 시키고, 에틸 아세테이트(180 mL)로 재결정하여 화합물 2-4(18.1 g, 수율 66%, MS: [M+H]+= 639.23)을 제조하였다.
제조예 2-5: 화합물 2-5의 제조
Figure pat00058
제조예 2-2에서 상기 화합물 D 대신 화합물 H를 사용한 것을 제외하고, 상기 제조예 2-2와 동일한 방법으로 화합물 2-5를 제조하였다.
MS: [M+H]+= 639.23
제조예 2-6: 화합물 2-6의 제조
Figure pat00059
제조예 2-1에서 상기 화합물 B 대신 화합물 I를 사용한 것을 제외하고, 상기 제조예 2-1과 동일한 방법으로 화합물 2-6을 제조하였다.
MS: [M+H]+= 639.23
제조예 2-7: 화합물 2-7의 제조
Figure pat00060
제조예 2-2에서 상기 화합물 D 대신 화합물 B를 사용한 것을 제외하고, 상기 제조예 2-2와 동일한 방법으로 화합물 2-7을 제조하였다.
MS: [M+H]+= 715.26
제조예 2-8: 화합물 2-8의 제조
Figure pat00061
제조예 2-4에서 상기 화합물 G 대신 화합물 J를 사용한 것을 제외하고, 상기 제조예 2-4와 동일한 방법으로 화합물 2-8을 제조하였다.
MS: [M+H]+= 563.20
[ 실시예 ]
실시예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 하기 HAT 화합물을 500Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 NPB 화합물을 300Å의 두께로 진공 증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 하기 HTL1 화합물을 100Å의 두께로 진공 증착하여 전자차단층을 형성하였다. 이어서, 상기 전자차단층 위에 앞서 제조한 화합물 1-1과 하기 화합물 BD를 20:1의 중량비로 300Å의 두께로 진공 증착하여 발광층을 형성하였다. 상기 발광층 위에 앞서 제조한 화합물 2-1을 100Å의 두께로 진공 증착하여 전자조절층을 형성하였다. 상기 전자조절층 위에, 하기 ETL 화합물과 하기 LiQ 화합물을 1:1의 중량비로 300Å의 두께로 진공 증착하여 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 2,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure pat00062
상기의 과정에서 유기물의 증착 속도는 0.4 내지 0.7Å/sec를 유지하였고, 음극의 리튬 플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10-7 내지 5×10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.
실시예 2 내지 20
상기 실시예 1과 동일한 방법으로 제조하되, 화합물 1-1과 화합물 2-1 대신 하기 표 1에 기재된 화합물을 사용하여, 유기 발광 소자를 제조하였다.
비교예 1 내지 16
상기 실시예 1과 동일한 방법으로 제조하되, 화합물 1-1과 화합물 2-1 대신 하기 표 1에 기재된 화합물을 사용하여, 유기 발광 소자를 제조하였다. 하기 표 1에서, BH-1 내지 BH-8, 및 HB-1 내지 HB-9의 화합물은 각각 하기와 같다.
Figure pat00063
Figure pat00064
Figure pat00065
상기 실시예 및 비교예에서 제조한 유기 발광 소자를 10 mA/cm2의 전류밀도에서 구동 전압, 발광 효율 및 색좌표를 측정하였고, 그 결과를 하기 표 1에 나타내었으며, 호스트와 전자조절층에 사용된 화합물의 쌍극자 모멘트 값도 함께 나타내었다.
호스트 전자조절층 10 mA/cm2 측정값
Material DM Material DM 전압(V) 효율(cd/A) CIE_x CIE_y
실시예1 1-1 0.40 2-1 0.72 3.32 5.45 0.133 0.119
실시예2 1-2 0.49 2-2 0.86 3.11 5.40 0.132 0.122
실시예3 1-2 0.49 2-3 1.13 3.23 5.50 0.132 0.127
실시예4 1-2 0.49 2-8 1.26 3.40 5.38 0.133 0.122
실시예5 1-3 0.53 2-3 0.97 3.41 5.61 0.133 0.123
실시예6 1-3 0.53 2-4 1.03 3.38 5.54 0.134 0.123
실시예7 1-4 0.66 2-1 0.72 3.33 5.34 0.132 0.121
실시예8 1-4 0.66 2-7 1.14 3.20 5.50 0.133 0.123
실시예9 1-5 0.69 2-5 1.04 3.42 5.66 0.132 0.119
실시예10 1-5 0.69 2-2 0.86 3.49 5.32 0.133 0.125
실시예11 1-5 0.69 2-7 1.14 3.24 5.52 0.130 0.118
실시예12 1-6 0.82 2-6 1.13 3.03 5.74 0.133 0.123
실시예13 1-6 0.82 2-8 1.26 3.09 5.82 0.132 0.123
실시예14 1-7 0.90 2-6 1.13 3.22 5.49 0.131 0.125
실시예15 1-7 0.90 2-8 1.26 3.15 5.56 0.132 0.127
실시예16 1-8 1.03 2-6 1.13 3.33 5.77 0.133 0.122
실시예17 1-8 1.03 2-8 1.26 3.27 5.53 0.132 0.125
실시예18 1-9 1.13 2-2 0.86 3.17 5.63 0.133 0.119
실시예19 1-9 1.13 2-5 1.04 3.11 5.39 0.134 0.123
실시예20 1-10 1.22 2-8 1.26 3.23 5.54 0.132 0.121
비교예1 BH-1 0.07 HB-1 0.41 4.01 4.80 0.133 0.123
비교예2 BH-2 0.21 HB-3 0.64 3.99 4.74 0.133 0.125
비교예3 BH-2 0.21 2-2 0.86 4.11 5.00 0.132 0.123
비교예4 BH-3 0.29 2-7 1.14 3.88 5.02 0.132 0.121
비교예5 BH-1 0.07 HB-4 2.01 4.23 3.94 0.130 0.118
비교예6 BH-2 0.21 HB-6 4.02 4.09 4.17 0.133 0.123
비교예7 1-2 0.49 HB-1 0.41 3.76 4.24 0.134 0.123
비교예8 1-6 0.82 HB-2 0.50 3.95 3.55 0.132 0.126
비교예9 1-3 0.53 HB-8 5.10 3.86 4.00 0.130 0.118
비교예10 1-4 0.66 HB-9 6.51 3.83 4.67 0.134 0.123
비교예11 BH-4 1.36 HB-2 0.50 4.45 4.42 0.133 0.125
비교예12 BH-8 1.67 HB-3 0.64 4.69 3.84 0.132 0.123
비교예13 BH-4 1.36 2-3 0.97 4.21 4.94 0.132 0.119
비교예14 BH-6 1.66 2-4 1.03 4.58 4.80 0.133 0.125
비교예15 BH-5 1.56 HB-5 3.61 4.50 3.43 0.132 0.127
비교예16 BH-7 1.67 HB-7 4.58 4.44 3.75 0.133 0.122
상기 표 1에서 확인할 수 있는 바와 같이, 본 발명에 따라 호스트의 쌍극자 모멘트와 전자조절층에 사용된 화합물의 쌍극자 모멘트가 특정 값을 가짐으로써, 발광층 내에서 전자와 정공의 균형이 잘 맞아 구동 전압과 발광 효율이 우수함을 확인할 수 있었다. 특히 본 발명의 화학식 1로 표시되는 화합물은 정공 및 전자의 주입에 유리하여 호스트로 사용할 경우 저저압의 특성을 나타내었다. 또한, 본 발명의 화학식 2 또는 3으로 표시되는 화합물은 발광층으로 전자를 잘 넘겨줄 뿐만 아니라 발광층으로부터 넘어오는 정공을 차단하는 능력이 탁월하여 이를 전자조절층에 적용할 경우 고효율의 소자를 얻을 수 있다.
1: 기판 2: 양극
3: 발광층 4: 전자조절층
5: 음극 6: 정공주입층
7: 정공수송층 8: 전자차단층
9: 전자수송층 10: 전자주입층

