CN109923804B - 一种数据调制方法以及编码器 - Google Patents

一种数据调制方法以及编码器 Download PDF

Info

Publication number
CN109923804B
CN109923804B CN201680090725.1A CN201680090725A CN109923804B CN 109923804 B CN109923804 B CN 109923804B CN 201680090725 A CN201680090725 A CN 201680090725A CN 109923804 B CN109923804 B CN 109923804B
Authority
CN
China
Prior art keywords
constellation
point
constellation point
map
encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680090725.1A
Other languages
English (en)
Other versions
CN109923804A (zh
Inventor
贾伟
邓宁
赵建
余玉揆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN109923804A publication Critical patent/CN109923804A/zh
Application granted granted Critical
Publication of CN109923804B publication Critical patent/CN109923804B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Abstract

本申请实施例提供一种数据调制方法以及编码器,用于在保留PCTW码型对非线性损伤的抑制效果的基础上,有效提高光传输系统中的线性性能。本申请提供的技术方案如下:编码器对第一组维度和第二组维度进行联合编码得到星座组合点,第一组维度采用双波相位共轭PCTW进行编码,第二组维度采用目标码型进行分区编码,星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure DDA0002054944770000011
倍,多维星座图为基于第一组维度,第二组维度以及联合正交分量I/Q的至少八维星座图;编码器为星座组合点生成映射表;编码器接收携带数字信息的比特序列;编码器将比特序列通过星座组合点的映射表映射为用于传输的符号;编码器将符号发送给数模转换器。

