WO2018090951A1 - 基于微全息阵列的波前传感器、波前探测方法及系统 - Google Patents

基于微全息阵列的波前传感器、波前探测方法及系统 Download PDF

Info

Publication number
WO2018090951A1
WO2018090951A1 PCT/CN2017/111313 CN2017111313W WO2018090951A1 WO 2018090951 A1 WO2018090951 A1 WO 2018090951A1 CN 2017111313 W CN2017111313 W CN 2017111313W WO 2018090951 A1 WO2018090951 A1 WO 2018090951A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavefront
micro
array
holographic array
double helix
Prior art date
Application number
PCT/CN2017/111313
Other languages
English (en)
French (fr)
Inventor
于斌
李四维
曹博
屈军乐
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2018090951A1 publication Critical patent/WO2018090951A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/021Interferometers using holographic techniques

Definitions

  • the invention relates to the field of adaptive optics, in particular to a wavefront sensor based on a micro-holographic array, a wavefront detecting method and a system.
  • Wavefront detection and measurement play an important role in the field of optical components and semiconductor manufacturing, as well as in astronomy and aerospace.
  • the new detection technology represented by the Shaker-Hartman wavefront sensor is widely used in optical components and metal surfaces. Detection and beamfront distortion and phase difference measurement; current measurement techniques are mainly divided into two categories, one is direct measurement of wavefront shape, and the other is wavefront slope measurement; their representatives are respectively interferometer and Shaker-Hartman wavefront sensor. Because the interferometer needs to undergo strict and precise calibration, the supporting facilities are strict, and it is greatly affected by environmental factors, the wavefront slope measurement method is more widely used, and the most commonly used is the Shack-Hartman wavefront detection method.
  • the Shaker-Hartman wavefront sensor is generally composed of a microlens array and a CCD camera.
  • the spot information of the spot on the focal plane of the microlens is recorded by the CCD to calculate the offset of the centroid of the spot and reconstruct the wavefront information. Since the detection surface of the CCD is on the back focal plane of the microlens, after the probe light passes through the sample, the wavefront needs to be collimated into an ideal plane wave, so that after the wavefront passes through the microlens array, the image points are all on the back focal plane. The calculated error of the centroid shift of the spot is minimized.
  • the object of the present invention is to provide a wavefront sensor based on a micro-holographic array, a wavefront detecting method and a system, which can suppress the influence of the wavefront defocusing error on the reconstruction accuracy, and generate the target object.
  • the axial displacement is obtained, the high detection accuracy can still be obtained, and the detection range of the sensor axial direction is greatly improved under the premise of ensuring the detection accuracy.
  • a wavefront detection method based on a micro-holographic array comprising the following steps:
  • the double-helical dot pattern is obtained on the back focal plane of the micro-holographic array before the wave to be measured;
  • Wavefront reconstruction is performed on the wavefront slope value to obtain wavefront information to be measured.
  • the step of creating a micro-holographic array having both microlens array imaging and double helix point spread function functions includes:
  • phase templates are repeatedly arranged according to a preset arrangement instruction to obtain a micro-holographic array having both microlens array imaging and double helix point spread function functions.
  • the steps of creating a phase template having a double helix point diffusion function include:
  • a self-imaged beam with rotation and scaling is formed by a linear superposition of Laguerre-Gaussian beam patterns on a particular line on the Laguerre-Gaussian mode plane;
  • the composite field in one cross section of the self-imaged beam is used as the optical transmittance function of the phase template such that the optical transmittance function of the phase template is a double helix point spread function.
  • the Laguerre-Gaussian beam mode is:
  • r ( ⁇ , ⁇ , z) is the cylindrical coordinate of the spatial point
  • ⁇ 0 is the waist radius
  • composition of u n,m (r) is:
  • n, m are integers
  • n, m take the following five sets of values: (1,1), (3,5), (5,9), (7,13), (9 , 17), obtaining five Laguerre-Gaussian beam modes; the five Laguerre-Gaussian beam modes are equally weighted and added to form the self-imaged beam with rotation and scaling.
  • phase function of the phase template is:
  • the five amplitudes of the complex amplitude formed by the equal weight overlap are added to the five Laguerre-Gaussian beam modes.
  • the micro-holographic array is a phase plate or a spatial light modulator fabricated by a photolithography method.
  • a wavefront sensor based on a micro-holographic array comprising: sequentially arranged along the optical path of transmission:
  • a micro-holographic array for converting a wavefront to be measured into a double-helical rotating beam
  • the wavefront sensor based on the micro-holographic array further includes:
  • a wavefront slope calculation module configured to obtain a wavefront slope value according to the double helix lattice image
  • the wavefront reconstruction module is configured to perform wavefront reconstruction on the wavefront slope value to obtain wavefront information to be tested.
  • the micro-holographic array includes a plurality of phase templates repeatedly arranged according to a preset arrangement instruction, and the phase template has a microlens imaging and a double helix point spread function function at the same time.
  • the micro-holographic array is a phase plate or a spatial light modulator fabricated by a photolithography method.
  • a micro-holographic array-based wavefront detection system comprising a micro-holographic array-based wavefront sensor for detecting surface information of a sample to be tested, the micro-holographic array-based wavefront detection system
  • the system also includes the following steps along the optical path:
  • a first collimating lens for collimating the laser light source and outputting a collimated light source
  • a first mirror for reflecting the collimated light source
  • the sample rack can be raised and lowered for placing the sample to be tested, and the sample to be tested is excited by the reflected collimated light source to emit fluorescence;
  • a second collimating lens for collimating and expanding the focused fluorescence to be projected onto the micro-holographic array.
  • the micro-holographic array-based wavefront detection method is created by simultaneously creating microlens array imaging and double helix a micro-holographic array of point spread function functions; after which the wavefront to be measured obtains a double helix lattice pattern on the back focal plane thereof through the micro-holographic array; obtaining a wavefront slope value according to the double-helical lattice map, The wavefront slope value is reconstructed by wavefront to obtain the wavefront information to be measured.
  • a dot pattern in the form of double helix is obtained on the back focal plane, after the micro-holographic array
  • the double helix point will rotate according to a certain regularity without obviously expanding like a Gaussian point, so the influence of the wavefront defocusing error on the reconstruction accuracy can be suppressed, when the sample is axially displaced.
  • the high detection accuracy can still be obtained, and the detection range of the sensor axial direction is improved under the premise of ensuring the detection accuracy.
  • FIG. 1 is a flow chart of a method for detecting a wavefront based on a micro-holographic array provided by the present invention.
  • Figure 2 is a comparison of the imaging of the double helix point spread function and the standard point spread function at different depths.
  • Figure 3 is an intensity distribution diagram of the double helix point spread function imaging.
  • Figure 4 is a phase distribution diagram of a double helix point spread function.
  • Figure 5 is an image of the double helix point spread function at different axial positions.
  • Fig. 6 is a graph showing the relationship between the rotation angles of the two side lobe center lines and the Z-axis position in the double helix image.
  • Figure 7a is a Gaussian lattice map obtained in the prior wavefront detection method.
  • FIG. 7b is a double-helical lattice diagram obtained in a wavefront detection method based on a micro-holographic array provided by the present invention.
  • FIG. 8 is a phase distribution diagram of a micro-holographic array in a wavefront detecting method based on a micro-holographic array according to the present invention.
  • FIG. 9 is a theoretical simulation diagram of a first embodiment of a wavefront detecting method based on a micro-holographic array provided by the present invention.
  • FIG. 10 is a theoretical simulation diagram of a second embodiment of a wavefront detecting method based on a micro-holographic array provided by the present invention.
  • Figure 11 is a graph showing the root mean square error of the wavefront and the wavefront to be detected recovered by the conventional detection method and the wavefront detection method based on the micro-holographic array at different axial positions in the second embodiment of the present invention.
  • FIG. 12 is a schematic structural view of a first preferred embodiment of a micro-holographic array based wavefront sensor according to the present invention.
  • FIG. 13 is a schematic structural diagram of a second preferred embodiment of a micro-holographic array based wavefront sensor according to the present invention.
  • FIG. 14 is a schematic structural diagram of a wavefront detecting system based on a micro-holographic array provided by the present invention.
  • the object of the present invention is to provide a wavefront sensor based on a micro-holographic array, a wavefront detecting method and system, which can suppress wavefront
  • the influence of the defocusing error on the reconstruction accuracy can still obtain high detection accuracy when the target object generates axial displacement, and the detection range of the sensor axial direction is greatly improved under the premise of ensuring the detection accuracy.
  • a micro-holographic array-based wavefront detection method includes the following steps:
  • the wavefront to be measured obtains a double helix dot pattern on the back focal plane through the microholographic array
  • S400 Perform wavefront reconstruction on the wavefront slope value to obtain wavefront information to be tested.
  • the invention replaces the microlens array in the traditional Shack-Hartmann sensor with the micro-holographic array on the basis of the traditional Shack-Hartman wavefront detection method.
  • the function of the double helix point spread function, the wavefront to be measured is in the form of a double helix on the posterior focal plane after passing through the micro-holographic array, that is, the present invention presents the Gaussian spot in the conventional detecting method as a double helix And detected by an image sensor.
  • the double helix point will rotate according to a certain law, and will not significantly enlarge the detection accuracy as the traditional Gaussian point, so when the object to be measured generates axial displacement
  • the accurate information of the three-dimensional coordinates of the image points of the wavefront after the micro-holographic array to be measured can be obtained, and the high detection precision can still be obtained, and the slope of the aperture wavefront is obtained according to the accurate information of the three-dimensional coordinates of the image points.
  • the wavefront slope value is reconstructed by wavefront, and the wavefront shape of the reconstructed wave is more accurate and the error is smaller before the reconstructed wave is obtained.
  • the axial detection of the sensor is improved while ensuring the detection accuracy. range.
  • the step S100 includes:
  • the embodiment of the invention combines the double helix point spread function and the microlens array based on the method of calculating the holographic wavefront coding, and obtains a micro-holographic array having both the microlens array imaging and the double helix point spread function function, specifically a phase template having a function of microlens imaging and a double helix point spread function, and then repeating the phase templates according to a preset arrangement instruction, for example, an arrangement of 3 ⁇ 3, 4 ⁇ 4, etc., thereby obtaining the above micro-holographic array, and further A form that converts a conventional array of Gaussian points into an array of double helix points.
  • the micro-holographic array can be realized by using a phase plate fabricated by a photolithography method or directly using a spatial light modulator.
  • the step of creating a phase template having a double helix point spread function includes:
  • S1012 The composite field in one cross section of the self-imaged beam is used as an optical transmittance function of the phase template, so that the optical transmittance function of the phase template is a double helix point spread function.
  • DH-PSF double helix point spread function
  • the double helix point spread function is mainly located in Laguerre-Gauss (Laguerre-Gauss, abbreviated as LG)
  • the linear superposition of the LG beam pattern on a particular line on the mode plane constitutes a self-imaged beam with rotation and scaling, and then the composite field in one cross section of the self-image beam is double-helix
  • the optical transmittance function of the optical module is such that the optical transmittance function of the double helix optical module is a double helix point spread function, and then the transfer function of the entire double helix point spread function system is a double helix point spread function.
  • the Laguerre-Gaussian beam pattern is:
  • ⁇ 0 is the waist radius
  • composition of u n,m (r) is:
  • n When n, m take the following five sets of values: (1,1), (3,5), (5,9), (7,13), (9,17), five kinds of Laguerre-Gaussian beams can be obtained. mode.
  • the five Laguerre-Gaussian beam modes are equally weighted to form a self-imaged beam with rotation and scaling, which forms a new light field distribution function—a double-helical rotating beam, as shown in Figures 3 and 4.
  • the function Based on the Fourier transform invariant property of LG function, the function is applied to the optical system as an optical transfer function, the point spread function of the optical system will become a double helix point spread function, and the double helix side lobes rotate with the change of the defocus amount.
  • the speed is proportional to the slope of the line selected on the LG mode plane, and the maximum velocity in the focal zone, as shown in Figure 5.
  • a DH-PSF system is to add a specially designed double-helical phase plate to the Fourier plane of the standard imaging system, so that its transmittance function forms a double helix in the focus region of the Fourier transform, and the phase created in step S101.
  • the template has this characteristic, and the image formed by the point by the double-helical phase plate is two side lobes rotating around the optical axis, one of which rotates clockwise around the optical axis and the other rotates counterclockwise.
  • the lateral positioning point of the focused spot is estimated by the midpoint of the two side lobes, and the axial position is determined according to the rotation angle of the line connecting the two side lobes, and the positioning accuracy is extremely high.
  • High for details, refer to the relationship between the rotation angle of the two side lobe center lines of the DH-PSF and the Z-axis position shown in FIG. 6.
  • the invention realizes the micro-holographic array by repeatedly creating the phase template having the function of the double-helical point diffusion function described above, so that the wavefront to be measured passes through the micro-holographic array and is double on the back focal plane thereof.
  • the Gaussian spot (Fig. 7a) in the conventional detection method is presented in the form of a double helix (Fig. 7b), and is detected by an image sensor, and the precise double-dimensional coordinate information of the image point can be obtained by using the detected double helix point.
  • an accurate aperture wavefront slope value is obtained, which ensures the detection accuracy and improves the detection range of the sensor axial direction.
  • the phase template not only has the above-mentioned double helix point spread function function, but also has a microlens imaging function. Based on the functions of the double helix point spread function and the microlens imaging, the phase function of the phase template is:
  • phase of the microlens For the phase of the microlens, The phase of the complex amplitude formed by the equal weight overlap of the five Laguerre-Gaussian beam modes, ie Specifically, the above-mentioned n, m is taken as (1, 1), (3, 5), (5, 9), (7, 13), (9, 17), and the corresponding Laguerre-Gaussian beam mode is overlapped.
  • the phase form of the double-helical rotating beam is formed as an initial value, and then the pure phase distribution of the high-efficiency double-helical beam is obtained by optimization, and the specially designed phase template is repeatedly arranged according to system requirements to form a micro-holographic array, as shown in FIG. It is a phase distribution map of a 3 x 3 micro-holographic array.
  • a double-helical rotating beam is formed on the back focal plane, and is detected by the image sensor, and the detected double-spiral point spread function array point is used to obtain the spot by the Gaussian fitting algorithm.
  • G x , G y are the wavefront slopes of the i-th aperture in the x and y directions, respectively, (x i , y i ) is the pixel coordinate corresponding to the i-th aperture, and (x 0 , y 0 ) is the plane wave incident.
  • Each aperture image is a two-dimensional coordinate of the point and is used as a reference for calculating the focus offset.
  • the wavefront reconstruction algorithm of the traditional Shak-Hartman wavefront sensor such as the regional method wavefront reconstruction method and the mode method wavefront reconstruction method, can be reconstructed and obtained. Before the light wave, since this is a prior art, it will not be discussed in detail.
  • the number of microlenses used is 5*5, the diameter of the microlens is 600 ⁇ m, the focal length is 5 mm, a spherical wave is simulated, and wavefront recovery is performed by the wavefront detection method of the microholographic array of the present invention, as shown in FIG. (a) in Fig. 9 is the spherical wavefront to be analyzed; (b) in Fig. 9 is the spherical wavefront phase distribution to be analyzed; (c) in Fig. 9 is the recovered spherical wavefront; (d) is to restore the phase of the spherical wave; (e) in Fig.
  • Fig. 9 is the difference between the wavefront of the spherical wave to be measured and the wavefront of the recovered spherical wave; (f) in Fig. 9 is the spherical wave to be tested and the spherical wave to be recovered.
  • the difference between the phases as can be seen from the figure, the spherical wavefront recovered by the wavefront detection method provided by the present invention is very close to the spherical wavefront to be analyzed, and the difference between the wavefront difference and the phase of the two is small, indicating The invention can accurately recover the spherical wavefront.
  • the number of microlenses used is 5*5, the diameter of the microlens is 600 ⁇ m, the focal length is 5 mm, and an arbitrary wavefront (non-ideal plane wave) is simulated, and the wavefront recovery method is performed by the wavefront detection method of the microholographic array of the present invention.
  • FIG. 10 As shown in FIG. 10, (a) in FIG. 10 is a wavefront to be analyzed; (b) in FIG. 10 is a wavefront phase distribution to be analyzed; (c) in FIG. 10 is a restored wavefront; (d) in Fig. 10 is the recovered phase; (e) in Fig. 10 is the difference between the wavefront of the wavefront to be measured and the recovered wavefront; (f) in Fig.
  • Fig. 11 is the wavefront to be tested and the recovered wavefront
  • the difference between the phases, and at the same time, under the same simulation conditions, the wavefront to be measured is recovered by the traditional Shack-Hartman wavefront detection method, and the wavefront and the wavefront to be detected recovered by the two methods are used.
  • the root mean square error (RMSE) is shown in Fig. 11. It can be clearly seen from the figure that the wavefront detection method based on micro-holographic array is less affected by the defocus of the image point during the axial displacement of the point source.
  • the traditional Schatt-Huckman detection method which results in higher detection accuracy than the conventional wavefront sensor, indicating the wavefront detection side provided by the present invention. It can be at a certain precision, effectively improve the detection range of the axial wave front sensor.
  • the present invention accordingly provides a wavefront sensor based on the micro-holographic array 11, as shown in FIG. 12, which includes a micro-holographic array 11 and an image sensor 12 arranged in sequence along the optical path transmission direction, wherein the micro-holographic array 11 is used for Converting the wavefront to be measured into a double-helical rotating beam; the image sensor 12 is configured to detect the double-helical rotating beam to obtain a double-helical dot pattern; further, the wavefront sensor based on the micro-holographic array 11 further includes a wavefront slope calculation module for obtaining a wavefront slope value according to the double helix lattice image, and for performing wavefront reconstruction on the wavefront slope value to obtain a wavefront reconstruction of the wavefront information to be measured Module.
  • a wavefront slope calculation module for obtaining a wavefront slope value according to the double helix lattice image, and for performing wavefront reconstruction on the wavefront slope value to obtain a wavefront reconstruction of the wavefront information to be measured Module.
  • the micro-holographic array 11 includes a plurality of phase templates repeatedly arranged according to a preset arrangement instruction, and the phase templates have both microlens imaging and double helix point spread function functions.
  • the phase templates have both microlens imaging and double helix point spread function functions.
  • the micro-holographic array 11 is implemented by a phase plate fabricated by a photolithography method (as shown in FIG. 12), in the second preferred embodiment.
  • the micro-holographic array 11 is directly implemented by a spatial light modulator (as shown in FIG. 13).
  • the incident wavefront is projected to the space by the beam splitter 13.
  • the light modulator is then reflected by the spatial light modulator and beam splitter 13 to the 4F system (including the first lens 14 and the second lens 15), which is imaged by the image sensor 12 after being focused by the 4F system.
  • the 4F system including the first lens 14 and the second lens 15
  • the present invention also provides a wavefront detection system based on a micro-holographic array, as shown in FIG. 14, which includes a micro-holographic array-based wavefront sensor as described above for detecting surface information of a sample to be tested,
  • the wavefront detecting system based on the micro-holographic array further includes a laser 20, a first collimating lens 21, a first reflecting mirror 22, a liftable sample stage 23, a second mirror 24, a projection objective lens 25, and arranged in the optical path transmission direction.
  • the second collimating lens 26, the laser 20 generates a collimated light source that is output by the laser light source after being collimated by the first collimating lens 21, and is reflected by the first mirror 22 to the sample to be tested, and the sample to be tested is excited by the collimated light source. Fluorescence is then reflected by the second mirror 24 to the projection objective 25, which focuses the fluorescence, then collimates the focused fluorescence through the second collimating lens 26 and projects it onto the micro-holographic array 11.
  • the surface information of the sample to be tested is detected by the above-mentioned micro-holographic array-based wavefront sensor, so that the surface information of the sample to be tested can be accurately detected within a certain axial range. Since the micro-holographic array-based wavefront sensor has been described in detail above, it will not be described in detail herein.
  • the micro-holographic array-based wavefront sensor, wavefront detection method and system provided by the present invention, the micro-holographic array-based wavefront detection method is created by simultaneously creating microlens array imaging and double helix point diffusion.
  • a micro-holographic array of functional functions after which the wavefront to be measured obtains a double helix lattice pattern on the posterior focal plane thereof through the micro-holographic array; a wavefront slope value is obtained according to the double-helical lattice pattern, and the wavefront is obtained The slope value is reconstructed by wavefront to obtain the wavefront information to be measured.
  • a lattice pattern in the form of double helix is obtained on the back focal plane, and the focal plane of the microholographic array is obtained.
  • the double helix point will rotate according to a certain regularity without significantly expanding the Gaussian point. Therefore, the influence of the wavefront defocusing error on the reconstruction accuracy can be suppressed, and the sample can still be axially displaced when the sample is axially displaced.
  • the high detection accuracy is obtained, and the detection range of the sensor axial direction is improved under the premise of ensuring the detection accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)

Abstract

一种基于微全息阵列的波前传感器、波前探测方法及系统,其中,基于微全息阵列的波前探测方法通过创建同时具有微透镜阵列成像和双螺旋点扩散函数功能的微全息阵列(S100),待测波前经过微全息阵列在其后焦面上得到双螺旋点阵图(S200),根据双螺旋点阵图获得波前斜率值(S300),对波前斜率值进行波前重构,得到待测的波前信息(S400)。

Description

基于微全息阵列的波前传感器、波前探测方法及系统 技术领域
本发明涉及自适应光学技术领域,特别涉及基于微全息阵列的波前传感器、波前探测方法及系统。
背景技术
在光学元件和半导体制造以及天文、航空等领域,波前检测和测量起到重要的作用,其中以夏克-哈特曼波前传感器为代表的新型探测技术,广泛应用于光学元件,金属表面探测以及光束波前畸变和相差的测量等方面;目前的测量技术主要分为两类,一类是对波面面形直接测量,另一类为波前斜率测量;它们的代表分别为干涉仪和夏克-哈特曼波前传感器。由于干涉仪需要经过严格的精确校准,配套设施严格,受到环境因素影响巨大,因而,波前斜率测量方法受到更广泛的应用,其中最常用的为夏克-哈特曼波前检测法。
夏克-哈特曼波前传感器一般由微透镜阵列和CCD相机组成,通过CCD记录微透镜后焦面上像点的光斑信息,来计算光斑质心的偏移,重构波前信息。由于CCD的探测面在微透镜的后焦平面上,故探测光经过样品后,需要对波前进行准直为理想平面波,使得波前经过微透镜阵列后,像点全部在后焦平面上,这样计算出的光斑质心偏移的误差最小。但是,当样品发生轴向位移的时候,入射波前经微透镜后像点将不在后焦平面上,产生一定的离焦,探测面上的光斑会随着离焦的距离增大而变大[图2中的(b)],这样,计算质心偏移的误差将会随之增大,直接影响到波前重构的精度。
因而现有技术还有待改进和提高。
发明内容
鉴于上述现有技术的不足之处,本发明的目的在于提供基于微全息阵列的波前传感器、波前探测方法及系统,能抑制波前离焦误差对于重构精度的影响,在目标物体产生轴向位移的时候,依然能够得到高的探测精度,在保证探测精度的前提下大大提高了传感器轴向的探测范围。
为了达到上述目的,本发明采取了以下技术方案:
一种基于微全息阵列的波前探测方法,其包括如下步骤:
创建同时具有微透镜阵列成像和双螺旋点扩散函数功能的微全息阵列;
待测波前经过所述微全息阵列在其后焦面上得到双螺旋点阵图;
根据所述双螺旋点阵图获得波前斜率值;
对所述波前斜率值进行波前重构,得到待测的波前信息。
所述的基于微全息阵列的波前探测方法中,所述创建同时具有微透镜阵列成像和双螺旋点扩散函数功能的微全息阵列的步骤包括:
创建同时具有微透镜成像和双螺旋点扩散函数功能的相位模板;
将所述相位模板按预设排布指令重复排列,得到同时具有微透镜阵列成像和双螺旋点扩散函数功能的微全息阵列。
所述的基于微全息阵列的波前探测方法中,创建具有双螺旋点扩散功能的相位模板的步骤包括:
通过位于拉盖尔-高斯模式平面上特定直线上的拉盖尔-高斯光束模式的线性叠加构成带有旋转和缩放的自成像光束;
将自成像光束的一个横截面中的复合场作为相位模板的光学透过率函数,使所述相位模板的光学透过率函数为双螺旋点扩散函数。
所述的基于微全息阵列的波前探测方法中,,所述拉盖尔-高斯光束模式为:
Figure PCTCN2017111313-appb-000001
其中,r=(ρ,φ,z)为空间点的柱坐标,
Figure PCTCN2017111313-appb-000002
为高斯光斑的径向坐标,
Figure PCTCN2017111313-appb-000003
ω0为束腰半径,
Figure PCTCN2017111313-appb-000004
为纵向坐标,
Figure PCTCN2017111313-appb-000005
为瑞利长度;
un,m(r)的组成为:
Figure PCTCN2017111313-appb-000006
Figure PCTCN2017111313-appb-000007
Φm(φ)=exp(imφ),
Figure PCTCN2017111313-appb-000008
其中,
Figure PCTCN2017111313-appb-000009
为古伊相位,
Figure PCTCN2017111313-appb-000010
为广义的拉盖尔多项式,n,m为整数,且n,m取下列五组数值:(1,1),(3,5),(5,9),(7,13),(9,17),获得五种拉盖尔-高斯光束模式;将这五种拉盖尔-高斯光束模式进行等权重叠加,形成所述带有旋转和缩放的自成像光束。
所述的基于微全息阵列的波前探测方法中,所述相位模板的相位函数为:
Figure PCTCN2017111313-appb-000011
其中,
Figure PCTCN2017111313-appb-000012
为微透镜的相位,
Figure PCTCN2017111313-appb-000013
为所述五种拉盖尔-高斯光束模式进行等权重叠加形成的复振幅的相位。
所述的基于微全息阵列的波前探测方法中,所述微全息阵列为通过光刻方法制作的相位板或空间光调制器。
一种基于微全息阵列的波前传感器,其包括沿光路传输方向依次设置的:
微全息阵列,用于将待测波前转换为双螺旋旋转光束;
图像传感器,用于探测所述双螺旋旋转光束,获得双螺旋点阵图;
所述基于微全息阵列的波前传感器还包括:
波前斜率计算模块,用于根据所述双螺旋点阵图获得波前斜率值;
波前重构模块,用于对所述波前斜率值进行波前重构,得到待测的波前信息。
所述的基于微全息阵列的波前传感器中,所述微全息阵列包括若干个按预设排布指令重复排列的相位模板,所述相位模板同时具有微透镜成像和双螺旋点扩散函数功能。
所述的基于微全息阵列的波前传感器中,所述微全息阵列为通过光刻方法制作的相位板或空间光调制器。
一种基于微全息阵列的波前探测系统,其包括如上所述的基于微全息阵列的波前传感器,用于探测待测样品的表面信息,所述基于微全息阵列的波前探测系 统还包括沿光路传输方向依次设置的:
激光器,用于产生激光光源;
第一准直透镜,用于对所述激光光源进行准直,输出准直光源;
第一反射镜,用于对所述准直光源进行反射;
可升降样品台,用于放置待测样品,所述待测样品经反射后的准直光源激发而发出荧光;
第二反射镜,用于对所述荧光进行反射;
投影物镜,用于对经反射后的荧光进行聚焦;
第二准直透镜,用于对经聚焦后的荧光进行准直扩束,投射至所述微全息阵列。
相较于现有技术,本发明提供的基于微全息阵列的波前传感器、波前探测方法及系统中,所述基于微全息阵列的波前探测方法通过创建同时具有微透镜阵列成像和双螺旋点扩散函数功能的微全息阵列;之后待测波前经过所述微全息阵列在其后焦面上得到双螺旋点阵图;根据所述双螺旋点阵图获得波前斜率值,对所述波前斜率值进行波前重构,得到待测的波前信息,通过将待测波前经过微全息阵列后,在其后焦面上得到双螺旋形式的点阵图,当微全息阵列后焦面的像点存在离焦时,双螺旋点会按一定规律旋转而不会想高斯点一样明显扩大,因此能抑制波前离焦误差对于重构精度的影响,当样品发生轴向位移时依然能够得到高的探测精度,在保证探测精度的前提下提高了传感器轴向的探测范围。
附图说明
图1为本发明提供的基于微全息阵列的波前探测方法的流程图。
图2为不同深度的双螺旋点扩散函数和标准点扩散函数成像的对比图。
图3为双螺旋点扩散函数成像的强度分布图。
图4为双螺旋点扩散函数的相位分布图。
图5为双螺旋点扩散函数在不同轴向位置处的成像图形。
图6为双螺旋图像两个旁瓣中心连线的旋转角度与Z轴位置的关系曲线图。
图7a为现有的波前探测方法中获得的高斯点阵图。
图7b为本发明提供的基于微全息阵列的波前探测方法中获得的双螺旋点阵图。
图8为本发明提供的基于微全息阵列的波前探测方法中微全息阵列的相位分布图。
图9为本发明提供的基于微全息阵列的波前探测方法第一实施例的理论模拟图。
图10为本发明提供的基于微全息阵列的波前探测方法第二实施例的理论模拟图。
图11为本发明第二实施例中在不同轴向位置处,传统探测方法与基于微全息阵列的波前探测方法所恢复的波前与待测波前的均方根误差曲线图。
图12为本发明提供的基于微全息阵列的波前传感器第一优选实施例的结构示意图。
图13为本发明提供的基于微全息阵列的波前传感器第二优选实施例的结构示意图。
图14为本发明提供的基于微全息阵列的波前探测系统的结构示意图。
具体实施方式
鉴于现有技术中样品发生的轴向移位将大大影响波前重构的精度等缺点,本发明的目的在于提供基于微全息阵列的波前传感器、波前探测方法及系统,能抑制波前离焦误差对于重构精度的影响,在目标物体产生轴向位移的时候,依然能够得到高的探测精度,在保证探测精度的前提下大大提高了传感器轴向的探测范围。
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请参阅图1,本发明提供的基于微全息阵列的波前探测方法包括如下步骤:
S100、创建同时具有微透镜阵列成像和双螺旋点扩散函数功能的微全息阵列;
S200、待测波前经过所述微全息阵列在其后焦面上得到双螺旋点阵图;
S300、根据所述双螺旋点阵图获得波前斜率值;
S400、对所述波前斜率值进行波前重构,得到待测的波前信息。
本发明在传统夏克-哈特曼波前探测方法的基础上,利用微全息阵列代替传统夏克-哈特曼传感器中的微透镜阵列,该微全息阵列同时具有微透镜阵列成像 和双螺旋点扩散函数的功能,待测波前经过所述微全息阵列后,在其后焦面上呈双螺旋的形式,即本发明将传统探测方法中的高斯光斑呈现为双螺旋的形式,并由图像传感器探测。当微全息阵列后焦面的像点存在离焦时,双螺旋点会按照一定的规律旋转,而并不会像传统高斯点一样明显扩大影响探测精度,因此当待测物体产生轴向位移的时候,可以获得待测波前经微全息阵列后的像点三维空间坐标精确信息,依然能够得到高的探测精度,根据像点三维空间坐标精确信息得到孔径波前斜率,在此基础上,对所述波前斜率值进行波前重构,即可重建获得被测光波前,重构出的波前面形会更加精确、误差更小,在保证探测精度的同时提高了传感器轴向的探测范围。
具体地,所述步骤S100包括:
S101、创建同时具有微透镜成像和双螺旋点扩散函数功能的相位模板;
S102、将所述相位模板按预设排布指令重复排列,得到同时具有微透镜阵列成像和双螺旋点扩散函数功能的微全息阵列。
本发明实施例基于计算全息波前编码的方式,将双螺旋点扩散函数和微透镜阵列进行组合,得到同时具有微透镜阵列成像和双螺旋点扩散函数功能的微全息阵列,具体为先创建同时具有微透镜成像和双螺旋点扩散函数功能的相位模板,之后将所述相位模板按预设排布指令重复排列,例如3×3、4×4等排列形式,从而得到上述微全息阵列,进而实现将传统阵列高斯点转换为阵列双螺旋点的形式。本实施例中,所述微全息阵列可采用通过光刻方法制作的相位板或者直接采用空间光调制器来实现。
进一步地,所述步骤S101中,创建具有双螺旋点扩散功能的相位模板的步骤包括:
S1011、通过位于拉盖尔-高斯模式平面上特定直线上的拉盖尔-高斯光束模式的线性叠加构成带有旋转和缩放的自成像光束;
S1012、将自成像光束的一个横截面中的复合场作为相位模板的光学透过率函数,使所述相位模板的光学透过率函数为双螺旋点扩散函数。
通过双螺旋点扩散函数(DH-PSF)实现三维纳米定位是基于一种被称为自成像的现象。DH-PSF是一种三维光学响应,具有随离焦量不断旋转的圆形不对称横截面轮廓,如图2所示。双螺旋点扩散函数主要通过位于拉盖尔-高斯 (Laguerre-Gauss,简记为LG)模式平面上特定直线上的LG光束模式的线性叠加构成带有旋转和缩放的自成像光束,然后将自成像光束的一个横截面中的复合场作为双螺旋光学模块的光学透过率函数,使所述双螺旋光学模块的光学透过率函数为双螺旋点扩散函数,那么,整个双螺旋点扩散函数系统的传递函数即为双螺旋点扩散函数。该拉盖尔-高斯光束模式为:
Figure PCTCN2017111313-appb-000014
其中,r=(ρ,φ,z)为空间点的柱坐标,
Figure PCTCN2017111313-appb-000015
为高斯光斑的径向坐标,
Figure PCTCN2017111313-appb-000016
ω0为束腰半径,
Figure PCTCN2017111313-appb-000017
为纵向坐标,
Figure PCTCN2017111313-appb-000018
为瑞利长度,
un,m(r)的组成为:
Figure PCTCN2017111313-appb-000019
Figure PCTCN2017111313-appb-000020
Φm(φ)=exp(imφ)   (4)
Figure PCTCN2017111313-appb-000021
其中,
Figure PCTCN2017111313-appb-000022
为古伊相位,
Figure PCTCN2017111313-appb-000023
为广义的拉盖尔多项式,n,m为整数,且n=|m|,|m|+2,|m|+4,|m|+6,....,
当n,m取下列五组数值:(1,1),(3,5),(5,9),(7,13),(9,17),可获得五种拉盖尔-高斯光束模式。将这五种拉盖尔-高斯光束模式进行等权重叠加,可形成带有旋转和缩放的自成像光束,即形成一个新的光场分布函数—双螺旋旋转光束,如图3和图4。基于LG函数的傅立叶变换不变特性,该函数如作为光学传递函数应用到光学系统中,光学系统的点扩散函数将变为双螺旋点扩散函数,且双螺旋旁瓣随离焦量变化而旋转的速度与LG模式平面上所选取的直线斜率成正比,在聚焦区速度最大,如图5。
一个DH-PSF系统就是在标准成像系统的傅里叶平面加入一个特殊设计的双螺旋相位片,使其透射率函数在傅里叶变化的聚焦区形成双螺旋的形式,步骤S101中创建的相位模板即具有该特性,一个点物通过该双螺旋相位片所成的像是两个围绕着光轴旋转的旁瓣,其中一个绕着光轴顺时针旋转,另一个则逆时针旋转。用DH-PSF进行三维纳米定位时,聚焦光斑的横向定位点通过两个旁瓣的中点来估计,而其轴向位置则根据两个旁瓣中心连线的旋转角度确定,且定位精度极高,具体可参考图6所示的DH-PSF两个旁瓣中心连线的旋转角度与Z轴位置的关系曲线。
本发明通过创建具有上述双螺旋点扩散函数功能的相位模板,将该相位模板进行重复排列后得到微全息阵列,使得待测波前经过所述微全息阵列后,在其后焦面上呈双螺旋的形式,将传统探测方法中的高斯光斑(图7a)呈现为双螺旋(图7b)的形式,并由图像传感器探测,利用探测到的双螺旋点可以获得像点的精确三维坐标信息,进而得到准确的孔径波前斜率值,保证探测精度的同时提高了传感器轴向的探测范围。
同时,该相位模板不仅具有上述双螺旋点扩散函数功能,还具有微透镜成像功能,基于上述双螺旋点扩散函数及微透镜成像的功能,所述相位模板的相位函数为:
Figure PCTCN2017111313-appb-000024
其中,
Figure PCTCN2017111313-appb-000025
为微透镜的相位,
Figure PCTCN2017111313-appb-000026
为所述五种拉盖尔-高斯光束模式进行等权重叠加形成的复振幅的相位,即
Figure PCTCN2017111313-appb-000027
具体可选择上述n,m取(1,1),(3,5),(5,9),(7,13),(9,17)时对应的拉盖尔-高斯光束模式等权重叠加形成双螺旋旋转光束的相位形式作为初始值,然后通过优化,获得高效率的双螺旋光束纯相位分布,将该特殊设计的相位模板根据系统需求重复排列,构成微全息阵列,如图8所示,其为3×3微全息阵列的相位分布图。
具体实施时,入射波前经过微全息阵列后,在其后焦平面上形成双螺旋旋转光束,并由图像传感器探测,利用探测到的双螺旋点扩散函数阵列点,经高斯拟合算法获得斑点的三维坐标信息(xi,yi,zi),然后根据公式(6)计算出子孔径在x,y方向的波前斜率:
Figure PCTCN2017111313-appb-000028
Gx,Gy分别为第i个孔径在x,y方向的波前斜率,(xi,yi)为第i个孔径对应的像点坐标,(x0,y0)为平面波入射时每个孔径像点二维坐标,用作计算焦点偏移的基准。在获得上述子孔径波前斜率的基础上,利用传统夏克-哈特曼波前传感器的波前重建算法,如区域法波前重建法和模式法波前重建法,就可重建获得被测光波前,由于此为现有技术,故不作详细论述。
利用同时具有微透镜阵列成像和双螺旋点扩散函数功能的微全息阵列代替传统传感器中的微透镜阵列,使得像点在微全息阵列的后焦平面上呈现为双螺旋的形式,并由图像传感器探测,当微透镜阵列后焦面的像点存在离焦时,双螺旋点会按一定规律旋转,并且横向定位精度不会随着离焦的增大而降低,因此,在样品产生轴向位移时,计算得到的横向和轴向坐标更加精确,所得到的波前斜率误差更小,重构出波前面形会更加精确,误差更小,提高了探测的轴向范围。
以下结合具体实施例对本发明提供的微全息阵列的波前探测方法的理论模拟结果进行说明:
实施例一
采用的微透镜的个数为5*5,微透镜直径为600μm,焦距为5mm,模拟产生一个球面波,并用本发明的微全息阵列的波前探测方法进行波前恢复,如图9所示,图9中的(a)为待分析的球面波前;图9中的(b)为待分析的球面波前相位分布;图9中的(c)为恢复的球面波前;图9中的(d)为恢复球面波的相位;图9中的(e)为待测球面波与恢复球面波的波前之差;图9中的(f)为待测球面波与恢复球面波的相位之差,从图中可看出,经本发明提供的波前探测方法恢复的球面波前与待分析的球面波前非常接近,两者的波前之差和相位之差较小,说明本发明可精确恢复球面波前。
实施例二
采用的微透镜的个数为5*5,微透镜直径为600μm,焦距为5mm,模拟产生一个任意波前(非理想平面波),并用本发明的微全息阵列的波前探测方法进行波前恢复,如图10所示,图10中的(a)为待分析的波前;图10中的(b)为待分析的波前相位分布;图10中的(c)为恢复的波前;图10中的(d)为恢复的相位;图10中的(e)为待测波前与恢复波前的波前之差;图10中的(f)为待测波前与恢复波前的相位之差,同时,在相同的模拟条件下,通过传统的夏克-哈特曼波前探测法对该待测波前进行恢复,采用两种方法所恢复的波前与待测波前的均方根误差(RMSE)如图11所示,从图中可明显看出,基于微全息阵列的波前探测方法在在点光源轴向位移过程中,受到像点离焦的影响要小于传统的夏特-哈克曼探测法,从而得到比传统的波前传感器更高的探测精度,表明本发明提供的波前探测方法可以在一定精度的条件下,有效的提高波前传感器的轴向探测范围。
本发明相应提供一种基于微全息阵列11的波前传感器,如图12所示,其包括沿光路传输方向依次设置的微全息阵列11和图像传感器12,其中,所述微全息阵列11用于将待测波前转换为双螺旋旋转光束;所述图像传感器12用于探测所述双螺旋旋转光束,获得双螺旋点阵图;进一步地,所述基于微全息阵列11的波前传感器还包括用于根据所述双螺旋点阵图获得波前斜率值的波前斜率计算模块,以及用于对所述波前斜率值进行波前重构,得到待测的波前信息的波前重构模块。具体请参阅上述方法对应的实施例。
具体地,所述微全息阵列11包括若干个按预设排布指令重复排列的相位模板,所述相位模板同时具有微透镜成像和双螺旋点扩散函数功能。具体请参阅上述方法对应的实施例。
本发明提供的基于微全息阵列11的波前传感器第一优选实施例中,所述微全息阵列11采用通过光刻方法制作的相位版实现(如图12所示),第二优选实施例中,所述微全息阵列11则直接采用空间光调制器来实现(如图13所示),当采用空间光调制器实现所述微全息阵列11时,入射波前经分束器13投射至空间光调制器,之后经空间光调制器与分束器13反射至4F系统(包括第一透镜14和第二透镜15),经过4F系统聚焦后由图像传感器12探测。具体请参阅上述方法对应的实施例。
本发明还相应提供一种基于微全息阵列的波前探测系统,如图14所示,其包括如上所述的基于微全息阵列的波前传感器,用于探测待测样品的表面信息,所述基于微全息阵列的波前探测系统还包括沿光路传输方向依次设置的激光器20、第一准直透镜21、第一反射镜22、可升降样品台23、第二反射镜24、投影物镜25和第二准直透镜26,激光器20产生激光光源经过第一准直透镜21准直后输出的准直光源经过第一反射镜22反射至待测样品上,待测样品被准直光源激发后可发出荧光,之后经第二反射镜24反射至投影物镜25,投影物镜25对荧光进行聚焦,之后通过第二准直透镜26对经聚焦后的荧光进行准直扩束,并投射至微全息阵列11,通过上述基于微全息阵列的波前传感器探测待测样品的表面信息,使得在一定的轴向范围内,能精准探测到待测样品的表面信息。由于上文已对所述基于微全息阵列的波前传感器进行了详细描述,此处不作详述。
综上所述,本发明提供的基于微全息阵列的波前传感器、波前探测方法及系统中,所述基于微全息阵列的波前探测方法通过创建同时具有微透镜阵列成像和双螺旋点扩散函数功能的微全息阵列;之后待测波前经过所述微全息阵列在其后焦面上得到双螺旋点阵图;根据所述双螺旋点阵图获得波前斜率值,对所述波前斜率值进行波前重构,得到待测的波前信息,通过将待测波前经过微全息阵列后,在其后焦面上得到双螺旋形式的点阵图,当微全息阵列后焦面的像点存在离焦时,双螺旋点会按一定规律旋转而不会想高斯点一样明显扩大,因此能抑制波前离焦误差对于重构精度的影响,当样品发生轴向位移时依然能够得到高的探测精度,在保证探测精度的前提下提高了传感器轴向的探测范围。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种基于微全息阵列的波前探测方法,其特征在于,包括如下步骤:
    创建同时具有微透镜阵列成像和双螺旋点扩散函数功能的微全息阵列;
    待测波前经过所述微全息阵列在其后焦面上得到双螺旋点阵图;
    根据所述双螺旋点阵图获得波前斜率值;
    对所述波前斜率值进行波前重构,得到待测的波前信息。
  2. 根据权利要求1所述的基于微全息阵列的波前探测方法,其特征在于,所述创建同时具有微透镜阵列成像和双螺旋点扩散函数功能的微全息阵列的步骤包括:
    创建同时具有微透镜成像和双螺旋点扩散函数功能的相位模板;
    将所述相位模板按预设排布指令重复排列,得到同时具有微透镜阵列成像和双螺旋点扩散函数功能的微全息阵列。
  3. 根据权利要求2所述的基于微全息阵列的波前探测方法,其特征在于,创建具有双螺旋点扩散功能的相位模板的步骤包括:
    通过位于拉盖尔-高斯模式平面上特定直线上的拉盖尔-高斯光束模式的线性叠加构成带有旋转和缩放的自成像光束;
    将自成像光束的一个横截面中的复合场作为相位模板的光学透过率函数,使所述相位模板的光学透过率函数为双螺旋点扩散函数。
  4. 根据权利要求3所述的基于微全息阵列的波前探测方法,其特征在于,所述拉盖尔-高斯光束模式为:
    Figure PCTCN2017111313-appb-100001
    其中,r=(ρ,φ,z)为空间点的柱坐标,
    Figure PCTCN2017111313-appb-100002
    为高斯光斑的径向坐标,
    Figure PCTCN2017111313-appb-100003
    ω0为束腰半径,
    Figure PCTCN2017111313-appb-100004
    为纵向坐标,
    Figure PCTCN2017111313-appb-100005
    为瑞利长度;
    un,m(r)的组成为:
    Figure PCTCN2017111313-appb-100006
    Figure PCTCN2017111313-appb-100007
    Φm(φ)=exp(imφ),
    Figure PCTCN2017111313-appb-100008
    其中,
    Figure PCTCN2017111313-appb-100009
    为古伊相位,
    Figure PCTCN2017111313-appb-100010
    为广义的拉盖尔多项式,n,m为整数,且n,m取下列五组数值:(1,1),(3,5),(5,9),(7,13),(9,17),获得五种拉盖尔-高斯光束模式;将这五种拉盖尔-高斯光束模式进行等权重叠加,形成所述带有旋转和缩放的自成像光束。
  5. 根据权利要求4所述的基于微全息阵列的波前探测方法,其特征在于,所述相位模板的相位函数为:
    Figure PCTCN2017111313-appb-100011
    其中,
    Figure PCTCN2017111313-appb-100012
    为微透镜的相位,
    Figure PCTCN2017111313-appb-100013
    为所述五种拉盖尔-高斯光束模式进行等权重叠加形成的复振幅的相位。
  6. 根据权利要求1所述的基于微全息阵列的波前探测方法,其特征在于,所述微全息阵列为通过光刻方法制作的相位板或空间光调制器。
  7. 一种基于微全息阵列的波前传感器,其特征在于,包括沿光路传输方向依次设置的:
    微全息阵列,用于将待测波前转换为双螺旋旋转光束;
    图像传感器,用于探测所述双螺旋旋转光束,获得双螺旋点阵图;
    所述基于微全息阵列的波前传感器还包括:
    波前斜率计算模块,用于根据所述双螺旋点阵图获得波前斜率值;
    波前重构模块,用于对所述波前斜率值进行波前重构,得到待测的波前信息。
  8. 根据权利要求7所述的基于微全息阵列的波前传感器,其特征在于,所述微全息阵列包括若干个按预设排布指令重复排列的相位模板,所述相位模板同时具有微透镜成像和双螺旋点扩散函数功能。
  9. 根据权利要求7所述的基于微全息阵列的波前传感器,其特征在于,所述微全息阵列为通过光刻方法制作的相位板或空间光调制器。
  10. 一种基于微全息阵列的波前探测系统,其特征在于,包括如权利要求7-9任意一项所述的基于微全息阵列的波前传感器,用于探测待测样品的表面信息,所述基于微全息阵列的波前探测系统还包括沿光路传输方向依次设置的:
    激光器,用于产生激光光源;
    第一准直透镜,用于对所述激光光源进行准直,输出准直光源;
    第一反射镜,用于对所述准直光源进行反射;
    可升降样品台,用于放置待测样品,所述待测样品经反射后的准直光源激发而发出荧光;
    第二反射镜,用于对所述荧光进行反射;
    投影物镜,用于对经反射后的荧光进行聚焦;
    第二准直透镜,用于对经聚焦后的荧光进行准直扩束,投射至所述微全息阵列。
PCT/CN2017/111313 2016-11-21 2017-11-16 基于微全息阵列的波前传感器、波前探测方法及系统 WO2018090951A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611061603.8A CN106441084B (zh) 2016-11-21 2016-11-21 基于微全息阵列的波前传感器、波前探测方法及系统
CN201611061603.8 2016-11-21

Publications (1)

Publication Number Publication Date
WO2018090951A1 true WO2018090951A1 (zh) 2018-05-24

Family

ID=58218999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111313 WO2018090951A1 (zh) 2016-11-21 2017-11-16 基于微全息阵列的波前传感器、波前探测方法及系统

Country Status (2)

Country Link
CN (1) CN106441084B (zh)
WO (1) WO2018090951A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474698A (zh) * 2020-04-30 2020-07-31 重庆邮电大学 一种双光源光学显微成像系统及图像处理方法
CN111829671A (zh) * 2020-09-08 2020-10-27 中国工程物理研究院应用电子学研究所 一种高分辨波前检测装置及波前复原方法
CN112903256A (zh) * 2021-02-25 2021-06-04 北京空间机电研究所 一种遥感卫星光学系统在轨成像性能评估方法
CN112987321A (zh) * 2021-03-22 2021-06-18 中国科学院光电技术研究所 一种生成高功率涡旋激光的方法和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873323B (zh) * 2018-07-09 2020-01-10 苏州大学 一种实现边缘增强成像的方法及系统
CN109212749B (zh) * 2018-07-09 2020-01-10 苏州大学 一种实现边缘增强成像的滤波片及其设计方法
CN114528880A (zh) * 2022-02-21 2022-05-24 北京理工大学 一种基于计算全息的波前像差测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804269A (en) * 1987-08-11 1989-02-14 Litton Systems, Inc. Iterative wavefront measuring device
US7645972B2 (en) * 2006-12-13 2010-01-12 Lockheed Martin Corporation High-speed readout of a wavefront sensor using position sensing device
CN102252832A (zh) * 2011-06-24 2011-11-23 北京理工大学 大口径准直系统波前质量检测装置和方法
CN102280115A (zh) * 2010-05-10 2011-12-14 日立民用电子株式会社 光信息再现装置、光信息记录装置和光信息记录再现装置
CN102507019A (zh) * 2011-11-21 2012-06-20 长春理工大学 基于微扫描的像质检测用哈特曼波前传感器
CN102589720A (zh) * 2012-03-19 2012-07-18 中国科学院光电技术研究所 一种适用于非均匀光照明的哈特曼波前测量仪
CN102735348A (zh) * 2012-06-15 2012-10-17 中国科学院光电技术研究所 一种基于哈特曼波前传感器的波前测量方法
CN102980875A (zh) * 2012-11-19 2013-03-20 深圳大学 大景深三维纳米分辨成像方法、光学组件及成像系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941837B1 (en) * 2013-03-13 2015-01-27 Exelis, Inc. Phased array of computer generated holograms for waveform or surface measurement

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804269A (en) * 1987-08-11 1989-02-14 Litton Systems, Inc. Iterative wavefront measuring device
US7645972B2 (en) * 2006-12-13 2010-01-12 Lockheed Martin Corporation High-speed readout of a wavefront sensor using position sensing device
CN102280115A (zh) * 2010-05-10 2011-12-14 日立民用电子株式会社 光信息再现装置、光信息记录装置和光信息记录再现装置
CN102252832A (zh) * 2011-06-24 2011-11-23 北京理工大学 大口径准直系统波前质量检测装置和方法
CN102507019A (zh) * 2011-11-21 2012-06-20 长春理工大学 基于微扫描的像质检测用哈特曼波前传感器
CN102589720A (zh) * 2012-03-19 2012-07-18 中国科学院光电技术研究所 一种适用于非均匀光照明的哈特曼波前测量仪
CN102735348A (zh) * 2012-06-15 2012-10-17 中国科学院光电技术研究所 一种基于哈特曼波前传感器的波前测量方法
CN102980875A (zh) * 2012-11-19 2013-03-20 深圳大学 大景深三维纳米分辨成像方法、光学组件及成像系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474698A (zh) * 2020-04-30 2020-07-31 重庆邮电大学 一种双光源光学显微成像系统及图像处理方法
CN111474698B (zh) * 2020-04-30 2022-09-02 重庆邮电大学 一种双光源光学显微成像系统及图像处理方法
CN111829671A (zh) * 2020-09-08 2020-10-27 中国工程物理研究院应用电子学研究所 一种高分辨波前检测装置及波前复原方法
CN111829671B (zh) * 2020-09-08 2023-01-03 中国工程物理研究院应用电子学研究所 一种高分辨波前检测装置及波前复原方法
CN112903256A (zh) * 2021-02-25 2021-06-04 北京空间机电研究所 一种遥感卫星光学系统在轨成像性能评估方法
CN112903256B (zh) * 2021-02-25 2022-07-29 北京空间机电研究所 一种遥感卫星光学系统在轨成像性能评估方法
CN112987321A (zh) * 2021-03-22 2021-06-18 中国科学院光电技术研究所 一种生成高功率涡旋激光的方法和装置
CN112987321B (zh) * 2021-03-22 2022-08-02 中国科学院光电技术研究所 一种生成高功率涡旋激光的方法和装置

Also Published As

Publication number Publication date
CN106441084B (zh) 2019-02-01
CN106441084A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2018090951A1 (zh) 基于微全息阵列的波前传感器、波前探测方法及系统
CN106646867B (zh) 一种深紫外光学系统共焦对准装置与方法
CN105806479B (zh) 激光远场焦斑高精度动态诊断装置及诊断方法
CN106644105B (zh) 基于双螺旋点扩散函数的波前传感器、探测方法及系统
CN111221132B (zh) 一种扇形子孔径微透镜阵列测量涡旋光束拓扑荷数的方法和装置
CN103335819A (zh) 一种用于高精度角锥棱镜光学检测的装置与方法
JP6124641B2 (ja) 波面収差計測方法、波面収差計測装置および光学素子の製造方法
CN106768886B (zh) 一种深紫外光学系统波像差检测装置和方法
JP6576435B2 (ja) ビーム誘導光学系から誘導される光線を分析するためのシステム及び方法
CN109668526B (zh) 基于光学传递函数的高精度测量倾斜角的方法
JP2015055544A (ja) 波面計測装置、波面計測方法、光学素子の製造方法、および、光学システムの組み立て調整装置
NL2010457C2 (en) Hartmann wavefront measuring instrument adapted for non-uniform light illumination.
US20060082882A1 (en) Achromatic imaging lens with extended depth of focus
Burada et al. Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics
CN105823563B (zh) 动态高分辨率波前测量装置及方法
JP2014021053A (ja) 波面計測装置、波面計測方法、光学素子の製造方法、光学素子の物理パラメータ計測方法、および、光学システムの組み立て調整装置
US20200141832A1 (en) Eccentricity measuring method, lens manufacturing method, and eccentricity measuring apparatus
JP6072317B2 (ja) 偏心量計測方法及び偏心量計測装置
Wu et al. Precise 3-D microscopic profilometry using diffractive image microscopy and artificial neural network in single-exposure manner
JP6823334B2 (ja) 高na集光素子の出口波面計測方法及び出口波面計測システム
CN110702383A (zh) 一种基于扩展旋转对称结构光照明的波前重建装置及方法
CN114967368A (zh) 一种用于成像系统波像差高精度在线测量装置和测量方法
CN108332653B (zh) 对比度可调点衍射干涉系统中波片设计及误差校正方法
CN207676054U (zh) 一种基于轴棱锥检测涡旋光拓扑荷数的装置
Podanchuk et al. Features of the wavefront sensor based on the Talbot effect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17872308

Country of ref document: EP

Kind code of ref document: A1