Claims (10)

  1. 양극; 발광층; 전자조절층; 전자수송층; 및 음극을 포함하고,
    상기 발광층은 호스트 및 도펀트를 포함하고,
    상기 호스트의 쌍극자 모멘트(dipole moment) 값이 0.4 내지 1.3이고,
    상기 전자조절층은 쌍극자 모멘트(dipole moment) 값이 0.7 내지 1.3인 화합물을 포함하는,
    유기 발광 소자.
  2. 제1항에 있어서,
    상기 호스트의 쌍극자 모멘트 값과 상기 전자조절층에 포함된 화합물의 쌍극자 모멘트 값의 차이는 0.01 내지 0.8인,
    유기 발광 소자.
  3. 제1항에 있어서,
    상기 호스트는 하기 화학식 1로 표시되는 화합물인,
    유기 발광 소자:
    [화학식 1]
    Figure pat00066

    상기 화학식 1에서,
    X1은 O, 또는 S이고,
    L1은 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    Ar1은 치환 또는 비치환된 C6-60 아릴이고,
    R1 및 R2는 각각 독립적으로 수소, 중수소, 할로겐, 시아노, 니트로, 아미노, 치환 또는 비치환된 C1-60 알킬, 치환 또는 비치환된 C3-60 사이클로알킬, 치환 또는 비치환된 C2-60 알케닐, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이거나, 또는 인접한 두 개가 서로 결합하여 벤젠 고리를 형성하고,
    n1은 0 내지 3의 정수이고,
    n2는 0 내지 4의 정수이다.
  4. 제1항에 있어서,
    L1은 단일 결합, 또는 페닐렌인,
    유기 발광 소자.
  5. 제1항에 있어서,
    Ar1은 페닐, 비페닐릴, 터페닐릴, 나프틸, 또는 나프틸페닐,
    유기 발광 소자.
  6. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure pat00067

    Figure pat00068

    Figure pat00069

    Figure pat00070

    Figure pat00071

    Figure pat00072

    Figure pat00073

    Figure pat00074

  7. 제1항에 있어서,
    상기 전자조절층은 하기 화학식 2 또는 3으로 표시되는 화합물을 포함하는,
    유기 발광 소자:
    [화학식 2]
    Figure pat00075

    [화학식 3]
    Figure pat00076

    상기 화학식 2 및 3에서,
    Y는 O, 또는 S이고,
    X2는 각각 독립적으로 N, 또는 CH이고, 단 X2 중 2개 이상이 N이고,
    L2는 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    Ar2 및 Ar3는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
    R3 및 R4는 각각 독립적으로 수소, 중수소, 할로겐, 시아노, 니트로, 아미노, 치환 또는 비치환된 C1-60 알킬, 치환 또는 비치환된 C3-60 사이클로알킬, 치환 또는 비치환된 C2-60 알케닐, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,
    n3은 0 내지 4의 정수이고,
    n4는 0 내지 4의 정수이다.
  8. 제7항에 있어서,
    L2는 단일 결합, 페닐렌, 또는 비페닐디일인,
    유기 발광 소자.
  9. 제7항에 있어서,
    Ar2 및 Ar3는 각각 독립적으로 페닐, 비페닐릴, 또는 터페닐릴인,
    유기 발광 소자.
  10. 제7항에 있어서,
    상기 화학식 2 또는 3으로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure pat00077

    Figure pat00078

    Figure pat00079

    Figure pat00080

    Figure pat00081

KR1020180132980A 2018-11-01 2018-11-01 유기 발광 소자 KR20200050224A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180132980A KR20200050224A (ko) 2018-11-01 2018-11-01 유기 발광 소자
PCT/KR2019/014621 WO2020091468A1 (ko) 2018-11-01 2019-10-31 유기 발광 소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180132980A KR20200050224A (ko) 2018-11-01 2018-11-01 유기 발광 소자

Publications (1)

Publication Number Publication Date
KR20200050224A true KR20200050224A (ko) 2020-05-11

Family

ID=70464294

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180132980A KR20200050224A (ko) 2018-11-01 2018-11-01 유기 발광 소자

Country Status (2)

Country Link
KR (1) KR20200050224A (ko)
WO (1) WO2020091468A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149943B (zh) * 2021-05-10 2023-08-22 吉林奥来德光电材料股份有限公司 荧光化合物及其制备方法和包含其的有机电致发光器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102027030B1 (ko) * 2016-05-27 2019-09-30 주식회사 엘지화학 유기발광소자
KR20180057109A (ko) * 2016-11-21 2018-05-30 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
EP3477719B1 (en) * 2017-03-08 2020-01-29 LG Chem, Ltd. Organic light emitting device
TWI661029B (zh) * 2017-03-30 2019-06-01 南韓商Lg化學股份有限公司 有機發光元件
KR102043550B1 (ko) * 2017-04-13 2019-11-11 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자

Also Published As

Publication number Publication date
WO2020091468A1 (ko) 2020-05-07

Similar Documents

Publication Publication Date Title
KR102107087B1 (ko) 유기 발광 소자
KR102132350B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
KR102193015B1 (ko) 유기 발광 소자
KR20200063053A (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102506584B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20210098937A (ko) 유기 발광 소자
KR102136381B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
KR102225488B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR20190121283A (ko) 유기 발광 소자
KR20210019949A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR20220129519A (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR20200052236A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102107086B1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102623893B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR20200078156A (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102362847B1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102600009B1 (ko) 유기 발광 소자
KR20200088772A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102566289B1 (ko) 유기 발광 소자
KR102311640B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102134380B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20200050224A (ko) 유기 발광 소자
KR20210123664A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR20210059448A (ko) 신규한 아민계 화합물 및 이를 이용한 유기발광 소자
KR20210049477A (ko) 신규한 아민계 화합물 및 이를 이용한 유기발광 소자

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application