Description

一种数据调制方法以及编码器
技术领域
本申请实施例涉及通信领域,尤其涉及一种数据调制方法以及编码器。
背景技术
一直以来,更大的传输容量,更远的传输距离和更好的传输效果就是光通信系统所追求的目标。近年来,大量新技术的应用带来的传输距离和容量的快速增加,使得光通信系统的发展甚至超过了由摩尔定律所定义的增长速度。尽管目前信息产业的发展势头有所减缓,但随着信息全球化的进程以及新的数据业务的不断涌现,发展超长距离,超大容量的光通信系统仍将是未来研究前沿的主题之一。而超长距离,超大容量的光通信系统中,信道间和信道内积累的非线性损伤已成为制约光传输距离的重要瓶颈。在光传输系统中,码型的星座点分布对信道的线性和非线性性能影响很大。线性传输性能能够通过增大星座点间的欧式距离来提高,而码型星座点的优化设计也可减少非线性损伤。
目前传统的双波相位共轭(英文全称:Phase Conjugated Twin Wave,简称:PCTW)可以有效的抑制传输过程中的非线性损伤的能力。
但是由于PCTW仅在一个字符或一个时隙的四维内优化星座点的组合,码型星座点之间的欧式距离为多维星座图未分区编码时星座点之间的最小欧式距离的
Figure GDA0002311595500000011
倍并没有达到最大化,即在线性性能上并没有得到增益。
发明内容
本申请实施例提供了一种数据调制方法以及编码器,用于在保留PCTW码型对非线性损伤的抑制效果的基础上,有效提高光传输系统中的线性性能。
第一方面,本申请实施例提供一种数据调制方法,包括:在第一组维度联合第二组维度以及联合正交分量(英文全称:Inphase/Quadrature,简称:I/Q)生成至少八维的多维星座图时,该编码器将该第一组维度与该第二组维度进行联合编码生成星座组合点,其中该第一组维度采用PCTW进行编码,该第二组维度采用目标码型进行分区编码,该星座组合点之间的最小欧式距离大于该多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000012
倍;然后该编码器为该星座组合点生成映射表;在该编码器接收携带数字信息的比特序列之后,该编码器将该比特序列通过该星座组合点的映射表映射为用于传输的符号;最后该编码器将该符号发送给数模转换器。
本申请实施例中,该编码器联合该第一组维度与该第二组维度进行编码生成的是至少两个相互共轭的分区多维星座图,其中可以定义为该第一组维度用于采用PCTW进行编码,该第二组维度进行分区编码得到该分区多维星座图。
本申请实施例提供的技术方案中,该编码器在I/Q的基础上联合第一组维度和第二组维度生成至少八维的多维星座图;然后该编码器在保留该第一组维度采用PCTW码型编码的基础上,将该第二组维度采用目标码型进行分区编码,该编码器联合该第一组维度和该第二组维度的编码生成星座组合点,并使得该星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000021
倍,相比传统的PCTW码型来说增加了星座点之间的最小欧式距离,进而增加了光纤传输过程中的线性性能。
可选的,该目标码型包括:该PCTW,偏振交换正交相移键控(英文全称:Polarization Switched Quadrature Phase Shift Keying,简称:PS-QPSK),128点的分区16正交幅度调制(英文全称:Set Partitioned 16Quadrature Amplitude Modulation,简称:SP-16QAM)和64SP-16QAM。
在实际应用中,该目标码型还可以包括其他多种方式,比如32QAM,64QAM等,只要可以使得该星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000022
倍即可,具体情况此处不做限定。
本申请实施例提供的技术方案中,该编码器将该第二组维度采用其他多种方式进行编码可以有效的提高利用效率。
可选的,该第一组维度为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中任意一种,该第二组维度为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中至少一种。
可选的,该第一组维度为偏振态,该第二组维度为时间;该偏振态包括第一偏振态和第二偏振态,该偏振态采用该PCTW进行编码;该时间包括第一时隙和第二时隙,该时间采用该PS-QPSK进行编码;
该第一偏振态在该第一时隙内的第一星座图,该第一偏振态在该第二时隙内的第二星座图,该第二偏振态在该第一时隙内的第三星座图和该第二偏振态在该第二时隙内的第四星座图均为4星座点的QAM坐标图,该坐标图的横坐标为该I,该坐标图的纵坐标为该Q。基于上述条件,该编码器可以采用如下方式得到星座组合点:
一种可能实现方式中,该编码器从第一星座图里选择星座点(1+1j)作为第一星座点时,则该编码器从该第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(-1+1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(-1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
可选的,该第一组维度为偏振态,该第二组维度为时间;该偏振态包括第一偏振态和第二偏振态,该偏振态采用该PCTW进行编码;该时间包括第一时隙和第二时隙,该时间采用该PCTW进行编码;
该第一偏振态在该第一时隙内的第一星座图,该第一偏振态在该第二时隙内的第二星座图,该第二偏振态在该第一时隙内的第三星座图和该第二偏振态在该第二时隙内的第四星座图均为4星座点的QAM坐标图,该坐标图的横坐标为该I,该坐标图的纵坐标为该Q。
基于上述条件,该编码器还可以采用如下方式生成该星座组合点:
一种可能实现方式中,该编码器从第一星座图里选择星座点(1+1j)作为第一星座点时,则该编码器从该第二星座图中的星座点(1-1j)作为第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(-1+1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(-1-1j)作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(-1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(-1+1j)作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(1+1j)作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
可选的,该第一组维度为偏振态,该第二组维度为时间;该偏振态包括第一偏振态和第二偏振态,该偏振态采用该PCTW进行编码;该时间包括第一时隙和第二时隙,该时间采用该128SP-16QAM进行编码;
该第一偏振态在该第一时隙内的第一星座图,该第一偏振态在该第二时隙内的第二星座图,该第二偏振态在该第一时隙内的第三星座图和该第二偏振态在该第二时隙内的第四星座图均为16星座点的QAM坐标图,该坐标图的横坐标为该I,该坐标图的纵坐标为该Q。
基于上述条件,该编码器可以采用如下方式生成该星座组合点:
一种可能实现方式中,该编码器从第一星座图里任意选择第一星座点,该编码器从该第二星座图中选择第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为第四星座点,该第一星座点与该第二星座点构成的星座组合点之间的最小欧式距离为多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000041
倍;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
在实际应用中,该第一星座点与该第二星座点构成的星座组合点之间的最小欧式距离可以在满足该多维星座图中联合编码生成的星座组合点的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000042
倍的前提下取任意值,比如2,3等,具体取值情况此处不做限定。
可以理解的是,该第二组维度中并不仅限于两个维度。比如本申请实施例中当该第二组维度为时间时,该时间不仅仅包括该第一时隙和该第二时隙,还可以包括第三时隙,第四时隙等。本申请实施例中只要该第二组维度编码生成的分区多维星座图为至少四维的多维星座图即可,具体此处不做限定。
本申请实施例提供的技术方案中,该编码器针对不同的码型采用不同的编码方式,提高应用的灵活性。
可选的,该编码器根据最小欧式距离的星座点之间编码比特差距最小的二进制比特的条件采用格雷编码的方式为该星座组合点生成该映射表。
在实际应用中,在光传输系统中的接收机端进行判决星座点时,该接收端可以联合两个信号特征在八维空间内进行计算,这时训练序列采用公式 MeanAxr1,Axi1,Ayr1,Ayi1,Axr2,Axi2,Ayr2,Ayi2估计8点的各自平均值,然后再采用如下公式:
Mininal(Rxr1-Amxr1)2+(Rxi1-Amxi1)2+(Ryr1-Amyr1)2+(Ryi1-Amyi1)2+(Rxr2-Amxr2)2+(Rxi2-Amxi2)2+(Ryr2-Amyr2)2+(Ryi2-Amyi2)2(m=1,2,… ,8)
进行欧式距离的计算比较,选取距离最小的点作为最终判定结果。
第二方面,本申请实施例提供了一种编码器,该编码器具有实现上述方法中编码器的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能实现方式中,该编码器包括:接收模块,处理模块,发送模块;
该处理模块,用于对第一组维度和第二组维度进行联合编码得到星座组合点,其中所述第一组维度采用双波相位共轭PCTW进行编码,所述第二组维度采用目标码型进行分区编码,所述星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000043
倍,所述多维星座图为基于所述第一组维度,所述第二组维度以及联合正交分量I/Q的至少八维星座图;为该星座组合点生成映射表;
该接收模块,用于接收携带数字信息的比特序列;
该处理模块,用于将该比特序列通过该星座组合点的映射表映射为用于传输的符号;
该发送模块,用于将该符号发送给数模转换器。
另一种可能实现方式中,该编码器包括:收发器,处理器,总线;
该收发器与该处理器通过该总线相连;
该处理器,执行如下步骤:对第一组维度和第二组维度进行联合编码得到星座组合点,其中所述第一组维度采用双波相位共轭PCTW进行编码,所述第二组维度采用目标码型进行分区编码,所述星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000051
倍,所述多维星座图为基于所述第一组维度,所述第二组维度以及联合正交分量I/Q的至少八维星座图;为该星座组合点生成映射表;
该收发器,执行如下步骤:接收携带数字信息的比特序列;
该处理器,执行如下步骤:将该比特序列通过该星座组合点的映射表映射为用于传输的符号;
该收发器,执行如下步骤:将该符号发送给数模转换器。
第三方面,本申请实施例提供一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面或第二方面的方法。
本申请实施例提供的技术方案中,该编码器在I/Q的基础上联合第一组维度和第二组维度生成至少八维的多维星座图;然后该编码器在保留该第一组维度采用PCTW码型编码的基础上,将该第二组维度采用目标码型进行分区编码,该编码器对该第一组维度和该第二组维度进行联合编码生成星座组合点,并使得该星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000052
倍,相比传统的PCTW码型来说增加了星座点之间的最小欧式距离,进而增加了光纤传输过程中的线性性能。
附图说明
图1为本申请实施例中光传输系统的一个装置示意图;
图2为本申请实施例中数据调制方法的一个实施例示意图;
图3为本申请实施例中八维星座图的一个示意图;
图4为本申请实施例中八维星座图的另一个示意图;
图5为本申请实施例中编码器的一个实施例示意图;
图6为本申请实施例中编码器的另一个实施例示意图。
具体实施方式
本申请实施例提供了一种数据调制方法以及编码器,用于在保留PCTW码型对非线性损伤的抑制效果的基础上,有效提高光传输系统中的线性性能。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
一直以来,更大的传输容量,更远的传输距离和更好的传输效果就是光通信系统所追求的目标。近年来,大量新技术的应用带来的传输距离和容量的快速增加,使得光通信系统的发展甚至超过了由摩尔定律所定义的增长速度。尽管目前信息产业的发展势头有所减缓,但随着信息全球化的进程以及新的数据业务的不断涌现,发展超长距离,超大容量的光通信系统仍将是未来研究前沿的主题之一。而超长距离,超大容量的光通信系统中,信道间和信道内积累的非线性损伤已成为制约光传输距离的重要瓶颈。
请参阅图1所示的光传输系统,在该光传输系统中包括发射机,该发射机包含一个对二进制输入数据进行多维编码的编码器,通过数模转换器产生驱动信号。然后该驱动信号通过一个调制器调制由激光器产生的光载波的各个维度(幅度、相位、偏振态和时间等)。调制器由通常的相位/幅度调制器、相移器、马赫-曾德尔干涉仪和偏振复用器组成。然后,调制器输出的光调制信号利用色散补偿光纤进行百分之五十的链路色散预补偿,以得到一个对称的链路色散分布,其中色散预补偿也可由发射机数字信号处理的电补偿实现。传输链路由单模光纤和光信号放大器组成,链路末端再使用色散补偿光纤对残余的百分之五十链路色散进行补偿,残留色散补偿也可由接收机数字信号处理的电补偿实现。在末端相干接收机中,一个光混频器将接收的光信号与一个本振光源进行混频,一些光电检测器用于检测光混频器产生的各个混频分量。模数转换器对各个混频分量进行采样,数字信号处理器恢复光信号各个维度的信息。在光传输系统中,码型的星座点分布对信道的线性和非线性性能影响很大。线性传输性能能够通过增大星座点间的欧式距离来提高,而码型星座点的优化设计也可减少非线性损伤。目前传统的PCTW可以有效的抑制传输过程中的非线性损伤的能力。但是由于PCTW仅在一个字符或一个时隙的四维内优化星座点的组合,码型星座点之间的欧式距离为多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000061
倍并没有达到最大化,即在线性性能上并没有得到增益。
为解决这一问题,本申请实施例提供如下技术方案:在第一组维度联合第二组维度以及联合正交分量(英文全称:Inphase/Quadrature,简称:I/Q)生成至少八维的多维星座图时,该编码器将该第一组维度与该第二组维度进行联合编码生成星座组合点,其中该第一组维度采用PCTW进行编码,该第二组维度采用目标码型进行分区编码,该星座组合点之间的最小欧式距离大于该多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000062
倍;然后该编码器为该星座组合点生成映射表;在该编码器接收携带数字信息的比特序列之后,该编码器将该比特序列通过该星座组合点的映射表映射为用于传输的符号;最后该编码器将该符号发送给数模转换器。
图2为本申请实施例提供的数据调制方法流程图。在该数据调制方法中,具体的包括如下步骤:
201、编码器对第一组维度和第二组维度进行联合编码得到星座组合点。
在第一组维度联合第二组维度以及I/Q生成至少八维的多维星座图中,该编码器选择该第一组维度采用PCTW进行编码,并对该至少八维星座图中的该第二组维度采用目标码型进行分区编码,将两次编码的结果组合生成星座组合点,并使得该星座组合点之间的最小欧式距离大于该多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000071
倍。
在实际应用中,该第一组维度可以为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中任意一种,该第二组维度也可以为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中至少一种。该目标码型可以包括该PCTW,PS-QPSK,128SP-16QAM和64SP-16QAM,该编码器在实际应用中具体选择的目标码型此处不做限定,只要可以使得生成的该星座组合点的最小欧式距离大于该多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000072
倍即可。而根据该目标码型的不同选择,该编码器生成星座组合点的方式不同。同时,该第一组维度与该第二组维度之间也可以是该第二组维度选择采用PCTW进行编码,该第一组维度选择采用目标码型进行编码,只要该第一组维度与该第二组维度之间至少有一个维度采用PCTW进行编码即可,具体形式此处不做限定。
本实施例中以第一组维度为偏振态,第二组维度为时间进行说明,该偏振态包括第一偏振态和第二偏振态,该时间维度包括第一时隙和第二时隙,其中,该第一偏振态在该第一时隙内的星座图为第一星座图,该第二偏振态在该第二时隙内的星座图为第二星座图,该第二偏振态在该第一时隙内的星座图为第三星座图,该第二偏振态在该第二时隙内的星座图为第四星座图。
可以理解的是,该第二组维度中并不仅限于两个维度。比如本申请实施例中当该第二组维度为时间时,该时间不仅仅包括该第一时隙和该第二时隙,还可以包括第三时隙,第四时隙等。本申请实施例中只要该第二组维度编码生成的分区多维星座图为至少四维的多维星座图即可,具体此处不做限定。本申请实施例中以该时间包括该第一时隙和该第二时隙为例。
该偏振态采用该PCTW进行编码,该时间采用该PS-QPSK进行编码,则该第一星座图,该第二星座图,该第三星座图与该第四星座图如图3所示,该第一星座图,该第二星座图,该第三星座图与该第四星座图均为矩形星座图且均为4星座点的QAM坐标图,该坐标图的横坐标为该I,该坐标图的纵坐标为该Q。该编码器生成星座组合点的方式可以如下:
一种可能实现方式中,该编码器从该第一星座图中选择星座点(1+1j)作为第一星座点时,则该编码器从该第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成星座组合点。比如该编码器从该第一星座图中选择星座点(1+1j)作为第一星座点,从该第二星座图中选择星座点(-1+1j)作为第二星座点,则该编码器从该第三星座图中选择星座点(1-1j)作为第三星座点,从该第四星座图中选择星座点(-1-1j)作为第四星座点,然后该编码器将星座点(1+1j),(-1+1j),(1-1j),(-1-1j)配对生成星座组合点。
另一种可能实现方式中,该编码器从该第一星座图中选择星座点(-1+1j)作为第一星座点时,该编码器从该第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;然后该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成星座组合点。比如该统器从该第一星座图中选择星座点(-1+1j)作为第一星座点,该第二星座图中选择星座点(1+1j)作为第二星座点,则该编码器从该第三星座图中选择星座点 (-1-1j)作为第三星座点,从该第四星座图中选择星座点(1-1j)作为第四星座点,然后该编码器将星座点(-1+1j),(1+1j),(-1-1j),(1-1j)配对生成星座组合点。
另一种可能实现方式中,该编码器从该第一星座图中选择星座点(-1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成星座组合点。比如,该编码器从该第一星座图中选择星座点(-1-1j)作为该第一星座点,从该第二星座图中选择星座点(1-1j)作为该第二星座点,则该编码器从该第三星座图中选择星座点(-1+1j)作为该第三星座点,该编码器从该第四星座图中选择星座点(1+1j) 作为该第四星座点,然后该编码器将星座点(-1-1j),(1-1j),(-1+1j),(1+1j) 配对生成星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为该第四星座点;然后该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成星座组合点。比如,该编码器从该第一星座图中选择星座点(1-1j)作为该第一星座点,该编码器从该第二星座图中选择星座点(1+1j)作为该第二星座点,则该编码器从该第三星座图中选择星座点(1+1j)作为该第三星座点,该编码器从该第四星座图中选择星座点(1-1j) 作为该第四星座点,然后该编码器将星座点(1-1j),(1+1j),(1+1j),(1-1j)配对生成星座组合点。
若该偏振态采用该PCTW进行编码,该时间采用该PCTW进行编码,则具体实现方式如下:
一种可能实现方式中,该编码器从第一星座图里选择星座点(1+1j)作为第一星座点时,则该编码器从该第二星座图中的星座点(1-1j)作为第二星座点,该第三星座图中选择与该第一星座点共轭的星座点(1-1j)作为第三星座点,该第四星座图中选择与该第二星座点共轭的星座点(1+1j)作为第四星座点;然后该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(-1+1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(-1-1j)作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点(-1-1j)作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点(-1+1j)作为该第四星座点;然后该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(-1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(-1+1j)作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点(-1+1j)作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点(-1-1j)作为该第四星座点;然后该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成星座组合点。
另一种可能实现方式中,该编码器从第一星座图里选择星座点(1-1j)作为该第一星座点时,则该编码器从该第二星座图中的星座点(1+1j)作为该第二星座点,该第三星座图中选择与该第一星座点共轭的星座点(1+1j)作为该第三星座点,该第四星座图中选择与该第二星座点共轭的星座点(1-1j)作为该第四星座点;然后该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。
若该偏振态采用该PCTW进行编码,该时间采用该128SP-16QAM进行编码,则该偏振态的该第一偏振态在该时间的该第一时隙内的第一星座图,该偏振态的该第一偏振态在该时间的该第二时隙内的第二星座图,该偏振态的该第二偏振态在该时间的该第一时隙内的第三星座图和该偏振态的该第二偏振态在该时间的该第二时隙内的第四星座图如图4 所示的八维星座图,且该第一星座图、该第二星座图、该第三星座图以及该第四星座图均为16星座点的QAM坐标图,该坐标图的横坐标为该I,该坐标图的纵坐标为该Q。该编码器的编码具体实现方式如下:
一种可能实现方式中,该编码器从该第一星座图里任意选择第一星座点,然后该编码器从该第二星座图中选择第二星座点,从该第三星座图中选择与该第一星座点共轭的星座点作为第三星座点,该第四星座图中选择与该第二星座点共轭的星座点作为第四星座点,该第一星座点与该第二星座点构成的星座组合点之间的最小欧式距离为多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000091
倍;该编码器将该第一星座点,该第二星座点,该第三星座点以及该第四星座点配对生成该星座组合点。比如该编码器在该第一星座图中选择星座点(-3+3j)作为该第一星座点时,该编码器在该第二星座图中选择星座点(-1+3j)作为该第二星座点,该编码器在该第三星座图中选择星座点(-3-3j) 作为该第三星座点,该编码器选择星座点(-1-3j)作为该第四星座点。
在实际应用中,若该编码器还可以选择32QAM,也可以选择64QAM进行编码调制,具体的情况,此处不做限定。同时该编码器选择的该第一星座点与该第二星座点配对生成的星座点组合之间的最小欧式距离不仅仅可以为多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000092
倍,也可以是其他数值,比如2,3等,只要可以满足该第一组维度与该第二组维度进行编码生成的星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000093
倍即可,具体情况此处不做限定。
202、编码器为该星座组合点生成映射表并保存。
该编码器根据最小欧式距离的星座点之间编码比特差距最小的二进制比特的条件采用格雷编码的方式为该星座组合点生成该映射表,该编码器将该映射表进行保存。
在实际应用中,该编码器可以根据不同的编码方式得到不同的映射表,具体该编码器使用哪种映射表,由该编码器随机获取。比如,该编码器可以获取到如表1或表2所示的映射表,其中该第一组维度为偏振态,该偏振态采用该PCTW编码,该第二组维度为时间,该时间采用PS-QPSK进行编码。该表1和表2的具体情况如下:
Figure GDA0002311595500000101
表1
Figure GDA0002311595500000102
表2
在实际应用中,在光传输系统中的接收机端进行判决星座点时,该接收端可以联合两个信号特征在八维空间内进行计算,这时训练序列采用公式 MeanAxr1,Axi1,Ayr1,Ayi1,Axr2,Axi2,Ayr2,Ayi2估计8点的各自平均值,然后再采用如下公式:
Mininal(Rxr1-Amxr1)2+(Rxi1-Amxi1)2+(Ryr1-Amyr1)2+(Ryi1-Amyi1)2+(Rxr2-Amxr2)2+(Rxi2-Amxi2)2+(Ryr2-Amyr2)2+(Ryi2-Amyi2)2(m=1,2,… ,8)
进行欧式距离的计算比较,选取距离最小的点作为最终判定结果。
203、编码器接收携带数字信息的比特序列。
该编码器在光传输系统中会接收到各种携带数字信息的比特序列。
204、编码器将该比特序列通过该星座组合点的映射表映射为用于传输的符号。
该编码器将该携带数字信息的比特序列通过该编码器预存的映射表进行映射得到用于传输的符号。
205、编码器将该符号发送给数模转换器。
该编码器将得到的用于传输的符号发送给数据模转换器,以使得该数模转换器将该符号发送出去,实现数据的传输。
本实施例中该编码器在I/Q的基础上联合第一组维度和第二组维度生成至少八维的多维星座图;然后该编码器在保留该第一组维度采用PCTW码型编码的基础上,将该第二组维度采用目标码型进行分区编码,该编码器联合该第一组维度和该第二组维度的编码生成星座组合点,并使得该星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000103
倍,相比传统的PCTW码型来说增加了星座点之间的最小欧式距离,进而增加了光纤传输过程中的线性性能。
具体请参阅图5,本申请实施例中的编码器的一个实施例,包括:处理模块501,接收模块502,发送模块503。
该处理模块501,用于对第一组维度和第二组维度进行联合编码得到星座组合点,其中所述第一组维度采用双波相位共轭PCTW进行编码,所述第二组维度采用目标码型进行编码,所述星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000104
倍,所述多维星座图为基于所述第一组维度,所述第二组维度以及联合正交分量I/Q的至少八维星座图;为该星座组合点生成映射表;
该接收模块502,用于接收携带数字信息的比特序列;
该处理模块501,用于将该比特序列通过该星座组合点的映射表映射为用于传输的符号;
该发送模块503,用于将该符号发送给数模转换器。
结合上述实施例,该处理模块501,用于执行步骤201至步骤202,以及步骤204;
该接收模块502,用于执行步骤203;
该发送模块503,用于执行步骤205。
进一步的,图5中的编码器还可以用于执行图1或图2中的编码器执行的任何步骤,实现图1或图2中的编码器可以实现的任何功能。
本实施例中,在I/Q的基础上联合第一组维度和第二组维度生成至少八维的多维星座图;然后该处理模块501在保留该第一组维度采用PCTW码型编码的基础上,将该第二组维度采用目标码型进行分区编码,该处理模块501联合该第一组维度和该第二组维度的编码生成星座组合点,并使得该星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000111
倍,相比传统的PCTW码型来说增加了星座点之间的最小欧式距离,进而增加了光纤传输过程中的线性性能。
具体请参阅图6,本申请实施例中的编码器的另一个实施例,包括:收发器601和处理器602;该收发器601和该处理器602通过总线603相互连接;
总线603可以是外设部件互连标准(peripheral component interconnect,简称PCI) 总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器602可以是中央处理器(central processing unit,简称CPU),网络处理器(network processor,简称NP)或者CPU和NP的组合。
处理器602还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,简称ASIC),可编程逻辑器件(programmable logic device,简称PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,简称CPLD),现场可编程逻辑门阵列 (field-programmable gate array,简称FPGA),通用阵列逻辑(generic array logic, 简称GAL)或其任意组合。
参见图6所示,该编码器还可以包括存储器604;该存储器604用于存储该星座组合点的映射表。
该存储器604可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,简称RAM);存储器也可以包括非易失性存储器(non-volatilememory),例如快闪存储器(flash memory),硬盘(hard disk drive,简称HDD)或固态硬盘(solid-state drive,简称SSD);存储器604还可以包括上述种类的存储器的组合。
可选地,存储器604还可以用于存储程序指令,处理器602调用该存储器604中存储的程序指令,可以执行图2所示实施例中的一个或多个步骤,或其中可选的实施方式,实现上述方法中编码器行为的功能。
该处理器602,采用上述实施例中的步骤201至步骤202,以及步骤204;
该收发器601包括射频模块和天线,该射频模块可以与该处理器602通过该总线603 连接;该射频模块与该天线,执行上述实施例中的步骤203以及步骤205。
本实施例中,在I/Q的基础上联合第一组维度和第二组维度生成至少八维的多维星座图;然后该处理器602在保留该第一组维度采用PCTW码型编码的基础上,将该第二组维度采用目标码型进行分区编码,该处理器602联合该第一组维度和该第二组维度的编码生成星座组合点,并使得该星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure GDA0002311595500000121
倍,相比传统的PCTW码型来说增加了星座点之间的最小欧式距离,进而增加了光纤传输过程中的线性性能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM, Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

1.一种数据调制方法,其特征在于,所述方法包括:
编码器对第一组维度和第二组维度进行联合编码得到星座组合点,其中所述第一组维度采用双波相位共轭PCTW进行编码,所述第二组维度采用目标码型进行分区编码,所述星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure FDA0002311595490000011
倍,所述多维星座图为基于所述第一组维度,所述第二组维度以及联合正交分量I/Q的至少八维星座图;
所述编码器为所述星座组合点生成映射表;
所述编码器接收携带数字信息的比特序列;
所述编码器将所述比特序列通过所述星座组合点的映射表映射为用于传输的符号;
所述编码器将所述符号发送给数模转换器。
2.根据权利要求1所述的方法,其特征在于,所述目标码型包括:所述PCTW,偏振交换正交相移键控PS-QPSK,128点的分区16正交幅度调制128SP-16QAM和64点的分区16正交幅度调制64SP-16QAM。
3.根据权利要求2所述的方法,其特征在于,所述第一组维度为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中任意一种,所述第二组维度为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中至少一种。
4.根据权利要求3所述的方法,其特征在于,所述第一组维度为偏振态,所述第二组维度为时间;
所述偏振态包括第一偏振态和第二偏振态,所述偏振态采用所述PCTW进行编码;
所述时间包括第一时隙和第二时隙,所述时间采用偏振交换正交相移键控PS-QPSK进行编码;
所述第一偏振态在所述第一时隙内的第一星座图,所述第一偏振态在所述第二时隙内的第二星座图,所述第二偏振态在所述第一时隙内的第三星座图和所述第二偏振态在所述第二时隙内的第四星座图均为4星座点的QAM坐标图,所述坐标图的横坐标为所述I,所述坐标图的纵坐标为所述Q;
编码器对第一组维度和第二组维度进行联合编码得到星座组合点包括:
所述编码器从第一星座图里选择星座点(1+1j)作为第一星座点时,则所述编码器从所述第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为第四星座点;
或,
所述编码器从第一星座图里选择星座点(-1+1j)作为所述第一星座点时,则所述编码器从所述第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;
或,
所述编码器从第一星座图里选择星座点(-1-1j)作为所述第一星座点时,则所述编码器从所述第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;
或,
所述编码器从第一星座图里选择星座点(1-1j)作为所述第一星座点时,则所述编码器从所述第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;
所述编码器将所述第一星座点,所述第二星座点,所述第三星座点以及所述第四星座点配对生成所述星座组合点。
5.根据权利要求 3所述的方法,其特征在于,所述第一组维度为偏振态,所述第二组维度为时间;
所述偏振态包括第一偏振态和第二偏振态,所述偏振态采用所述PCTW进行编码;
所述时间包括第一时隙和第二时隙,所述时间采用所述PCTW进行编码;
所述第一偏振态在所述第一时隙内的第一星座图,所述第一偏振态在所述第二时隙内的第二星座图,所述第二偏振态在所述第一时隙内的第三星座图和所述第二偏振态在所述第二时隙内的第四星座图均为4星座点的QAM坐标图,所述坐标图的横坐标为所述I,所述坐标图的纵坐标为所述Q;
编码器对第一组维度和第二组维度进行联合编码得到星座组合点包括:
所述编码器从第一星座图里选择星座点(1+1j)作为第一星座点时,则所述编码器从所述第二星座图中的星座点(1-1j)作为第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为第四星座点;
或,
所述编码器从第一星座图里选择星座点(-1+1j)作为所述第一星座点时,则所述编码器从所述第二星座图中的星座点(-1-1j)作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;
或,
所述编码器从第一星座图里选择星座点(-1-1j)作为所述第一星座点时,则所述编码器从所述第二星座图中的星座点(-1+1j)作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;
或,
所述编码器从第一星座图里选择星座点(1-1j)作为所述第一星座点时,则所述编码器从所述第二星座图中的星座点(1+1j)作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;
所述编码器将所述第一星座点,所述第二星座点,所述第三星座点以及所述第四星座点配对生成所述星座组合点。
6.根据权利要求3所述的方法,其特征在于,所述第一组维度为偏振态,所述第二组维度为时间;
所述偏振态包括第一偏振态和第二偏振态,所述偏振态采用所述PCTW进行编码;
所述时间包括第一时隙和第二时隙,所述时间采用所述128SP-16QAM进行编码;
所述第一偏振态在所述第一时隙内的第一星座图,所述第一偏振态在所述第二时隙内的第二星座图,所述第二偏振态在所述第一时隙内的第三星座图和所述第二偏振态在所述第二时隙内的第四星座图均为16星座点的QAM坐标图,所述坐标图的横坐标为所述I,所述坐标图的纵坐标为所述Q;
编码器对第一组维度和第二组维度进行联合编码得到星座组合点包括:
所述编码器从第一星座图里任意选择第一星座点,所述编码器从所述第二星座图中选择第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为第四星座点,所述第一星座点与所述第二星座点构成的星座组合点之间的最小欧式距离为多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure FDA0002311595490000032
倍;
所述编码器将所述第一星座点,所述第二星座点,所述第三星座点以及所述第四星座点配对生成所述星座组合点。
7.根据权利要求1至6中任一项所述的方法,其特征在于,所述编码器为所述星座组合点生成映射表包括:
所述编码器根据最小欧式距离的星座点之间编码比特差距最小的二进制比特的条件采用格雷编码的方式为所述星座组合点生成所述映射表。
8.一种编码器,其特征在于,包括:
处理模块,用于将第一组维度和第二组维度进行联合编码得到星座组合点,其中所述第一组维度采用双波相位共轭PCTW进行编码,所述第二组维度采用目标码型进行编码,所述星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure FDA0002311595490000031
倍,所述多维星座图为基于所述第一组维度,所述第二组维度以及联合正交分量I/Q的至少八维星座图;为所述星座组合点生成映射表;
接收模块,用于接收携带数字信息的比特序列;
所述处理模块,用于将所述比特序列通过所述星座组合点的映射表映射为用于传输的符号;
发送模块,用于将所述符号发送给数模转换器。
9.根据权利要求8所述的编码器,其特征在于,所述目标码型包括:所述PCTW,偏振交换正交相移键控PS-QPSK,128点的分区16正交幅度调制128SP-16QAM和64点的分区16正交幅度调制64SP-16QAM。
10.根据权利要求9所述的编码器,其特征在于,所述第一组维度为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中任意一种,所述第二组维度为偏振态,时间,波长,子载波,多模光纤的模式和多芯光纤的芯中至少一种。
11.根据权利要求10所述的编码器,其特征在于,所述第一组维度为偏振态,所述第二组维度为时间;
所述偏振态包括第一偏振态和第二偏振态,所述偏振态采用所述PCTW进行编码;
所述时间包括第一时隙和第二时隙,所述时间采用所述PS-QPSK进行编码;
所述第一偏振态在所述第一时隙内的第一星座图,所述第一偏振态在所述第二时隙内的第二星座图,所述第二偏振态在所述第一时隙内的第三星座图和所述第二偏振态在所述第二时隙内的第四星座图均为4星座点的QAM坐标图,所述坐标图的横坐标为所述I,所述坐标图的纵坐标为所述Q;
所述处理模块,具体用于从第一星座图里选择星座点(1+1j)作为第一星座点时,则从所述第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为第四星座点;
或,
所述处理模块,具体用于从第一星座图里选择星座点(-1+1j)作为所述第一星座点时,则从所述第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;
或,
所述处理模块,具体用于从第一星座图里选择星座点(-1-1j)作为所述第一星座点时,则从所述第二星座图中的星座点(-1+1j)和(1-1j)中任意选择一个星座点作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;
或,
所述处理模块,具体用于从第一星座图里选择星座点(1-1j)作为所述第一星座点时,则从所述第二星座图中的星座点(1+1j)和(-1-1j)中任意选择一个星座点作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;
将所述第一星座点,所述第二星座点,所述第三星座点以及所述第四星座点配对生成所述星座组合点。
12.根据权利要求10所述的编码器,其特征在于,所述第一组维度为偏振态,所述第二组维度为时间;
所述偏振态包括第一偏振态和第二偏振态,所述偏振态采用所述PCTW进行编码;
所述时间包括第一时隙和第二时隙,所述时间采用所述PCTW进行编码;
所述第一偏振态在所述第一时隙内的第一星座图,所述第一偏振态在所述第二时隙内的第二星座图,所述第二偏振态在所述第一时隙内的第三星座图和所述第二偏振态在所述第二时隙内的第四星座图均为4星座点的QAM坐标图,所述坐标图的横坐标为所述I,所述坐标图的纵坐标为所述Q;
所述处理模块,具体用于从第一星座图里选择星座点(1+1j)作为第一星座点时,则从所述第二星座图中的星座点(1-1j)作为第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为第四星座点;
或,
所述处理模块,具体用于从第一星座图里选择星座点(-1+1j)作为所述第一星座点时,则从所述第二星座图中的星座点(-1-1j)作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;
或,
所述处理模块,具体用于从第一星座图里选择星座点(-1-1j)作为所述第一星座点时,则从所述第二星座图中的星座点(-1+1j)作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;
或,
所述处理模块,具体用于从第一星座图里选择星座点(1-1j)作为所述第一星座点时,则从所述第二星座图中的星座点(1+1j)作为所述第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为所述第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为所述第四星座点;
将所述第一星座点,所述第二星座点,所述第三星座点以及所述第四星座点配对生成所述星座组合点。
13.根据权利要求10所述的编码器,其特征在于,所述第一组维度为偏振态,所述第二组维度为时间;
所述偏振态包括第一偏振态和第二偏振态,所述偏振态采用所述PCTW进行编码;
所述时间包括第一时隙和第二时隙,所述时间采用所述128SP-16QAM进行编码;
所述第一偏振态在所述第一时隙内的第一星座图,所述第一偏振态在所述第二时隙内的第二星座图,所述第二偏振态在所述第一时隙内的第三星座图和所述第二偏振态在所述第二时隙内的第四星座图均为16星座点的QAM坐标图,所述坐标图的横坐标为所述I,所述坐标图的纵坐标为所述Q;
所述处理模块,具体用于从第一星座图里任意选择第一星座点,从所述第二星座图中选择第二星座点,所述第三星座图中选择与所述第一星座点共轭的星座点作为第三星座点,所述第四星座图中选择与所述第二星座点共轭的星座点作为第四星座点,所述第一星座点与所述第二星座点构成的星座组合点之间的最小欧式距离为多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure FDA0002311595490000051
倍;
将所述第一星座点,所述第二星座点,所述第三星座点以及所述第四星座点配对生成所述星座组合点。
14.根据权利要求8至13中任一项所述的编码器,其特征在于,所述处理模块,还用于根据最小欧式距离的星座点之间编码比特差距最小的二进制比特的条件采用格雷编码的方式为所述星座组合点生成所述映射表。
15.一种编码器,其特征在于,包括:
收发器,处理器,总线;
所述收发器与所述处理器通过所述总线相连;
所述处理器,用于对第一组维度和第二组维度进行联合编码得到星座组合点,其中所述第一组维度采用双波相位共轭PCTW进行编码,所述第二组维度采用目标码型进行编码,所述星座组合点之间的最小欧式距离大于多维星座图未进行分区编码的星座点之间的最小欧式距离的
Figure FDA0002311595490000061
倍,所述多维星座图为基于所述第一组维度,所述第二组维度以及联合正交分量I/Q的至少八维星座图;为所述星座组合点生成映射表;
所述收发器,用于
接收携带数字信息的比特序列;
所述处理器,还用于:
将所述比特序列通过所述星座组合点的映射表映射为用于传输的符号;
所述收发器,还用于:将所述符号发送给数模转换器。
CN201680090725.1A 2016-11-15 2016-11-15 一种数据调制方法以及编码器 Active CN109923804B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105897 WO2018090185A1 (zh) 2016-11-15 2016-11-15 一种数据调制方法以及编码器

Publications (2)

Publication Number Publication Date
CN109923804A CN109923804A (zh) 2019-06-21
CN109923804B true CN109923804B (zh) 2020-04-14

Family

ID=62145979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680090725.1A Active CN109923804B (zh) 2016-11-15 2016-11-15 一种数据调制方法以及编码器

Country Status (2)

Country Link
CN (1) CN109923804B (zh)
WO (1) WO2018090185A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10389447B1 (en) * 2018-06-08 2019-08-20 Ciena Corporation Dimensional transformation
CN112350814B (zh) * 2020-10-20 2023-10-31 新疆大学 一种高效的上行链路scma码本设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944976A (zh) * 2010-10-11 2011-01-12 复旦大学 一种基于格雷映射的优化网格编码调制系统编码设计方法
CN102571670A (zh) * 2012-01-12 2012-07-11 北京邮电大学 用于ofdm系统的多维联合编码调制的方法及装置
CN103259760A (zh) * 2013-04-04 2013-08-21 王红星 基于多维星座图的脉冲波形调制方法
CN103907294A (zh) * 2011-09-16 2014-07-02 阿尔卡特朗讯 通过相位共轭光学变体的通信

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8433205B2 (en) * 2011-04-13 2013-04-30 Mitsubishi Electric Research Laboratories, Inc. Crosstalk-free high-dimensional constellations for dual-polarized nonlinear fiber-optic communications
WO2015175653A1 (en) * 2014-05-14 2015-11-19 Huawei Technologies Co., Ltd. Exploiting frequency diversity on a sub-band basis for optical transmission performance enhancement
US9621275B2 (en) * 2014-07-01 2017-04-11 Mitsubishi Electric Research Laboratories, Inc. Method for generating constant modulus multi-dimensional modulations for coherent optical communications
CN104579440B (zh) * 2014-11-24 2018-04-20 南京邮电大学 一种基于反向天线阵的方向调制信号的设计方法
CN104601239B (zh) * 2015-01-12 2017-05-17 西南交通大学 一种基于强度噪声方差以及低通滤波器的光纤自适应非线性补偿方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944976A (zh) * 2010-10-11 2011-01-12 复旦大学 一种基于格雷映射的优化网格编码调制系统编码设计方法
CN103907294A (zh) * 2011-09-16 2014-07-02 阿尔卡特朗讯 通过相位共轭光学变体的通信
CN102571670A (zh) * 2012-01-12 2012-07-11 北京邮电大学 用于ofdm系统的多维联合编码调制的方法及装置
CN103259760A (zh) * 2013-04-04 2013-08-21 王红星 基于多维星座图的脉冲波形调制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Comparison of Polarization-Switched QPSK and Modified Phase Conjugated Twin Waves in Long-Haul Links;Yukui Yu,etal.;《2016 Optical Fiber Communications Conference and Exhibition (OFC)》;20160811;第1-3页 *
Effectiveness of phase-conjugated twin waves on fiber nonlinearity in spatially multiplexed all-optical OFDM system;Jassim K.Hmood,etal.;《Optical Fiber Technology》;20160731;第147–152页 *

Also Published As

Publication number Publication date
WO2018090185A1 (zh) 2018-05-24
CN109923804A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
CN109565336A (zh) 光数据编码方法和光发射器
CN101378379B (zh) 一种发射机
CN101517920A (zh) 利用天线收缩的波束形成
CN111010255B (zh) 基于极化码编码im/dd传输方法及系统
US11245473B2 (en) Optimum three dimensional constellations for optical interconnects employing stokes vector receivers
US10320486B1 (en) Optical signal transmitter and optical signal encoder using constant modulus formats, and method for generating modulation codes
CN109923804B (zh) 一种数据调制方法以及编码器
CN106849963B (zh) 三维相干光正交频分复用系统峰均功率比降低方法和装置
US20090003488A1 (en) Transmitter and receiver
CN109075869B (zh) 一种数据调制方法以及编码器
US11309972B2 (en) Optical communication system employing a multidimensional constellation with an increased minimum distance
WO2021197343A1 (en) Multiple access wireless communications using a non-gaussian manifold
CN116886203B (zh) 一种4维光信号的调制方法、装置及存储介质
US8860522B2 (en) Phase and amplitude modulator
CN111092663B (zh) 一种基于比特加权分布的光正交频分复用系统和通信方法
US9270384B2 (en) Sub-sampled carrier phase recovery
Guan et al. Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers
KR20230027196A (ko) 데이터 변조 방법, 장치, 설비 및 저장 매체
Chen et al. Hybrid constellation entropy loading for adaptively partitioned SSB-DMT systems
Chang et al. Hierarchical space shift keying for unequal error protection
CN207010653U (zh) 三维相干光正交频分复用系统峰均功率比降低装置
CN110768922B (zh) 一种数据调制方法、装置及计算机存储介质
Schenk et al. Capacity of BICM using (bi-) orthogonal signal constellations in the wideband regime
Wang et al. Companding scheme for peak-to-average power ratio reduction in optical orthogonal frequency division multiplexing systems
Tong et al. Performance-Enhanced DMT System With Joint Precoding and Probabilistic Constellation Shaping

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant