WO2018090185A1 - 一种数据调制方法以及编码器 - Google Patents
一种数据调制方法以及编码器 Download PDFInfo
- Publication number
- WO2018090185A1 WO2018090185A1 PCT/CN2016/105897 CN2016105897W WO2018090185A1 WO 2018090185 A1 WO2018090185 A1 WO 2018090185A1 CN 2016105897 W CN2016105897 W CN 2016105897W WO 2018090185 A1 WO2018090185 A1 WO 2018090185A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- constellation
- point
- constellation point
- dimensions
- encoder
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
Definitions
- the embodiments of the present application relate to the field of communications, and in particular, to a data modulation method and an encoder.
- the constellation point distribution of the pattern has a large impact on the linear and nonlinear performance of the channel.
- Linear transmission performance can be improved by increasing the Euclidean distance between constellation points, while the optimized design of the pattern constellation points can also reduce nonlinear damage.
- the traditional double-wave phase conjugate (Phase Conjugated Twin Wave, PCTW for short) can effectively suppress the nonlinear damage during transmission.
- the Euclidean distance between the pattern constellation points is the minimum Euclidean distance between the constellation points when the multidimensional constellation is not partitioned.
- the magnification is not maximized, that is, there is no gain in linear performance.
- the embodiment of the present application provides a data modulation method and an encoder for effectively improving linear performance in an optical transmission system while preserving the suppression effect of the PCTW pattern on nonlinear damage.
- an embodiment of the present application provides a data modulation method, including: generating at least eight dimensions in a first set of dimensions in combination with a second set of dimensions and a joint orthogonal component (English full name: Inphase/Quadrature, referred to as I/Q)
- the multi-dimensional constellation map the encoder jointly encodes the first set of dimensions and the second set of dimensions to generate a constellation combination point, wherein the first set of dimensions is coded by PCTW, and the second set of dimensions is performed by using a target pattern Partition coding, the minimum Euclidean distance between the constellation points of the constellation is greater than the minimum Euclidean distance between the constellation points of the multidimensional constellation not partition coded
- the encoder generates a mapping table for the constellation combination point; after the encoder receives the bit sequence carrying the digital information, the encoder maps the bit sequence to the symbol for transmission through the mapping table of the constellation combination point Finally the encoder sends the symbol to the digital to analog converter.
- the encoder combines the first set of dimensions with the second set of dimensions to generate at least two mutually conjugated multi-dimensional constellation diagrams, wherein the first set of dimensions may be defined for adoption.
- the PCTW performs encoding, and the second set of dimensions is partition-encoded to obtain the multi-dimensional constellation of the partition.
- the encoder generates a multi-dimensional constellation diagram of at least eight dimensions by combining the first group dimension and the second group dimension on the basis of I/Q; then the encoder retains the first group dimension On the basis of the PCTW pattern coding, the second group of dimensions is partition coded by using a target pattern, and the encoder combines the coding of the first group dimension and the second group dimension to generate a constellation combination point, and makes the constellation combination
- the minimum Euclidean distance between points is greater than the minimum Euclidean distance between constellation points of multidimensional constellation not partition coded
- the minimum Euclidean distance between constellation points is increased compared to the conventional PCTW pattern, thereby increasing the linear performance during fiber transmission.
- the target pattern includes: the PCTW, polarization switching quadrature phase shift keying (English name: Polarization Switched Quadrature Phase Shift Keying, PS-QPSK for short), 128-point partition 16 orthogonal amplitude modulation Full name: Set Partitioned 16Quadrature Amplitude Modulation, referred to as: SP-16QAM) and 64SP-16QAM.
- PCTW Polarization switching quadrature phase shift keying
- PS-QPSK Polarization Switched Quadrature Phase Shift Keying
- SP-16QAM Set Partitioned 16Quadrature Amplitude Modulation
- 64SP-16QAM 64SP-16QAM
- the target pattern may also include other modes, such as 32QAM, 64QAM, etc., as long as the minimum Euclidean distance between the constellation points can be made larger than the constellation points of the multi-dimensional constellation not partition-encoded. Minimum Euclidean distance It can be doubled, and the specific situation is not limited here.
- the encoder can effectively improve the utilization efficiency by encoding the second group of dimensions in other multiple manners.
- the first set of dimensions is a polarization state, a time, a wavelength, a subcarrier, a mode of the multimode fiber, and a core of the multi-core fiber.
- the second set of dimensions is a polarization state, a time, a wavelength, and a sub-division. At least one of a carrier wave, a mode of a multimode fiber, and a core of a multi-core fiber.
- the first set of dimensions is a polarization state
- the second set of dimensions is time
- the polarization state includes a first polarization state and a second polarization state, where the polarization state is encoded by using the PCTW
- the time includes the first time a slot and a second time slot, the time is encoded by the PS-QPSK
- the third constellation diagram and the fourth constellation diagram of the second polarization state in the second time slot are QAM coordinate diagrams of 4 constellation points, the abscissa of the coordinate graph is the I, and the ordinate of the coordinate graph is the Q . Based on the above conditions, the encoder can obtain the constellation combination point in the following manner:
- the encoder when the encoder selects a constellation point (1+1j) from the first constellation as the first constellation point, the encoder points from the constellation point in the second constellation (-1+1j) And (1-1j) arbitrarily selecting a constellation point as a second constellation point, wherein the third constellation map selects a constellation point conjugated with the first constellation point as a third constellation point, and the fourth constellation map selects a constellation point conjugated with the second constellation point as a fourth constellation point; the encoder pairs the first constellation point, the second constellation point, the third constellation point, and the fourth constellation point to generate the constellation combination point .
- the encoder when the encoder selects a constellation point (-1+1j) from the first constellation as the first constellation point, the encoder points from the constellation point in the second constellation (1) +1j) and (-1-1j) arbitrarily selecting a constellation point as the second constellation point, and selecting a constellation point conjugated with the first constellation point as the third constellation point in the third constellation diagram, the first Selecting a constellation point conjugated with the second constellation point as the fourth constellation point in the four constellation diagram; the encoder is to the first constellation point, the second constellation point, the third constellation point, and the fourth constellation point Pairing generates the constellation combination point.
- the encoder when the encoder selects a constellation point (-1-1j) from the first constellation as the first constellation point, the encoder points from the constellation point in the second constellation (- 1+1j) and (1-1j) arbitrarily selecting a constellation point as the second constellation point, and selecting a constellation point conjugated with the first constellation point as the third constellation point in the third constellation diagram, the first Selecting a constellation point conjugated with the second constellation point as the fourth constellation point in the four constellation diagram; the encoder is to the first constellation point, the second constellation point, the third constellation point, and the fourth constellation point Pairing generates the constellation combination point.
- the encoder when the encoder selects a constellation point (1-1j) from the first constellation as the first constellation point, the encoder points from the constellation point in the second constellation (1+ 1j) and (-1-1j) arbitrarily selecting a constellation point as the second constellation point, and selecting a constellation point conjugated with the first constellation point as the third constellation point in the third constellation diagram, the fourth Selecting a constellation point conjugated with the second constellation point as the fourth constellation point in the constellation; the encoder pairs the first constellation point, the second constellation point, the third constellation point, and the fourth constellation point Generate the constellation combination point.
- the first set of dimensions is a polarization state
- the second set of dimensions is time
- the polarization state includes a first polarization state and a second polarization state, where the polarization state is encoded by using the PCTW
- the time includes the first time a slot and a second time slot, the time is encoded by the PCTW
- the third constellation diagram and the fourth constellation diagram of the second polarization state in the second time slot are QAM coordinate diagrams of 4 constellation points, the abscissa of the coordinate graph is the I, and the ordinate of the coordinate graph is the Q .
- the encoder can also generate the constellation combination point in the following manner:
- the encoder when the encoder selects a constellation point (1+1j) from the first constellation as the first constellation point, the encoder points from the constellation point (1-1j) in the second constellation diagram. As a second constellation point, a constellation point conjugated with the first constellation point is selected as a third constellation point in the third constellation diagram, and a constellation point conjugated with the second constellation point is selected in the fourth constellation diagram as a a constellation point; the encoder pairing the first constellation point, the second constellation point, the third constellation point, and the fourth constellation point to generate the constellation combination point.
- the encoder when the encoder selects a constellation point (-1+1j) from the first constellation as the first constellation point, the encoder points from the constellation point in the second constellation (- 1-1j) as the second constellation point, the constellation point conjugated with the first constellation point is selected as the third constellation point in the third constellation diagram, and the fourth constellation diagram is selected to be shared with the second constellation point
- the constellation point of the yoke serves as the fourth constellation point; the encoder pairs the first constellation point, the second constellation point, the third constellation point, and the fourth constellation point to generate the constellation combination point.
- the encoder when the encoder selects a constellation point (-1-1j) from the first constellation as the first constellation point, the encoder points from the constellation point in the second constellation (- 1+1j) as the second constellation point, the constellation point conjugated with the first constellation point is selected as the third constellation point in the third constellation diagram, and the fourth constellation diagram is selected to be shared with the second constellation point
- the constellation point of the yoke serves as the fourth constellation point; the encoder pairs the first constellation point, the second constellation point, the third constellation point, and the fourth constellation point to generate the constellation combination point.
- the encoder when the encoder selects a constellation point (1-1j) from the first constellation as the first constellation point, the encoder points from the constellation point in the second constellation (1+ 1j) as the second constellation point, the constellation point conjugated to the first constellation point is selected as the third constellation in the third constellation diagram a point in which the constellation point conjugated with the second constellation point is selected as the fourth constellation point; the encoder is to the first constellation point, the second constellation point, the third constellation point, and the The fourth constellation point pairing generates the constellation combination point.
- the first set of dimensions is a polarization state
- the second set of dimensions is time
- the polarization state includes a first polarization state and a second polarization state, where the polarization state is encoded by using the PCTW
- the time includes the first time a slot and a second time slot, the time is encoded by the 128SP-16QAM
- the third constellation diagram and the fourth constellation diagram of the second polarization state in the second time slot are QAM coordinate maps of 16 constellation points, the abscissa of the coordinate graph is the I, and the ordinate of the coordinate graph is the Q .
- the encoder can generate the constellation combination point in the following manner:
- the encoder arbitrarily selects a first constellation point from the first constellation diagram, and the encoder selects a second constellation point from the second constellation diagram, and the third constellation diagram selects the first constellation point a constellation point of the constellation point conjugate is used as a third constellation point, and a constellation point conjugated with the second constellation point is selected as a fourth constellation point, and the first constellation point and the second constellation point are formed.
- the minimum Euclidean distance between the constellation combination points is the minimum Euclidean distance between the constellation points of the multidimensional constellation not partition coded
- the encoder combines the first constellation point, the second constellation point, the third constellation point, and the fourth constellation point to generate the constellation combination point.
- the minimum Euclidean distance between the constellation combination point formed by the first constellation point and the second constellation point may be greater than the multi-dimensional constellation diagram of the constellation combination point generated by the joint coding generated in the multi-dimensional constellation diagram.
- Minimum Euclidean distance between constellation points that are not partition coded Take any value under the premise of multiple times, such as 2, 3, etc. The specific value is not limited here.
- the second set of dimensions is not limited to two dimensions.
- the time includes not only the first time slot and the second time slot, but also a third time slot, a fourth time slot, and the like.
- the partition multi-dimensional constellation generated by the second group of dimension codes may be at least four-dimensional multi-dimensional constellation, which is not limited herein.
- the encoder adopts different coding modes for different code patterns, thereby improving application flexibility.
- the encoder has the smallest coded bit difference between constellation points according to the minimum Euclidean distance
- the binary bit condition generates the mapping table for the constellation combination point in a Gray coded manner.
- the receiving end can perform calculation in the eight-dimensional space in combination with the two signal features, and the training sequence adopts the formulas MeanA xr1 , A xi1 , A Yr1 , A yi1 , A xr2 , A xi2 , A yr2 , A yi2 estimate the respective average values of 8 points, and then use the following formula:
- the point with the smallest distance is selected as the final judgment result.
- an embodiment of the present application provides an encoder having a function of implementing an encoder in the foregoing method.
- This function can be implemented in hardware or in hardware by executing the corresponding software.
- the hardware or software includes one or more modules corresponding to the functions described above.
- the encoder includes: a receiving module, a processing module, and a sending module;
- the processing module is configured to jointly encode the first set of dimensions and the second set of dimensions to obtain a constellation combination point, wherein the first set of dimensions is encoded by a dual wave phase conjugate PCTW, and the second set of dimensions uses a target code Partition coding, the minimum Euclidean distance between the constellation combination points is greater than the minimum Euclidean distance between the constellation points of the multidimensional constellation not partition coded
- the multi-dimensional constellation is at least an eight-dimensional constellation based on the first set of dimensions, the second set of dimensions, and a joint orthogonal component I/Q; generating a mapping table for the constellation combination point;
- the receiving module is configured to receive a bit sequence carrying digital information
- the processing module is configured to map the bit sequence to a symbol for transmission by using a mapping table of the constellation combination point;
- the sending module is configured to send the symbol to a digital to analog converter.
- the encoder includes: a transceiver, a processor, and a bus;
- the transceiver is coupled to the processor via the bus;
- the processor performs the following steps: jointly coding the first set of dimensions and the second set of dimensions to obtain a constellation combination point, wherein the first set of dimensions is encoded by a dual wave phase conjugate PCTW, and the second set of dimensions is adopted
- the target pattern is partition coded, and the minimum Euclidean distance between the constellation combination points is greater than the minimum Euclidean distance between the constellation points of the multidimensional constellation not partition coded.
- the multi-dimensional constellation is at least an eight-dimensional constellation based on the first set of dimensions, the second set of dimensions, and a joint orthogonal component I/Q; generating a mapping table for the constellation combination point;
- the transceiver performs the following steps: receiving a bit sequence carrying digital information;
- the processor performs the steps of: mapping the bit sequence to a symbol for transmission by using a mapping table of the constellation combination point;
- the transceiver performs the following steps: sending the symbol to a digital to analog converter.
- an embodiment of the present application provides a computer storage medium, where the program storage code is stored in the computer storage medium, and the program code is used to indicate that the method of the first aspect or the second aspect is performed.
- the encoder generates a multi-dimensional constellation diagram of at least eight dimensions by combining the first group dimension and the second group dimension on the basis of I/Q; then the encoder retains the first group dimension Based on the PCTW pattern coding, the second set of dimensions is partition coded by using a target pattern, and the encoder jointly encodes the first set of dimensions and the second set of dimensions to generate constellation combination points, and makes the constellation
- the minimum Euclidean distance between the combined points is greater than the minimum Euclidean distance between the constellation points of the multidimensional constellation not partition coded
- the minimum Euclidean distance between constellation points is increased compared to the conventional PCTW pattern, thereby increasing the linear performance during fiber transmission.
- FIG. 1 is a schematic diagram of an apparatus of an optical transmission system in an embodiment of the present application.
- FIG. 2 is a schematic diagram of an embodiment of a data modulation method in an embodiment of the present application.
- FIG. 3 is a schematic diagram of an eight-dimensional constellation diagram in the embodiment of the present application.
- FIG. 4 is another schematic diagram of an eight-dimensional constellation diagram in the embodiment of the present application.
- FIG. 5 is a schematic diagram of an embodiment of an encoder in an embodiment of the present application.
- FIG. 6 is a schematic diagram of another embodiment of an encoder in an embodiment of the present application.
- the embodiment of the present application provides a data modulation method and an encoder for effectively improving linear performance in an optical transmission system while preserving the suppression effect of the PCTW pattern on nonlinear damage.
- a transmitter is included in the optical transmission system, and the transmitter includes an encoder for multi-dimensionally encoding binary input data, and a driving signal is generated by a digital-to-analog converter.
- the drive signal then modulates the various dimensions (amplitude, phase, polarization state, time, etc.) of the optical carrier produced by the laser through a modulator.
- the modulator consists of a conventional phase/amplitude modulator, phase shifter, Mach-Zehnder interferometer and polarization multiplexer.
- the optical modulation signal output by the modulator is subjected to a 50% link dispersion precompensation using a dispersion compensation fiber to obtain a symmetric link dispersion distribution, wherein the dispersion precompensation can also be electrically compensated by the transmitter digital signal processing.
- the transmission link consists of a single-mode fiber and an optical signal amplifier.
- the dispersion compensation fiber is used to compensate the residual 50% link dispersion at the end of the link.
- the residual dispersion compensation can also be realized by the electrical compensation of the receiver digital signal processing.
- an optical mixer mixes the received optical signal with a local oscillator source, and some photodetectors are used to detect the various mixing components produced by the optical mixer.
- the analog to digital converter samples each of the mixing components, and the digital signal processor recovers information of various dimensions of the optical signal.
- the constellation point distribution of the pattern has a large impact on the linear and nonlinear performance of the channel.
- Linear transmission performance can be improved by increasing the Euclidean distance between constellation points, while the optimized design of the pattern constellation points can also reduce nonlinear damage.
- the traditional PCTW can effectively suppress the ability of nonlinear damage during transmission.
- the Euclidean distance between the pattern constellation points is the minimum Euclidean distance between the constellation points of the multidimensional constellation not partition coded. The magnification is not maximized, that is, there is no gain in linear performance.
- the embodiment of the present application provides the following technical solution: generating a minimum of eight dimensions in a first set of dimensions combined with a second set of dimensions and a joint orthogonal component (English full name: Inphase/Quadrature, referred to as I/Q).
- the encoder jointly encodes the first set of dimensions and the second set of dimensions to generate a constellation combination point, wherein the first set of dimensions is encoded by PCTW, and the second set of dimensions is partition coded by using a target pattern.
- the minimum Euclidean distance between the constellation points of the constellation is greater than the minimum Euclidean distance between the constellation points of the multidimensional constellation not partition coded
- the encoder generates a mapping table for the constellation combination point; after the encoder receives the bit sequence carrying the digital information, the encoder maps the bit sequence to the symbol for transmission through the mapping table of the constellation combination point Finally the encoder sends the symbol to the digital to analog converter.
- FIG. 2 is a flowchart of a data modulation method according to an embodiment of the present application.
- the method specifically includes the following steps:
- the encoder jointly encodes the first group of dimensions and the second group of dimensions to obtain a constellation combination point.
- the encoder selects the first set of dimensions to be encoded using PCTW and the first of the at least eight dimensional constellations
- the two sets of dimensions use the target pattern for partition coding, and the two encoded results are combined to generate constellation combination points, and the minimum Euclidean distance between the constellation combination points is greater than the constellation points of the multidimensional constellation not partition coded. Minimum Euclidean distance Times.
- the first set of dimensions may be any one of a polarization state, a time, a wavelength, a subcarrier, a mode of a multimode fiber, and a core of a multi-core fiber.
- the second set of dimensions may also be a polarization state, time. At least one of a wavelength, a subcarrier, a mode of a multimode fiber, and a core of a multi-core fiber.
- the target pattern may include the PCTW, PS-QPSK, 128SP-16QAM, and 64SP-16QAM.
- the target pattern specifically selected by the encoder in the actual application is not limited herein, as long as the generated constellation combination point can be made.
- the minimum Euclidean distance is greater than the minimum Euclidean distance between the constellation points of the multidimensional constellation not partition coded Just double. According to different choices of the target pattern, the way in which the encoder generates constellation combination points is different. Meanwhile, between the first group of dimensions and the second group of dimensions, the second set of dimensions may be encoded by using PCTW, and the first set of dimensions is selected by using a target pattern, as long as the first set of dimensions and the first set of dimensions are At least one dimension between the second set of dimensions may be encoded by PCTW, and the specific form is not limited herein.
