WO2018092550A1 - Resin package substrate - Google Patents

Resin package substrate Download PDF

Info

Publication number
WO2018092550A1
WO2018092550A1 PCT/JP2017/038940 JP2017038940W WO2018092550A1 WO 2018092550 A1 WO2018092550 A1 WO 2018092550A1 JP 2017038940 W JP2017038940 W JP 2017038940W WO 2018092550 A1 WO2018092550 A1 WO 2018092550A1
Authority
WO
WIPO (PCT)
Prior art keywords
package substrate
resin package
wiring board
recess
resin
Prior art date
Application number
PCT/JP2017/038940
Other languages
French (fr)
Japanese (ja)
Inventor
純一 南條
成道 牧野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018092550A1 publication Critical patent/WO2018092550A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a resin package substrate including a substrate and a resin covering one surface of the substrate.
  • Patent Document 1 has a configuration in which a functional element mounted on at least one main surface of a wiring board is covered with a resin containing a filler.
  • an object of the present invention is to provide a structure that suppresses the occurrence of peeling and cracking in a resin-covered wiring board.
  • the resin package substrate of the present invention includes a wiring substrate and a sealing resin.
  • the wiring board has a first main surface.
  • the first main surface is covered with a sealing resin.
  • the wiring board has a recess recessed in the thickness direction of the wiring board at the corner of the first main surface of the wiring board.
  • the sealing resin is filled in the recess.
  • the resin package substrate of the present invention preferably has the following configuration.
  • angular of the 1st main surface of a wiring board is a shape over the 1st edge
  • the resin package substrate of the present invention preferably has the following configuration.
  • a recess is formed on the outer periphery of the first main surface.
  • the resin package substrate of the present invention preferably has the following configuration.
  • the inner wall surface of the recess formed in the wiring board has an uneven shape.
  • the resin package substrate of the present invention preferably has the following configuration.
  • the concave portion formed in the wiring board reaches the magnetic layer, which is smaller than the linear expansion coefficient of the layer.
  • the bending strength is improved, the end of the interface between the nonmagnetic layer and the magnetic layer is covered with the sealing resin, and the stress acting on the side surface of the nonmagnetic layer can be dispersed, and cracks can be generated. It is suppressed.
  • the resin package substrate of the present invention preferably has the following configuration.
  • the wiring board When viewed from the top surface, the wiring board has a structure in which the concave portion has a depth that does not reach the coil in the thickness direction of the wiring board.
  • the recess has a plurality of local recesses that are locally recessed in the thickness direction in a side view.
  • (A) And (B) is a figure explaining schematic structure of the resin package board
  • (A)-(C) are diagrams showing the first half of the process when manufacturing the resin package substrate of the present invention.
  • (A) And (B) is the figure which showed the latter half process at the time of manufacturing the resin package board
  • (A) And (B) is a figure explaining schematic structure of the resin package board
  • (A) And (B) is a figure explaining schematic structure of the resin package board
  • (A) And (B) is a figure explaining schematic structure of the resin package board
  • FIG. 1A is a side sectional view showing a schematic configuration of a resin package substrate according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view of FIG. 1A cut along a plane including the axis 80 and viewed from the top.
  • FIG. 2 is a diagram comparing the stress distribution diagrams of the resin package substrate of the present invention and the resin package substrate used in the comparative example.
  • FIG. 3 is a flowchart showing a process of manufacturing the resin package substrate of the present invention in FIGS. 4 (A), 4 (B), 4 (C), 5 (A), and 5 (B). is there.
  • FIG. 4A, FIG. 4B, FIG. 4C, FIG. 5A, and FIG. 5B are diagrams showing a process in manufacturing a resin package substrate.
  • the resin package substrate 10 includes a wiring substrate 20, a sealing resin 30, and mounting-type electronic components 51 and 52.
  • the wiring board 20 includes a first main surface 203 and a second main surface 204 that are orthogonal to the thickness direction and face each other. Furthermore, the wiring board 20 includes side surfaces 201, 202, 205, and 206 that connect the first main surface 203 and the second main surface 204.
  • the side surface 201 and the side surface 202 are parallel to the short side 70 of the wiring substrate 20 and face each other.
  • the side surface 205 and the side surface 206 are parallel to the long side 60 of the wiring board 20 and face each other.
  • the wiring board is rectangular, but is not limited to this. It may be a complicated shape such as a triangle or polygon other than a square, or an L shape.
  • the wiring board 20 is a ferrite board.
  • the wiring board 20 includes magnetic layers 21 and 22 and nonmagnetic layers 23, 24 and 25.
  • the nonmagnetic layer 23 can be omitted, but by providing it, the direct current superimposition characteristics of the coil described later can be improved.
  • the magnetic layers 21 and 22 correspond to the “magnetic layer” of the present invention, and the nonmagnetic layers 24 and 25 correspond to the “nonmagnetic layer” of the present invention.
  • the magnetic layer 21 and the magnetic layer 22 are laminated with the nonmagnetic layer 23 interposed therebetween.
  • the nonmagnetic layer 24 is in contact with the surface of the magnetic layer 21 opposite to the contact surface with the nonmagnetic layer 23.
  • the nonmagnetic layer 25 is in contact with the surface of the magnetic layer 22 opposite to the contact surface with the nonmagnetic layer 23.
  • the wiring board 20 is laminated in the order of the nonmagnetic layer 24, the magnetic layer 21, the nonmagnetic layer 23, the magnetic layer 22, and the nonmagnetic layer 25 along the thickness direction.
  • the outer surface (surface orthogonal to the thickness direction) of the wiring substrate 20 on the nonmagnetic layer 24 side is the first main surface 203 of the wiring substrate 20, and the outer surface of the wiring substrate 20 on the nonmagnetic layer 25 side. (A surface orthogonal to the thickness direction) is the second main surface 204 of the wiring board 20.
  • a coil 401 is formed on the magnetic layers 21 and 22 and the nonmagnetic layer 23.
  • the coil 401 is formed of a wound type, that is, an annular coil conductor having a part cut off on the circumference and an interlayer connection conductor.
  • the plurality of coil conductors are formed at different positions in the thickness direction of the magnetic layers 21 and 22 of the wiring board 20, and the plurality of coil conductors are formed on the magnetic layers 21 and 22 and the nonmagnetic layer 23.
  • the formed interlayer connection conductors (not shown) are connected to form one conductor. With this configuration, the coil 401 is realized as a spiral conductor having an opening in the center when the wiring board 20 is viewed in plan and having a thickness direction as a winding axis direction.
  • component mounting land conductors 441 and 442 wiring conductors 451 and 452, and interlayer connection conductors 461 and 462 are formed.
  • the component mounting land conductors 441 and 442 are formed on the surface of the nonmagnetic layer 24 opposite to the contact surface with the magnetic layer 21. That is, the component mounting land conductors 441 and 442 are formed on the first main surface 203 of the wiring board 20.
  • a mounting-type electronic component 51 is mounted on the component mounting land conductor 441.
  • a mounting-type electronic component 52 is mounted on the component mounting land conductor 442.
  • the wiring conductor 451 is formed at the interface between the nonmagnetic layer 24 and the magnetic layer 21. The vicinity of one end of the wiring conductor 451 is connected to the component mounting land conductor 441 via the interlayer connection conductor 461. The other end of the wiring conductor 451 is connected to the wiring conductor 421 via an interlayer connection conductor or the like (not shown).
  • the interlayer connection conductor passes between the coil 401 and the side surface 201, for example.
  • the wiring conductor 452 is formed at the interface between the nonmagnetic layer 24 and the magnetic layer 21. The vicinity of one end of the wiring conductor 452 is connected to the component mounting land conductor 442 via the interlayer connection conductor 462. The other end of the wiring conductor 452 is connected to the wiring conductor 422 via an interlayer connection conductor (not shown).
  • the interlayer connection conductor passes between the coil 401 and the side surface 202, for example.
  • Terminal conductors 411 and 412, wiring conductors 421 and 422, and interlayer connection conductors 431 and 432 are formed in the nonmagnetic layer 25.
  • the terminal conductors 411 and 412 are formed on the surface of the nonmagnetic material layer 25 opposite to the contact surface with the magnetic material layer 22. That is, the terminal conductors 411 and 412 are formed on the second main surface 204 of the wiring board 20.
  • the terminal conductors 411 and 412 are reference potential terminal conductors, for example, ground (ground) terminal conductors.
  • the wiring conductor 421 is formed at the interface between the nonmagnetic layer 25 and the magnetic layer 22. The vicinity of one end of the wiring conductor 421 is connected to the terminal conductor 411 through the interlayer connection conductor 431. Further, the wiring conductor 421 is connected to the wiring conductor 451 via the interlayer connection conductor (not shown) as described above.
  • the wiring conductor 422 is formed at the interface between the nonmagnetic layer 25 and the magnetic layer 22. The vicinity of one end of the wiring conductor 422 is connected to the terminal conductor 412 via the interlayer connection conductor 432. Further, the wiring conductor 422 is connected to the wiring conductor 452 via the interlayer connection conductor or the like (not shown) as described above. With these structures, a basic circuit function unit of the resin package substrate 10 is realized.
  • the sealing resin 30 covers the first main surface of the wiring board 20 and the mounted electronic components 51 and 52. More specifically, the wiring board 20 and the sealing resin 30 have the following shapes.
  • the wiring board 20 includes a plurality of recesses 210.
  • the plurality of recesses 210 are provided so that at least a part thereof includes each corner CR1, CR2, CR3, CR4 on the first main surface 203 side of the wiring board 20.
  • the first recess 210 has a shape extending from the side surface 202 to the side surface 205 including the corner portion CR ⁇ b> 1 where the side surface 202 and the side surface 205 are connected. And a shape recessed inward from the side surface 205.
  • the second concave portion 210 has a shape extending from the side surface 202 and the side surface 206 to the inside including the corner portion CR ⁇ b> 2 where the side surface 202 and the side surface 206 are connected.
  • the third concave portion 210 has a shape extending from the side surface 201 and the side surface 205 to the inner side, including the corner portion CR ⁇ b> 3 where the side surface 201 and the side surface 205 are connected.
  • the fourth recess 210 has a shape extending from the side surface 201 and the side surface 206 to the inner side, including the corner portion CR4 where the side surface 201 and the side surface 206 are connected.
  • the first, second, third, and fourth recesses 210 have a shape that is recessed from the first major surface 203, and the bottom surface of the magnetic layer 21 is more than the interface between the nonmagnetic layer 24 and the magnetic layer 21. The side position has been reached.
  • the sealing resin 30 is provided so as to cover the first main surface 203 of the wiring substrate 20 and to fill the plurality of recesses 210.
  • the occurrence of cracks can be suppressed by covering each corner CR1, CR2, CR3, CR4 with the sealing resin 30. Further, by covering the side surfaces 201, 202, 205, 206 in the vicinity of the corner portions CR1, CR2, CR3, CR4, the corner portions CR1, CR2, CR3, CR4 and the corner portions CR1, CR2, CR3, CR4 are covered. The occurrence of cracks from the side surfaces 201, 202, 205, 206 in the vicinity can be suppressed.
  • the edge of the interface between the nonmagnetic layer and the magnetic layer is covered with the sealing resin, the entire length in the thickness direction of the side surface of the nonmagnetic layer where cracks are likely to occur is covered, and the generation of cracks is further suppressed. Is done. Furthermore, the stress acting on the side surface of the nonmagnetic layer can be dispersed, and cracks are further effectively suppressed.
  • the wiring board 20 can realize a high bending strength. , Improve reliability. In this case, cracks in the nonmagnetic layer are likely to occur, but the occurrence of cracks is effectively suppressed by the above-described configuration.
  • the recess 210 is formed with a depth that does not overlap with the coiled coil conductor constituting the coil 401. Thereby, it can suppress that the center opening of the coil 401 becomes small, and can suppress that the width
  • FIG. 2 is a diagram comparing the stress distribution diagrams of the package substrate of the present invention and the resin package substrate used in the comparative example.
  • a conventional resin package substrate is compared with a resin package substrate according to an embodiment of the present invention.
  • a portion where the stress is the largest is “high stress” and a portion where the stress is the smallest is “small stress”.
  • a portion where a stress having a magnitude between “large stress” and “small stress” is applied is defined as “in stress”.
  • the “high stress” portion, the “under stress” portion, and the “stress low” portion have different hatchings.
  • the comparative example is a conventional resin package substrate, which is laminated in the order of sealing resin, magnetic body, and non-magnetic body, and does not have a recess and a sealing resin that fills the recess. That is, the sealing resin, the magnetic body, and the non-magnetic body are only in contact with each interface orthogonal to the thickness direction.
  • the stress is the largest around the side surface, particularly the side surface at the position of the interface between the sealing resin and the nonmagnetic material layer. Then, according to the distance from the center, a portion where the stress is large, the stress is small, and the stress is small is spread inside the wiring board.
  • the main stress point is the sealing resin-nonmagnetic layer interface
  • the maximum main stress is 376.1 MPa.
  • the structure of the present invention is laminated in the order of sealing resin, magnetic body, and non-magnetic body as in the comparative example.
  • a recess is formed on the side surface of the wiring board across the nonmagnetic material layer and the magnetic material layer, and the recess is filled with resin.
  • the side surface of the magnetic layer is in contact with the sealing resin
  • the side surface of the non-magnetic layer is in contact with the sealing resin.
  • the stress is most applied around the side surface of the sealing resin filled in the recess, but the size is smaller than that of the comparative example.
  • a portion with a small stress spreads inside the wiring board during the stress.
  • the main stress portion is the sealing resin-nonmagnetic layer interface, and the maximum main stress is 161.8 MPa.
  • the resin at the recesses formed at both ends of the wiring board is filled with the resin, so that the stress at the sealing resin-nonmagnetic layer interface, which is the main stress portion, is dispersed.
  • the maximum principal stress is substantially halved, and the generation of cracks is suppressed.
  • FIG. 3 is a flowchart showing a method for manufacturing a resin package substrate according to the first embodiment of the present invention.
  • 4 (A), 4 (B), 4 (C), 5 (A), and 5 (B) are side cross-sectional views showing the configuration of the manufacturing process.
  • conductor patterns are respectively formed on a plurality of magnetic sheets constituting the magnetic layers 21M and 22M and a plurality of nonmagnetic sheets constituting the nonmagnetic layers 24M and 25M. Is formed (S101).
  • the plurality of magnetic sheets constituting the magnetic layers 21M and 22M and the plurality of nonmagnetic sheets constituting the nonmagnetic layers 24M and 25M are sized so that the plurality of wiring boards 20 can be formed in a lump ( Mother sheet).
  • the conductor pattern is formed on the mother sheet so that a plurality of wiring boards are arranged as a final shape.
  • Coil conductors and interlayer connection conductors constituting the coil 401 are formed on the plurality of magnetic sheets constituting the magnetic layers 21M and 22M.
  • Component mounting land conductors 441 and 442, a wiring conductor 450, and interlayer connection conductors 461 and 462 are formed on a plurality of nonmagnetic sheets constituting the nonmagnetic layer 24M.
  • Terminal conductors 411 and 412, a wiring conductor 420, and interlayer connection conductors 431 and 432 are formed on a plurality of nonmagnetic sheets constituting the nonmagnetic layer 25 ⁇ / b> M.
  • a non-magnetic sheet constituting the layer 23M is laminated to form a mother laminate (S102).
  • a concave portion 210 having a shape in which the side surface of each element portion is recessed is formed (S103).
  • the element portion refers to a portion that finally becomes one resin package substrate.
  • the cylindrical recess 210 is formed so that the substantially center position of the adjacent coils 401 in the mother laminate 20M is the center of the cylinder.
  • the recess 210 is formed by a laser, a dicer or the like. At this time, the recess 210 is formed such that the bottom surface is disposed at a depth that penetrates the nonmagnetic layer 24M and does not reach the coil conductor pattern in the magnetic layer 21M.
  • the mother laminate 20M is fired (S104).
  • the mountable electronic components 51 and 52 are mounted on the first main surface of the fired mother laminate 20M.
  • the mounted electronic component 51 is mounted on the component mounting land conductor 441
  • the mounted electronic component 52 is mounted on the component mounting land conductor 442.
  • the sealing resin 30 is formed on the first main surface side of the mother laminate 20M (S106). At this time, the recess 210 is also filled with resin.
  • a groove GR that is divided into element units is formed in the mother stacked body 20M, and the mother stacked body 20M is separated into a plurality of element parts (S107).
  • the resin package substrate 10 having the above-described configuration can be manufactured.
  • FIG. 6A is a cross-sectional plan view of a resin package substrate according to the second embodiment of the present invention.
  • FIG. 6A is a cross-sectional view at the same position as FIG.
  • the resin package substrate 10A of the present embodiment is different from the resin package substrate 10 according to the first embodiment in the shape of the recess 210A.
  • the other configuration of the resin package substrate 10A is the same as that of the resin package substrate 10, and the description of the same parts is omitted.
  • the plurality of recesses 210A include corner portions CR1, CR2, CR3, and CR4, and are formed in a shape that extends only to the side surface 201 and the side surface 202 side. In other words, the plurality of recesses 210 ⁇ / b> A do not extend along the side surfaces 205 and 206.
  • the sealing resin 30 is filled in the plurality of recesses 210A.
  • FIG. 6B is a plan sectional view of the resin package substrate according to the third embodiment of the present invention.
  • FIG. 6B is a cross-sectional view at the same position as FIG.
  • the resin package substrate 10B according to the present embodiment is different from the resin package substrate 10 according to the first embodiment in the shape of the recess 210B.
  • the other configuration of the resin package substrate 10B is the same as that of the resin package substrate 10, and the description of the same parts is omitted.
  • the plurality of concave portions 210B include corner portions CR1, CR2, CR3, and CR4, and are formed in a shape surrounding the side surface 201, the side surface 202, the side surface 205, and the side surface 206. In other words, the recess 210B covers the entire outer periphery of the resin package substrate 10B.
  • the sealing resin 30 is filled in the recess 210B.
  • FIG. 7A is a plan sectional view of a resin package substrate according to the fourth embodiment of the present invention.
  • FIG. 7B is an enlarged view of a part (a portion surrounded by a broken-line circle) of the plan sectional view viewed from the side surface 206 side, which is divided by a plane including the shaft 85 in FIG. It is.
  • the concave portion is shown in an enlarged manner.
  • the resin package substrate 10C of the present embodiment differs from the resin package substrate 10 of the first embodiment in the shape of the recesses 210C.
  • the other configuration of the resin package substrate 10C is the same as that of the resin package substrate 10, and the description of the same parts is omitted.
  • the recess 210C has a shape having a plurality of local recesses 215C that are locally recessed in the thickness direction of the nonmagnetic layer 24 in a side view. It is preferable that the local recess 215C reaches the magnetic layer 21 in the thickness direction (depth direction of the recess 210C).
  • the sealing resin 30 is filled in the recesses 210C and the local recesses 215C.
  • the sealing resin 30, the magnetic layer 21, and the non-magnetic material have a configuration having a concave / convex shape including a circle in a top view rather than an inner wall surface of the concave portion configured by only a straight line.
  • the area in contact with the layer 24 becomes larger, and the adhesion becomes higher. Therefore, the generation of cracks can be further suppressed.
  • FIG. 8A is a side sectional view showing a schematic configuration of a resin package substrate according to the fifth embodiment of the present invention.
  • FIG. 8B is an enlarged view of a part centering on the recess 210D in the side cross-sectional view in FIG.
  • the resin package substrate 10D of the present embodiment is different from the resin package substrate 10 of the first embodiment in the shape of the recesses 210D.
  • the other configuration of the resin package substrate 10D is the same as that of the resin package substrate 10, and the description of the same parts is omitted.
  • the recess 210D has a fine and sharp tip. Even with such a configuration, cracks can be suppressed.
  • the recess 210D is formed by a laser.
  • a roughened surface larger than the ceramic particle diameter is formed on the inner wall surface of the recess 210D. Therefore, the anchor effect can be expected more on the surface formed by the laser than on the surface of the recess formed by the dicer or the like.
  • the surface of the recess may be roughened as in the configuration of the fifth embodiment.
  • the ferrite substrate described above may be a dielectric substrate.

