WO2018092866A1 - 末端圧力制御装置および末端圧力制御方法 - Google Patents

末端圧力制御装置および末端圧力制御方法 Download PDF

Info

Publication number
WO2018092866A1
WO2018092866A1 PCT/JP2017/041401 JP2017041401W WO2018092866A1 WO 2018092866 A1 WO2018092866 A1 WO 2018092866A1 JP 2017041401 W JP2017041401 W JP 2017041401W WO 2018092866 A1 WO2018092866 A1 WO 2018092866A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
terminal
measured value
pressure control
piping
Prior art date
Application number
PCT/JP2017/041401
Other languages
English (en)
French (fr)
Inventor
久功 松本
矢敷 達朗
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2018092866A1 publication Critical patent/WO2018092866A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures

Definitions

  • the present invention relates to a terminal pressure control device and a terminal pressure control method for a compression system including a compressor that compresses a fluid such as air, liquid, or nitrogen gas.
  • Patent Document 1 JP 2010-24845 A
  • the supply pressure to the end device and the discharge pressure of the air compressor are measured, and the air pressure is adjusted so that the supply pressure to the end device becomes a desired pressure according to the air consumption flow rate at the end device.
  • an air compressor operation control device for supplying compressed air at a desired pressure or higher to a terminal device while reducing power consumption of the air compressor by variably controlling the number of revolutions of an electric motor that drives the compressor. Has been. And the rotation speed of the electric motor which drives an air compressor is controlled by PID control so that the fluctuation
  • PID control an optimum PID parameter specific to the control target is estimated.
  • the volume of the piping varies depending on the piping layout conditions in which the air compressor is installed, and the piping layout changes after the installation due to the additional installation of end devices. That is, in the air compressor operation control device disclosed in Patent Document 1, it is difficult to adjust the control set value according to the installation state of the piping layout, and the supply pressure may fluctuate.
  • Non-Patent Document 1 As a method for estimating the optimum value of the PID parameter in the computer according to the installation situation, there is a method using a piping simulator.
  • Non-Patent Document 1 The fluctuation of the supply pressure to the load device can be controlled by the piping simulator as disclosed in Non-Patent Document 1 according to the installation status and the change status of the piping layout.
  • Non-Patent Document 1 does not take into consideration the problem that the estimation accuracy deteriorates as the piping network condition changes, such as pressure fluctuation due to filter clogging in the piping layout.
  • the present invention has been made in view of the above circumstances, and follows a change over time of a piping network, suppresses fluctuations in supply pressure to an end device, reduces power consumption of a compressor, and reduces a desired pressure to an end.
  • An object of the present invention is to provide a terminal pressure control device and a terminal pressure control method that can be supplied to equipment and save energy.
  • the present invention is, as an example, an end pressure control device for a pneumatic system for supplying compressed air from an air compressor to a terminal device through a piping layout,
  • the control unit receives the piping layout, the measured value of the end device's end pressure, and the measured value of the differential pressure of at least one pressure loss element in the pneumatic system. Based on the measured value and the measured value of the differential pressure, a control parameter for the terminal pressure control is calculated, and a pressure command value for the air compressor is output using the control parameter.
  • the present invention it is possible to provide a terminal pressure control device and a terminal pressure control method that achieve energy saving while suppressing the fluctuation of the supply pressure to the terminal equipment following the change of the piping network over time.
  • FIG. 6 is a schematic diagram of a pneumatic system as a premise of the present embodiment.
  • the pneumatic system includes an air compressor 1, a controller 2, and a piping layout 3.
  • the air compressor 1 and the controller 2 may be housed in the same housing.
  • the air compressor 1 compresses the air sucked from the atmosphere and discharges the compressed air.
  • a compressor discharge pressure sensor (not shown) that measures the discharge pressure of the compressor air to be discharged is provided, and the compressor discharge pressure is output to the control device 2.
  • the control device 2 receives the compressor discharge pressure value of the compressor discharge pressure sensor and the end device pressure measurement value from the end device pressure sensor 4 of the end device 8 that is the load equipment as inputs, and the compressor air to the end device.
  • the motor (not shown) that drives the air compressor 1 is controlled so that the supply pressure becomes equal to or higher than the required pressure P0, and a rotational speed command value for the motor is calculated and output.
  • a specific calculation method for controlling the rotation speed of the electric motor can be realized by the method described in Patent Document 1, for example.
  • the control device 2 has a piping simulator 5, and outputs the current value of the control setting value D1 for controlling the rotation speed of the electric motor to the piping simulator and updates the control setting value output by the piping simulator 5. Based on the command value D2, the current value D1 of the control set value is updated.
  • Piping layout 3 is composed of passive devices such as air layer 6, filter 7 and end device pressure sensor 4, active devices such as dryers and coolers (not shown), and devices such as piping, elbows, branches, valves, etc.
  • the compressed air discharged from the air compressor 1 is supplied to the end device 8 through the piping layout 3.
  • the terminal device 8 is a device used in a manufacturing process of a factory such as a pneumatic tool, an air press, an air brake, a spray gun, and the like, and is driven using compressed air supplied via the piping layout 3 as a power source.
  • the end device pressure sensor 4 of the end device 8 measures the pressure of the compressor air supplied to the end device 8.
  • the measured pressure value is output to the controller 2 and the piping simulator 5.
  • the piping simulator 5 receives the compressor discharge pressure measurement value of the compressor discharge pressure sensor and the terminal device pressure measurement value from the terminal device pressure sensor 4 of the terminal device 8 and outputs the control set value update command value D2.
  • the control device 2 receives the control set value update command value D2 and updates the control set value.
  • FIG. 7 is a schematic diagram of a feedback control block of the pneumatic system.
  • FIG. 7 9 is a schematic diagram of the PID control unit in the control device 2, and controls the rotational speed of the motor by estimating the proportional gain Kp, integral gain Ki, and differential gain Kd, which are control parameters for PID control.
  • Control set value D1 is output.
  • the piping simulator 5 inputs piping layout data necessary for calculating the flow of compressed air in the piping layout in order to estimate control parameters for PID control, and builds a piping layout model.
  • Piping layout data includes piping types, joints (elbows, branches, etc.), equipment (compressors, valves, pressure sensors, filters, air tanks, dryers), model designations, and equipment between pipe layouts.
  • the flow of the air in a piping layout is calculated from a compressor discharge pressure measured value, a terminal device pressure measured value, and a piping layout model, and the terminal device flow rate which is the compressed air flow rate supplied to a terminal device is output.
  • the control set value is calculated from the control set value D1, the piping layout model, and the end device flow rate so as to suppress the fluctuation of the supply pressure to the end device, and the control set value update value is output.
  • the control set value update command value D2 for updating the control set value D1 of the controller 2 is output with the control set value update value as an input.
  • FIG. 8 is a diagram for explaining the network representation and the connection matrix of the piping layout model of the piping simulator.
  • FIG. 8A is an example of a pipe layout including a pipe 10, an elbow 11, and a T branch 12 between the air compressor 1 and the terminal device 8, and
  • FIG. 8B shows a line element and a node element.
  • This is an example of conversion into a network representation consisting of FIG. 8C is an example in which the connection relation of the piping layout composed of M line elements and N node elements is expressed using a connection matrix B which is an M ⁇ N matrix.
  • Each matrix element is +1: When node element k (leftmost node) is connected to the upper side of line element j ⁇ 1: When node element k (rightmost node) is connected to the lower side of line element j 0: Line element j Is expressed as a case where is not connected to the node element k.
  • FIG. 9 is an example of a calculation flow in the physical model of the piping simulator.
  • the unknown variables are flow rate, pressure, and enthalpy, and the calculation of the line element and the node element is not independent, but depends on each other, and therefore is calculated by an iterative algorithm such as Newton-Raphson method.
  • a general method is applied by numerical calculation such as a finite volume method. (See Non-Patent Document 1)
  • the piping simulator can reduce the power consumption of the air compressor while suppressing the fluctuation of the supply pressure to the end device according to the installation status of the piping layout, and reduce the power consumption of the air compressor to the end device. Can supply.
  • the conventional piping simulator did not take into account the fact that the piping network condition changes and the estimation accuracy deteriorates in response to changes over time such as pressure fluctuations due to filter clogging in the piping layout.
  • an optimum PID parameter can be obtained following changes with time, an end pressure fluctuation caused by PID control can be minimized, and an end pressure control device and end pressure that can minimize power consumption.
  • a pressure sensor that measures a differential pressure is provided in a pressure loss element in a piping network for which an optimum PID parameter is to be estimated, and the current piping network is calibrated while calibrating the piping simulator using the measured value of the differential pressure.
  • a simulation reflecting the state of is performed. Details of the present embodiment will be described below.
  • FIG. 1 is a schematic diagram of a pneumatic system in the present embodiment. 1, the same components as those in FIG. 6 are denoted by the same reference numerals, and the description thereof is omitted.
  • the difference from FIG. 6 is that a differential pressure sensor 20 is provided in the filter 7, and a differential pressure measurement value measured by the differential pressure sensor 20 is input to the piping simulator 5.
  • FIG. 2 is a schematic diagram of a feedback control block of the pneumatic system in the present embodiment. 2, the same components as those in FIG. 7 are denoted by the same reference numerals, and the description thereof is omitted.
  • the difference from FIG. 7 is that a differential pressure measurement value is similarly input to the piping simulator 5.
  • the differential pressure of the filter 7 is monitored by the differential pressure sensor 20 and fed back to the piping simulator 5, so that the parameters of the piping simulator are always kept up to date. I can do it. Further, based on the differential pressure data of the filter 7 obtained by the differential pressure sensor 20 and the accumulated flow rate of each filter obtained by the piping simulator, the differential pressure of other filters can be estimated and reflected in the simulation.
  • FIG. 3 is a processing flow of the terminal pressure control method in this embodiment.
  • steps S10 and S11 as preprocessing, input / output characteristics are calculated by a piping simulator to obtain an optimum PID parameter.
  • step S12 the measured value of the differential pressure of the pressure loss element in the piping layout is taken into the piping simulator.
  • the pressure loss element is an active device such as an air layer, a filter, or a pressure sensor, or an active device such as a dryer or a cooler. This means that a pressure difference may occur.
  • step S13 the piping simulator calculates a deviation dp between the current set value of the pressure difference of the pressure loss element and the latest measured value.
  • step S14 it is determined whether the deviation dp is within the allowable range. If it is not within the allowable range, the process proceeds to step S15, and if it is within the allowable range, the process proceeds to step S18.
  • step S15 the set value of the differential pressure of the pressure loss element is updated to the latest measured value, and in steps S16 and S17, input / output characteristics are calculated as piping simulator operation, and an optimum PID parameter is obtained.
  • Steps S18 and S19 are conventional PID control.
  • step S18 it is determined whether the end pressure of the piping layout is within the allowable range with respect to the target value. If it is not within the allowable range, the process proceeds to step S19. If so, the process proceeds to step S20.
  • step S19 the input terminal pressure of the piping layout is adjusted to an optimum value by PID control.
  • step S20 it is determined whether to continue the feedback control, and the process returns to step S12 or ends.
  • FIG. 4 is a display example of a piping simulator screen which is a user interface of the piping simulator in this embodiment.
  • the piping simulator screen mainly includes a piping layout input / display window 50 and an input / output parameter input / display window 60.
  • the piping layout input / display window 50 schematically displays the components of the piping layout 3.
  • the controller 2 the compressor discharge pressure sensor 40, the air compressor 1, the valve 30, the filter 7, the air layer 6, and the filter 7 that is a pressure loss element include a differential pressure sensor 20.
  • the terminal device pressure sensor 4 is disposed in the terminal device 8, and the pipe 10 connecting them is displayed.
  • the input / output parameter input / display window 60 is a screen for performing input display of parameters input to the piping simulator and display of output parameters.
  • FIG. 5 shows a list of input / output parameters of the piping simulator in this embodiment.
  • input parameters there are input data of piping layout for constructing a piping layout model, and the differential pressure data input by the user in the past is provided with a differential pressure sensor in this embodiment. Automatically entered.
  • a differential pressure sensor may be provided for only one filter, and the differential pressure of the other filter may be used instead.
  • the present embodiment has at least one differential pressure sensor in the piping network for which the optimum PID parameter is to be estimated, and calibrates the piping simulator using the output value of the differential pressure sensor. Perform a simulation that reflects the state of the piping network. As a result, it is possible to supply the desired pressure to the end device while keeping the fluctuation of the supply pressure to the end device and reducing the power consumption of the air compressor, following the change in the piping network over time, thereby saving energy.
  • a terminal pressure control device and a terminal pressure control method can be provided.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the air compressor has been described in the above embodiment, the present invention is not limited to this, and the present invention can also be applied to a compressor that compresses a fluid such as liquid or nitrogen gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Feedback Control In General (AREA)

Abstract

配管ネットワークの経時変化に追従して、末端機器への供給圧力の変動を抑えながら、空気圧縮機の消費電力を削減しつつ、所望の圧力を末端機器に供給でき、省エネルギー化を図った末端圧力制御装置および末端圧力制御方法を提供することを目的とする。 上記目的を達成するために、空気圧縮機からの圧縮空気を配管レイアウトを介して末端機器に供給する空気圧システムの末端圧力制御装置であって、末端圧力制御装置には配管レイアウトと、末端機器の末端圧力の計測値と、空気圧システム内の少なくとも一つの圧損要素の差圧の計測値とが入力され、末端圧力制御装置は配管レイアウト、末端圧力の計測値、差圧の計測値に基づいて、末端圧力制御の制御パラメータを計算し、該制御パラメータで空気圧縮機の圧力指令値を出力するように構成する。

Description

末端圧力制御装置および末端圧力制御方法
 本発明は、空気や液体、窒素ガス等の流体を圧縮する圧縮機を備えた圧縮システムの末端圧力制御装置および末端圧力制御方法に関する。
 近年、世界的に製造業でのエネルギー消費量削減の取り組みが加速している。工場における圧縮機を備えた圧縮システムとして、例えば、大気中の空気を圧縮した圧縮空気は、身近に利用出来るため、空気工具、空気プレス、空気ブレーキ、スプレーガン等を駆動するための動力源として幅広く用いられている。圧縮空気は空気圧縮機によって圧縮され、工場内に設けられた配管ネットワークを経由して、圧縮空気にて駆動する機器である末端機器に供給される。空気圧縮機の消費電力は、一般的に工場全体の電力消費量の20~30%を占めるといわれており、工場の省エネルギー化のために空気圧縮機の省エネ化は大きな課題である。
 空気圧縮機は吐出圧力を下げることで消費電力の低減が可能なため、吐出圧力を必要最小限とする末端圧力モニタによる出力制御が有効な手段であると考えられている。
 本技術分野における背景技術として、特開2010-24845号公報(特許文献1)がある。特許文献1には、末端機器への供給圧力と空気圧縮機の吐出圧力を計測し、末端機器での消費空気流量に応じて、末端機器への供給圧力が所望の圧力となるように、空気圧縮機を駆動する電動機の回転数を可変制御することで、空気圧縮機の消費電力を削減しつつ、所望の圧力以上の圧縮空気を末端機器に供給するための空気圧縮機運転制御装置が開示されている。そして、供給圧力の変動を抑えるように、空気圧縮機を駆動する電動機の回転数をPID制御により制御している。PID制御では、制御対象に固有の最適なPIDパラメータを推定する。しかしながら、配管の体積は空気圧縮機を設置する配管レイアウトの条件によって異なり、設置後も末端機器の追設等により配管レイアウトは変化する。すなわち、特許文献1で開示されている空気圧縮機運転制御装置では、配管レイアウトの設置状況に応じて、制御設定値を調整することは困難であり、供給圧力が変動する可能性があった。
 そこで、例えば、「Tatsuro Yashiki,Development of a Steam Distribution Network Simulator for Enhanced Oil Recovery Systems,APCOM & ISCM 11-14th December,2013,Singapore」(非特許文献1)に開示されているように、配管レイアウトの設置状況に応じて、PIDパラメータの最適値を計算機内で推定する方法として、配管シミュレータを利用する方法がある。
特開2010-24845号公報
Tatsuro Yashiki,Development of a Steam Distribution Network Simulator for Enhanced Oil Recovery Systems,APCOM & ISCM 11-14th December,2013,Singapore
 非特許文献1で開示されているような配管シミュレータにより、配管レイアウトの設置状況、変更状況に応じて負荷機器への供給圧力の変動を制御可能である。しかし、非特許文献1は、配管レイアウト内のフィルタ目詰まりによる圧力変動など、配管ネットワークの条件変動が進むにつれて推定精度が劣化するという課題に対して考慮されていなかった。
 本発明は上記事情に鑑みなされたものであり、配管ネットワークの経時変化に追従して、末端機器への供給圧力の変動を抑えながら、圧縮機の消費電力を削減しつつ、所望の圧力を末端機器に供給でき、省エネルギー化を図った末端圧力制御装置および末端圧力制御方法を提供することを目的とする。
 上記目的を達成するために、本発明は、その一例を挙げるならば、空気圧縮機からの圧縮空気を配管レイアウトを介して末端機器に供給する空気圧システムの末端圧力制御装置であって、末端圧力制御装置には配管レイアウトと、末端機器の末端圧力の計測値と、空気圧システム内の少なくとも一つの圧損要素の差圧の計測値とが入力され、末端圧力制御装置は配管レイアウト、末端圧力の計測値、差圧の計測値に基づいて、末端圧力制御の制御パラメータを計算し、該制御パラメータで空気圧縮機の圧力指令値を出力するように構成する。
 本発明によれば、配管ネットワークの経時変化に追従して、末端機器への供給圧力の変動を抑えながら、省エネルギー化を図った末端圧力制御装置および末端圧力制御方法を提供することが出来る。
実施例における空気圧システムの模式図である。 実施例における空気圧システムのフィードバック制御ブロックの模式図である。 実施例における末端圧力制御方式の処理フローである。 実施例における配管シミュレータ画面表示例である。 実施例における配管シミュレータの入出力パラメータの一覧表である。 従来の空気圧システムの模式図である。 従来の空気圧システムのフィードバック制御ブロックの模式図である。 従来の配管シミュレータの配管レイアウトモデルのネットワーク表現と接続行列を説明するための図である。 従来の配管シミュレータの物理モデルにおける計算フローである。
 以下、図面を用いて本発明の実施例について説明する。
 図6は本実施例の前提となる、空気圧システムの模式図である。図6において、空気圧システムは、空気圧縮機1、制御器2、配管レイアウト3を備えている。なお、空気圧縮機1と制御器2は同一筐体に納められていても良い。
 空気圧縮機1は、大気から吸込んだ空気を圧縮し圧縮空気を吐出する。また、図示しない、吐出する圧縮機空気の吐出圧力を計測する圧縮機吐出圧力センサを有しており、圧縮機吐出圧力を制御装置2に出力する。
 制御装置2は、圧縮機吐出圧力センサの圧縮機吐出圧力値、および、負荷設備である末端機器8の末端機器圧力センサ4からの末端機器圧力計測値を入力として、末端機器への圧縮機空気の供給圧力が要求圧力P0以上となるように、空気圧縮機1を駆動する図示しない電動機を制御し、電動機に対する回転数指令値を計算、出力する。電動機の回転数を制御する具体的な演算方法については、例えば、特許文献1に記載された方法により実現可能である。また、制御装置2は、配管シミュレータ5を有しており、電動機の回転数を制御するための制御設定値D1の現在値を配管シミュレータに出力するとともに、配管シミュレータ5が出力する制御設定値更新指令値D2に基づき、制御設定値の現在値D1を更新する。
 配管レイアウト3は、空気層6、フィルタ7、末端機器圧力センサ4等の受動機器や、図示しない、ドライヤ、クーラ等の能動機器、及び、配管、エルボ、分岐、弁等の機器から構成され、空気圧縮機1から吐出した圧縮空気は配管レイアウト3を介して、末端機器8に供給される。
 末端機器8は、空気工具、空気プレス、空気ブレーキ、スプレーガン等、工場の製造工程で使用される機器であり、配管レイアウト3を介して供給される圧縮空気を動力源として駆動する。
 末端機器8の末端機器圧力センサ4は、末端機器8に供給される圧縮機空気の圧力を計測する。計測された圧力値は、制御器2及び配管シミュレータ5に出力される。
 配管シミュレータ5は、圧縮機吐出圧力センサの圧縮機吐出圧力計測値、末端機器8の末端機器圧力センサ4からの末端機器圧力計測値を入力として、制御設定値更新指令値D2を出力する。制御装置2は、制御設定値更新指令値D2を入力として、制御設定値を更新する。
 次に、図7を用いて配管シミュレータ5の詳細について説明する。図7は、空気圧システムのフィードバック制御ブロックの模式図である。図7において、9は制御装置2内のPID制御部の模式図であり、PID制御の制御パラメータである比例ゲインKp、積分ゲインKi、微分ゲインKdを推定して、電動機の回転数を制御するための制御設定値D1を出力する。
 配管シミュレータ5は、PID制御の制御パラメータを推定するために、配管レイアウト内の圧縮空気の流れを計算するために必要となる配管レイアウトのデータを入力し、配管レイアウトモデルを構築する。配管レイアウトのデータとしては、配管種類、および継ぎ手(エルボ、ブランチ、等)、機器(圧縮機、弁、圧力センサ、フィルタ、空気槽、ドライヤ)の型式の指定、配管レイアウトを構成する機器間の接続関係を定義するデータ、機器の属性(例えば、配管に対しては配管長さ、配管口径等)を定義するデータ、および空気圧縮機1の吐出空気圧力を計算するためのデータである。そして、圧縮機吐出圧力計測値、末端機器圧力計測値、配管レイアウトモデルより、配管レイアウト内の空気の流れを計算し、末端機器に供給される圧縮空気流量である末端機器流量を出力する。そして、制御設定値D1、配管レイアウトモデル、末端機器流量より、末端機器への供給圧力の変動を抑制するように、制御設定値を計算し、制御設定値更新値を出力する。そして、制御設定値更新値を入力として、制御器2の制御設定値D1を更新するための制御設定値更新指令値D2を出力する。
 図8は、配管シミュレータの配管レイアウトモデルのネットワーク表現と接続行列を説明するための図である。図8(A)は、空気圧縮機1と末端機器8との間の、配管10、エルボ11、Tブランチ12からなる配管レイアウトの例であり、図8(B)は、ライン要素とノード要素からなるネットワーク表現へ変換しモデル化した例である。また、図8(C)は、M個のライン要素とN個のノード要素から構成される配管レイアウトの接続関係をM×Nの行列である接続行列Bを用いて表現した例である。各行列要素は、
+1: ライン要素jの上方側にノード要素k(左端ノード)が接続されている場合
-1: ライン要素jの下方側にノード要素k(右端ノード)が接続されている場合
  0: ライン要素jがノード要素kと接続されていない場合
として表現している。
 図9は、配管シミュレータの物理モデルにおける計算フローの例である。未知変数は流量、圧力、エンタルピーであり、ライン要素とノード要素の計算は独立ではなく、相互に依存するため、ニュートン・ラプソン法等の反復アルゴリズムで計算される。また、運動量保存式、エネルギー保存式の離散化は有限体積法等の数値演算で一般的な手法を適用する。(非特許文献1参照)
 このように、配管シミュレータにより、配管レイアウトの設置状況に応じて、末端機器への供給圧力の変動を抑えながら、空気圧縮機の消費電力を削減しつつ、所望の圧力以上の圧縮空気を末端機器に供給できる。
 しかし、従来の配管シミュレータでは、配管レイアウト内のフィルタ目詰まりによる圧力変動などの経時変化に対応して配管ネットワークの条件変動が進み推定精度が劣化するという点について考慮されていなかった。
 そこで、本実施例は、経時変化に追従して最適なPIDパラメータを求めることができ、PID制御による末端圧力変動を最小に抑えることができ、消費電力を最小化できる末端圧力制御装置および末端圧力制御方法を提供する。
 本実施例は、最適なPIDパラメータを推定したい配管ネットワーク内の圧損要素に差圧を計測する圧力センサを設け、差圧の計測値を用いて配管シミュレータのキャリブレーションを行いながら、現状の配管ネットワークの状態を反映したシミュレーションを行う。以下、本実施例の詳細について説明する。
 図1は、本実施例における空気圧システムの模式図である。図1において、図6と同一の構成については同一の符号を付し、その説明を省略する。図6と異なる点は、フィルタ7に差圧センサ20を設けており、その差圧センサ20で計測した差圧計測値を配管シミュレータ5に入力している点である。また、図2は、本実施例における空気圧システムのフィードバック制御ブロックの模式図である。図2において、図7と同一の構成については同一の符号を付し、その説明を省略する。図7と異なる点は、同様に、差圧計測値を配管シミュレータ5に入力している点である。
 本実施例は、図1、図2に示すように、差圧センサ20でフィルタ7の差圧をモニタし、配管シミュレータ5にフィードバックすることで、配管シミュレータのパラメータを常に最新の状態に保つことが出来る。また、差圧センサ20で得たフィルタ7の差圧データと、配管シミュレータで求めた各フィルタの累積流量に基づき、他のフィルタの差圧を推定し、シミュレーションに反映することが出来る。
 図3は、本実施例における末端圧力制御方式の処理フローである。図3において、まず、ステップS10、S11で、前処理として、配管シミュレータで入出力特性を計算し、最適なPIDパラメータを求める。そして、ステップS12で、配管レイアウト内の圧損要素の差圧の測定値を配管シミュレータに取り込む。ここで、圧損要素とは、空気層、フィルタ、圧力センサ等の受動機器や、ドライヤ、クーラ等の能動機器であって、例えばフィルタの目詰まりによる圧力変動など、経時変化に伴って入出力の圧力差が生じる可能性のあるものをいう。
 次に、ステップS13で、配管シミュレータにて、圧損要素の差圧の現在の設定値と最新の測定値との偏差dpを計算する。そして、ステップS14で、偏差dpは許容範囲内かを判断し、許容範囲内でない場合はステップS15へ、許容範囲内の場合はステップS18へ進む。
 ステップS15では、圧損要素の差圧の設定値を最新の測定値に更新して、以下ステップS16、S17で、配管シミュレータ動作として、入出力特性を計算し、最適なPIDパラメータを求める。
 ステップS18、S19は、従来のPID制御であり、ステップS18で、配管レイアウトの末端圧力が目標値に対して許容範囲内かを判断し、許容範囲内でない場合はステップS19へ、許容範囲内の場合はステップS20へ進む。ステップS19では、PID制御にて、配管レイアウトの入力端子圧力を最適値に調整する。ステップS20では、フィードバック制御を継続するかの判断をして、ステップS12に戻るか、終了とする。
 図4は、本実施例における配管シミュレータのユーザインターフェースである配管シミュレータ画面の表示例である。図4において、配管シミュレータ画面は、主に、配管レイアウト入力・表示ウインドウ50と入出力パラメータ入力・表示ウインドウ60で構成されている。
 配管レイアウト入力・表示ウインドウ50は、配管レイアウト3の構成要素が模式的に表示されている。例えば、図4においては、制御器2と、圧縮機吐出圧力センサ40と、空気圧縮機1と、バルブ30と、フィルタ7と、空気層6と、圧損要素であるフィルタ7に差圧センサ20が配置され、末端機器8に末端機器圧力センサ4が配置され、それらをつなぐ配管10が表示される。
 また、入出力パラメータ入力・表示ウインドウ60は、配管シミュレータに入力するパラメータの入力表示と出力するパラメータの表示を行う画面である。図5に、本実施例における配管シミュレータの入出力パラメータの一覧表を示す。図5において、入力パラメータとしては、配管レイアウトモデルを構築するための配管レイアウトの入力データがあり、また、従来ユーザが入力していた差圧データが、本実施例では、差圧センサを設けることで自動的に入力される。
 なお、圧損要素としてのフィルタが並列に接続している場合は、1つのフィルタのみに差圧センサを設け、他のフィルタの差圧をその1つで代用しても良い。
 以上のように、本実施例は、最適なPIDパラメータを推定したい配管ネットワーク内に少なくとも一つの差圧センサを持ち、差圧センサの出力値を用いて配管シミュレータのキャリブレーションを行いながら、現状の配管ネットワークの状態を反映したシミュレーションを行う。これにより、配管ネットワークの経時変化に追従して、末端機器への供給圧力の変動を抑えながら、空気圧縮機の消費電力を削減しつつ、所望の圧力を末端機器に供給でき、省エネルギー化を図った末端圧力制御装置および末端圧力制御方法を提供することが出来る。
 なお、本発明は上記した実施例に限定されるものではなく様々な変形例が含まれる。例えば、上記実施例では、空気圧縮機について説明したが、本発明はこれに限定されるものではなく、液体や窒素ガス等の流体を圧縮する圧縮機でも適用可能である。
1:空気圧縮機、2:制御器、3:配管レイアウト、4:末端機器圧力センサ、5:配管シミュレータ、6:空気層、7:フィルタ、8:末端機器、9:PID制御部、10:配管、11:エルボ、12:Tブランチ、20:差圧センサ、30:バルブ、40:圧縮機吐出圧力センサ、50:配管レイアウト入力・表示ウインドウ、60:入出力パラメータ入力・表示ウインドウ

Claims (8)

  1.  空気圧縮機からの圧縮空気を配管レイアウトを介して末端機器に供給する空気圧システムの末端圧力制御装置であって、
     前記末端圧力制御装置には前記配管レイアウトと、前記末端機器の末端圧力の計測値と、前記空気圧システム内の少なくとも一つの圧損要素の差圧の計測値とが入力され、
     前記末端圧力制御装置は前記配管レイアウト、前記末端圧力の計測値、前記差圧の計測値に基づいて、末端圧力制御の制御パラメータを計算し、該制御パラメータで前記空気圧縮機の圧力指令値を出力することを特徴とする末端圧力制御装置。
  2.  請求項1に記載の末端圧力制御装置であって、
     前記末端圧力制御装置には、さらに前記空気圧縮機から吐出圧力の計測値が入力され、該吐出圧力の計測値、前記配管レイアウト、前記末端圧力の計測値、前記差圧の計測値に基づいて、末端圧力制御の制御パラメータを計算することを特徴とする末端圧力制御装置。
  3.  請求項1または2に記載の末端圧力制御装置であって、
     前記圧損要素はフィルタであることを特徴とする末端圧力制御装置。
  4.  請求項1から3の何れか1項に記載の末端圧力制御装置であって、
     前記末端圧力制御の制御パラメータはPID制御の比例ゲインKp、積分ゲインKi、微分ゲインKdであることを特徴とする末端圧力制御装置。
  5.  空気圧縮機からの圧縮空気を配管レイアウトを介して末端機器に供給する空気圧システムの末端圧力制御方法であって、
     前記空気圧システムの配管ネットワークを入力する第一のステップと、
     前記末端機器の末端圧力の適正値を入力する第二のステップと、
     前記末端機器の末端圧力の計測値を入力する第三のステップと、
     前記配管ネットワークの圧損要素の差圧の計測値を入力する第四のステップと、
     前記圧損要素の計測値と前記末端圧力の計測値から前記配管ネットワークのシミュレーションモデルを導出する第五のステップと、
     前記シミュレーションモデルを用いて、前記末端圧力が前記末端圧力の適正値に近づくように前記空気圧縮機の制御パラメータを導出する第六のステップと、
     前記制御パラメータで前記空気圧縮機の圧力指令値を出力する第七のステップとからなることを特徴とする末端圧力制御方法。
  6.  請求項5に記載の末端圧力制御方法であって、
     前記空気圧縮機から吐出圧力の計測値を入力する第七のステップを有し、
     前記第五のステップは、前記吐出圧力の計測値と前記圧損要素の計測値と前記末端圧力の計測値から前記配管ネットワークのシミュレーションモデルを導出することを特徴とする末端圧力制御方法。
  7.  請求項5または6に記載の末端圧力制御方法であって、
     前記圧損要素はフィルタであることを特徴とする末端圧力制御方法。
  8.  請求項5から7の何れか1項に記載の末端圧力制御方法であって、
     前記制御パラメータはPID制御の比例ゲインKp、積分ゲインKi、微分ゲインKdであることを特徴とする末端圧力制御方法。
PCT/JP2017/041401 2016-11-17 2017-11-17 末端圧力制御装置および末端圧力制御方法 WO2018092866A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-224139 2016-11-17
JP2016224139A JP6773530B2 (ja) 2016-11-17 2016-11-17 末端圧力制御装置および末端圧力制御方法

Publications (1)

Publication Number Publication Date
WO2018092866A1 true WO2018092866A1 (ja) 2018-05-24

Family

ID=62145617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041401 WO2018092866A1 (ja) 2016-11-17 2017-11-17 末端圧力制御装置および末端圧力制御方法

Country Status (2)

Country Link
JP (1) JP6773530B2 (ja)
WO (1) WO2018092866A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110532597A (zh) * 2019-07-17 2019-12-03 北京中竞国际能源科技有限公司 基于压力轨迹预测和时间节点的空压机组调配系统及方法
WO2021140885A1 (ja) * 2020-01-06 2021-07-15 株式会社日立産機システム 圧縮機制御装置の設定値決定支援装置及び設定値決定支援方法、並びに圧縮機運転制御システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660785U (ja) * 1993-01-26 1994-08-23 神鋼電機株式会社 液体循環供給経路における流量調整装置
JP2008019746A (ja) * 2006-07-11 2008-01-31 Hitachi Industrial Equipment Systems Co Ltd 圧縮空気製造設備
JP2010024845A (ja) * 2008-07-15 2010-02-04 Hitachi Industrial Equipment Systems Co Ltd 圧縮空気製造設備

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660785U (ja) * 1993-01-26 1994-08-23 神鋼電機株式会社 液体循環供給経路における流量調整装置
JP2008019746A (ja) * 2006-07-11 2008-01-31 Hitachi Industrial Equipment Systems Co Ltd 圧縮空気製造設備
JP2010024845A (ja) * 2008-07-15 2010-02-04 Hitachi Industrial Equipment Systems Co Ltd 圧縮空気製造設備

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110532597A (zh) * 2019-07-17 2019-12-03 北京中竞国际能源科技有限公司 基于压力轨迹预测和时间节点的空压机组调配系统及方法
CN110532597B (zh) * 2019-07-17 2023-01-31 北京中竞国际能源科技有限公司 基于压力轨迹预测和时间节点的空压机组调配系统及方法
WO2021140885A1 (ja) * 2020-01-06 2021-07-15 株式会社日立産機システム 圧縮機制御装置の設定値決定支援装置及び設定値決定支援方法、並びに圧縮機運転制御システム
JP2021110244A (ja) * 2020-01-06 2021-08-02 株式会社日立産機システム 圧縮機制御装置の設定値決定支援装置及び設定値決定支援方法、並びに圧縮機運転制御システム
JP7291637B2 (ja) 2020-01-06 2023-06-15 株式会社日立産機システム 圧縮機制御装置の設定値決定支援装置及び設定値決定支援方法、並びに圧縮機運転制御システム

Also Published As

Publication number Publication date
JP2018080656A (ja) 2018-05-24
JP6773530B2 (ja) 2020-10-21

Similar Documents

Publication Publication Date Title
JP6704247B2 (ja) 空圧システム運転制御装置および制御方法
EP3039500B1 (en) Flow-control valve system and method
US20070150113A1 (en) System of energy-efficient and constant-pressure parallel-coupled fluid-transport machines
US9127684B2 (en) Method and device performing model based anti-surge dead time compensation
KR102177193B1 (ko) 오일 주입식 압축기 또는 진공 펌프의 출구 온도를 제어하기 위한 방법 및 이러한 방법을 구현하는 오일 주입식 압축기 또는 진공 펌프
WO2018092866A1 (ja) 末端圧力制御装置および末端圧力制御方法
CN105757063A (zh) 通过电子可变负载感测释放、可变操作余量和电子扭矩限制的电子负载感测控制
JP2002541541A (ja) 真空チャンバ内の圧力を調整するためのシステム、このシステムを装備した真空ポンピングユニット
US20080264086A1 (en) Method for improving efficiency in heating and cooling systems
CN102538148A (zh) 通信机房风量的控制方法及系统
US20230034599A1 (en) Device and method for assisting in assigning compressor controller settings values, and compressor operation control system
US9523365B2 (en) Decoupling of controlled variables in a fluid conveying system with dead time
RU2681394C1 (ru) Способ эксплуатации по меньшей мере одного насосного агрегата из множества насосных агрегатов
JP6986979B2 (ja) 空圧システムのリアルタイム制御装置および方法
US20150086326A1 (en) Method for optimizing performance of a compressor using inlet guide vanes and drive speed and implementation thereof
CN101122297A (zh) 节能型的恒压式流体输送机械并联装置
Torrisi et al. Model predictive control approaches for centrifugal compression systems
JP2009168034A (ja) スクリュー圧縮機
JP2005290989A (ja) 圧縮機設備の統合制御盤
JP4425768B2 (ja) スクリュー圧縮機
JP2020180570A (ja) 圧縮空気製造設備、圧縮空気の目標圧調整方法、および圧縮空気の目標圧調整プログラム
CN114562452B (zh) 用于控制工业设备的方法、系统、设备和介质
Degner Studies on Mechatronics: Optimization Methods for Gas Compressors
US20230021491A1 (en) Displacement pump pressure feedback control and method of control
JP2014080880A (ja) 圧縮空気供給システムおよびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872795

Country of ref document: EP

Kind code of ref document: A1