- the first group of dimensions is a polarization state
- the second group of dimensions is a time for the polarization.
- the first polarization state and the second polarization state, the time dimension includes a first time slot and a second time slot, wherein the constellation of the first polarization state in the first time slot is a first constellation diagram, The constellation of the second polarization state in the second time slot is a second constellation diagram, the constellation of the second polarization state in the first time slot is a third constellation diagram, and the second polarization state is in the second constellation
- the constellation in the time slot is the fourth constellation.
- the second set of dimensions is not limited to two dimensions.
- the time includes not only the first time slot and the second time slot, but also a third time slot, a fourth time slot, and the like.
- the partition multi-dimensional constellation generated by the second group of dimension codes may be at least four-dimensional multi-dimensional constellation, which is not limited herein.
- the first time slot and the second time slot are taken as an example.
- the polarization state is encoded by the PCTW, and the time is encoded by the PS-QPSK, then the first constellation diagram, the second constellation diagram, the third constellation diagram and the fourth constellation diagram are as shown in FIG. 3, a first constellation diagram, the second constellation diagram, the third constellation diagram and the fourth constellation diagram are both rectangular constellations and are QAM graphs of 4 constellation points, and the abscissa of the graph is the I, the coordinates The ordinate of the graph is the Q.
- the way the encoder generates constellation combination points can be as follows:
- the encoder when the encoder selects a constellation point (1+1j) from the first constellation as the first constellation point, the encoder takes a constellation point from the second constellation (-1+ 1j) and (1-1j) arbitrarily selecting a constellation point as a second constellation point, and selecting a constellation point conjugated with the first constellation point as a third constellation point in the third constellation diagram, in the fourth constellation diagram Selecting a constellation point conjugated with the second constellation point as a fourth constellation point; the encoder pairs the first constellation point, the second constellation point, the third constellation point, and the fourth constellation point to generate a constellation combination point .
- the encoder selects a constellation point (1+1j) as the first constellation point from the first constellation diagram, and selects a constellation point (-1+1j) as the second constellation point from the second constellation diagram, then the coding Selecting a constellation point (1-1j) from the third constellation map as a third constellation point, selecting a constellation point (-1-1j) from the fourth constellation map as a fourth constellation point, and then the encoder will constellate the constellation Point (1+1j), (-1+1j), (1-1j), (-1-1j) pairing generates a constellation combination point.
- the encoder when the encoder selects a constellation point (-1+1j) as the first constellation point from the first constellation, the encoder points from the constellation point in the second constellation (1+ 1j) and (-1-1j) arbitrarily selecting a constellation point as the second constellation point, and selecting a constellation point conjugated with the first constellation point as the third constellation point in the third constellation diagram, the fourth Selecting a constellation point conjugated with the second constellation point as the fourth constellation point in the constellation diagram; then the encoder points the first constellation point, the second constellation point, The third constellation point and the fourth constellation point pair generate a constellation combination point.
- the router selects a constellation point (-1+1j) as the first constellation point from the first constellation diagram, and selects a constellation point (1+1j) as the second constellation point in the second constellation diagram, then the encoder Selecting a constellation point (-1-1j) from the third constellation map as a third constellation point, selecting a constellation point (1-1j) as a fourth constellation point from the fourth constellation map, and then the encoder points the constellation point (-1+1j), (1+1j), (-1-1j), (1-1j) pairing generates a constellation combination point.
- the encoder when the encoder selects a constellation point (-1-1j) from the first constellation map as the first constellation point, the encoder points from the constellation point in the second constellation diagram ( -1+1j) and (1-1j) arbitrarily selecting a constellation point as the second constellation point, and selecting a constellation point conjugated with the first constellation point as the third constellation point in the third constellation diagram, Selecting, in the fourth constellation diagram, a constellation point conjugated with the second constellation point as the fourth constellation point; the encoder, the first constellation point, the second constellation point, the third constellation point, and the fourth constellation Point pairing generates a constellation combination point.
- the encoder selects a constellation point (-1-1j) from the first constellation map as the first constellation point, and selects a constellation point (1-1j) as the second constellation point from the second constellation diagram. Then the encoder selects a constellation point (-1+1j) from the third constellation map as the third constellation point, and the encoder selects a constellation point (1+1j) from the fourth constellation diagram as the fourth constellation Point, then the encoder pairs the constellation points (-1-1j), (1-1j), (-1+1j), (1+1j) to generate a constellation combination point.
- the encoder when the encoder selects a constellation point (1-1j) from the first constellation as the first constellation point, the encoder points from the constellation point in the second constellation (1+ 1j) and (-1-1j) arbitrarily selecting a constellation point as the second constellation point, and selecting a constellation point conjugated with the first constellation point as the third constellation point in the third constellation diagram, the fourth Selecting a constellation point conjugated with the second constellation point as the fourth constellation point in the constellation; then the encoder points the first constellation point, the second constellation point, the third constellation point, and the fourth constellation point Pairing generates a constellation combination point.
- the encoder selects a constellation point (1-1j) from the first constellation as the first constellation point, and the encoder selects a constellation point (1+1j) from the second constellation as the second constellation Point, the encoder selects a constellation point (1+1j) from the third constellation map as the third constellation point, and the encoder selects a constellation point (1-1j) from the fourth constellation map as the fourth The constellation point, then the encoder pairs the constellation points (1-1j), (1+1j), (1+1j), (1-1j) to generate a constellation combination point.
- the encoder when the encoder selects a constellation point (1+1j) from the first constellation as the first constellation point, the encoder points from the constellation point (1-1j) in the second constellation diagram. As a second constellation point, a constellation point (1-1j) conjugated to the first constellation point is selected as a third constellation point, and the fourth constellation is selected to be conjugated with the second constellation point. The constellation point (1+1j) is used as the fourth constellation point; then the encoder pairs the first constellation point, the second constellation point, the third constellation point and the fourth constellation point to generate a constellation combination point.
- the encoder when the encoder selects a constellation point (-1+1j) from the first constellation as the first constellation point, the encoder points from the constellation point in the second constellation (- 1-1j) as the second constellation point, the constellation point (-1-1j) conjugated with the first constellation point is selected as the third constellation point in the third constellation diagram, and the fourth constellation diagram is selected and The constellation point (-1+1j) of the second constellation point is conjugated as the fourth constellation point; then the encoder is to the first constellation point, the second constellation point, the third constellation point, and the fourth constellation Point pairing generates a constellation combination point.
- the encoder when the encoder selects a constellation point (-1-1j) from the first constellation as the first constellation point, the encoder points from the constellation point in the second constellation (- 1+1j) as the second constellation point, the third constellation diagram selects a constellation point (-1+1j) conjugated with the first constellation point as the third constellation point, and the fourth constellation diagram selects and a second constellation point conjugated constellation point (-1-1j) as the fourth constellation point; then the encoder the first constellation point, the second constellation point, the third constellation point, and the fourth constellation Point pairing generates a constellation combination point.
- the encoder when the encoder selects a constellation point (1-1j) from the first constellation as the first constellation point, the encoder points from the constellation point in the second constellation (1+ 1j) as the second constellation point, the constellation point (1+1j) conjugated with the first constellation point is selected as the third constellation point in the third constellation diagram, and the second constellation diagram is selected and the second constellation point a constellation point conjugated constellation point (1-1j) as the fourth constellation point; then the encoder pairs the first constellation point, the second constellation point, the third constellation point, and the fourth constellation point to generate the Constellation combination point.
- the first polarization state of the polarization state is in a first constellation diagram in the first time slot of the time
- the polarization state is a second constellation of the first polarization state in the second time slot of the time
- the fourth constellation of the second polarization state in the second time slot of the time is as shown in the four-dimensional constellation diagram of FIG.
- the seat map, the second constellation map, the third constellation map, and the fourth constellation map are QAM graphs of 16 constellation points, and the abscissa of the graph is the I, and the ordinate of the graph is the Q.
- the specific implementation of the encoding of the encoder is as follows:
- the encoder arbitrarily selects a first constellation point from the first constellation, and then the encoder selects a second constellation point from the second constellation, and selects from the third constellation a constellation point conjugated by the first constellation point is used as a third constellation point, and a constellation point conjugated with the second constellation point is selected as a fourth constellation point, the first constellation point and the second constellation point
- the minimum Euclidean distance between the constellation points of the constellation formed by the points is the minimum Euclidean distance between the constellation points of the multidimensional constellation not partition coded
- the encoder combines the first constellation point, the second constellation point, the third constellation point, and the fourth constellation point to generate the constellation combination point.
- the encoder selects a constellation point (-3+3j) as the first constellation point in the first constellation diagram
- the encoder selects a constellation point (-1+3j) as the first in the second constellation diagram.
- the encoder selects a constellation point (-3-3j) as the third constellation point in the third constellation diagram
- the encoder selects a constellation point (-1-3j) as the fourth constellation point.
- the encoder can also select 32QAM, 64QAM can also be selected for coding and modulation. In specific cases, it is not limited herein.
- the minimum Euclidean distance between the constellation point combination generated by the first constellation point selected by the encoder and the constellation point pair generated by the second constellation point is not only the minimum Euclidean distance between the constellation points of the multi-dimensional constellation not partition-encoded. Times, other values, such as 2, 3, etc., as long as the minimum Euclidean distance between the constellation combination points that can be encoded by the first set of dimensions and the second set of dimensions is greater than the multidimensional constellation is not partition coded. Minimum Euclidean distance between constellation points It can be doubled, and the specific situation is not limited here.
- the encoder generates a mapping table for the constellation combination point and saves the mapping table.
- the encoder generates the mapping table for the constellation combination point according to the condition of the binary bit with the smallest coding bit difference between the constellation points of the minimum Euclidean distance, and the encoder saves the mapping table.
- the encoder can obtain different mapping tables according to different encoding methods, and specifically, which mapping table is used by the encoder, and is randomly obtained by the encoder.
- the encoder can obtain a mapping table as shown in Table 1 or Table 2, wherein the first set of dimensions is a polarization state, the polarization state is encoded by the PCTW, and the second set of dimensions is time, and the time is PS. -QPSK for encoding.
- Tables 1 and 2 are as follows:
- the receiving end can perform calculation in the eight-dimensional space in combination with the two signal features, and the training sequence adopts the formulas MeanA xr1 , A xi1 , A Yr1 , A yi1 , A xr2 , A xi2 , A yr2 , A yi2 estimate the respective average values of 8 points, and then use the following formula:
- the point with the smallest distance is selected as the final judgment result.
- the encoder receives a bit sequence carrying digital information.
- the encoder receives various bit sequences carrying digital information in an optical transmission system.
- the encoder maps the bit sequence to a symbol for transmission by using a mapping table of the constellation combination point.
- the encoder maps the bit sequence carrying the digital information through a mapping table pre-stored by the encoder to obtain symbols for transmission.
- the encoder sends the symbol to the digital to analog converter.
- the encoder transmits the obtained symbol for transmission to the data mode converter, so that the digital-to-analog converter transmits the symbol to realize data transmission.
- the encoder combines the first set of dimensions and the second set of dimensions to generate at least an eight-dimensional multidimensional constellation on the basis of I/Q; and then the encoder retains the first set of dimensions using the PCTW pattern encoding.
- the second set of dimensions is partition coded by using a target pattern, and the encoder combines the coding of the first set of dimensions and the second set of dimensions to generate constellation combination points, and makes the minimum European style between the constellation combination points The distance is greater than the minimum Euclidean distance between the constellation points of the multidimensional constellation not partition coded In addition, the minimum Euclidean distance between constellation points is increased compared to the conventional PCTW pattern, thereby increasing the linear performance during fiber transmission.
- an embodiment of an encoder in the embodiment of the present application includes: a processing module 501, a receiving module 502, and a sending module 503.
- the processing module 501 is configured to jointly encode the first set of dimensions and the second set of dimensions to obtain a constellation combination point, wherein the first set of dimensions is encoded by a dual wave phase conjugate PCTW, and the second set of dimensions uses a target
- the pattern is encoded, and the minimum Euclidean distance between the constellation combination points is greater than the minimum Euclidean distance between the constellation points of the multidimensional constellation not partition coded
- the multi-dimensional constellation is at least an eight-dimensional constellation based on the first set of dimensions, the second set of dimensions, and a joint orthogonal component I/Q; generating a mapping table for the constellation combination point;
- the receiving module 502 is configured to receive a bit sequence carrying digital information
- the processing module 501 is configured to map the bit sequence to a symbol for transmission by using a mapping table of the constellation combination point;
- the sending module 503 is configured to send the symbol to the digital to analog converter.
- the processing module 501 is configured to perform steps 201 to 202, and step 204;
- the receiving module 502 is configured to perform step 203;
- the sending module 503 is configured to perform step 205.
- the encoder of FIG. 5 can also be used to perform any of the steps performed by the encoder of FIG. 1 or FIG. 2 to implement any of the functions that the encoder of FIG. 1 or FIG. 2 can implement.
- a multi-dimensional constellation diagram of at least eight dimensions is generated by combining the first set of dimensions and the second set of dimensions on the basis of I/Q; then the processing module 501 uses the basis of the PCTW pattern coding to retain the first set of dimensions.
- the second set of dimensions is partition coded by using a target pattern, and the processing module 501 combines the codes of the first set of dimensions and the second set of dimensions to generate a constellation combination point, and makes a minimum European style between the constellation combination points.
- the distance is greater than the minimum Euclidean distance between the constellation points of the multidimensional constellation not partition coded
- the minimum Euclidean distance between constellation points is increased compared to the conventional PCTW pattern, which increases the linear performance during fiber transmission.
- another embodiment of the encoder in the embodiment of the present application includes: a transceiver 601 and a processor 602; the transceiver 601 and the processor 602 are connected to each other through a bus 603;
- the bus 603 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
- PCI peripheral component interconnect
- EISA extended industry standard architecture
- the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 6, but it does not mean that there is only one bus or one type of bus.
- the processor 602 can be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and an NP.
- CPU central processing unit
- NP network processor
- Processor 602 can also further include a hardware chip.
- the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
- the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination.
- the encoder may further include a memory 604 for storing a mapping table of the constellation combination points.
- the memory 604 may include a volatile memory, such as a random-access memory (RAM); the memory may also include a non-volatile memory, such as a flash memory ( A flash memory, a hard disk drive (HDD) or a solid-state drive (SSD); the memory 604 may also include a combination of the above types of memories.
- RAM random-access memory
- non-volatile memory such as a flash memory ( A flash memory, a hard disk drive (HDD) or a solid-state drive (SSD); the memory 604 may also include a combination of the above types of memories.
- the memory 604 can also be used to store program instructions, the processor 602 invoking program instructions stored in the memory 604, can perform one or more steps in the embodiment shown in FIG. 2, or an alternative embodiment thereof The function that implements the behavior of the encoder in the above method.
- the processor 602 using steps 201 to 202 in the above embodiment, and step 204;
- the transceiver 601 includes a radio frequency module and an antenna, and the radio frequency module can be connected to the processor 602 through the bus 603.
- the radio frequency module and the antenna perform step 203 and steps in the foregoing embodiment. Step 205.
- a multi-dimensional constellation diagram of at least eight dimensions is generated by combining the first set of dimensions and the second set of dimensions on the basis of I/Q; then the processor 602 uses the basis of the PCTW pattern coding to retain the first set of dimensions.
- the second set of dimensions is partition coded by using a target pattern, and the processor 602 combines the codes of the first set of dimensions and the second set of dimensions to generate constellation combination points, and makes the minimum European style between the constellation combination points
- the distance is greater than the minimum Euclidean distance between the constellation points of the multidimensional constellation not partition coded
- the minimum Euclidean distance between constellation points is increased compared to the conventional PCTW pattern, thereby increasing the linear performance during fiber transmission.
- the disclosed system, apparatus, and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
- the portion or portion may be embodied in the form of a software product stored in a storage medium, including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the present application. All or part of the steps of the method described in the examples.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
本申请实施例提供一种数据调制方法以及编码器,用于在保留PCTW码型对非线性损伤的抑制效果的基础上,有效提高光传输系统中的线性性能。本申请提供的技术方案如下:编码器对第一组维度和第二组维度进行联合编码得到星座组合点,第一组维度采用双波相位共轭PCTW进行编码,第二组维度采用目标码型进行分区编码,星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的(I)倍,多维星座图为基于第一组维度,第二组维度以及联合正交分量I/Q的至少八维星座图;编码器为星座组合点生成映射表;编码器接收携带数字信息的比特序列;编码器将比特序列通过星座组合点的映射表映射为用于传输的符号;编码器将符号发送给数模转换器。
Description
本申请实施例涉及通信领域,尤其涉及一种数据调制方法以及编码器。
一直以来,更大的传输容量,更远的传输距离和更好的传输效果就是光通信系统所追求的目标。近年来,大量新技术的应用带来的传输距离和容量的快速增加,使得光通信系统的发展甚至超过了由摩尔定律所定义的增长速度。尽管目前信息产业的发展势头有所减缓,但随着信息全球化的进程以及新的数据业务的不断涌现,发展超长距离,超大容量的光通信系统仍将是未来研究前沿的主题之一。而超长距离,超大容量的光通信系统中,信道间和信道内积累的非线性损伤已成为制约光传输距离的重要瓶颈。在光传输系统中,码型的星座点分布对信道的线性和非线性性能影响很大。线性传输性能能够通过增大星座点间的欧式距离来提高,而码型星座点的优化设计也可减少非线性损伤。
目前传统的双波相位共轭(英文全称:Phase Conjugated Twin Wave,简称:PCTW)可以有效的抑制传输过程中的非线性损伤的能力。
发明内容
本申请实施例提供了一种数据调制方法以及编码器,用于在保留PCTW码型对非线性损伤的抑制效果的基础上,有效提高光传输系统中的线性性能。
第一方面,本申请实施例提供一种数据调制方法,包括:在第一组维度联合第二组维度以及联合正交分量(英文全称:Inphase/Quadrature,简称:I/Q)生成至少八维的多维星座图时,该编码器将该第一组维度与该第二组维度进行联合编码生成星座组合点,其中该第一组维度采用PCTW进行编码,该第二组维度采用目标码型进行分区编码,该星座组合点之间的最小欧式距离大于该多维星座图未进行分区编码的星座点之间的最小欧式距离的倍;然后该编
码器为该星座组合点生成映射表;在该编码器接收携带数字信息的比特序列之后,该编码器将该比特序列通过该星座组合点的映射表映射为用于传输的符号;最后该编码器将该符号发送给数模转换器。
本申请实施例中,该编码器联合该第一组维度与该第二组维度进行编码生成的是至少两个相互共轭的分区多维星座图,其中可以定义为该第一组维度用于采用PCTW进行编码,该第二组维度进行分区编码得到该分区多维星座图。
本申请实施例提供的技术方案中,该编码器在I/Q的基础上联合第一组维度和第二组维度生成至少八维的多维星座图;然后该编码器在保留该第一组维度采用PCTW码型编码的基础上,将该第二组维度采用目标码型进行分区编码,该编码器联合该第一组维度和该第二组维度的编码生成星座组合点,并使得该星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的倍,相比传统的PCTW码型来说增加了星座点之间的最小欧式距离,进而增加了光纤传输过程中的线性性能。
可选的,该目标码型包括:该PCTW,偏振交换正交相移键控(英文全称:Polarization Switched Quadrature Phase Shift Keying,简称:PS-QPSK),128点的分区16正交幅度调制(英文全称:Set Partitioned 16Quadrature Amplitude Modulation,简称:SP-16QAM)和64SP-16QAM。
在实际应用中,该目标码型还可以包括其他多种方式,比如32QAM,64QAM等,只要可以使得该星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的倍即可,具体情况此处不做限定。
本申请实施例提供的技术方案中,该编码器将该第二组维度采用其他多种方式进行编码可以有效的提高利用效率。
可选的,该第一组维度为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中任意一种,该第二组维度为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中至少一种。
可选的,该第一组维度为偏振态,该第二组维度为时间;该偏振态包括第一偏振态和第二偏振态,该偏振态采用该PCTW进行编码;该时间包括第一时隙和第二时隙,该时间采用该PS-QPSK进行编码;
该第一偏振态在该第一时隙内的第一星座图,该第一偏振态在该第二时隙内的第二星座图,该第二偏振态在该第一时隙内的第三星座图和该第二偏振态在该第二时隙内的第四星座图均为4星座点的QAM坐标图,该坐标图的横坐标为该I,该坐标图的纵坐标为该Q。基于上述条件,该编码器可以采用如下方式得到星座组合点:
一种可能实现方式中,该编码器从第一星座图里选择星座点(1+1j)作为第一星座点时,则该编码器从该第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(-1+1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(-1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
可选的,该第一组维度为偏振态,该第二组维度为时间;该偏振态包括第一偏振态和第二偏振态,该偏振态采用该PCTW进行编码;该时间包括第一时隙和第二时隙,该时间采用该PCTW进行编码;
该第一偏振态在该第一时隙内的第一星座图,该第一偏振态在该第二时隙内的第二星座图,该第二偏振态在该第一时隙内的第三星座图和该第二偏振态在该第二时隙内的第四星座图均为4星座点的QAM坐标图,该坐标图的横坐标为该I,该坐标图的纵坐标为该Q。
基于上述条件,该编码器还可以采用如下方式生成该星座组合点:
一种可能实现方式中,该编码器从第一星座图里选择星座点(1+1j)作为第一星座点时,则该编码器从该第二星座图中的星座点(1-1j)作为第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(-1+1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(-1-1j)作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(-1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(-1+1j)作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(1+1j)作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座
点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
可选的,该第一组维度为偏振态,该第二组维度为时间;该偏振态包括第一偏振态和第二偏振态,该偏振态采用该PCTW进行编码;该时间包括第一时隙和第二时隙,该时间采用该128SP-16QAM进行编码;
该第一偏振态在该第一时隙内的第一星座图,该第一偏振态在该第二时隙内的第二星座图,该第二偏振态在该第一时隙内的第三星座图和该第二偏振态在该第二时隙内的第四星座图均为16星座点的QAM坐标图,该坐标图的横坐标为该I,该坐标图的纵坐标为该Q。
基于上述条件,该编码器可以采用如下方式生成该星座组合点:
一种可能实现方式中,该编码器从第一星座图里任意选择第一星座点,该编码器从该第二星座图中选择第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为第四星座点,该第一星座点与该第二星座点构成的星座组合点之间的最小欧式距离为多维星座图未进行分区编码的星座点之间的最小欧式距离的倍;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
在实际应用中,该第一星座点与该第二星座点构成的星座组合点之间的最小欧式距离可以在满足该多维星座图中联合编码生成的星座组合点的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的倍的前提下取任意值,比如2,3等,具体取值情况此处不做限定。
可以理解的是,该第二组维度中并不仅限于两个维度。比如本申请实施例中当该第二组维度为时间时,该时间不仅仅包括该第一时隙和该第二时隙,还可以包括第三时隙,第四时隙等。本申请实施例中只要该第二组维度编码生成的分区多维星座图为至少四维的多维星座图即可,具体此处不做限定。
本申请实施例提供的技术方案中,该编码器针对不同的码型采用不同的编码方式,提高应用的灵活性。
可选的,该编码器根据最小欧式距离的星座点之间编码比特差距最小的
二进制比特的条件采用格雷编码的方式为该星座组合点生成该映射表。
在实际应用中,在光传输系统中的接收机端进行判决星座点时,该接收端可以联合两个信号特征在八维空间内进行计算,这时训练序列采用公式MeanAxr1,Axi1,Ayr1,Ayi1,Axr2,Axi2,Ayr2,Ayi2估计8点的各自平均值,然后再采用如下公式:
Mininal(Rxr1-Am,xr1)2+(Rxi1-Am,xi1)2+(Ryr1-Am,yr1)2+(Ryi1-Am,yi1)2+(Rxr2-Am,xr2)2+(Rxi2-Am,xi2)2+(Ryr2-Am,yr2)2+(Ryi2-Am,yi2)2(m=1,2,…,8)
进行欧式距离的计算比较,选取距离最小的点作为最终判定结果。
第二方面,本申请实施例提供了一种编码器,该编码器具有实现上述方法中编码器的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能实现方式中,该编码器包括:接收模块,处理模块,发送模块;
该处理模块,用于对第一组维度和第二组维度进行联合编码得到星座组合点,其中所述第一组维度采用双波相位共轭PCTW进行编码,所述第二组维度采用目标码型进行分区编码,所述星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的倍,所述多维星座图为基于所述第一组维度,所述第二组维度以及联合正交分量I/Q的至少八维星座图;为该星座组合点生成映射表;
该接收模块,用于接收携带数字信息的比特序列;
该处理模块,用于将该比特序列通过该星座组合点的映射表映射为用于传输的符号;
该发送模块,用于将该符号发送给数模转换器。
另一种可能实现方式中,该编码器包括:收发器,处理器,总线;
该收发器与该处理器通过该总线相连;
该处理器,执行如下步骤:对第一组维度和第二组维度进行联合编码得到星座组合点,其中所述第一组维度采用双波相位共轭PCTW进行编码,所述第二组维度采用目标码型进行分区编码,所述星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的倍,所述多维星座图为基于所述第一组维度,所述第二组维度以及联合正交分量I/Q的
至少八维星座图;为该星座组合点生成映射表;
该收发器,执行如下步骤:接收携带数字信息的比特序列;
该处理器,执行如下步骤:将该比特序列通过该星座组合点的映射表映射为用于传输的符号;
该收发器,执行如下步骤:将该符号发送给数模转换器。
第三方面,本申请实施例提供一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面或第二方面的方法。
本申请实施例提供的技术方案中,该编码器在I/Q的基础上联合第一组维度和第二组维度生成至少八维的多维星座图;然后该编码器在保留该第一组维度采用PCTW码型编码的基础上,将该第二组维度采用目标码型进行分区编码,该编码器对该第一组维度和该第二组维度进行联合编码生成星座组合点,并使得该星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的倍,相比传统的PCTW码型来说增加了星座点之间的最小欧式距离,进而增加了光纤传输过程中的线性性能。
图1为本申请实施例中光传输系统的一个装置示意图;
图2为本申请实施例中数据调制方法的一个实施例示意图;
图3为本申请实施例中八维星座图的一个示意图;
图4为本申请实施例中八维星座图的另一个示意图;
图5为本申请实施例中编码器的一个实施例示意图;
图6为本申请实施例中编码器的另一个实施例示意图。
本申请实施例提供了一种数据调制方法以及编码器,用于在保留PCTW码型对非线性损伤的抑制效果的基础上,有效提高光传输系统中的线性性能。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术
语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
一直以来,更大的传输容量,更远的传输距离和更好的传输效果就是光通信系统所追求的目标。近年来,大量新技术的应用带来的传输距离和容量的快速增加,使得光通信系统的发展甚至超过了由摩尔定律所定义的增长速度。尽管目前信息产业的发展势头有所减缓,但随着信息全球化的进程以及新的数据业务的不断涌现,发展超长距离,超大容量的光通信系统仍将是未来研究前沿的主题之一。而超长距离,超大容量的光通信系统中,信道间和信道内积累的非线性损伤已成为制约光传输距离的重要瓶颈。
请参阅图1所示的光传输系统,在该光传输系统中包括发射机,该发射机包含一个对二进制输入数据进行多维编码的编码器,通过数模转换器产生驱动信号。然后该驱动信号通过一个调制器调制由激光器产生的光载波的各个维度(幅度、相位、偏振态和时间等)。调制器由通常的相位/幅度调制器、相移器、马赫-曾德尔干涉仪和偏振复用器组成。然后,调制器输出的光调制信号利用色散补偿光纤进行百分之五十的链路色散预补偿,以得到一个对称的链路色散分布,其中色散预补偿也可由发射机数字信号处理的电补偿实现。传输链路由单模光纤和光信号放大器组成,链路末端再使用色散补偿光纤对残余的百分之五十链路色散进行补偿,残留色散补偿也可由接收机数字信号处理的电补偿实现。在末端相干接收机中,一个光混频器将接收的光信号与一个本振光源进行混频,一些光电检测器用于检测光混频器产生的各个混频分量。模数转换器对各个混频分量进行采样,数字信号处理器恢复光信号各个维度的信息。在光传输系统中,码型的星座点分布对信道的线性和非线性性能影响很大。线性传输性能能够通过增大星座点间的欧式距离来提高,而码型星座点的优化设计也可减少非线性损伤。目前传统的PCTW可以有效的抑制传输过程中的非线性损伤的能力。但是由于PCTW仅在一个字符或一个时隙的四维内优化星座点的组合,码型星座点之间的欧式距离为多维星座图未进行分区编码的星座点之间的最小欧式距离的倍并没有达到最大化,即在线性性能上并没有得到增益。
为解决这一问题,本申请实施例提供如下技术方案:在第一组维度联合第二组维度以及联合正交分量(英文全称:Inphase/Quadrature,简称:I/Q)生成至少八维的多维星座图时,该编码器将该第一组维度与该第二组维度进行联合编码生成星座组合点,其中该第一组维度采用PCTW进行编码,该第二组维度采用目标码型进行分区编码,该星座组合点之间的最小欧式距离大于该多维星座图未进行分区编码的星座点之间的最小欧式距离的倍;然后该编码器为该星座组合点生成映射表;在该编码器接收携带数字信息的比特序列之后,该编码器将该比特序列通过该星座组合点的映射表映射为用于传输的符号;最后该编码器将该符号发送给数模转换器。
图2为本申请实施例提供的数据调制方法流程图。在该数据调制方法中,具体的包括如下步骤:
201、编码器对第一组维度和第二组维度进行联合编码得到星座组合点。
在第一组维度联合第二组维度以及I/Q生成至少八维的多维星座图中,该编码器选择该第一组维度采用PCTW进行编码,并对该至少八维星座图中的该第二组维度采用目标码型进行分区编码,将两次编码的结果组合生成星座组合点,并使得该星座组合点之间的最小欧式距离大于该多维星座图未进行分区编码的星座点之间的最小欧式距离的倍。
在实际应用中,该第一组维度可以为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中任意一种,该第二组维度也可以为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中至少一种。该目标码型可以包括该PCTW,PS-QPSK,128SP-16QAM和64SP-16QAM,该编码器在实际应用中具体选择的目标码型此处不做限定,只要可以使得生成的该星座组合点的最小欧式距离大于该多维星座图未进行分区编码的星座点之间的最小欧式距离的倍即可。而根据该目标码型的不同选择,该编码器生成星座组合点的方式不同。同时,该第一组维度与该第二组维度之间也可以是该第二组维度选择采用PCTW进行编码,该第一组维度选择采用目标码型进行编码,只要该第一组维度与该第二组维度之间至少有一个维度采用PCTW进行编码即可,具体形式此处不做限定。
本实施例中以第一组维度为偏振态,第二组维度为时间进行说明,该偏振
态包括第一偏振态和第二偏振态,该时间维度包括第一时隙和第二时隙,其中,该第一偏振态在该第一时隙内的星座图为第一星座图,该第二偏振态在该第二时隙内的星座图为第二星座图,该第二偏振态在该第一时隙内的星座图为第三星座图,该第二偏振态在该第二时隙内的星座图为第四星座图。
可以理解的是,该第二组维度中并不仅限于两个维度。比如本申请实施例中当该第二组维度为时间时,该时间不仅仅包括该第一时隙和该第二时隙,还可以包括第三时隙,第四时隙等。本申请实施例中只要该第二组维度编码生成的分区多维星座图为至少四维的多维星座图即可,具体此处不做限定。本申请实施例中以该时间包括该第一时隙和该第二时隙为例。
该偏振态采用该PCTW进行编码,该时间采用该PS-QPSK进行编码,则该第一星座图,该第二星座图,该第三星座图与该第四星座图如图3所示,该第一星座图,该第二星座图,该第三星座图与该第四星座图均为矩形星座图且均为4星座点的QAM坐标图,该坐标图的横坐标为该I,该坐标图的纵坐标为该Q。该编码器生成星座组合点的方式可以如下:
一种可能实现方式中,该编码器从该第一星座图中选择星座点(1+1j)作为第一星座点时,则该编码器从该第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成星座组合点。比如该编码器从该第一星座图中选择星座点(1+1j)作为第一星座点,从该第二星座图中选择星座点(-1+1j)作为第二星座点,则该编码器从该第三星座图中选择星座点(1-1j)作为第三星座点,从该第四星座图中选择星座点(-1-1j)作为第四星座点,然后该编码器将星座点(1+1j),(-1+1j),(1-1j),(-1-1j)配对生成星座组合点。
另一种可能实现方式中,该编码器从该第一星座图中选择星座点(-1+1j)作为第一星座点时,该编码器从该第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;然后该编码器将该第一星座点,该第二星座点,
该第三星座点以及该第四星座点配对生成星座组合点。比如该统器从该第一星座图中选择星座点(-1+1j)作为第一星座点,该第二星座图中选择星座点(1+1j)作为第二星座点,则该编码器从该第三星座图中选择星座点(-1-1j)作为第三星座点,从该第四星座图中选择星座点(1-1j)作为第四星座点,然后该编码器将星座点(-1+1j),(1+1j),(-1-1j),(1-1j)配对生成星座组合点。
另一种可能实现方式中,该编码器从该第一星座图中选择星座点(-1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成星座组合点。比如,该编码器从该第一星座图中选择星座点(-1-1j)作为该第一星座点,从该第二星座图中选择星座点(1-1j)作为该第二星座点,则该编码器从该第三星座图中选择星座点(-1+1j)作为该第三星座点,该编码器从该第四星座图中选择星座点(1+1j)作为该第四星座点,然后该编码器将星座点(-1-1j),(1-1j),(-1+1j),(1+1j)配对生成星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;然后该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成星座组合点。比如,该编码器从该第一星座图中选择星座点(1-1j)作为该第一星座点,该编码器从该第二星座图中选择星座点(1+1j)作为该第二星座点,则该编码器从该第三星座图中选择星座点(1+1j)作为该第三星座点,该编码器从该第四星座图中选择星座点(1-1j)作为该第四星座点,然后该编码器将星座点(1-1j),(1+1j),(1+1j),(1-1j)配对生成星座组合点。
若该偏振态采用该PCTW进行编码,该时间采用该PCTW进行编码,则具体实现方式如下:
一种可能实现方式中,该编码器从第一星座图里选择星座点(1+1j)作为第一星座点时,则该编码器从该第二星座图中的星座点(1-1j)作为第二星座点,该第三星座图中选择与该第一星座点共轭的星座点(1-1j)作为第三星座点,该第四星座图中选择与该第二星座点共轭的星座点(1+1j)作为第四星座点;然后该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(-1+1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(-1-1j)作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点(-1-1j)作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点(-1+1j)作为该第四星座点;然后该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(-1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(-1+1j)作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点(-1+1j)作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点(-1-1j)作为该第四星座点;然后该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(1+1j)作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点(1+1j)作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点(1-1j)作为该第四星座点;然后该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
若该偏振态采用该PCTW进行编码,该时间采用该128SP-16QAM进行编码,则该偏振态的该第一偏振态在该时间的该第一时隙内的第一星座图,该偏振态的该第一偏振态在该时间的该第二时隙内的第二星座图,该偏振态的该第二偏振态在该时间的该第一时隙内的第三星座图和该偏振态的该第二偏振态在该时间的该第二时隙内的第四星座图如图4所示的八维星座图,且该第一星
座图、该第二星座图、该第三星座图以及该第四星座图均为16星座点的QAM坐标图,该坐标图的横坐标为该I,该坐标图的纵坐标为该Q。该编码器的编码具体实现方式如下:
一种可能实现方式中,该编码器从该第一星座图里任意选择第一星座点,然后该编码器从该第二星座图中选择第二星座点,从该第三星座图中选择与该第一星座点共轭的星座点作为第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为第四星座点,该第一星座点与该第二星座点构成的星座组合点之间的最小欧式距离为多维星座图未进行分区编码的星座点之间的最小欧式距离的倍;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。比如该编码器在该第一星座图中选择星座点(-3+3j)作为该第一星座点时,该编码器在该第二星座图中选择星座点(-1+3j)作为该第二星座点,该编码器在该第三星座图中选择星座点(-3-3j)作为该第三星座点,该编码器选择星座点(-1-3j)作为该第四星座点。
在实际应用中,若该编码器还可以选择32QAM,也可以选择64QAM进行编码调制,具体的情况,此处不做限定。同时该编码器选择的该第一星座点与该第二星座点配对生成的星座点组合之间的最小欧式距离不仅仅可以为多维星座图未进行分区编码的星座点之间的最小欧式距离的倍,也可以是其他数值,比如2,3等,只要可以满足该第一组维度与该第二组维度进行编码生成的星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的倍即可,具体情况此处不做限定。
202、编码器为该星座组合点生成映射表并保存。
该编码器根据最小欧式距离的星座点之间编码比特差距最小的二进制比特的条件采用格雷编码的方式为该星座组合点生成该映射表,该编码器将该映射表进行保存。
在实际应用中,该编码器可以根据不同的编码方式得到不同的映射表,具体该编码器使用哪种映射表,由该编码器随机获取。比如,该编码器可以获取到如表1或表2所示的映射表,其中该第一组维度为偏振态,该偏振态采用该PCTW编码,该第二组维度为时间,该时间采用PS-QPSK进行编码。该表1和表2的具体情况如下:
表1
表2
在实际应用中,在光传输系统中的接收机端进行判决星座点时,该接收端可以联合两个信号特征在八维空间内进行计算,这时训练序列采用公式MeanAxr1,Axi1,Ayr1,Ayi1,Axr2,Axi2,Ayr2,Ayi2估计8点的各自平均值,然后再采用如下公式:
Mininal(Rxr1-Am,xr1)2+(Rxi1-Am,xi1)2+(Ryr1-Am,yr1)2+(Ryi1-Am,yi1)2+(Rxr2-Am,xr2)2+(Rxi2-Am,xi2)2+(Ryr2-Am,yr2)2+(Ryi2-Am,yi2)2(m=1,2,…,8)
进行欧式距离的计算比较,选取距离最小的点作为最终判定结果。
203、编码器接收携带数字信息的比特序列。
该编码器在光传输系统中会接收到各种携带数字信息的比特序列。
204、编码器将该比特序列通过该星座组合点的映射表映射为用于传输的符号。
该编码器将该携带数字信息的比特序列通过该编码器预存的映射表进行映射得到用于传输的符号。
205、编码器将该符号发送给数模转换器。
该编码器将得到的用于传输的符号发送给数据模转换器,以使得该数模转换器将该符号发送出去,实现数据的传输。
本实施例中该编码器在I/Q的基础上联合第一组维度和第二组维度生成至少八维的多维星座图;然后该编码器在保留该第一组维度采用PCTW码型编
码的基础上,将该第二组维度采用目标码型进行分区编码,该编码器联合该第一组维度和该第二组维度的编码生成星座组合点,并使得该星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的倍,相比传统的PCTW码型来说增加了星座点之间的最小欧式距离,进而增加了光纤传输过程中的线性性能。
具体请参阅图5,本申请实施例中的编码器的一个实施例,包括:处理模块501,接收模块502,发送模块503。
该处理模块501,用于对第一组维度和第二组维度进行联合编码得到星座组合点,其中所述第一组维度采用双波相位共轭PCTW进行编码,所述第二组维度采用目标码型进行编码,所述星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的倍,所述多维星座图为基于所述第一组维度,所述第二组维度以及联合正交分量I/Q的至少八维星座图;为该星座组合点生成映射表;
该接收模块502,用于接收携带数字信息的比特序列;
该处理模块501,用于将该比特序列通过该星座组合点的映射表映射为用于传输的符号;
该发送模块503,用于将该符号发送给数模转换器。
结合上述实施例,该处理模块501,用于执行步骤201至步骤202,以及步骤204;
该接收模块502,用于执行步骤203;
该发送模块503,用于执行步骤205。
进一步的,图5中的编码器还可以用于执行图1或图2中的编码器执行的任何步骤,实现图1或图2中的编码器可以实现的任何功能。
本实施例中,在I/Q的基础上联合第一组维度和第二组维度生成至少八维的多维星座图;然后该处理模块501在保留该第一组维度采用PCTW码型编码的基础上,将该第二组维度采用目标码型进行分区编码,该处理模块501联合该第一组维度和该第二组维度的编码生成星座组合点,并使得该星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的倍,相比传统的PCTW码型来说增加了星座点之间的最小欧式
距离,进而增加了光纤传输过程中的线性性能。
具体请参阅图6,本申请实施例中的编码器的另一个实施例,包括:收发器601和处理器602;该收发器601和该处理器602通过总线603相互连接;
总线603可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器602可以是中央处理器(central processing unit,简称CPU),网络处理器(network processor,简称NP)或者CPU和NP的组合。
处理器602还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,简称ASIC),可编程逻辑器件(programmable logic device,简称PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,简称CPLD),现场可编程逻辑门阵列(field-programmable gate array,简称FPGA),通用阵列逻辑(generic array logic,简称GAL)或其任意组合。
参见图6所示,该编码器还可以包括存储器604;该存储器604用于存储该星座组合点的映射表。
该存储器604可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,简称RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,简称HDD)或固态硬盘(solid-state drive,简称SSD);存储器604还可以包括上述种类的存储器的组合。
可选地,存储器604还可以用于存储程序指令,处理器602调用该存储器604中存储的程序指令,可以执行图2所示实施例中的一个或多个步骤,或其中可选的实施方式,实现上述方法中编码器行为的功能。
该处理器602,采用上述实施例中的步骤201至步骤202,以及步骤204;
该收发器601包括射频模块和天线,该射频模块可以与该处理器602通过该总线603连接;该射频模块与该天线,执行上述实施例中的步骤203以及步
骤205。
本实施例中,在I/Q的基础上联合第一组维度和第二组维度生成至少八维的多维星座图;然后该处理器602在保留该第一组维度采用PCTW码型编码的基础上,将该第二组维度采用目标码型进行分区编码,该处理器602联合该第一组维度和该第二组维度的编码生成星座组合点,并使得该星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的倍,相比传统的PCTW码型来说增加了星座点之间的最小欧式距离,进而增加了光纤传输过程中的线性性能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全
部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (15)
- 根据权利要求1所述的方法,其特征在于,所述目标码型包括:所述PCTW,偏振交换正交相移键控PS-QPSK,128点的分区16正交幅度调制128SP-16QAM和64点的分区16正交幅度调制64SP-16QAM。
- 根据权利要求1所述的方法,其特征在于,所述第一组维度为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中任意一种,所述第二组维度为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中至少一种。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一组维度为偏振态,所述第二组维度为时间;所述偏振态包括第一偏振态和第二偏振态,所述偏振态采用所述PCTW进行编码;所述时间包括第一时隙和第二时隙,所述时间采用所述PS-QPSK进行编码;所述第一偏振态在所述第一时隙内的第一星座图,所述第一偏振态在所述第二时隙内的第二星座图,所述第二偏振态在所述第一时隙内的第三星座图和所述第二偏振态在所述第二时隙内的第四星座图均为4星座点的QAM坐标图,所述坐标图的横坐标为所述I,所述坐标图的纵坐标为所述Q;编码器对第一组维度和第二组维度进行联合编码得到星座组合点包括:所述编码器从第一星座图里选择星座点(1+1j)作为第一星座点时,则所述编码器从所述第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为第四星座点;或,所述编码器从第一星座图里选择星座点(-1+1j)作为所述第一星座点时,则所述编码器从所述第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;或,所述编码器从第一星座图里选择星座点(-1-1j)作为所述第一星座点时,则所述编码器从所述第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;或,所述编码器从第一星座图里选择星座点(1-1j)作为所述第一星座点时,则所述编码器从所述第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;所述编码器将所述第一星座点,所述第二星座点,所述第三星座点以及所述第四星座点配对生成所述星座组合点。
- 根据权利要1至3中任一项所述的方法,其特征在于,所述第一组维度为偏振态,所述第二组维度为时间;所述偏振态包括第一偏振态和第二偏振态,所述偏振态采用所述PCTW 进行编码;所述时间包括第一时隙和第二时隙,所述时间采用所述PCTW进行编码;所述第一偏振态在所述第一时隙内的第一星座图,所述第一偏振态在所述第二时隙内的第二星座图,所述第二偏振态在所述第一时隙内的第三星座图和所述第二偏振态在所述第二时隙内的第四星座图均为4星座点的QAM坐标图,所述坐标图的横坐标为所述I,所述坐标图的纵坐标为所述Q;编码器对第一组维度和第二组维度进行联合编码得到星座组合点包括:所述编码器从第一星座图里选择星座点(1+1j)作为第一星座点时,则所述编码器从所述第二星座图中的星座点(1-1j)作为第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为第四星座点;或,所述编码器从第一星座图里选择星座点(-1+1j)作为所述第一星座点时,则所述编码器从所述第二星座图中的星座点(-1-1j)作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;或,所述编码器从第一星座图里选择星座点(-1-1j)作为所述第一星座点时,则所述编码器从所述第二星座图中的星座点(-1+1j)作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;或,所述编码器从第一星座图里选择星座点(1-1j)作为所述第一星座点时,则所述编码器从所述第二星座图中的星座点(1+1j)作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;所述编码器将所述第一星座点,所述第二星座点,所述第三星座点以及所述第四星座点配对生成所述星座组合点。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一组 维度为偏振态,所述第二组维度为时间;所述偏振态包括第一偏振态和第二偏振态,所述偏振态采用所述PCTW进行编码;所述时间包括第一时隙和第二时隙,所述时间采用所述128SP-16QAM进行编码;所述第一偏振态在所述第一时隙内的第一星座图,所述第一偏振态在所述第二时隙内的第二星座图,所述第二偏振态在所述第一时隙内的第三星座图和所述第二偏振态在所述第二时隙内的第四星座图均为16星座点的QAM坐标图,所述坐标图的横坐标为所述I,所述坐标图的纵坐标为所述Q;编码器对第一组维度和第二组维度进行联合编码得到星座组合点包括:所述编码器从第一星座图里任意选择第一星座点,所述编码器从所述第二星座图中选择第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为第四星座点,所述第一星座点与所述第二星座点构成的星座组合点之间的最小欧式距离为多维星座图未进行分区编码的星座点之间的最小欧式距离的倍;所述编码器将所述第一星座点,所述第二星座点,所述第三星座点以及所述第四星座点配对生成所述星座组合点。
- 根据权利要求1至6中任一项所述的方法,其特征在于,所述编码器为所述星座组合点生成映射表包括:所述编码器根据最小欧式距离的星座点之间编码比特差距最小的二进制比特的条件采用格雷编码的方式为所述星座组合点生成所述映射表。
- 根据权利要求8所述的编码器,其特征在于,所述目标码型包括:所述PCTW,偏振交换正交相移键控PS-QPSK,128点的分区16正交幅度调制128SP-16QAM和64点的分区16正交幅度调制64SP-16QAM。
- 根据权利要求8所述的编码器,其特征在于,所述第一组维度为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中任意一种,所述第二组维度为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中至少一种。
- 根据权利要求8至10中任一项所述的编码器,其特征在于,所述第一组维度为偏振态,所述第二组维度为时间;所述偏振态包括第一偏振态和第二偏振态,所述偏振态采用所述PCTW进行编码;所述时间包括第一时隙和第二时隙,所述时间采用所述PS-QPSK进行编码;所述第一偏振态在所述第一时隙内的第一星座图,所述第一偏振态在所述第二时隙内的第二星座图,所述第二偏振态在所述第一时隙内的第三星座图和所述第二偏振态在所述第二时隙内的第四星座图均为4星座点的QAM坐标图,所述坐标图的横坐标为所述I,所述坐标图的纵坐标为所述Q;所述处理模块,具体用于从第一星座图里选择星座点(1+1j)作为第一星座点时,则从所述第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为第四星座点;或,所述处理模块,具体用于从第一星座图里选择星座点(-1+1j)作为所述第一星座点时,则从所述第二星座图中的星座点(1+1j)和(-1-1j)中任意选 择一个星座点作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;或,所述处理模块,具体用于从第一星座图里选择星座点(-1-1j)作为所述第一星座点时,则从所述第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;或,所述处理模块,具体用于从第一星座图里选择星座点(1-1j)作为所述第一星座点时,则从所述第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;将所述第一星座点,所述第二星座点,所述第三星座点以及所述第四星座点配对生成所述星座组合点。
- 根据权利要求8至10中任一项所述的编码器,其特征在于,所述第一组维度为偏振态,所述第二组维度为时间;所述偏振态包括第一偏振态和第二偏振态,所述偏振态采用所述PCTW进行编码;所述时间包括第一时隙和第二时隙,所述时间采用所述PCTW进行编码;所述第一偏振态在所述第一时隙内的第一星座图,所述第一偏振态在所述第二时隙内的第二星座图,所述第二偏振态在所述第一时隙内的第三星座图和所述第二偏振态在所述第二时隙内的第四星座图均为4星座点的QAM坐标图,所述坐标图的横坐标为所述I,所述坐标图的纵坐标为所述Q;所述处理模块,具体用于从第一星座图里选择星座点(1+1j)作为第一星座点时,则从所述第二星座图中的星座点(1-1j)作为第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为第三星座点,所述第四星座 图中选择与所述第二星座点共轭的星座点作为第四星座点;或,所述处理模块,具体用于从第一星座图里选择星座点(-1+1j)作为所述第一星座点时,则从所述第二星座图中的星座点(-1-1j)作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;或,所述处理模块,具体用于从第一星座图里选择星座点(-1-1j)作为所述第一星座点时,则从所述第二星座图中的星座点(-1+1j)作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;或,所述处理模块,具体用于从第一星座图里选择星座点(1-1j)作为所述第一星座点时,则从所述第二星座图中的星座点(1+1j)作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;将所述第一星座点,所述第二星座点,所述第三星座点以及所述第四星座点配对生成所述星座组合点。
- 根据权利要求8至10中任一项所述的编码器,其特征在于,所述第一组维度为偏振态,所述第二组维度为时间;所述偏振态包括第一偏振态和第二偏振态,所述偏振态采用所述PCTW进行编码;所述时间包括第一时隙和第二时隙,所述时间采用所述128SP-16QAM进行编码;所述第一偏振态在所述第一时隙内的第一星座图,所述第一偏振态在所述第二时隙内的第二星座图,所述第二偏振态在所述第一时隙内的第三星座图和所述第二偏振态在所述第二时隙内的第四星座图均为16星座点的QAM坐标图,所述坐标图的横坐标为所述I,所述坐标图的纵坐标为所述Q;所述处理模块,具体用于从第一星座图里任意选择第一星座点,从所述第 二星座图中选择第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为第四星座点,所述第一星座点与所述第二星座点构成的星座组合点之间的最小欧式距离为多维星座图未进行分区编码的星座点之间的最小欧式距离的倍;将所述第一星座点,所述第二星座点,所述第三星座点以及所述第四星座点配对生成所述星座组合点。
- 根据权利要求8至14中任一项所述的编码器,其特征在于,所述处理模块,还用于根据最小欧式距离的星座点之间编码比特差距最小的二进制比特的条件采用格雷编码的方式为所述星座组合点生成所述映射表。
- 一种编码器,其特征在于,包括:收发器,处理器,总线;所述收发器与所述处理器通过所述总线相连;所述处理器,用于对第一组维度和第二组维度进行联合编码得到星座组合点,其中所述第一组维度采用双波相位共轭PCTW进行编码,所述第二组维度采用目标码型进行编码,所述星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的倍,所述多维星座图为基于所述第一组维度,所述第二组维度以及联合正交分量I/Q的至少八维星座图;为所述星座组合点生成映射表;所述收发器,用于接收携带数字信息的比特序列;所述处理器,还用于:将所述比特序列通过所述星座组合点的映射表映射为用于传输的符号;所述收发器,还用于:将所述符号发送给数模转换器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/105897 WO2018090185A1 (zh) | 2016-11-15 | 2016-11-15 | 一种数据调制方法以及编码器 |
CN201680090725.1A CN109923804B (zh) | 2016-11-15 | 2016-11-15 | 一种数据调制方法以及编码器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/105897 WO2018090185A1 (zh) | 2016-11-15 | 2016-11-15 | 一种数据调制方法以及编码器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018090185A1 true WO2018090185A1 (zh) | 2018-05-24 |
Family
ID=62145979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/105897 WO2018090185A1 (zh) | 2016-11-15 | 2016-11-15 | 一种数据调制方法以及编码器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109923804B (zh) |
WO (1) | WO2018090185A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111771344A (zh) * | 2018-06-08 | 2020-10-13 | 希尔纳公司 | 光学通信中的维度变换 |
CN112350814A (zh) * | 2020-10-20 | 2021-02-09 | 新疆大学 | 一种高效的上行链路scma码本设计 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103907294A (zh) * | 2011-09-16 | 2014-07-02 | 阿尔卡特朗讯 | 通过相位共轭光学变体的通信 |
CN104579440A (zh) * | 2014-11-24 | 2015-04-29 | 南京邮电大学 | 一种基于反向天线阵的方向调制信号的设计方法 |
CN104601239A (zh) * | 2015-01-12 | 2015-05-06 | 西南交通大学 | 一种基于强度噪声方差以及低通滤波器的光纤自适应非线性补偿方案 |
US20150333834A1 (en) * | 2014-05-14 | 2015-11-19 | Futurewei Technologies, Inc. | Exploiting Frequency Diversity on a Sub-band Basis for Optical Transmission Performance Enhancement |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101944976A (zh) * | 2010-10-11 | 2011-01-12 | 复旦大学 | 一种基于格雷映射的优化网格编码调制系统编码设计方法 |
US8433205B2 (en) * | 2011-04-13 | 2013-04-30 | Mitsubishi Electric Research Laboratories, Inc. | Crosstalk-free high-dimensional constellations for dual-polarized nonlinear fiber-optic communications |
CN102571670B (zh) * | 2012-01-12 | 2014-08-20 | 北京邮电大学 | 用于ofdm系统的多维联合编码调制的方法及装置 |
CN103259760B (zh) * | 2013-04-04 | 2016-11-02 | 王红星 | 基于多维星座图的脉冲波形调制方法 |
US9621275B2 (en) * | 2014-07-01 | 2017-04-11 | Mitsubishi Electric Research Laboratories, Inc. | Method for generating constant modulus multi-dimensional modulations for coherent optical communications |
-
2016
- 2016-11-15 WO PCT/CN2016/105897 patent/WO2018090185A1/zh active Application Filing
- 2016-11-15 CN CN201680090725.1A patent/CN109923804B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103907294A (zh) * | 2011-09-16 | 2014-07-02 | 阿尔卡特朗讯 | 通过相位共轭光学变体的通信 |
US20150333834A1 (en) * | 2014-05-14 | 2015-11-19 | Futurewei Technologies, Inc. | Exploiting Frequency Diversity on a Sub-band Basis for Optical Transmission Performance Enhancement |
CN104579440A (zh) * | 2014-11-24 | 2015-04-29 | 南京邮电大学 | 一种基于反向天线阵的方向调制信号的设计方法 |
CN104601239A (zh) * | 2015-01-12 | 2015-05-06 | 西南交通大学 | 一种基于强度噪声方差以及低通滤波器的光纤自适应非线性补偿方案 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111771344A (zh) * | 2018-06-08 | 2020-10-13 | 希尔纳公司 | 光学通信中的维度变换 |
CN111771344B (zh) * | 2018-06-08 | 2022-11-29 | 希尔纳公司 | 光学通信中的维度变换 |
CN112350814A (zh) * | 2020-10-20 | 2021-02-09 | 新疆大学 | 一种高效的上行链路scma码本设计 |
CN112350814B (zh) * | 2020-10-20 | 2023-10-31 | 新疆大学 | 一种高效的上行链路scma码本设计方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109923804A (zh) | 2019-06-21 |
CN109923804B (zh) | 2020-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107948113B (zh) | 基于三维信号插入降低ofdm系统峰均功率比的方法及系统 | |
US10547486B2 (en) | Data transmission method and apparatus | |
CN104184503B (zh) | 传输器系统以及其相关的信号传输方法 | |
KR101822763B1 (ko) | 일정한 엔벨로프를 가진 신호를 전송하기 위한 방법 및 장치 | |
CN101517920B (zh) | 利用天线收缩的波束形成 | |
US11218355B2 (en) | Multi-dimensional signal encoding | |
EP3404883B1 (en) | Transmitter, receiver and signal processing method | |
US20050220205A1 (en) | Constellation mapping apparatus and method | |
WO2018090185A1 (zh) | 一种数据调制方法以及编码器 | |
CN104320222B (zh) | 一种毫米波空间调制方法与联合编码装置 | |
CN103401674A (zh) | 一种宽带接入网的加密方法 | |
WO2021197343A1 (en) | Multiple access wireless communications using a non-gaussian manifold | |
WO2018058576A1 (zh) | 一种数据调制方法以及编码器 | |
CN116886203B (zh) | 一种4维光信号的调制方法、装置及存储介质 | |
US20150098520A1 (en) | Communication device and communication method | |
CN105282085B (zh) | 编解码方法和设备 | |
KR102701119B1 (ko) | 신호 변조 장치 및 단말 | |
WO2020020330A1 (zh) | 一种数据调制方法、装置及计算机存储介质 | |
CN107896206B (zh) | 基于四维信号插入降低ofdm系统峰均功率比的方法及系统 | |
Jia et al. | Precoding normalized differential spatial modulation with non-constant modulus constellations | |
KR102184181B1 (ko) | 단일 비트 adc 도청 채널의 보안 정보 전송방법 | |
JP2019510402A (ja) | 非直交多元接続に適用される情報伝送方法、装置及び通信システム | |
US20240275660A1 (en) | Zero-Crossing-Avoidance Encoding for Quadrature Amplitude Modulation | |
Puerta et al. | Multiband carrierless amplitude and phase index modulation | |
Mohammady et al. | A Physical Layer Security (PLS) approach through Address Fed Mapping Crest Factor Reduction applicable for 5G/6G signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16921525 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16921525 Country of ref document: EP Kind code of ref document: A1 |