Abstract

Provided is a structure that suppresses the occurrence of peeling and cracks in a wiring board covered with a resin. A resin package substrate (10) is provided with a wiring board (20) having a first main surface (203), and a sealing resin (30) covering the first main surface (203). The wiring board (20) has recessed sections (210) at the corners of the first main surface (203), said recessed sections being recessed in the thickness direction of the wiring board (20). The recessed sections (210) are filled with the sealing resin (30).

Description

樹脂パッケージ基板Resin package substrate
 本発明は、基板と基板の一面を覆う樹脂を備える樹脂パッケージ基板に関する。 The present invention relates to a resin package substrate including a substrate and a resin covering one surface of the substrate.
 従来、樹脂パッケージ基板の構成について多数の提案がなされている(特許文献1)。例えば、特許文献1は、配線基板の少なくとも一方主面に実装された機能素子が充填剤を含有する樹脂で被覆された構成を備えている。 Conventionally, many proposals have been made on the structure of a resin package substrate (Patent Document 1). For example, Patent Document 1 has a configuration in which a functional element mounted on at least one main surface of a wiring board is covered with a resin containing a filler.
特開2007-235303号公報JP 2007-235303 A
 しかし、特許文献1に示すような構造では、ヒートサイクル等の熱履歴によって、カバー樹脂と配線基板の界面において剥がれが発生しやすい。また、セラミックを材料とする配線基板においては、配線基板におけるカバー樹脂との界面付近でクラックが発生しやすい。 However, in the structure as shown in Patent Document 1, peeling is likely to occur at the interface between the cover resin and the wiring board due to a thermal history such as a heat cycle. Also, in a wiring board made of ceramic, cracks are likely to occur near the interface with the cover resin in the wiring board.
 これは、配線基板とカバー樹脂の線膨張係数の差によって、界面付近に応力がかかるためである。 This is because stress is applied near the interface due to the difference in the coefficient of linear expansion between the wiring board and the cover resin.
 そこで、本発明は樹脂カバーした配線基板における、剥がれ、クラックの発生を抑制させる構造を提供することを目的とする。 Therefore, an object of the present invention is to provide a structure that suppresses the occurrence of peeling and cracking in a resin-covered wiring board.
 この発明の樹脂パッケージ基板は、配線基板と封止樹脂を備える。配線基板は、第1主面を有する。第1主面は封止樹脂で覆われている。配線基板は、配線基板の第1主面の角に、配線基板の厚み方向に凹む凹部を有している。封止樹脂は凹部に充填されている。 The resin package substrate of the present invention includes a wiring substrate and a sealing resin. The wiring board has a first main surface. The first main surface is covered with a sealing resin. The wiring board has a recess recessed in the thickness direction of the wiring board at the corner of the first main surface of the wiring board. The sealing resin is filled in the recess.
 この構成では、クラック、剥がれが生じやすい角が封止樹脂によって、保護される。 In this configuration, the corners that are liable to crack and peel are protected by the sealing resin.
 また、この発明の樹脂パッケージ基板は、次の構成であることが好ましい。配線基板の第1主面の角に形成されている凹部は、角を構成する第1辺と第2辺に亘る形状である。 The resin package substrate of the present invention preferably has the following configuration. The recessed part formed in the corner | angular of the 1st main surface of a wiring board is a shape over the 1st edge | side and 2nd edge | side which comprise a corner | angular.
 この構成では、配線基板の角を含む側面が、封止樹脂によって保護され、クラック、剥がれが抑制される。 In this configuration, the side surfaces including the corners of the wiring board are protected by the sealing resin, and cracks and peeling are suppressed.
 また、この発明の樹脂パッケージ基板は、次の構成であることが好ましい。配線基板を天面方向から見て、第1主面の外周に凹部が形成されている。 The resin package substrate of the present invention preferably has the following configuration. When the wiring board is viewed from the top surface direction, a recess is formed on the outer periphery of the first main surface.
 この構成では、配線基板の外周全体に凹部が形成されることにより、さらにクラック、剥がれがより抑制される。 In this configuration, since the recess is formed on the entire outer periphery of the wiring substrate, cracking and peeling are further suppressed.
 また、この発明の樹脂パッケージ基板は、次の構成であることが好ましい。配線基板に形成された凹部の内壁面が凹凸の形状を持つ。 The resin package substrate of the present invention preferably has the following configuration. The inner wall surface of the recess formed in the wiring board has an uneven shape.
 この構成では、凹部の表面が粗化されることにより、凹部に充填された封止樹脂と配線基板の密着力が向上し、クラック、剥がれがさらに抑制される。 In this configuration, when the surface of the recess is roughened, the adhesion between the sealing resin filled in the recess and the wiring board is improved, and cracking and peeling are further suppressed.
 また、この発明の樹脂パッケージ基板は、次の構成であることが好ましい。配線基板を平面視して開口を有するコイルが形成された磁性体層と、該磁性体層を挟んで配置された非磁性体層とを備え、該非磁性体層の線膨張係数が該磁性体層の線膨張係数よりも小さく、配線基板に形成された凹部が磁性体層まで達している。 The resin package substrate of the present invention preferably has the following configuration. A magnetic layer in which a coil having an opening in plan view of a wiring board is formed, and a nonmagnetic layer arranged with the magnetic layer interposed therebetween, and the linear expansion coefficient of the nonmagnetic layer is the magnetic body The concave portion formed in the wiring board reaches the magnetic layer, which is smaller than the linear expansion coefficient of the layer.
 この構成では、抗折強度が向上するとともに、非磁性体層と磁性体層の界面の端が封止樹脂で覆われ、非磁性体層の側面に働く応力を分散させることができ、クラックが抑制される。 In this configuration, the bending strength is improved, the end of the interface between the nonmagnetic layer and the magnetic layer is covered with the sealing resin, and the stress acting on the side surface of the nonmagnetic layer can be dispersed, and cracks can be generated. It is suppressed.
 また、この発明の樹脂パッケージ基板は、次の構成であることが好ましい。配線基板を天面方向から見て、配線基板の厚さ方向に、凹部がコイルに届かない深さである構造を持つ。 The resin package substrate of the present invention preferably has the following configuration. When viewed from the top surface, the wiring board has a structure in which the concave portion has a depth that does not reach the coil in the thickness direction of the wiring board.
 この構成では、コイルの中央開口が小さくなることを抑制でき、コイル導体の幅が狭くなることが抑制され、コイル特性の低下が抑制される。 In this configuration, it is possible to suppress the central opening of the coil from becoming smaller, to suppress the width of the coil conductor from being reduced, and to suppress the deterioration of the coil characteristics.
 また、この発明の樹脂パッケージ基板では、側面視において、凹部は、厚み方向に局所的に凹む複数の局部凹部を有する好ましい。 In the resin package substrate of the present invention, it is preferable that the recess has a plurality of local recesses that are locally recessed in the thickness direction in a side view.
 この構成では、凹部に充填された封止樹脂と配線基板との当接面積が大きくなり、密着力がさらに向上する。 In this configuration, the contact area between the sealing resin filled in the recess and the wiring board is increased, and the adhesion is further improved.
 この発明によれば、樹脂カバーした配線基板における、剥がれ、クラックの発生を抑制できる。 According to this invention, it is possible to suppress the occurrence of peeling and cracking in the resin-covered wiring board.
(A)及び(B)は、本発明の第1の実施形態に係る樹脂パッケージ基板の概略構成を説明する図である。(A) And (B) is a figure explaining schematic structure of the resin package board | substrate which concerns on the 1st Embodiment of this invention. 本発明の樹脂パッケージ基板と、比較例で用いた樹脂パッケージ基板の応力分布図を比較した図である。It is the figure which compared the stress distribution figure of the resin package board | substrate of this invention, and the resin package board | substrate used by the comparative example. 本発明の樹脂パッケージ基板を製造する過程を示したフローチャート図である。It is the flowchart figure which showed the process of manufacturing the resin package board | substrate of this invention. (A)-(C)は、本発明の樹脂パッケージ基板を製造する際の前半過程を示した図である。(A)-(C) are diagrams showing the first half of the process when manufacturing the resin package substrate of the present invention. (A)及び(B)は、本発明の樹脂パッケージ基板を製造する際の後半過程を示した図である。(A) And (B) is the figure which showed the latter half process at the time of manufacturing the resin package board | substrate of this invention. (A)及び(B)は、本発明の第2、第3の実施形態に係る樹脂パッケージ基板の概略構成を説明する図である。(A) And (B) is a figure explaining schematic structure of the resin package board | substrate which concerns on the 2nd, 3rd embodiment of this invention. (A)及び(B)は、本発明の第4の実施形態に係る樹脂パッケージ基板の概略構成を説明する図である。(A) And (B) is a figure explaining schematic structure of the resin package board | substrate which concerns on the 4th Embodiment of this invention. (A)及び(B)は、本発明の第5の実施形態に係る樹脂パッケージ基板の概略構成を説明する図である。(A) And (B) is a figure explaining schematic structure of the resin package board | substrate which concerns on the 5th Embodiment of this invention.
(第1の実施形態)
 本発明の第1の実施形態に係る樹脂パッケージ基板について、図を参照して説明する。図1(A)は、本発明の第1の実施形態に係る樹脂パッケージ基板の概略構成を示す側面断面図である。図1(B)は、図1(A)を軸80を含む平面で断って、天面方向から平面視した断面図である。図2は、本発明の樹脂パッケージ基板と、比較例で用いた樹脂パッケージ基板の応力分布図を比較した図である。図3は、図4(A)、図4(B)、図4(C)、図5(A)、図5(B)における本発明の樹脂パッケージ基板を製造する過程を示したフローチャート図である。図4(A)、図4(B)、図4(C)、図5(A)、図5(B)は、樹脂パッケージ基板を製造する際の過程を示した図である。
(First embodiment)
A resin package substrate according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a side sectional view showing a schematic configuration of a resin package substrate according to the first embodiment of the present invention. FIG. 1B is a cross-sectional view of FIG. 1A cut along a plane including the axis 80 and viewed from the top. FIG. 2 is a diagram comparing the stress distribution diagrams of the resin package substrate of the present invention and the resin package substrate used in the comparative example. FIG. 3 is a flowchart showing a process of manufacturing the resin package substrate of the present invention in FIGS. 4 (A), 4 (B), 4 (C), 5 (A), and 5 (B). is there. FIG. 4A, FIG. 4B, FIG. 4C, FIG. 5A, and FIG. 5B are diagrams showing a process in manufacturing a resin package substrate.
 図1(A)、図1(B)に示すように、樹脂パッケージ基板10は、配線基板20、封止樹脂30、および実装型電子部品51、52を備える。 As shown in FIGS. 1A and 1B, the resin package substrate 10 includes a wiring substrate 20, a sealing resin 30, and mounting-type electronic components 51 and 52.
 配線基板20は、厚み方向に直交し、互いに対向する第1主面203、第2主面204を備えている。さらに、配線基板20は、第1主面203と第2主面204とを連接する側面201、202、205、206を備えている。側面201と側面202とは、配線基板20の短辺70に平行であり、互いに対向している。側面205と側面206とは、配線基板20の長辺60に平行であり、互いに対向している。なお、本実施形態において配線基板は方形であるが、これに限定されない。方形以外の三角形や多角形、あるいはL字型のような複雑な形状であってもよい。 The wiring board 20 includes a first main surface 203 and a second main surface 204 that are orthogonal to the thickness direction and face each other. Furthermore, the wiring board 20 includes side surfaces 201, 202, 205, and 206 that connect the first main surface 203 and the second main surface 204. The side surface 201 and the side surface 202 are parallel to the short side 70 of the wiring substrate 20 and face each other. The side surface 205 and the side surface 206 are parallel to the long side 60 of the wiring board 20 and face each other. In the present embodiment, the wiring board is rectangular, but is not limited to this. It may be a complicated shape such as a triangle or polygon other than a square, or an L shape.
 配線基板20は、フェライト基板である。配線基板20は、磁性体層21、22、非磁性体層23、24、25を備える。非磁性体層23は、省略することも可能であるが、設けることによって後述のコイルの直流重畳特性を向上できる。 The wiring board 20 is a ferrite board. The wiring board 20 includes magnetic layers 21 and 22 and nonmagnetic layers 23, 24 and 25. The nonmagnetic layer 23 can be omitted, but by providing it, the direct current superimposition characteristics of the coil described later can be improved.
 磁性体層21、22は、本発明の「磁性体層」に対応し、非磁性体層24、25は、本発明の「非磁性体層」に対応する。 The magnetic layers 21 and 22 correspond to the “magnetic layer” of the present invention, and the nonmagnetic layers 24 and 25 correspond to the “nonmagnetic layer” of the present invention.
 磁性体層21と磁性体層22とは、非磁性体層23を挟んで積層されている。非磁性体層24は、磁性体層21における非磁性体層23への当接面と反対側の面に当接している。非磁性体層25は、磁性体層22における非磁性体層23への当接面と反対側の面に当接している。言い換えれば、配線基板20は、厚み方向に沿って、非磁性体層24、磁性体層21、非磁性体層23、磁性体層22、および、非磁性体層25の順に積層されている。 The magnetic layer 21 and the magnetic layer 22 are laminated with the nonmagnetic layer 23 interposed therebetween. The nonmagnetic layer 24 is in contact with the surface of the magnetic layer 21 opposite to the contact surface with the nonmagnetic layer 23. The nonmagnetic layer 25 is in contact with the surface of the magnetic layer 22 opposite to the contact surface with the nonmagnetic layer 23. In other words, the wiring board 20 is laminated in the order of the nonmagnetic layer 24, the magnetic layer 21, the nonmagnetic layer 23, the magnetic layer 22, and the nonmagnetic layer 25 along the thickness direction.
 この構成において、配線基板20における非磁性体層24側の外面(厚み方向に直交する面)が、配線基板20の第1主面203であり、配線基板20における非磁性体層25側の外面(厚み方向に直交する面)が、配線基板20の第2主面204である。 In this configuration, the outer surface (surface orthogonal to the thickness direction) of the wiring substrate 20 on the nonmagnetic layer 24 side is the first main surface 203 of the wiring substrate 20, and the outer surface of the wiring substrate 20 on the nonmagnetic layer 25 side. (A surface orthogonal to the thickness direction) is the second main surface 204 of the wiring board 20.
 磁性体層21、22および非磁性体層23には、コイル401が形成されている。コイル401は、巻回形、すなわち、周上の一部を切り欠いた環状のコイル導体と層間接続導体とから構成されている。複数のコイル導体は、配線基板20の磁性体層21、22における厚み方向の異なる位置に形成されており、これら複数のコイル導体は、磁性体層21、22、および、非磁性体層23に形成された層間接続導体(図示を省略している。)によって、1本の導体となるように接続されている。この構成によって、コイル401は、配線基板20を平面視して中央に開口部を有し、厚み方向を巻回軸方向とする螺旋形の導体として実現されている。 A coil 401 is formed on the magnetic layers 21 and 22 and the nonmagnetic layer 23. The coil 401 is formed of a wound type, that is, an annular coil conductor having a part cut off on the circumference and an interlayer connection conductor. The plurality of coil conductors are formed at different positions in the thickness direction of the magnetic layers 21 and 22 of the wiring board 20, and the plurality of coil conductors are formed on the magnetic layers 21 and 22 and the nonmagnetic layer 23. The formed interlayer connection conductors (not shown) are connected to form one conductor. With this configuration, the coil 401 is realized as a spiral conductor having an opening in the center when the wiring board 20 is viewed in plan and having a thickness direction as a winding axis direction.
 非磁性体層24には、部品実装用ランド導体441、442、配線導体451、452、および、層間接続導体461、462が形成されている。 In the nonmagnetic layer 24, component mounting land conductors 441 and 442, wiring conductors 451 and 452, and interlayer connection conductors 461 and 462 are formed.
 部品実装用ランド導体441、442は、非磁性体層24における磁性体層21への当接面と反対側の面に形成されている。すなわち、部品実装用ランド導体441、442は、配線基板20の第1主面203に形成されている。部品実装用ランド導体441には、実装型電子部品51が実装されている。部品実装用ランド導体442には、実装型電子部品52が実装されている。 The component mounting land conductors 441 and 442 are formed on the surface of the nonmagnetic layer 24 opposite to the contact surface with the magnetic layer 21. That is, the component mounting land conductors 441 and 442 are formed on the first main surface 203 of the wiring board 20. A mounting-type electronic component 51 is mounted on the component mounting land conductor 441. A mounting-type electronic component 52 is mounted on the component mounting land conductor 442.
 配線導体451は、非磁性体層24と磁性体層21との界面に形成されている。配線導体451の一方端付近は、層間接続導体461を介して、部品実装用ランド導体441に接続されている。配線導体451の他方端は、図示しない層間接続導体等を介して、配線導体421に接続されている。この層間接続導体は、例えば、コイル401と側面201の間を通っている。 The wiring conductor 451 is formed at the interface between the nonmagnetic layer 24 and the magnetic layer 21. The vicinity of one end of the wiring conductor 451 is connected to the component mounting land conductor 441 via the interlayer connection conductor 461. The other end of the wiring conductor 451 is connected to the wiring conductor 421 via an interlayer connection conductor or the like (not shown). The interlayer connection conductor passes between the coil 401 and the side surface 201, for example.
 配線導体452は、非磁性体層24と磁性体層21との界面に形成されている。配線導体452の一方端付近は、層間接続導体462を介して、部品実装用ランド導体442に接続されている。配線導体452の他方端は、図示しない層間接続導体等を介して、配線導体422に接続されている。この層間接続導体は、例えば、コイル401と側面202の間を通っている。 The wiring conductor 452 is formed at the interface between the nonmagnetic layer 24 and the magnetic layer 21. The vicinity of one end of the wiring conductor 452 is connected to the component mounting land conductor 442 via the interlayer connection conductor 462. The other end of the wiring conductor 452 is connected to the wiring conductor 422 via an interlayer connection conductor (not shown). The interlayer connection conductor passes between the coil 401 and the side surface 202, for example.
 非磁性体層25には、端子導体411、412、配線導体421、422、および、層間接続導体431、432が形成されている。 Terminal conductors 411 and 412, wiring conductors 421 and 422, and interlayer connection conductors 431 and 432 are formed in the nonmagnetic layer 25.
 端子導体411、412は、非磁性体層25における磁性体層22への当接面と反対側の面に形成されている。すなわち、端子導体411、412は、配線基板20の第2主面204に形成されている。端子導体411、412は、基準電位用の端子導体、例えば、グランド(接地)用の端子導体である。 The terminal conductors 411 and 412 are formed on the surface of the nonmagnetic material layer 25 opposite to the contact surface with the magnetic material layer 22. That is, the terminal conductors 411 and 412 are formed on the second main surface 204 of the wiring board 20. The terminal conductors 411 and 412 are reference potential terminal conductors, for example, ground (ground) terminal conductors.
 配線導体421は、非磁性体層25と磁性体層22との界面に形成されている。配線導体421の一方端付近は、層間接続導体431を介して、端子導体411に接続されている。また、配線導体421は、上述のように図示しない層間接続導体等を介して、配線導体451に接続されている。 The wiring conductor 421 is formed at the interface between the nonmagnetic layer 25 and the magnetic layer 22. The vicinity of one end of the wiring conductor 421 is connected to the terminal conductor 411 through the interlayer connection conductor 431. Further, the wiring conductor 421 is connected to the wiring conductor 451 via the interlayer connection conductor (not shown) as described above.
 配線導体422は、非磁性体層25と磁性体層22との界面に形成されている。配線導体422の一方端付近は、層間接続導体432を介して、端子導体412に接続されている。また、配線導体422は、上述のように図示しない層間接続導体等を介して、配線導体452に接続されている。これらの構造によって、樹脂パッケージ基板10の基本的な回路機能部は実現される。 The wiring conductor 422 is formed at the interface between the nonmagnetic layer 25 and the magnetic layer 22. The vicinity of one end of the wiring conductor 422 is connected to the terminal conductor 412 via the interlayer connection conductor 432. Further, the wiring conductor 422 is connected to the wiring conductor 452 via the interlayer connection conductor or the like (not shown) as described above. With these structures, a basic circuit function unit of the resin package substrate 10 is realized.
 封止樹脂30は、配線基板20の第1主面と実装型電子部品51、52とを覆っている。より具体的には、配線基板20と封止樹脂30とは以下の形状である。 The sealing resin 30 covers the first main surface of the wiring board 20 and the mounted electronic components 51 and 52. More specifically, the wiring board 20 and the sealing resin 30 have the following shapes.
 配線基板20は、複数の凹部210を備える。複数の凹部210は少なくとも一部が配線基板20の第1主面203側の各角部CR1、CR2、CR3、CR4を含むようにそれぞれ設けられている。 The wiring board 20 includes a plurality of recesses 210. The plurality of recesses 210 are provided so that at least a part thereof includes each corner CR1, CR2, CR3, CR4 on the first main surface 203 side of the wiring board 20.
 具体的には、図1(B)に示すように、第1の凹部210は、側面202と側面205とが接続する角部CR1を含んで側面202と側面205に亘る形状であり、側面202および側面205から内側に凹む形状である。第2の凹部210は、側面202と側面206とが接続する角部CR2を含んで側面202と側面206に亘る形状であり、側面202および側面206から内側に凹む形状である。第3の凹部210は、側面201と側面205とが接続する角部CR3を含んで側面201と側面205に亘る形状であり、側面201および側面205から内側に凹む形状である。第4の凹部210は、側面201と側面206とが接続する角部CR4を含んで側面201と側面206に亘る形状であり、側面201および側面206から内側に凹む形状である。 Specifically, as illustrated in FIG. 1B, the first recess 210 has a shape extending from the side surface 202 to the side surface 205 including the corner portion CR <b> 1 where the side surface 202 and the side surface 205 are connected. And a shape recessed inward from the side surface 205. The second concave portion 210 has a shape extending from the side surface 202 and the side surface 206 to the inside including the corner portion CR <b> 2 where the side surface 202 and the side surface 206 are connected. The third concave portion 210 has a shape extending from the side surface 201 and the side surface 205 to the inner side, including the corner portion CR <b> 3 where the side surface 201 and the side surface 205 are connected. The fourth recess 210 has a shape extending from the side surface 201 and the side surface 206 to the inner side, including the corner portion CR4 where the side surface 201 and the side surface 206 are connected.
 第1、第2、第3、第4の凹部210は、第1主面203から凹む形状であり、その底面は、非磁性体層24と磁性体層21との界面よりも磁性体層21側の位置に達している。 The first, second, third, and fourth recesses 210 have a shape that is recessed from the first major surface 203, and the bottom surface of the magnetic layer 21 is more than the interface between the nonmagnetic layer 24 and the magnetic layer 21. The side position has been reached.
 封止樹脂30は、上述のように、配線基板20の第1主面203を覆うとともに、複数の凹部210にも充填されるように、設けられている。 As described above, the sealing resin 30 is provided so as to cover the first main surface 203 of the wiring substrate 20 and to fill the plurality of recesses 210.
 ここで、配線基板20においてクラックが発生し易いのは、配線基板20における封止樹脂30との界面付近である。さらには、上述のように、封止樹脂30側から非磁性体層24と磁性体層22とが積層された構成では、非磁性体層24の線膨張係数と磁性体層22の線膨張係数との差によって、非磁性体層24に応力が加わるので、非磁性体層24にクラックが発生し易い。そして、クラックは、角部及び側面を起点とし易い。 Here, it is near the interface between the wiring substrate 20 and the sealing resin 30 that cracks are likely to occur in the wiring substrate 20. Further, as described above, in the configuration in which the nonmagnetic layer 24 and the magnetic layer 22 are laminated from the sealing resin 30 side, the linear expansion coefficient of the nonmagnetic layer 24 and the linear expansion coefficient of the magnetic layer 22 are obtained. Due to this difference, stress is applied to the nonmagnetic layer 24, and cracks are likely to occur in the nonmagnetic layer 24. And a crack is easy to start from a corner | angular part and a side surface.
 したがって、上述のように、各角部CR1、CR2、CR3、CR4を封止樹脂30で覆うことによって、クラックの発生を抑制できる。さらには、角部CR1、CR2、CR3、CR4の付近の各側面201、202、205、206を覆うことによって、角部CR1、CR2、CR3、CR4、および、角部CR1、CR2、CR3、CR4付近の各側面201、202、205、206からのクラック発生を抑制できる。 Therefore, as described above, the occurrence of cracks can be suppressed by covering each corner CR1, CR2, CR3, CR4 with the sealing resin 30. Further, by covering the side surfaces 201, 202, 205, 206 in the vicinity of the corner portions CR1, CR2, CR3, CR4, the corner portions CR1, CR2, CR3, CR4 and the corner portions CR1, CR2, CR3, CR4 are covered. The occurrence of cracks from the side surfaces 201, 202, 205, 206 in the vicinity can be suppressed.
 また、非磁性体層と磁性体層の界面の端が封止樹脂で覆われることにより、クラックが発生し易い非磁性体層の側面の厚み方向の全長が覆われ、クラックの発生がさらに抑制される。さらに、非磁性体層の側面に働く応力を分散させることができ、クラックがさらに効果的に抑制される。 In addition, since the edge of the interface between the nonmagnetic layer and the magnetic layer is covered with the sealing resin, the entire length in the thickness direction of the side surface of the nonmagnetic layer where cracks are likely to occur is covered, and the generation of cracks is further suppressed. Is done. Furthermore, the stress acting on the side surface of the nonmagnetic layer can be dispersed, and cracks are further effectively suppressed.
 また、磁性体層21、22の線膨張係数α1が、非磁性体層24、25の線膨張係数α2よりも大きい(α1>α2)ことにより、配線基板20は、高い抗折強度を実現でき、信頼性が向上する。そして、この場合に非磁性体層のクラック発生し易いが、上述の構成により、クラックの発生が効果的に抑制される。 Further, since the linear expansion coefficient α1 of the magnetic layers 21 and 22 is larger than the linear expansion coefficient α2 of the nonmagnetic layers 24 and 25 (α1> α2), the wiring board 20 can realize a high bending strength. , Improve reliability. In this case, cracks in the nonmagnetic layer are likely to occur, but the occurrence of cracks is effectively suppressed by the above-described configuration.
 なお、樹脂パッケージ基板10では、図1(A)に示すように、凹部210は、コイル401を構成する巻回形のコイル導体と重ならない深さで形成されている。これにより、コイル401の中央開口が小さくなることを抑制でき、コイル導体の幅が狭くなることを抑制できる。したがって、コイル401の特性の低下を抑制できる。 In the resin package substrate 10, as shown in FIG. 1A, the recess 210 is formed with a depth that does not overlap with the coiled coil conductor constituting the coil 401. Thereby, it can suppress that the center opening of the coil 401 becomes small, and can suppress that the width | variety of a coil conductor becomes narrow. Therefore, it is possible to suppress the deterioration of the characteristics of the coil 401.
 図2は、本発明のパッケージ基板と、比較例で用いた樹脂パッケージ基板との応力分布図を比較した図である。図2に示すように、従来の樹脂パッケージ基板と、本発明の実施例である樹脂パッケージ基板を比較する。応力分布図で使用する凡例として、応力が一番大きくかかる部分を「応力大」とし、応力が一番小さくかかる部分「応力小」とする。「応力大」と「応力小」の大きさの間の大きさの応力がかかる部分を「応力中」とする。「応力大」の部分、「応力中」の部分、「応力小」の部分は、それぞれハッチングを異ならせている。 FIG. 2 is a diagram comparing the stress distribution diagrams of the package substrate of the present invention and the resin package substrate used in the comparative example. As shown in FIG. 2, a conventional resin package substrate is compared with a resin package substrate according to an embodiment of the present invention. As a legend used in the stress distribution diagram, a portion where the stress is the largest is “high stress” and a portion where the stress is the smallest is “small stress”. A portion where a stress having a magnitude between “large stress” and “small stress” is applied is defined as “in stress”. The “high stress” portion, the “under stress” portion, and the “stress low” portion have different hatchings.
 比較例は、従来の樹脂パッケージ基板であり、封止樹脂、磁性体、非磁性体の順に積層されており、凹部と該凹部に充填される封止樹脂を有していない。すなわち封止樹脂、磁性体、非磁性体はそれぞれ厚み方向に直交する各界面で接しているだけである。この場合、比較例の応力分布図に示すように、側面、特に封止樹脂と非磁性体層との界面の位置の側面を中心として、応力が一番大きくかかる。そして、この中心からの距離に応じて、配線基板の内側に応力大、応力中、応力小の部分が広がっていく。この構成では、主応力箇所は、封止樹脂-非磁性体層界面であり、最大主応力は376.1MPaである。 The comparative example is a conventional resin package substrate, which is laminated in the order of sealing resin, magnetic body, and non-magnetic body, and does not have a recess and a sealing resin that fills the recess. That is, the sealing resin, the magnetic body, and the non-magnetic body are only in contact with each interface orthogonal to the thickness direction. In this case, as shown in the stress distribution diagram of the comparative example, the stress is the largest around the side surface, particularly the side surface at the position of the interface between the sealing resin and the nonmagnetic material layer. Then, according to the distance from the center, a portion where the stress is large, the stress is small, and the stress is small is spread inside the wiring board. In this configuration, the main stress point is the sealing resin-nonmagnetic layer interface, and the maximum main stress is 376.1 MPa.
 一方、本発明の構成は、比較例と同様に、封止樹脂、磁性体、非磁性体の順に積層されている。比較例と異なり、配線基板の側面に非磁性体層、磁性体層に亘って凹部が形成されており、該凹部が樹脂で充填されている。この構成では、磁性体層の側面と封止樹脂が接し、同様に非磁性体層の側面と封止樹脂が接している。この場合、実施例の応力分布図に示すように、凹部に充填された封止樹脂の側面を中心に、応力が一番かかるものの、その大きさは比較例よりも小さい。そして、この中心からの距離に応じて、配線基板の内側に応力中、応力小の部分が広がっていく。また、主応力箇所は、封止樹脂-非磁性体層界面で、最大主応力は161.8MPaである。 On the other hand, the structure of the present invention is laminated in the order of sealing resin, magnetic body, and non-magnetic body as in the comparative example. Unlike the comparative example, a recess is formed on the side surface of the wiring board across the nonmagnetic material layer and the magnetic material layer, and the recess is filled with resin. In this configuration, the side surface of the magnetic layer is in contact with the sealing resin, and similarly, the side surface of the non-magnetic layer is in contact with the sealing resin. In this case, as shown in the stress distribution diagram of the example, the stress is most applied around the side surface of the sealing resin filled in the recess, but the size is smaller than that of the comparative example. Then, in accordance with the distance from the center, a portion with a small stress spreads inside the wiring board during the stress. The main stress portion is the sealing resin-nonmagnetic layer interface, and the maximum main stress is 161.8 MPa.
 比較例と実施例を比較すると、配線基板の両端に形成された凹部に樹脂が充填されることにより、主応力箇所である封止樹脂-非磁性体層界面における応力が分散する。結果として、最大主応力が略半減し、クラックの発生が抑制される。 When the comparative example and the example are compared, the resin at the recesses formed at both ends of the wiring board is filled with the resin, so that the stress at the sealing resin-nonmagnetic layer interface, which is the main stress portion, is dispersed. As a result, the maximum principal stress is substantially halved, and the generation of cracks is suppressed.
 このような構成の樹脂パッケージ基板10は、次に示す方法によって製造されている。図3は、本発明の第1の実施形態に係る樹脂パッケージ基板の製造方法を示すフローチャートである。図4(A)、図4(B)、図4(C)、図5(A)、図5(B)は、製造過程の構成を示す側面断面図である。 The resin package substrate 10 having such a configuration is manufactured by the following method. FIG. 3 is a flowchart showing a method for manufacturing a resin package substrate according to the first embodiment of the present invention. 4 (A), 4 (B), 4 (C), 5 (A), and 5 (B) are side cross-sectional views showing the configuration of the manufacturing process.
 まず、図4(A)に示すように、磁性体層21M、22Mを構成する複数の磁性体シート、および、非磁性体層24M、25Mを構成する複数の非磁性体シートに、それぞれ導体パターンを形成する(S101)。磁性体層21M、22Mを構成する複数の磁性体シート、および、非磁性体層24M、25Mを構成する複数の非磁性体シートは、複数の配線基板20を一括で形成できる大きさのシート(マザーシート)である。導体パターンは、このマザーシートに対して、最終形状として複数の配線基板が配列するように、形成されている。 First, as shown in FIG. 4A, conductor patterns are respectively formed on a plurality of magnetic sheets constituting the magnetic layers 21M and 22M and a plurality of nonmagnetic sheets constituting the nonmagnetic layers 24M and 25M. Is formed (S101). The plurality of magnetic sheets constituting the magnetic layers 21M and 22M and the plurality of nonmagnetic sheets constituting the nonmagnetic layers 24M and 25M are sized so that the plurality of wiring boards 20 can be formed in a lump ( Mother sheet). The conductor pattern is formed on the mother sheet so that a plurality of wiring boards are arranged as a final shape.
 磁性体層21M、22Mを構成する複数の磁性体シートには、コイル401を構成するコイル導体および層間接続導体が形成される。非磁性体層24Mを構成する複数の非磁性体シートには、部品実装用ランド導体441、442、配線導体450、層間接続導体461、462が形成される。非磁性体層25Mを構成する複数の非磁性体シートには、端子導体411、412、配線導体420、層間接続導体431、432が形成される。 Coil conductors and interlayer connection conductors constituting the coil 401 are formed on the plurality of magnetic sheets constituting the magnetic layers 21M and 22M. Component mounting land conductors 441 and 442, a wiring conductor 450, and interlayer connection conductors 461 and 462 are formed on a plurality of nonmagnetic sheets constituting the nonmagnetic layer 24M. Terminal conductors 411 and 412, a wiring conductor 420, and interlayer connection conductors 431 and 432 are formed on a plurality of nonmagnetic sheets constituting the nonmagnetic layer 25 </ b> M.
 次に、図4(A)に示すように、磁性体層21M、22Mを構成する複数の磁性体シート、非磁性体層24M、25Mを構成する複数の非磁性体シート、および、非磁性体層23Mを構成する非磁性体シートを積層し、マザー積層体を形成する(S102)。 Next, as shown in FIG. 4A, a plurality of magnetic sheets constituting the magnetic layers 21M and 22M, a plurality of nonmagnetic sheets constituting the nonmagnetic layers 24M and 25M, and a nonmagnetic substance A non-magnetic sheet constituting the layer 23M is laminated to form a mother laminate (S102).
 次に、図4(B)に示すように、マザー積層体20Mの第1主面203側から、各素子部の側面を凹ませる形状の凹部210を形成する(S103)。素子部とは、最終的に1個の樹脂パッケージ基板となる部分を示す。例えば、マザー積層体20Mにおける隣り合うコイル401の略中心位置を円筒形の中心とするように、円筒形の凹部210を形成する。凹部210は、レーザー、ダイサー等によって形成される。この際、凹部210は、非磁性体層24Mを貫通し、磁性体層21Mにおけるコイル導体パターンに達しない深さに底面が配置されるように、形成されている。 Next, as shown in FIG. 4B, from the first main surface 203 side of the mother laminated body 20M, a concave portion 210 having a shape in which the side surface of each element portion is recessed is formed (S103). The element portion refers to a portion that finally becomes one resin package substrate. For example, the cylindrical recess 210 is formed so that the substantially center position of the adjacent coils 401 in the mother laminate 20M is the center of the cylinder. The recess 210 is formed by a laser, a dicer or the like. At this time, the recess 210 is formed such that the bottom surface is disposed at a depth that penetrates the nonmagnetic layer 24M and does not reach the coil conductor pattern in the magnetic layer 21M.
 次に、マザー積層体20Mを焼成する(S104)。次に、図4(C)に示すように、焼成後のマザー積層体20Mの第1主面に実装型電子部品51、52を実装する。実装型電子部品51は、部品実装用ランド導体441に実装され、実装型電子部品52は、部品実装用ランド導体442に実装される。 Next, the mother laminate 20M is fired (S104). Next, as shown in FIG. 4C, the mountable electronic components 51 and 52 are mounted on the first main surface of the fired mother laminate 20M. The mounted electronic component 51 is mounted on the component mounting land conductor 441, and the mounted electronic component 52 is mounted on the component mounting land conductor 442.
 次に、図5(A)に示すように、マザー積層体20Mの第1主面側に、封止樹脂30を形成する(S106)。この際に、凹部210も樹脂で充填される。 Next, as shown in FIG. 5A, the sealing resin 30 is formed on the first main surface side of the mother laminate 20M (S106). At this time, the recess 210 is also filled with resin.
 次に、図5(B)に示すように、マザー積層体20Mに対して素子部単位に分断する溝GRを形成し、マザー積層体20Mから複数の素子部に個片化する(S107)。 Next, as shown in FIG. 5B, a groove GR that is divided into element units is formed in the mother stacked body 20M, and the mother stacked body 20M is separated into a plurality of element parts (S107).
 このような製造方法を用いることによって、上述の構成の樹脂パッケージ基板10を製造できる。 By using such a manufacturing method, the resin package substrate 10 having the above-described configuration can be manufactured.
 次に、本発明の第2の実施形態に係る樹脂パッケージ基板について説明する。図6(A)は、本発明の第2の実施形態に係る樹脂パッケージ基板の平面断面図である。図6(A)は、図1(B)と同じ位置の断面図である。 Next, a resin package substrate according to the second embodiment of the present invention will be described. FIG. 6A is a cross-sectional plan view of a resin package substrate according to the second embodiment of the present invention. FIG. 6A is a cross-sectional view at the same position as FIG.
 図6(A)に示すように、本実施形態の樹脂パッケージ基板10Aは、第1の実施形態に係る樹脂パッケージ基板10に対して、凹部210Aの形状において異なる。樹脂パッケージ基板10Aの他の構成は、樹脂パッケージ基板10と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 6A, the resin package substrate 10A of the present embodiment is different from the resin package substrate 10 according to the first embodiment in the shape of the recess 210A. The other configuration of the resin package substrate 10A is the same as that of the resin package substrate 10, and the description of the same parts is omitted.
 複数の凹部210Aは、角部CR1、CR2、CR3、CR4を含み、側面201および側面202側のみに伸びる形状で形成されている。言い換えれば、複数の凹部210Aは、側面205、206に沿って延びていない。 The plurality of recesses 210A include corner portions CR1, CR2, CR3, and CR4, and are formed in a shape that extends only to the side surface 201 and the side surface 202 side. In other words, the plurality of recesses 210 </ b> A do not extend along the side surfaces 205 and 206.
 封止樹脂30は、これら複数の凹部210Aに充填されている。 The sealing resin 30 is filled in the plurality of recesses 210A.
 通常、クラックは配線基板20の短辺70の両端よりも、配線基板20の長辺60の両端の方が発生し易い。したがって、樹脂パッケージ基板10Aの構成であっても、クラックの発生を抑制できる。また、樹脂/基板のT寸比率により長辺の両端に応力が増加しやすいが、この構成を備えることにより、四角にかかる応力負担を効果的に軽減できる。 Usually, cracks are more likely to occur at both ends of the long side 60 of the wiring board 20 than at both ends of the short side 70 of the wiring board 20. Therefore, the occurrence of cracks can be suppressed even with the configuration of the resin package substrate 10A. Moreover, although stress tends to increase at both ends of the long side due to the T dimension ratio of the resin / substrate, the stress burden on the square can be effectively reduced by providing this configuration.
 次に、本発明の第3の実施形態に係る樹脂パッケージ基板について説明する。図6(B)は、本発明の第3の実施形態に係る樹脂パッケージ基板の平面断面図である。図6(B)は、図1(B)と同じ位置の断面図である。 Next, a resin package substrate according to the third embodiment of the present invention will be described. FIG. 6B is a plan sectional view of the resin package substrate according to the third embodiment of the present invention. FIG. 6B is a cross-sectional view at the same position as FIG.
 図6(B)に示すように、本実施形態の樹脂パッケージ基板10Bは、第1の実施形態に係る樹脂パッケージ基板10に対して、凹部210Bの形状において異なる。樹脂パッケージ基板10Bの他の構成は、樹脂パッケージ基板10と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 6B, the resin package substrate 10B according to the present embodiment is different from the resin package substrate 10 according to the first embodiment in the shape of the recess 210B. The other configuration of the resin package substrate 10B is the same as that of the resin package substrate 10, and the description of the same parts is omitted.
 複数の凹部210Bは、角部CR1、CR2、CR3、CR4を含み、側面201、側面202、側面205、側面206を囲う形状で形成されている。言い換えれば、凹部210Bは、樹脂パッケージ基板10Bの外周全体を覆っている。 The plurality of concave portions 210B include corner portions CR1, CR2, CR3, and CR4, and are formed in a shape surrounding the side surface 201, the side surface 202, the side surface 205, and the side surface 206. In other words, the recess 210B covers the entire outer periphery of the resin package substrate 10B.
 封止樹脂30は、凹部210Bに充填されている。 The sealing resin 30 is filled in the recess 210B.
 このような構成では、クラックが発生する可能性のある側面201、202、205、206と角部CR1、CR2、CR3、CR4の全体が、封止樹脂30で覆われている。したがって、クラックの発生をさらに抑制できる。 In such a configuration, the side surfaces 201, 202, 205, and 206 and the corner portions CR 1, CR 2, CR 3, and CR 4 where cracks may occur are entirely covered with the sealing resin 30. Therefore, the generation of cracks can be further suppressed.
 次に、本発明の第4の実施形態に係る樹脂パッケージ基板について説明する。図7(A)は、本発明の第4の実施形態に係る樹脂パッケージ基板の平面断面図である。また、図7(B)は、図7(A)において、軸85を含む平面で分割した、側面206側から見た平面断面図の一部(破線の円で囲んだ部分)を拡大した図である。図7(B)では凹部の部分を拡大して示している。 Next, a resin package substrate according to the fourth embodiment of the present invention will be described. FIG. 7A is a plan sectional view of a resin package substrate according to the fourth embodiment of the present invention. FIG. 7B is an enlarged view of a part (a portion surrounded by a broken-line circle) of the plan sectional view viewed from the side surface 206 side, which is divided by a plane including the shaft 85 in FIG. It is. In FIG. 7B, the concave portion is shown in an enlarged manner.
 図7(A)に示すように、本実施形態の樹脂パッケージ基板10Cは、第1の実施形態に係る樹脂パッケージ基板10に対して、凹部210Cの形状において異なる。樹脂パッケージ基板10Cの他の構成は、樹脂パッケージ基板10と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 7A, the resin package substrate 10C of the present embodiment differs from the resin package substrate 10 of the first embodiment in the shape of the recesses 210C. The other configuration of the resin package substrate 10C is the same as that of the resin package substrate 10, and the description of the same parts is omitted.
 図7(B)に示すように、側面視において凹部210Cは、非磁性体層24の厚み方向内側に局所的に凹む、複数の局部的凹部215Cを持つ形状である。局部的凹部215Cは厚み方向(凹部210Cの深さ方向)において、磁性体層21に達していることが好ましい。 As shown in FIG. 7B, the recess 210C has a shape having a plurality of local recesses 215C that are locally recessed in the thickness direction of the nonmagnetic layer 24 in a side view. It is preferable that the local recess 215C reaches the magnetic layer 21 in the thickness direction (depth direction of the recess 210C).
 封止樹脂30は、凹部210C、局部的凹部215Cに充填されている。 The sealing resin 30 is filled in the recesses 210C and the local recesses 215C.
 このような構成では、直線のみで構成される凹部の内壁面よりも、上面視で円形を含む凸凹の形状を持つ構成であることにより、封止樹脂30と、磁性体層21、非磁性体層24が接する面積が大きくなり、密着性がより高くなる。したがって、クラックの発生をさらに抑制できる。 In such a configuration, the sealing resin 30, the magnetic layer 21, and the non-magnetic material have a configuration having a concave / convex shape including a circle in a top view rather than an inner wall surface of the concave portion configured by only a straight line. The area in contact with the layer 24 becomes larger, and the adhesion becomes higher. Therefore, the generation of cracks can be further suppressed.
 次に、本発明の第5の実施形態に係る樹脂パッケージ基板について説明する。図8(A)は、本発明の第5の実施形態に係る樹脂パッケージ基板の概略構成を示す側面断面図である。図8(B)は、図8(A)における側面断面図の凹部210Dを中心とした一部を拡大した図である。 Next, a resin package substrate according to the fifth embodiment of the present invention will be described. FIG. 8A is a side sectional view showing a schematic configuration of a resin package substrate according to the fifth embodiment of the present invention. FIG. 8B is an enlarged view of a part centering on the recess 210D in the side cross-sectional view in FIG.
 図8(A)に示すように、本実施形態の樹脂パッケージ基板10Dは、第1の実施形態に係る樹脂パッケージ基板10に対して、凹部210Dの形状において異なる。樹脂パッケージ基板10Dの他の構成は、樹脂パッケージ基板10と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 8A, the resin package substrate 10D of the present embodiment is different from the resin package substrate 10 of the first embodiment in the shape of the recesses 210D. The other configuration of the resin package substrate 10D is the same as that of the resin package substrate 10, and the description of the same parts is omitted.
 図8(B)に示すように、凹部210Dは、先端が細かく鋭い形状である。このような構成でも、クラックを抑制できる。 As shown in FIG. 8B, the recess 210D has a fine and sharp tip. Even with such a configuration, cracks can be suppressed.
 また、凹部210Dは、レーザーによって形成される。レーザーで形成されることにより、凹部210Dの内壁面には、セラミック粒子径よりも大きい粗化面が形成される。よって、ダイサー等で形成される凹部の表面よりも、レーザーで形成された表面の方が、よりアンカー効果が期待できる。 Further, the recess 210D is formed by a laser. By forming with a laser, a roughened surface larger than the ceramic particle diameter is formed on the inner wall surface of the recess 210D. Therefore, the anchor effect can be expected more on the surface formed by the laser than on the surface of the recess formed by the dicer or the like.
 なお、上述の各実施形態は、実施形態5の構成と同様に、凹部の表面を粗化するとよい。 In each of the above-described embodiments, the surface of the recess may be roughened as in the configuration of the fifth embodiment.
 また、上述のフェライト基板は、誘電体基板であってもよい。 Further, the ferrite substrate described above may be a dielectric substrate.
CR1,CR2,CR3, CR4…角部
GR…溝
10,10A,10B,10C,10D…樹脂パッケージ基板
20…配線基板
20M…マザー積層体
21,21M,22…磁性体層
23,23M,24,24M,25,25M…非磁性体層
30…封止樹脂
51,52…実装型電子部品
60…長辺
70…短辺
80…軸
85…軸
201,202…側面
203…第1主面
204…第2主面
205,206…側面
210…凹部
210A,210B,210C,210D…凹部
215C…局部的凹部
401…コイル
411、412…端子導体
420…配線導体
421,422…配線導体
431,432…層間接続導体
441,442…部品実装用ランド導体
450,451,452…配線導体
461,462…層間接続導体
CR1, CR2, CR3, CR4 ... Corner GR ... Grooves 10, 10A, 10B, 10C, 10D ... Resin package substrate 20 ... Wiring substrate 20M ... Mother laminates 21, 21M, 22 ... Magnetic layers 23, 23M, 24, 24M, 25, 25M ... nonmagnetic layer 30 ... sealing resin 51, 52 ... mounting type electronic component 60 ... long side 70 ... short side 80 ... shaft 85 ... shaft 201, 202 ... side 203 ... first main surface 204 ... Second main surface 205, 206 ... Side surface 210 ... Recess 210A, 210B, 210C, 210D ... Recess 215C ... Local recess 401 ... Coil 411, 412 ... Terminal conductor 420 ... Wiring conductor 421, 422 ... Wiring conductor 431, 432 ... Interlayer Connection conductors 441, 442 ... Land conductors for component mounting 450, 451, 452 ... Wiring conductors 461, 462 ... Interlayer connection conductors

Claims (7)

  1.  第1主面を有する配線基板と、
     前記第1主面を覆う封止樹脂と、を備え、
     前記配線基板は、前記第1主面の角に、前記配線基板の厚み方向に凹む凹部を有し、
     前記封止樹脂は、前記凹部に充填されている、
     樹脂パッケージ基板。
    A wiring board having a first main surface;
    Sealing resin covering the first main surface,
    The wiring board has a recess recessed in the thickness direction of the wiring board at a corner of the first main surface,
    The sealing resin is filled in the concave portion,
    Resin package substrate.
  2.  前記凹部は、前記角を構成する第1辺と第2辺に亘る形状である、
     請求項1に記載の樹脂パッケージ基板。
    The concave portion has a shape extending over a first side and a second side constituting the corner,
    The resin package substrate according to claim 1.
  3.  前記第1主面側から平面視して、
     前記配線基板の第1主面の外周全体に、前記凹部が形成されている、
     請求項1に記載の樹脂パッケージ基板。
    In plan view from the first main surface side,
    The recess is formed on the entire outer periphery of the first main surface of the wiring board.
    The resin package substrate according to claim 1.
  4.  前記第1主面側から平面視して、
     前記配線基板の前記凹部の内壁面が、凹凸の形状を持つ、
     請求項1乃至請求項3のいずれかに記載の樹脂パッケージ基板。
    In plan view from the first main surface side,
    The inner wall surface of the recess of the wiring board has an uneven shape,
    The resin package substrate according to any one of claims 1 to 3.
  5.  前記配線基板は、
     前記第1主面側から平面視して開口を有するコイルが形成された磁性体層と、
     該磁性体層の前記封止樹脂側に配置された非磁性体層と、を備え、
     前記非磁性体層の線膨張係数が、前記磁性体層の線膨張係数よりも小さく、
     側面視において、前記凹部が前記磁性体層まで達している構造を持つ、
     請求項1乃至請求項4のいずれかに記載の樹脂パッケージ基板。
    The wiring board is
    A magnetic layer formed with a coil having an opening in plan view from the first main surface side;
    A nonmagnetic layer disposed on the sealing resin side of the magnetic layer,
    The linear expansion coefficient of the nonmagnetic layer is smaller than the linear expansion coefficient of the magnetic layer,
    In a side view, the recess has a structure reaching the magnetic layer,
    The resin package substrate according to any one of claims 1 to 4.
  6.  前記第1主面側から平面視して、
     前記配線基板の厚さ方向に、前記凹部がコイルに届かない深さである構造を持つ、
     請求項5に記載の樹脂パッケージ基板。
    In plan view from the first main surface side,
    In the thickness direction of the wiring board, the recess has a depth that does not reach the coil,
    The resin package substrate according to claim 5.
  7.  側面視において、
     前記凹部は、前記厚み方向に局所的に凹む複数の局部凹部を有する、
     請求項1乃至請求項6のいずれかに記載の樹脂パッケージ基板。
    In side view,
    The recess has a plurality of local recesses that are locally recessed in the thickness direction.
    The resin package substrate according to any one of claims 1 to 6.
PCT/JP2017/038940 2016-11-21 2017-10-27 Resin package substrate WO2018092550A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016225617 2016-11-21
JP2016-225617 2016-11-21

Publications (1)

Publication Number Publication Date
WO2018092550A1 true WO2018092550A1 (en) 2018-05-24

Family

ID=62146234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038940 WO2018092550A1 (en) 2016-11-21 2017-10-27 Resin package substrate

Country Status (1)

Country Link
WO (1) WO2018092550A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159185A (en) * 2003-11-27 2005-06-16 Kyocera Corp Electronic device
JP2013197921A (en) * 2012-03-21 2013-09-30 Kyocera Corp Manufacturing method of electronic component and electronic component
WO2015178061A1 (en) * 2014-05-21 2015-11-26 株式会社 村田製作所 Circuit module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159185A (en) * 2003-11-27 2005-06-16 Kyocera Corp Electronic device
JP2013197921A (en) * 2012-03-21 2013-09-30 Kyocera Corp Manufacturing method of electronic component and electronic component
WO2015178061A1 (en) * 2014-05-21 2015-11-26 株式会社 村田製作所 Circuit module

Similar Documents

Publication Publication Date Title
JP6206577B2 (en) Multilayer coil element and manufacturing method thereof
CN109872867B (en) Coil component
KR101983192B1 (en) Coil electronic component
TWI612866B (en) Multilayer substrate and method of manufacturing same
JP7369546B2 (en) coil parts
JP6630915B2 (en) Multilayer coil parts
JP6962129B2 (en) Multilayer coil parts and their manufacturing methods
KR101994758B1 (en) Thin type inductor
JP6551628B2 (en) Electronic parts
JP6070901B2 (en) Circuit module
US11640868B2 (en) Laminated coil component
JP5686225B2 (en) Laminated board
WO2018088219A1 (en) Ferrite substrate module
WO2018092550A1 (en) Resin package substrate
JP6195085B2 (en) Laminated electronic components
JP5935506B2 (en) Multilayer substrate and manufacturing method thereof
WO2015087511A1 (en) Semiconductor device, and method for producing same
JP6784188B2 (en) Multilayer coil parts
CN112927886B (en) Inductance component
JP6232976B2 (en) Multilayer substrate manufacturing method, multilayer substrate and electromagnet
JP6099135B2 (en) Electronic device, mounting board, and manufacturing method of mounting board
JP2016122790A (en) Multilayer wiring board
JP7124333B2 (en) Coil component and its manufacturing method
JP2019054118A (en) Wiring board and planar transformer
US20220310316A1 (en) Multi-layer coil component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP